WO2012127742A1 - 太陽電池モジュールおよびその製造方法 - Google Patents

太陽電池モジュールおよびその製造方法 Download PDF

Info

Publication number
WO2012127742A1
WO2012127742A1 PCT/JP2011/078046 JP2011078046W WO2012127742A1 WO 2012127742 A1 WO2012127742 A1 WO 2012127742A1 JP 2011078046 W JP2011078046 W JP 2011078046W WO 2012127742 A1 WO2012127742 A1 WO 2012127742A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
layer
cell module
protective layer
surface protective
Prior art date
Application number
PCT/JP2011/078046
Other languages
English (en)
French (fr)
Inventor
昭男 東
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011060721A external-priority patent/JP2012199284A/ja
Priority claimed from JP2011065795A external-priority patent/JP2012204459A/ja
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012127742A1 publication Critical patent/WO2012127742A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin film solar cell module using CIGS for a photoelectric conversion layer and a method for manufacturing the same, and in particular, the surface protective layer is made of thin glass and the back protective layer has a support plate, or on the back protective layer.
  • the present invention relates to a thin-film solar cell module that is lightweight, has high mechanical strength, and is low in cost, and a method for manufacturing the same.
  • a solar cell is formed by connecting a number of solar cells in a stacked structure in which a light absorption layer of a semiconductor that generates current by light absorption is sandwiched between a lower electrode (back electrode) and an upper electrode (transparent electrode). It is configured and formed on a substrate.
  • a solar cell having such a configuration is attracting attention as clean energy. Therefore, research on solar cells has been actively conducted, and improvements have been attempted from various viewpoints.
  • solar cells are weak in moisture, and characteristics such as conversion efficiency deteriorate when moisture enters.
  • CIS CuInSe 2
  • CIGS Cu (In, Ga) Se 2
  • a chalcopyrite solar cell used as a layer uses a ZnO film or the like as a transparent electrode, so that the transparent electrode is altered by the ingress of moisture. As a result, the resistance value of the transparent electrode is increased, and the conversion efficiency is greatly decreased.
  • solar cells are often installed outdoors, such as mounts, roofs, or rooftops installed outdoors. For this reason, various proposals have been made to improve the waterproofness of solar cell modules (Patent Documents 1 to 9 and the like).
  • Patent Document 1 a plurality of CIS-based thin-film solar cell device portions laminated in the order of an alkali barrier layer, a metal back electrode layer, a light absorption layer, a buffer layer, and a window layer on a glass substrate are electrically connected by a conductive pattern.
  • EVA ethylene vinyl acetate
  • Patent Document 2 describes a sealing material that forms a solar cell module by sealing a solar cell element, an upper transparent protective material, and a lower substrate protective material.
  • the ethylene / unsaturated carboxylic acid copolymer or ionomer thereof used as the sealing material has an unsaturated carboxylic acid content of 4% by weight or more, preferably 5 to 20% by weight, and a melting point by DSC of 85 ° C. or more, preferably Is 90-110 ° C.
  • Patent Document 2 discloses, as solar cell elements, silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as gallium-arsenic, copper-indium-selenium, cadmium-tellurium, and II- It describes that various types of solar cell elements such as Group VI compound semiconductors can be used.
  • Patent Documents 3 to 5 are intended to provide a solar cell sealing material excellent in transparency, heat resistance, adhesiveness and the like.
  • Patent Document 3 discloses an ethylene / unsaturated carboxylic acid copolymer having an unsaturated carboxylic acid content of 4% by weight or more and a melting point of 80 ° C. or higher, or an ionomer thereof, as a solar cell encapsulating material.
  • (B) and (C) are described.
  • a modified polyamide oligomer obtained by melt-kneading the ionomer and a polyamide oligomer having a primary amino group at one or both ends and (C) the ethylene / unsaturated carboxylic acid copolymer or the ionomer thereof
  • This is a modified polypropylene wax obtained by melt-kneading a polypropylene wax having an average molecular weight of 50,000 or less, an ethylene / ⁇ -olefin copolymer having a number average molecular weight of 100,000 or more, a radical generator and a crosslinking aid.
  • an unsaturated carboxylic acid content is 4% by weight or more and an ethylene / unsaturated carboxylic acid copolymer having a melting point of 85 ° C. or higher or its ionomer is 100 parts by weight.
  • a solar cell element sealing material comprising a polymer composition comprising 1 to 30 parts by weight of an inorganic filler having a refractive index difference of 0.15 or less from that of an ionomer is described.
  • an inorganic filler is a silicon compound.
  • Patent Document 5 discloses an ethylene / unsaturated carboxylic acid copolymer having an unsaturated carboxylic acid content of 4 wt% or more and a melting point of 85 ° C. or more, or an ionomer thereof, and a glass having a thickness of 0.05 to 1.0 mm.
  • the solar cell element sealing material in the solar cell module which consists of a laminated body which laminated
  • Patent Documents 3 to 5 as solar cell elements, silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as gallium-arsenic, copper-indium-selenium, cadmium-tellurium, etc.
  • Various solar cell elements such as II-VI group compound semiconductors can be used, and it is described that the sealing material of the present invention can be applied to sealing any of these solar cell elements.
  • Patent Document 6 also relates to ionomer compositions, polymer films or sheets derived therefrom, and safety laminates and their use in solar cell modules.
  • Patent Document 6 discloses an ionomer copolymer of an ⁇ -olefin and an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid having 3 to 8 carbons, based on the total weight of the ionomer copolymer, of about 1 to about 30% by weight.
  • a polymer film or sheet comprising an ionomer composition comprising: the carboxylic acid at a level of 1 to 100 mole percent with one or more metal ions based on the total number of moles of carboxylate groups in the ionomer copolymer
  • a polymer film or sheet is described wherein the ionomer copolymer has a melt index of from about 20 to about 300 g / 10 min.
  • Patent Document 7 discloses an elastic body having a substantially chevron-shaped cross section for rotatably supporting a solar cell panel on the back surface side of the solar cell panel in order to absorb impact load stress such as wrinkles and maintain durability.
  • a solar cell module provided with a support bar having In the solar cell module of Patent Document 7, a gripping portion that grips an end portion of the solar cell panel, a rotation support member that rotatably supports the end portion of the solar cell panel, or an end portion of the solar cell panel in a substantially vertical direction. And a resilient support member that absorbs the amount of movement.
  • Patent Document 8 reduces the influence of an alternating current component applied between a photovoltaic element having a semiconductor layer as a light conversion member on a metal substrate and a back material made of metal, and is not damaged by the alternating current component.
  • a solar cell module is provided.
  • a photovoltaic element having at least one semiconductor layer as a light conversion member on a metal substrate, a back material made of metal, and a back material and the photovoltaic element are arranged.
  • the back surface material has a plurality of openings.
  • a capacitance can be made small enough and it becomes a more reliable thing regarding an electromotive voltage characteristic.
  • the back material is for increasing the mechanical strength of the solar cell module, or for preventing distortion and warping due to temperature change.
  • a material having sufficient corrosion resistance and rigidity that can withstand long-term outdoor use is desirable.
  • hot dip galvanized steel plate, galvanium steel plate, galvanized steel plate, stainless steel plate, aluminum plate, FRP (glass fiber reinforced plastic) are preferable.
  • galvanized steel sheets (hot dip zinc-aluminum alloy plated steel sheets) and stainless steel sheets are more preferable.
  • Patent Document 9 discloses that a light transmitting portion can be formed at a predetermined shape and interval at a predetermined position of a solar cell module, and the weight of a structure to be mounted can be reduced by reducing its own weight, or the effect of the potential can be prevented by avoiding the effect of solar power.
  • the object is to ensure the power generation efficiency of the battery module.
  • a translucent glass plate is provided, a solar cell encapsulated in a translucent sealing material is directed to the glass plate with the sunlight receiving side, and a translucent portion is provided on the glass plate.
  • a see-through solar cell module is described that has a light-transmitting portion that is left to be joined and further has at least a sealing material covered with a light-transmitting film.
  • a nonflammable back cover having translucency is provided so as to cover the back side of the translucent film. This back cover is made of, for example, a punched metal, a woven fabric made of a wire mesh or glass fiber yarn.
  • Patent Document 1 retains impact strength and waterproofness by providing the most common white plate tempered glass as the surface protective layer.
  • its weight is 7.5 kg / m 2 .
  • patent document 2 and patent document 6 although ionomer resin sealing material is used, both weight reduction and high intensity
  • the solar cell module of Patent Document 7 has a structure in which the peripheral portion of the solar cell panel is provided with a rotation support member, and the peripheral portion of the solar cell panel is not fixed, and thus lacks reliability such as waterproofness.
  • Patent Document 8 aims to provide a solar cell module that is not damaged by an AC component, and cannot achieve both weight reduction and high strength at the same time.
  • punching metal, wire netting, and glass fiber are provided as a back cover so as to have translucency, but the conversion efficiency of the solar cell module may be significantly reduced.
  • the object of the present invention is to eliminate the problems based on the above prior art, to exhibit a predetermined performance over a long period of time, to be used stably, a lightweight, high mechanical strength, and low cost solar A battery module and a manufacturing method thereof are provided.
  • a surface protection layer is provided on the front surface side of the solar cell submodule via a first adhesive filling layer, and on the back surface side of the solar cell submodule.
  • the back surface protective layer includes at least the support plate among a back sheet and a support plate that reinforces the solar cell module, and the support plate is an aluminum plate, aluminum alloy plate, or galbarium having a thickness of 0.1 to 1.0 mm.
  • the first adhesion filling layer includes an ionomer resin, and the surface protection layer is made of glass having a thickness of 0.6 to 1.5 mm.
  • the solar cell submodule is formed by forming a light absorption layer composed of a CIGS film on a substrate in which an anodized aluminum film is formed on the surface of a metal sheet.
  • the solar cell module is characterized by having a bending stress of 100 MPa or more.
  • the glass constituting the surface protective layer is preferably blue plate glass or white plate glass.
  • the frame member has a frame member provided at a peripheral portion, the frame member includes a sealing material provided on the inside and an outer frame material provided on the outside, and the sealing material is made of butyl rubber or silicone resin.
  • the outer frame material is preferably made of an aluminum frame or a metal foil tape.
  • substrate used for the said solar cell submodule is the cladding material of aluminum, stainless steel, and aluminum, or the cladding material of aluminum and stainless steel, for example.
  • the second adhesive filling layer does not contain the ionomer resin
  • the back surface protective layer includes the support plate made of the back sheet and the galvalume steel plate.
  • an intermediate sealing material for preventing water vapor intrusion is provided 5 to 30 mm inside from the peripheral edge of the back surface protective layer.
  • the intermediate sealing material is preferably composed of butyl rubber, polyolefin, polyisoprene or isoprene.
  • a surface protective layer is provided on the front surface side of the solar cell submodule via a first adhesive filling layer, and a second adhesive filling layer is provided on the back surface side of the solar cell submodule.
  • a back surface protective layer is provided, and the solar cell submodule is sealed by the first adhesive filling layer and the second adhesive filling layer.
  • the back surface protective layer includes at least the support plate among support plates for reinforcing the back sheet and the solar cell module, and the support plate has an aluminum plate, aluminum alloy plate having a thickness of 0.1 to 1.0 mm, or
  • the first adhesive filling layer includes an ionomer resin, and the surface protective layer is formed of glass having a thickness of 0.6 to 1.5 mm.
  • the solar cell submodule is obtained by forming a light absorption layer composed of a CIGS film on a substrate having an aluminum anodized film formed on the surface of a metal sheet.
  • the first adhesive filling layer and the surface protective layer are laminated and disposed, and the second adhesive filling layer and the back surface side of the solar cell submodule Placing by laminating a serial back surface protective layer, the plurality of layers, there is provided a method of manufacturing a solar cell module, characterized by a step of vacuum lamination in a state of being arranged by laminating.
  • an intermediate sealing material for preventing water vapor intrusion is disposed 5 to 30 mm inside from the peripheral edge portion of the back surface protective layer in the step of stacking and arranging.
  • a surface protective layer is provided on the front surface side of the solar cell submodule via a first adhesive filling layer, and a second adhesive filling layer is provided on the back surface side of the solar cell submodule.
  • a solar cell module provided with a back surface protective layer,
  • the first adhesive filling layer includes an ionomer resin,
  • the surface protective layer is made of glass having a thickness of 0.6 to 2.0 mm, and the solar cell submodule includes a metal sheet.
  • a light-absorbing layer composed of a CIGS film is formed on a substrate having an anodized aluminum film formed on the surface thereof, and further, a metal mesh support is provided on the back surface protective layer side,
  • the solar cell module is provided with a bending stress of 100 MPa or more.
  • the second adhesive filling layer preferably contains an ethylene vinyl acetate resin or an ionomer resin.
  • the glass constituting the surface protective layer is preferably blue plate glass or white plate glass.
  • the frame member has a frame member provided at a peripheral portion, the frame member includes a sealing material provided on the inside and an outer frame material provided on the outside, and the sealing material is made of butyl rubber or silicone resin.
  • the outer frame material is preferably composed of an aluminum frame or a metal foil tape.
  • the wire mesh support is, for example, a wire mesh or a wire mesh sheet, and the wire mesh support is made of a stainless steel wire, a galvanized wire, a brass wire, an aluminum wire, or an aluminum alloy wire. Further, the wire mesh of the wire mesh support is, for example, a plain weave mesh, a welded net, a crimp net, a turtle shell metal mesh, or a rhombus metal mesh. Furthermore, it is preferable that the wire mesh support is provided on the surface of the back surface protective layer. Moreover, it is preferable that the said wire net-like support body is provided in the said frame member so that the said back surface protective layer may be covered.
  • a surface protective layer is provided on the front surface side of the solar cell submodule via a first adhesive filling layer, and a second adhesive filling layer is provided on the back surface side of the solar cell submodule.
  • a method for manufacturing a solar cell module provided with a back surface protective layer includes an ionomer resin, the surface protective layer is made of glass having a thickness of 0.6 to 2.0 mm, and the solar cell submodule includes a metal sheet.
  • a light absorption layer composed of a CIGS film is formed on a substrate having an aluminum anodic oxide film formed on the surface thereof.
  • the first adhesive filling layer and the surface protective layer are laminated and disposed on the front surface side of the solar cell submodule, and the second adhesive filling layer and the back surface protective layer are disposed on the back surface side of the solar cell submodule.
  • the manufacturing method of the solar cell module characterized by having the process of providing in the peripheral part of what carried out the vacuum lamination of the frame member in which the sealing material was provided inside the material.
  • the second adhesive filling layer preferably contains an ethylene vinyl acetate resin or an ionomer resin.
  • a surface protective layer is provided on the front side of the solar cell submodule via a first adhesive filling layer, and a second adhesive filling layer is provided on the back side of the solar cell submodule.
  • a method for producing a solar cell module provided with a back surface protective layer includes an ionomer resin
  • the surface protective layer is made of glass having a thickness of 0.6 to 2.0 mm
  • the solar cell submodule includes a metal sheet.
  • a light absorption layer composed of a CIGS film is formed on a substrate having an aluminum anodic oxide film formed on the surface thereof.
  • the first adhesive filling layer and the surface protective layer are laminated and disposed on the front surface side of the solar cell submodule, and the second adhesive filling layer and the back surface protective layer are disposed on the rear surface side of the solar cell submodule.
  • a step of laminating and arranging the plurality of layers, a step of vacuum laminating in the state of being laminated and arranged, and after the vacuum laminating step, a frame member provided with a sealing material inside an outer frame member Provided is a method for manufacturing a solar cell module, comprising a step of providing a peripheral portion of a vacuum-laminated product and a step of providing the wire mesh support on the frame member so as to cover the back surface protective layer. It is.
  • the second adhesive filling layer preferably contains an ethylene vinyl acetate resin or an ionomer resin.
  • the mechanical strength such as wind pressure resistance and sag resistance, and the impact strength can be equal to or higher than those of white tempered glass.
  • the weight of the surface protective layer can be reduced to 25 to 47% of the white plate tempered glass (3.2 mm thickness), and a support plate made of an aluminum plate, an aluminum alloy plate or a galvalume steel plate is provided on the back surface.
  • the weight of the solar cell module can be 60 to 80% of that using tempered glass, and the solar cell module can be reduced in weight.
  • the weight of the solar cell module is 40 to 60% of the weight using the tempered glass by providing a wire mesh support such as a wire mesh or a wire mesh sheet under the back surface protective layer.
  • the solar cell module can be significantly reduced in weight.
  • the end face (peripheral part) of the solar cell module has a frame. It can suppress reliably by the sealing material of a member. Moreover, even if moisture permeates from the back surface, it can be prevented from reaching a transparent electrode such as a solar battery cell. As described above, according to the present invention, it is possible to prevent moisture from entering the solar cell module, to exhibit stable performance over a long period of time, to be used stably, lightweight, high mechanical strength, and cost. A low solar cell module can be realized. In addition, according to the manufacturing method of the solar cell module of this invention, the solar cell module which has the above-mentioned outstanding characteristic can be manufactured suitably.
  • (A) is typical sectional drawing which shows the arrangement
  • (b) is the 1st Embodiment of this invention.
  • (A) is typical sectional drawing which shows the arrangement
  • (b) is 1st of this invention.
  • (A) is typical sectional drawing which shows the arrangement
  • (b) is the 2nd Embodiment of this invention. It is typical sectional drawing which shows a solar cell module.
  • (A) is typical sectional drawing which shows the arrangement
  • (A) is typical sectional drawing which shows the arrangement
  • (b) is the 3rd Embodiment of this invention. It is typical sectional drawing which shows a solar cell module.
  • (A) is typical sectional drawing which shows the arrangement
  • (A) is typical sectional drawing which shows the arrangement
  • (b) is the 4th Embodiment of this invention. It is typical sectional drawing which shows a solar cell module.
  • (A) is a schematic diagram showing a wire mesh support used in the solar cell module of the fourth embodiment of FIG. 8, and (b) to (d) show other examples of the wire mesh support. It is a schematic diagram.
  • (A) is typical sectional drawing which shows the arrangement
  • (b) is the 5th Embodiment of this invention. It is typical sectional drawing which shows a solar cell module.
  • FIG. 1 It is a schematic diagram for demonstrating the displacement at the time of a yield in case the surface protection layer of a solar cell module is a blue plate glass. It is typical sectional drawing which shows the conventional 1st solar cell module. It is typical sectional drawing which shows the conventional 2nd solar cell module. It is typical sectional drawing which shows the conventional 3rd solar cell module.
  • Fig.1 (a) is typical sectional drawing which shows the arrangement
  • a first adhesive filling layer 20 is provided on the surface 12 a of the solar cell submodule 12 so as to cover the solar cell submodule 12.
  • An intermediate sealing material 18 is provided around the first adhesive filling layer 20.
  • the intermediate sealing material 18 is provided at a position of a distance m from the peripheral edge ⁇ of the solar cell module 10, that is, inside the solar cell module 10.
  • a surface protective layer 22 is provided on the first adhesive filling layer 20 and the intermediate sealing material 18. As described above, the surface protective layer 22 is provided via the first adhesive filling layer 20.
  • a second adhesive filling layer 14 is provided on the back surface 12 b of the solar cell submodule 12 so as to cover the solar cell submodule 12.
  • a back surface protective layer 16 is provided under the second adhesive filling layer 14.
  • the back surface protective layer 16 is provided via the second adhesive filling layer 14.
  • the back surface protective layer 16 has, for example, a three-layer structure including a back sheet 16a, a third adhesive filling layer 16b, and a support plate 16c.
  • the first adhesive filling layer 20 is for sealing the solar cell submodule 12 and bonding the surface protective layer 22.
  • the first adhesive filling layer 20 includes an ionomer resin.
  • This ionomer resin is a mixture with an ethylene / unsaturated carboxylic acid copolymer.
  • the ionomer resin specifically, the product name Himiran (registered trademark) -ES manufactured by Mitsui-Deupon Polychemical Co., Ltd. can be suitably used.
  • the thickness of the first adhesive layer 20 is, for example, 100 to 1500 ⁇ m, and preferably 400 to 1000 ⁇ m.
  • the surface protective layer 22 may be hit by rain, hail, hail, snow, stones, etc., but the solar cell sub-module 12 can be protected from external forces, impacts, etc. applied from outside. It is to be protected and has high mechanical strength such as wind pressure resistance and yield resistance, and high impact strength.
  • the surface protective layer 22 needs to be excellent in transparency, weather resistance, heat resistance, flame resistance, water resistance, moisture resistance, chemical resistance and other various characteristics.
  • the surface protective layer 22 protects the solar cell module 10 from dirt and the like, and suppresses a decrease in the amount of incident light on the solar cell submodule 12 due to dirt and the like.
  • the surface protective layer 22 is made of glass.
  • the glass for example, low-cost blue plate glass (float glass, soda lime glass) or white plate glass is used, and the thickness is 0.6 to 1.5 mm, and the thickness is 1.0 to 1.5 mm. Is preferred. If the thickness of the surface protective layer 22 (thickness of the glass) is less than 0.6 mm, the solar cell submodule 12 cannot be sufficiently protected from external force applied from the outside, impact, or the like. On the other hand, if the thickness of the surface protective layer 22 exceeds 1.5 mm, the effect of reducing the weight cannot be obtained.
  • the white plate glass has a transmittance of 1 to 2% higher than the blue plate glass, and the white plate glass can increase the amount of light incident on the solar cell module.
  • the intermediate sealing material 18 is for suppressing moisture from entering the solar cell submodule 12 from the first adhesive filling layer 20, the second adhesive filling layer 14, and the like.
  • the intermediate sealing material 18 is provided at a position of a distance m from the peripheral edge ⁇ of the solar cell module 10. This distance m is preferably 5 to 30 mm as a distance that does not reduce manufacturing variations and module efficiency.
  • the width of the intermediate sealing material 18 is preferably 5 to 20 mm.
  • the intermediate sealing material 18 for example, butyl rubber, polyisoprene, isoprene, polyolefin, or the like exhibiting thermoplasticity is used.
  • the second adhesive filling layer 14 seals the solar cell submodule 12 together with the first adhesive filling layer 20.
  • the second adhesive filling layer 14 is for adhering the back surface protective layer 16.
  • the second adhesive filling layer 14 includes, for example, an ionomer resin.
  • This ionomer resin is a mixture with an ethylene / unsaturated carboxylic acid copolymer.
  • the ionomer resin specifically, the product name Himiran (registered trademark) -ES manufactured by Mitsui-Deupon Polychemical Co., Ltd. can be suitably used.
  • the thickness of the second adhesive layer 14 is, for example, 100 to 1500 ⁇ m, and preferably 400 to 1000 ⁇ m, like the first adhesive filling layer 20.
  • an ionomer resin is used to increase the bending rigidity as the mechanical strength of the entire solar cell module 10. desirable.
  • the ionomer resin is used for the first adhesive filling layer 20 and the mechanical strength of the module laminate is satisfied by using a metal substrate for the solar cell sub-module 12, that is, the bending stress is 100 MPa or more.
  • a normal EVA (ethylene vinyl acetate) resin can be used for the second adhesive filling layer 14.
  • the back surface protection layer 16 protects the solar cell module 10 (solar cell submodule 12) from the back side.
  • the back surface protective layer 16 has a three-layer structure including the back sheet 16a, the third adhesive filling layer 16b, and the support plate 16c.
  • the back sheet 16 a for example, blue plate glass or white plate glass can be used similarly to the surface protective layer 22, and the thickness is the same as that of the surface protective layer 22.
  • a resin film can be used for the back sheet 16a, for example, a structure in which an aluminum foil is sandwiched between resin films such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and PVF (polyvinyl fluoride). Can be used.
  • the configuration of the resin film is not particularly limited.
  • the third adhesive filling layer 16b is for bonding the back sheet 16a and the support plate 16c.
  • a normal EVA (ethylene vinyl acetate) resin is used, and an ionomer resin can be used in the same manner as the first adhesive filling layer 20.
  • the thickness of the third adhesive filling layer 16b is, for example, 100 to 1500 ⁇ m, and preferably 400 to 1000 ⁇ m, like the first adhesive filling layer 20.
  • the support plate 16c is for maintaining the strength of the solar cell module 10 at a predetermined strength while reducing the weight.
  • the support plate 16c is made of, for example, a metal sheet such as an aluminum plate, an aluminum alloy plate of No. 5000, No. 6000, No. 7000, etc. having good strength and corrosion resistance, a Galvalume steel plate, a stainless steel plate, and an aluminum-stainless steel clad steel plate. Is done.
  • various metal members used as a back surface protective layer or a support in a known solar cell module can also be used as the support plate 16c. As the support plate 16c, you may use these metal plates and the metal member laminated
  • a metal sheet made of an aluminum plate or an aluminum alloy plate is used for the support plate 16c, it is preferable to anodize the surface to improve corrosion resistance.
  • a rubber sheet or a plastic resin honeycomb structure can be used as a support plate 16c for reducing the weight.
  • the support plate 16c has a thickness of 0.1 to 1.0 mm.
  • the thickness of the support plate 16c is less than 0.1 mm, the solar cell module 10 cannot obtain a predetermined strength.
  • the support plate 16c exceeds 1.0 mm, the cost increases and the low cost cannot be realized. Furthermore, the weight of the solar cell module 10 increases, and there is a possibility that weight reduction cannot be realized.
  • the solar cell module 10 of this embodiment has a bending stress of 100 MPa or more. If the bending stress is 100 MPa or more, the strength is equal to or higher than that of a conventional solar cell module using a tempered glass having a thickness of 3.2 mm.
  • the bending stress of the solar cell module 10 is obtained, for example, by measuring the yield stress using a bending tester that supports two points of the solar cell module 10 and applies stress to the center.
  • the solar cell module 10 of the present embodiment can be manufactured as follows. First, as shown in FIG. 1A, a back sheet 16a, a third adhesive filling layer 16b, and a support are provided on the back surface 12b side of the solar cell submodule 12 as a second adhesive filling layer 14 and a back surface protective layer 16. The plates 16c are stacked and arranged. Next, on the surface 12a side of the solar cell submodule 12, the first adhesive filling layer 20 and the intermediate sealing material 18 around the first adhesive filling layer 20 are located at a distance m from the peripheral edge ⁇ , for example, 5 to 30 mm inside. Further, the surface protective layer 22 is laminated on the first adhesive filling layer 20 and the intermediate sealing material 18 and disposed.
  • Fig.1 (a) it will be in the state by which each member was laminated
  • a vacuum laminator having an elevating means, a buffer plate, and a heating means, for example, at a temperature of 130 to 150 ° C.
  • the solar cell submodule 12 is an integrated structure of solar cells 40 that are photoelectric conversion elements, as shown in FIG. Note that a discrete type having one solar battery cell 40 is also included in the solar battery submodule.
  • a specific example of the solar cell submodule 12 will be described in detail with reference to FIG.
  • the solar cell submodule 12 has a plurality of solar cells 40 including a lower electrode 32, a light absorption layer 34, a buffer layer 36, and an upper electrode 38 connected in series on a substrate 50. It will be.
  • This solar cell (photoelectric conversion element) 40 uses a CIGS semiconductor compound as the light absorption layer 34.
  • the solar cell submodule 12 has a first conductive member 42 and a second conductive member 44.
  • the substrate 50 is a flexible substrate including a base material 52, an Al (aluminum) layer 54, and an insulating layer 56.
  • the base material 52 and the Al layer 54 are integrally formed.
  • the insulating layer 56 is an anodic oxide film having an Al porous structure formed by anodizing the surface of the Al layer 54.
  • the clad substrate in which the base material 52 and the Al layer 54 are laminated and integrated is referred to as a metal substrate 55.
  • the (metal) base material 52 constituting the substrate 50 is used as the (metal) base material 52 constituting the substrate 50.
  • the thickness of the substrate 52 is not particularly limited, but is preferably 10 to 1000 ⁇ m in consideration of the balance between flexibility and strength (rigidity), handling properties, and the like.
  • the Al layer 54 is a layer mainly composed of Al, and various types of Al and Al alloys can be used.
  • Al having a purity of 99% by mass or more with few impurities is preferable.
  • purity for example, 99.99 mass% Al, 99.96 mass% Al, 99.9 mass% Al, 99.85 mass% Al, 99.7 mass% Al, 99.5 mass% Al, etc. are preferable.
  • industrial Al can also be utilized. Use of industrial Al is advantageous in terms of cost. However, it is important that Si is not precipitated in Al in terms of the insulating property of the insulating layer 56.
  • the thickness of the Al layer 54 is not particularly limited and can be appropriately selected. In the state where the solar cell submodule 12 is obtained, the thickness of the Al layer 54 is preferably 0.1 ⁇ m or more and less than the thickness of the base material 52. .
  • the Al layer 54 is prepared by pretreatment of the Al surface, formation of the insulating layer 56 by anodic oxidation, generation of an intermetallic compound on the surface of the Al layer 54 and the substrate 52 during the formation of the light absorption layer 34, and the like. The thickness decreases. Therefore, the thickness at the time of forming an Al layer 54 to be described later is Al between the base material 52 and the insulating layer 56 in a state where the solar cell submodule 12 is formed in consideration of thickness reduction due to these. It is important that the thickness be such that layer 54 remains. For this reason, the thickness of the Al layer 54 is required to be 10 to 50 ⁇ m in order to form an insulating layer by anodic oxidation.
  • the insulating layer 56 is formed on the Al layer 54 (on the side opposite to the substrate 52).
  • the insulating layer 56 is an Al anodic oxide film formed by anodizing the surface of the Al layer 54.
  • various anodic oxide films formed by anodizing Al can be used for the insulating layer 56, but a porous anodic oxide film is preferable.
  • This anodic oxide film is an alumina oxide film having pores of several tens of nanometers. Since the Young's modulus of the film is low, the film is highly resistant to bending and cracking caused by a difference in thermal expansion at high temperatures.
  • the thickness of the insulating layer 56 is preferably 2 ⁇ m or more, and more preferably 5 ⁇ m or more. When the thickness of the insulating layer 56 is excessively large, it is not preferable because flexibility is lowered and cost and time required for forming the insulating layer 56 are required. Actually, the thickness of the insulating layer 56 is 50 ⁇ m or less, preferably 30 ⁇ m or less at maximum. Therefore, the preferred thickness of the insulating layer 56 is 2 to 50 ⁇ m.
  • the solar cell module 10 of the present embodiment is a rigid type
  • a flexible substrate is used for the solar cell sub-module 12 and, for example, an insulation having a plurality of pores by anodic oxidation on a metal substrate 55 having a thickness of 50 to 200 ⁇ m.
  • a layer 56 (insulating oxide film) is formed, and high insulation is ensured.
  • the substrate 50 used in the solar cell submodule 12 of the present embodiment may be subjected to specific sealing treatment after the Al layer 54 is anodized to form the insulating layer 56.
  • the manufacturing process may include various processes other than the essential processes.
  • a degreasing process for removing the adhering rolling oil For example, a degreasing process for removing the adhering rolling oil, a desmutting process for dissolving the smut on the surface of the Al layer 54, a roughening process for roughening the surface of the Al layer 54, and an anode on the surface of the Al layer 54
  • the substrate 50 is preferably subjected to an anodizing process for forming an oxide film and a sealing process for sealing the micropores of the anodized film.
  • substrate 50 becomes flexible as the board
  • an alkali supply layer, a lower electrode, a light absorption layer, an upper electrode, and the like described later can be formed on the insulating layer 56 side of the substrate 50 by a roll-to-roll method.
  • a solar cell structure may be produced by continuously forming a plurality of layers from one roll unwinding to winding, or roll unwinding, film forming, and winding.
  • the solar cell structure may be formed by performing the taking process a plurality of times.
  • Type solar cell submodule can be manufactured.
  • the Al layer 54 and the insulating layer 56 are not limited to be formed only on one surface of the base material 52, and the substrate in which the Al layer 54 and the insulating layer 56 are formed on both surfaces of the base material 52 is used.
  • the Al layer may be a single layer, that is, an Al substrate provided with an insulating layer composed of the above-described anodized film.
  • the metal substrate a material in which a metal oxide film formed on the surface of the metal substrate by anodic oxidation is an insulator can be used.
  • Al aluminum
  • Zr zirconium
  • Ti titanium
  • Mg magnesium
  • Cu copper
  • Nb niobium
  • Ta tantalum
  • Alloys aluminum
  • Aluminum is most preferable from the viewpoint of cost and characteristics required for the solar cell module.
  • a so-called clad material may be used in which the metal layer is formed by rolling or hot dipping on a steel plate such as mild steel or stainless steel in order to improve heat resistance.
  • an alkali supply layer 58 (a supply source of alkali metal to the light absorption layer 34) is formed between the insulating layer 56 (substrate 50) and the lower electrode 32, that is, on the surface 56a of the insulating layer 56. It is known that when an alkali metal (particularly Na) is diffused into the light absorption layer 34 made of CIGS, the photoelectric conversion efficiency is increased.
  • the alkali supply layer 58 is a layer for supplying an alkali metal to the light absorption layer 34 and is a layer of a compound containing an alkali metal.
  • such an alkali supply layer 58 is provided between the insulating layer 56 and the lower electrode 32, so that when the light absorption layer 34 is formed, alkali metal passes through the lower electrode 32 to the light absorption layer 34. It can diffuse and improve the conversion efficiency of the light absorption layer 34.
  • the alkali supply layer 58 is not limited, and a compound containing an alkali metal (a composition containing an alkali metal compound) such as NaO 2 , Na 2 S, Na 2 Se, NaCl, NaF, or sodium molybdate is a main component.
  • a compound containing an alkali metal such as NaO 2 , Na 2 S, Na 2 Se, NaCl, NaF, or sodium molybdate is a main component.
  • a compound containing SiO 2 (silicon oxide) as a main component and NaO 2 (sodium oxide) is preferable. Since the compound of SiO 2 and NaO 2 has poor moisture resistance and the Na component is easily separated into a carbonate, the metal component added with Ca is more preferably an oxide composed of three components of Si—Na—Ca. preferable.
  • the alkali metal supply source to the light absorption layer 34 is not limited to the alkali supply layer 58 alone.
  • the insulating layer 56 is the above-described porous anodic oxide film
  • a compound containing an alkali metal is introduced into the porous layer of the insulating layer 56 in addition to the alkali supply layer 58, so that the light absorption layer 34 may be an alkali metal supply source.
  • the alkali supply layer 58 may not be provided, and a compound containing an alkali metal may be introduced only into the porous layer of the insulating layer 56 to provide an alkali metal supply source to the light absorption layer 34.
  • the alkali supply layer 58 when the alkali supply layer 58 is formed by sputtering, only the alkali supply layer 58 in which no compound containing an alkali metal exists in the insulating layer 56 can be formed. Further, when the insulating layer 56 is a porous anodic oxide film and the alkali supply layer 58 is formed by sol-gel reaction or dehydration drying of a sodium silicate aqueous solution, not only the alkali supply layer 58 but also the insulating layer 56 is formed. By introducing a compound containing an alkali metal into the porous layer, both the insulating layer 56 and the alkali supply layer 58 can serve as an alkali metal supply source to the light absorption layer 34.
  • the lower electrode 32 is formed on the alkali supply layer 58 by being arranged with a predetermined gap 33 with the adjacent lower electrode 32.
  • a light absorption layer 34 is formed on the lower electrode 32 while filling the gap 33 between the lower electrodes 32.
  • a buffer layer 36 is formed on the surface of the light absorption layer 34.
  • the light absorption layer 34 and the buffer layer 36 are arranged on the lower electrode 32 with a predetermined gap 37. Note that the gap 33 between the lower electrode 32 and the light absorption layer 34 (buffer layer 36) are formed at different positions in the arrangement direction of the solar cells 40.
  • an upper electrode 38 is formed on the surface of the buffer layer 36 so as to fill the gap 37 of the light absorption layer 34 (buffer layer 36).
  • the upper electrode 38, the buffer layer 36, and the light absorption layer 34 are arranged with a predetermined gap 39.
  • the gap 39 is provided at a position different from the gap between the lower electrode 32 and the gap between the light absorption layer 34 (buffer layer 36).
  • each solar battery cell 40 is electrically connected in series in the longitudinal direction (arrow L direction) of the substrate 50 by the lower electrode 32 and the upper electrode 38.
  • the lower electrode 32 is composed of, for example, a Mo electrode.
  • the light absorption layer 34 is composed of a semiconductor compound having a photoelectric conversion function, for example, a CIGS film.
  • the buffer layer 36 is made of, for example, CdS, and the upper electrode 38 is made of, for example, ZnO.
  • the solar battery cell 40 is formed to extend long in the width direction orthogonal to the longitudinal direction L of the substrate 50. For this reason, the lower electrode 32 and the like also extend long in the width direction of the substrate 50.
  • a first conductive member 42 is connected on the lower electrode 32 at the right end.
  • the first conductive member 42 is for taking out an output from a negative electrode to be described later.
  • the first conductive member 42 is, for example, an elongated belt-like member, extends substantially linearly in the width direction of the substrate 50, and is connected to the lower electrode 32 at the right end.
  • the first conductive member 42 is formed, for example, by coating a copper ribbon 42 a with a coating material 42 b made of indium copper alloy.
  • the first conductive member 42 is connected to the lower electrode 32 by, for example, ultrasonic soldering.
  • the first conductive member 42 may be a conductive tape having an embossed structure formed by hot-plating In—Sn on a copper foil, and this conductive tape is connected by being bonded to the lower electrode 32 by pressure bonding with a roller.
  • a second conductive member 44 is formed on the lower electrode 32 at the left end.
  • the second conductive member 44 is for taking out the output from the positive electrode, which will be described later, to the outside.
  • the second conductive member 44 is an elongated belt-like member, and extends substantially linearly in the width direction of the substrate 50. And connected to the lower electrode 32 at the left end.
  • the second conductive member 44 has the same configuration as that of the first conductive member 42.
  • the copper ribbon 44a is covered with a coating material 44b of indium copper alloy. You may connect.
  • the light absorption layer 34 of the photovoltaic cell 40 of this embodiment is comprised by CIGS, and can be manufactured with the manufacturing method of a well-known CIGS type solar cell.
  • the solar cell submodule 12 when light enters the solar cell 40 from the upper electrode 38 side, this light passes through the upper electrode 38 and the buffer layer 36, and an electromotive force is generated in the light absorption layer 34. For example, a current from the upper electrode 38 toward the lower electrode 32 is generated. Note that the arrows shown in FIG. 2 indicate the direction of current, and the direction of movement of electrons is opposite to the direction of current. For this reason, in the photoelectric conversion unit 48, the leftmost lower electrode 32 in FIG. 2 is a positive electrode (positive electrode), and the rightmost lower electrode 32 is a negative electrode (negative electrode).
  • the electric power generated in the solar cell submodule 12 can be taken out of the solar cell submodule 12 from the first conductive member 42 and the second conductive member 44.
  • the first conductive member 42 is a negative electrode
  • the second conductive member 44 is a positive electrode.
  • the first conductive member 42 and the second conductive member 44 may have opposite polarities, and appropriately change according to the configuration of the solar battery cell 40, the configuration of the solar battery submodule 12, and the like.
  • each photovoltaic cell 40 was formed so that it might be connected in series with the longitudinal direction L of the board
  • each solar battery cell 40 may be formed such that each solar battery cell 40 is connected in series in the width direction by the lower electrode 32 and the upper electrode 38.
  • the lower electrode 32 and the upper electrode 38 are both for taking out the current generated in the light absorption layer 34. Both the lower electrode 32 and the upper electrode 38 are made of a conductive material. The upper electrode 38 on the light incident side needs to have translucency.
  • the lower electrode (back electrode) 32 is made of, for example, Mo, Cr, or W, and a combination thereof.
  • the lower electrode 32 may have a single layer structure or a laminated structure such as a two-layer structure.
  • the lower electrode 32 is preferably made of Mo.
  • the lower electrode 32 has a thickness of preferably 100 nm or more, and more preferably 0.45 to 1.0 ⁇ m.
  • the method for forming the lower electrode 32 is not particularly limited, and can be formed by a vapor phase film forming method such as an electron beam evaporation method or a sputtering method.
  • the upper electrode (transparent electrode) 38 is made of, for example, ZnO added with Al, B, Ga, In, Sb, etc., ITO (indium tin oxide), SnO 2 , and a combination thereof. .
  • the upper electrode 38 may have a single layer structure or a laminated structure such as a two-layer structure. Further, the thickness of the upper electrode 38 is not particularly limited, and is preferably 0.3 to 1 ⁇ m.
  • the formation method of the upper electrode 38 is not particularly limited, and can be formed by a vapor deposition method such as an electron beam evaporation method or a sputtering method, or a coating method.
  • the buffer layer 36 is formed to protect the light absorption layer 34 when the upper electrode 38 is formed and to transmit light incident on the upper electrode 38 to the light absorption layer 34.
  • the buffer layer 36 is made of, for example, CdS, ZnS, ZnO, ZnMgO, ZnS (O, OH), or a combination thereof.
  • the buffer layer 36 preferably has a thickness of 0.03 to 0.1 ⁇ m.
  • the buffer layer 36 is formed by, for example, a CBD (chemical bath) method.
  • the light absorption layer 34 is a layer that absorbs light that has passed through the upper electrode 38 and the buffer layer 36 and generates a current, and has a photoelectric conversion function.
  • the light absorption layer 34 is composed of a CIGS film, and the CIGS film is made of a semiconductor having a chalcopyrite crystal structure.
  • the composition of the CIGS film is, for example, Cu (In 1-x Ga x ) Se 2 (CIGS).
  • CIGS film forming method 1) a multi-source deposition method, 2) a selenization method, 3) a sputtering method, 4) a hybrid sputtering method, and 5) a mechanochemical process method are known.
  • Other CIGS film formation methods include screen printing, proximity sublimation, MOCVD, and spray (wet film formation).
  • a fine particle film containing a group Ib element, a group IIIb element, and a group VIb element is formed on a substrate by a screen printing method (wet film forming method) or a spray method (wet film forming method), and then pyrolyzed ( At this time, a crystal having a desired composition can be obtained by performing a thermal decomposition treatment in a VIb group element atmosphere (Japanese Patent Laid-Open Nos. 9-74065, 9-74213, etc.).
  • a film forming method shows good photoelectric conversion efficiency if CIGS is formed on the substrate as long as the temperature is 500 ° C. or higher, but the process time is short in consideration of manufacturing in a roll-to-roll method. Multisource deposition is preferred.
  • the bilayer method is suitable.
  • the solar cell submodule 12 according to the present invention is manufactured by manufacturing the solar cells 40 in series on the substrate 50 described above. What is necessary is just to carry out similarly to a battery.
  • an example of the manufacturing method of the solar cell submodule 12 shown in FIG. 2 will be described.
  • the substrate 50 formed as described above is prepared.
  • the alkali supply layer 58 is formed on the surface of the insulating layer 56 of the substrate 50 by, for example, sputtering using soda lime glass as a target or a sol-gel method using an alkoxide containing Si and Na.
  • a Mo film to be the lower electrode 32 is formed on the surface of the alkali supply layer 58 by, for example, a sputtering method using a film forming apparatus.
  • a predetermined position of the Mo film is scribed to form a gap 33 extending in the width direction of the substrate 50. Thereby, the lower electrodes 32 separated from each other by the gap 33 are formed.
  • a CIGS film is formed as a light absorption layer 34 (p-type semiconductor layer) so as to cover the lower electrode 32 and fill the gap 33.
  • This CIGS film is formed by any of the film forming methods described above.
  • a CdS layer (n-type semiconductor layer) to be the buffer layer 36 is formed on the light absorption layer 34 (CIGS film) by, for example, a CBD (chemical bath) method.
  • CBD chemical bath
  • a pn junction semiconductor layer is formed.
  • a predetermined position different from the gap 33 in the arrangement direction of the solar cells 40 is scribed using, for example, a laser scribing method to form a gap 37 extending in the width direction of the substrate 50 and reaching the lower electrode 32. To do.
  • the buffer layer 36 for example, an ITO layer, a ZnO layer to which Al, B, Ga, Sb or the like is added is formed by sputtering or coating so as to fill the gap 37.
  • the gaps 33 and 37 are gaps that reach the lower electrode 32 extending in the width direction of the substrate 50 by scribing, for example, using a laser scribing method at different predetermined positions in the arrangement direction of the solar cells 40. 39 is formed. Thereby, the photovoltaic cell 40 is formed.
  • the solar cells 40 formed on the lower electrodes 32 at the left and right ends in the longitudinal direction L of the substrate 50 are removed by, for example, laser scribing or mechanical scrub, and the lower electrodes 32 are exposed.
  • the first conductive member 42 is connected to the lower electrode 32 at the right end
  • the second conductive member 44 is connected to the lower electrode 32 at the left end using, for example, a conductive tape.
  • the back surface protection layer 16 has a two-layer structure of a back sheet 16a and a support plate 16c, and, for example, a metal sheet is used for the support plate 16c. It is possible to achieve both weight reduction and high mechanical strength.
  • the surface protective layer 22 is made of glass having a thickness of 0.6 to 1.5 mm, the weight can be reduced to 25 to 47% of the white plate tempered glass (3.2 mm thickness).
  • the weight of the solar cell module 10 is 60 to 80% of the weight using tempered glass. The solar cell module 10 can be reduced in weight.
  • a CIGS film as a light absorption layer using a substrate in which an anodized film of aluminum is formed on the surface of a metal sheet that can be manufactured by a roll-to-roll manufacturing method, instead of a glass substrate as the solar cell submodule 12 A light-weight and low-cost solar cell module can be obtained.
  • the solar cell module 10 which has the above-mentioned outstanding characteristic can be manufactured suitably.
  • a conventional first solar cell module 100 a shown in FIG. 12 a solar cell submodule 110 is surrounded by an adhesive filling layer 102, and a surface protective layer 104 is provided on the upper surface of the adhesive filling layer 102. Further, a back surface protective layer 106 is provided on the lower surface of the adhesive filling layer 102.
  • the conventional second solar cell module 100b of FIG. 13 is different from the solar cell module 100a shown in FIG. 12 in that a sealing material 112 is provided on the side end face 108, and other configurations are the same. It is the same as the solar cell module 100a.
  • the surface of the solar cell submodule is formed of a transparent conductive film such as an ITO film, a ZnO (Al) film, or a ZnO (B) film.
  • a transparent conductive film such as an ITO film, a ZnO (Al) film, or a ZnO (B) film.
  • These transparent conductive films are very sensitive to moisture due to their materials.
  • the side end surface 108 of the adhesive filling layer 102 surrounding the solar cell submodule 110 is exposed to the outside. It reaches the surface of the battery submodule 110 and raises the resistance of the transparent conductive film, or reaches the junction under the transparent conductive film to generate a leakage current, thereby deteriorating the characteristics of the solar cell module. cause.
  • the intermediate sealing material 18 is arranged on the inner side of the periphery of the back surface protective layer 16 so that the intermediate sealing material 18 has the surface protective layer 22 and the back surface protective layer. Since 16 is located inside the solar cell module 10 joined, it is not exposed to the outside, and the intermediate sealing material 18 is not bent or peeled off due to the difference in thermal expansion and contraction. .
  • the intermediate sealing material 18 is provided from at least the back surface 12b of the solar cell submodule 12 to the surface protective layer 22, and the intermediate sealing material 18 contacts the surface protective layer 22 to seal the first adhesive filling layer 20.
  • Water intrusion from the side surface of the first adhesive filling layer 20 can be prevented, and water intrusion from at least the surface 12a side (upper side) of the solar cell submodule 12 can be suppressed.
  • a solar cell capable of reducing the generation of a corrosive substance generated by a reaction between moisture and the adhesive constituting the first adhesive filling layer 20, for example, acetic acid, and exhibiting stable performance over a long period of time. Module 10 may be used.
  • the intermediate sealing material 18 is provided from the back surface 12b to the surface protective layer 22 of the solar cell submodule 12. However, the intermediate sealing material 18 is protected from the back surface.
  • the second adhesive layer 14 may be separated by contacting the back sheet 16a of the layer 16 as well. With such a configuration, the intermediate sealing material 18 can also suppress moisture intrusion from the second adhesive layer 14, and corrosive substances generated by the reaction between the moisture and the second adhesive layer 14 can be prevented. It becomes possible to reduce more effectively, and it is possible to suppress a decrease in conversion efficiency of the solar cell submodule 12 due to an improvement in resistance due to alteration of the transparent electrode of the solar cell submodule 12 and to exhibit stable performance over a long period of time.
  • the solar cell module 10 can be made.
  • the back surface protective layer 16 has a three-layer structure. However, like the solar cell module 10a shown in FIG. 3B, the back surface protective layer 16 has at least a support plate 16c. I just need it. In this case, the support plate 16 c that becomes the back surface protective layer 16 is directly bonded to the second adhesive filling layer 14. Like the solar cell module 10a, by comprising the back surface protection layer 16 only by the support plate 16c, weight reduction and cost reduction can be achieved, maintaining predetermined intensity
  • FIG. 4A is a schematic cross-sectional view showing an arrangement state of each member before vacuum lamination of the solar cell module according to the second embodiment of the present invention
  • FIG. 4B is a second embodiment of the present invention. It is typical sectional drawing which shows the solar cell module of a form.
  • symbol is attached
  • the solar cell module 10b of the present embodiment is provided with an intermediate sealing material 18 as compared to the solar cell module 10 of the first embodiment (see FIG. 1B).
  • the frame member 24 is formed on the peripheral portion ⁇ of the solar cell laminate 30 including the solar cell submodule 12, the second adhesion filling layer 14, the back surface protection layer 16, the first adhesion filling layer 20, and the surface protection layer 22. Since the other configuration is the same as that of the solar cell module 10 of the first embodiment, detailed description thereof is omitted.
  • the frame member 24 improves the mechanical resistance of the solar cell module 10b, and improves the moisture diffusion resistance and moisture resistance from the peripheral portion ⁇ . It is for making it happen.
  • the frame member 24 includes a peripheral sealing material 26 and an outer frame material 28 having a groove (concave portion).
  • the peripheral sealing material 26 is provided on the inner side, and the outer frame material 28 is provided on the outer side.
  • peripheral sealing material 26 for example, butyl rubber, polyisoprene, isoprene, polyolefin, or the like that exhibits thermoplasticity is used.
  • a silicone sealing material can be used as the peripheral sealing material 26.
  • the outer frame member 28 may be formed of a foil shape or a frame shape.
  • the outer frame material 28 can be formed using, for example, aluminum, an aluminum alloy, copper, or a copper alloy.
  • the outer frame material which carried out the alumite process for corrosion resistance improvement may be sufficient.
  • a metal foil is used as the outer frame member 28, aluminum, an aluminum alloy, copper, or a copper alloy can be used.
  • the thickness of the metal foil is, for example, 50 to 300 ⁇ m.
  • the metal foil may be provided with an adhesive material in advance.
  • the outer frame member 28 may be a metal foil tape in which a black PET film is bonded to a metal foil from the viewpoint of the aesthetics and design of the solar cell module 10b.
  • a black PET film is bonded to a metal foil from the viewpoint of the aesthetics and design of the solar cell module 10b.
  • butyl rubber is used for the peripheral sealing material 26 and an L-shaped aluminum frame is used for the outer frame material 28.
  • the solar cell module 10b of this embodiment can be produced as follows. Similar to the solar cell module 10 of the first embodiment, the solar cell module 10b of the present embodiment has a second adhesive filling layer on the back surface 12b side of the solar cell submodule 12 as shown in FIG. 14. As the back surface protective layer 16, a back sheet 16a, a third adhesive filling layer 16b, and a support plate 16c are laminated and disposed. Next, the first adhesive filling layer 20 and the surface protective layer 22 are laminated and disposed on the surface 12 a side of the solar cell submodule 12. Thereby, as shown to Fig.4 (a), it will be in the state by which each member was laminated
  • the solar cell laminated body 30 is formed (refer FIG.4 (b)).
  • the peripheral sealing material 26 of the frame member 24 is attached to the peripheral portion ⁇ of the solar cell stack 30 and a part of the surface protective layer 22 surface and the support plate 16 c of the back protective layer 16. It is provided so as to cover a part of the surface. Then, the groove portion (concave portion) of the outer frame material 28 is fitted onto the peripheral seal material 26 and further bonded.
  • the solar cell module 10b of this embodiment is produced. Also in the solar cell module 10b of the present embodiment, since the configuration of the back surface protective layer 16 is the same as that of the solar cell module 10 of the first embodiment, the same effect as that of the solar cell module 10 of the first embodiment is obtained. be able to. Furthermore, mechanical resistance, moisture diffusion resistance and moisture resistance can be improved.
  • the back surface protective layer 16 has a three-layer structure. However, like the solar cell module 10c shown in FIG. 5B, the back surface protective layer 16 has at least a support plate 16c. I just need it. In this case, the support plate 16 c that becomes the back surface protective layer 16 is directly bonded to the second adhesive filling layer 14. Like the solar cell module 10c, by comprising the back surface protection layer 16 only by the support plate 16c, weight reduction and cost reduction can be achieved, maintaining predetermined intensity
  • FIG. 6A is a schematic cross-sectional view showing the arrangement state of each member before vacuum lamination of the solar cell module of the third embodiment of the present invention
  • FIG. 6B is the third embodiment of the present invention. It is typical sectional drawing which shows the solar cell module of a form.
  • symbol is attached
  • the solar cell module 10d of this embodiment is the solar cell module 10 (solar cell) compared with the solar cell module 10 (refer FIG.1 (b)) of 1st Embodiment. Since the frame member 24 is provided at the peripheral edge ⁇ of the laminated body 30a), and the other configuration is the same as that of the solar cell module 10 of the first embodiment, the detailed description thereof is as follows. Omitted.
  • the frame member 24 is for improving mechanical resistance and improving moisture diffusion resistance and moisture resistance from the peripheral portion ⁇ .
  • the frame member 24 is the structure similar to the solar cell module 10b of 2nd Embodiment, the detailed description is abbreviate
  • the solar cell module 10d of this embodiment can be manufactured as follows. First, as in the first embodiment, as shown in FIG. 6B, on the back surface 12b side of the solar cell submodule 12, as the second adhesive filling layer 14 and the back surface protective layer 16, a back sheet 16a, The third adhesive filling layer 16b and the support plate 16c are stacked and arranged. Next, on the surface 12 a side of the solar cell submodule 12, the first adhesive filling layer 20 and the intermediate sealing material 18 around the first adhesive filling layer 20 are arranged at a distance m from the peripheral edge ⁇ , for example, 5 to 30 mm inside. Further, the surface protective layer 22 is laminated on the first adhesive filling layer 20 and the intermediate sealing material 18 and disposed.
  • Fig.6 (a) it will be in the state by which each member was laminated
  • a vacuum laminator having an elevating means, a buffer plate, and a heating means, for example, at a temperature of 130 to 150 ° C.
  • the solar cell laminated body 30a is formed (refer FIG.6 (b)).
  • the peripheral sealing material 26 of the frame member 24 is applied to the peripheral edge ⁇ of the solar cell stack 30 a with a part of the surface protective layer 22 surface and one surface of the back protective layer 16. Provide to cover the part. Then, the groove portion (concave portion) of the outer frame material 28 is fitted onto the peripheral seal material 26 and further bonded. In this way, the solar cell module 10d of this embodiment is manufactured.
  • the same effects as those of the solar cell module 10 of the first embodiment can be obtained, and further, mechanical resistance, moisture diffusion resistance and moisture resistance can be further improved. it can.
  • the back surface protective layer 16 has a three-layer structure. However, like the solar cell module 10e shown in FIG. 7B, the back surface protective layer 16 has at least a support plate 16c. I just need it. In this case, the support plate 16 c that becomes the back surface protective layer 16 is directly bonded to the second adhesive filling layer 14. Like the solar cell module 10e, by comprising the back surface protection layer 16 only by the support plate 16c, weight reduction and cost reduction can be achieved, maintaining predetermined intensity
  • FIG. 8A is a schematic cross-sectional view showing the arrangement state of each member before vacuum lamination of the solar cell module of the fourth embodiment of the present invention
  • FIG. 8B is the fourth embodiment of the present invention. It is typical sectional drawing which shows the solar cell module of a form.
  • the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the first adhesive filling layer 20 is provided on the surface 12 a of the solar cell submodule 12 so as to cover the solar cell submodule 12.
  • a surface protective layer 22 is provided on the first adhesive filling layer 20. As described above, the surface protective layer 22 is provided via the first adhesive filling layer 20.
  • a second adhesive filling layer 14 is provided on the back surface 12 b of the solar cell submodule 12 so as to cover the solar cell submodule 12.
  • a back sheet (back surface protective layer) 17 is provided under the second adhesive filling layer 14. Thus, the back sheet (back surface protective layer) 17 is provided via the second adhesive filling layer 14. Further, a wire mesh support 62 is provided on the front surface 17 b of the back sheet (back surface protective layer) 17.
  • a frame member 24 is provided at ⁇ .
  • the first adhesive filling layer 20 and the surface protective layer 22 have the same configuration as in the first embodiment, and a detailed description thereof will be omitted.
  • the second adhesive filling layer 14 is for sealing the solar cell submodule 12 together with the first adhesive filling layer 20 and for adhering the back sheet (back surface protective layer) 17.
  • the second adhesive filling layer 14 has the same configuration as that of the first embodiment, and a detailed description thereof is omitted.
  • an ionomer resin is used to increase the bending rigidity as the mechanical strength of the entire solar cell module 60 with respect to the second adhesive filling layer 14 between the backsheet (back surface protective layer) 17 and the solar cell submodule 12. It is desirable to use However, when the ionomer resin is used for the first adhesive filling layer 20 and the mechanical strength of the module laminate is satisfied by using a metal substrate for the solar cell sub-module 12, that is, the bending stress is 100 MPa or more. In some cases, a normal EVA (ethylene vinyl acetate) resin can be used for the second adhesive filling layer 14.
  • EVA ethylene vinyl acetate
  • the back sheet 17 protects the solar cell module 60 (solar cell submodule 12) from the back side.
  • blue plate glass or white plate glass can be used similarly to the surface protective layer 22, and the thickness is the same as that of the surface protective layer 22.
  • a resin film can be used similarly to the back sheet 16 a of the first embodiment.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PVF polyvinyl fluoride
  • interposed aluminum foil with resin films, such as, can be used.
  • the configuration of the resin film is not particularly limited.
  • the wire mesh support 62 is for keeping the strength at a predetermined strength while reducing the weight of the solar cell module 60.
  • the wire mesh support 62 is made of a wire mesh or a wire mesh sheet.
  • the wire mesh support 62 is formed of a well-shaped mesh, for example, as shown in FIG.
  • the wire mesh support 62 is not limited to this.
  • a round wire mesh, a diamond wire mesh, or a turtle shell wire mesh shown in the wire meshes 62b to 62d shown in FIGS. 9B to 9D can be used. Other than these may be used.
  • the wire mesh support 62 can be made of various meshes such as plain weave mesh, welded mesh, and crimp net, the manufacturing method, and the kind of wire mesh.
  • the metal mesh support 62 is made of stainless steel wire, galvanized wire, brass wire, copper wire, red wire, aluminum wire, aluminum alloy wire, titanium wire, nickel wire, nichrome wire, hastelloy wire, inconel wire, etc. Can be used.
  • the wire diameter is, for example, 0.1 to 5.0 mm, and preferably 0.5 to 2 mm.
  • the pitch or opening is, for example, 5 to 200 mm, preferably 10 to 100 mm.
  • the shape, manufacturing method, and type of the mesh are not limited to these.
  • the metal mesh support 62 can be made of punched metal or expanded metal other than the mesh. In this case, for example, those formed using the same shape and material as the above-described net can be used.
  • the frame member 24 is for improving the mechanical resistance of the solar cell module 60 and improving the moisture diffusion resistance and moisture resistance from the peripheral edge ⁇ .
  • the frame member 24 includes a peripheral sealing material 26 and an outer frame material 28 having a groove (concave portion).
  • the peripheral sealing material 26 is provided on the inner side
  • the outer frame material 28 is provided on the outer side.
  • the structure of the outer periphery frame material 28 which has the peripheral sealing material 26 and groove part (recessed part) which comprise the frame member 24, and the material used are the frame materials 24 (FIG. 4 (FIG. 4 (FIG. 4)). Since it is the same as b), detailed description thereof is omitted.
  • the solar cell module 60 of the present embodiment has a bending stress of 100 MPa or more. If the bending stress is 100 MPa or more, the strength is equal to or higher than that of a conventional solar cell module using a tempered glass having a thickness of 3.2 mm.
  • the bending stress of the solar cell module 60 is obtained, for example, by measuring the yield stress with a bending tester that supports two points of the solar cell module 60 and applies stress to the center.
  • the solar cell module 60 of the present embodiment can be manufactured as follows. First, as illustrated in FIG. 8A, the second adhesive filling layer 14 and the back sheet 17 are laminated and disposed on the back surface 12 b side of the solar cell submodule 12. Next, the first adhesive filling layer 20 and the surface protective layer 22 are laminated and disposed on the surface 12 a side of the solar cell submodule 12. Thereby, as shown in FIG. 8A, the respective members are stacked and arranged. Thereafter, in a state where the respective members are stacked and arranged, for example, using a vacuum laminator having an elevating means, a buffer plate, and a heating means, for example, at a temperature of 130 to 150 ° C., a total of 15 vacuum / press / holds.
  • a vacuum laminator having an elevating means, a buffer plate, and a heating means, for example, at a temperature of 130 to 150 ° C., a total of 15 vacuum / press / holds.
  • Vacuum lamination is performed under a condition of ⁇ 30 minutes to obtain a solar cell laminate 30 shown in FIG.
  • a wire net-like support 62 is provided on the surface 17b of the back sheet 17 of the solar cell laminate 30 as shown in FIG. 8B, and then the peripheral sealing material 26 of the frame member 24 is attached to the solar cell laminate. 30, and a part of the surface of the surface protective layer 22 and part of the surface of the wire mesh support 62 are provided.
  • the groove portion (concave portion) of the outer frame material 28 is fitted onto the peripheral seal material 26 and further bonded.
  • the wire net-like support body 62 is sandwiched with the peripheral sealing material 26 in the groove portion of the outer frame material 28, and the solar cell module 60 of this embodiment shown in FIG. 8B is manufactured.
  • the solar cell submodule 12 is an integrated structure of the solar cells 40 which are the photoelectric conversion elements shown in FIG. For this reason, the detailed description is abbreviate
  • FIG. 14 a schematic cross-sectional view of a conventional third solar cell module is shown in FIG. Compared with the solar cell module 60 of the present embodiment shown in FIG. 8, the conventional third solar cell module 100 c shown in FIG. 14 is not provided with the wire mesh support 62 and the surface protective layer 120 is provided. The other difference is the same as the solar cell module 60 of the present embodiment shown in FIG.
  • tempered glass having a thickness of 3 to 5 mm is used as the glass constituting the surface protective layer 120 in order to maintain the mechanical strength.
  • a back sheet 17 made of a PVF / Al / PVF laminate or PET or the like is provided as a back surface protective layer under the solar cell submodule 12.
  • the tempered glass is heavy and it is difficult to reduce the weight.
  • the first adhesive filling layer 20 and the second adhesive filling layer 14 are made of a highly rigid sealing material, and a thin glass having a thickness of 3 mm or less is combined, or the back protective layer has high strength such as metal.
  • the solar cell module 60 of this embodiment shown in FIG. 8B is lighter by disposing a wire mesh support 62 such as a wire mesh or a wire mesh sheet under the back sheet 17. Both high mechanical strength can be achieved. Moreover, by using the wire mesh support 62, the member cost can be reduced as compared with the case of using a metal sheet. Further, since the surface protective layer 22 is made of glass having a thickness of 0.6 to 2.0 mm, the weight can be reduced to 25 to 47% of the white plate tempered glass (3.2 mm thickness). Further, by providing the wire mesh support 62 under the back sheet 17, the weight of the solar cell module 60 can be 40 to 60% of the weight using the tempered glass. The battery module 60 can be significantly reduced in weight.
  • a wire mesh support 62 such as a wire mesh or a wire mesh sheet under the back sheet 17. Both high mechanical strength can be achieved.
  • the member cost can be reduced as compared with the case of using a metal sheet.
  • the surface protective layer 22 is made of glass having a thickness of 0.6 to 2.0 mm
  • the frame member 24 By providing the frame member 24, it is possible to achieve mechanical strength such as wind pressure resistance and yield resistance, and impact strength equal to or higher than those of white tempered glass. Moisture and water vapor diffuse from the end face (peripheral part) of the solar cell module 60 and cause defects such as performance deterioration and wiring corrosion, but the end face (peripheral part) is reliably suppressed by the peripheral sealing material 26. Can do. Even if moisture enters from the back surface, it is possible to prevent the peripheral sealing material 26 from reaching a transparent electrode such as a solar battery cell. In this way, the solar cell module 60 that prevents moisture from entering the solar cell module 60, exhibits stable performance over a long period of time, can be used stably, is lightweight, and has low cost. realizable.
  • FIG. 10A is a schematic cross-sectional view showing the arrangement state of each member before vacuum lamination of the solar cell module of the fifth embodiment of the present invention
  • FIG. 10B is the fifth embodiment of the present invention. It is typical sectional drawing which shows the solar cell module of a form.
  • symbol is attached
  • the solar cell module 60a of the present embodiment is provided with a wire mesh support 62 as compared with the solar cell module 60 of the fourth embodiment (see FIG. 8 (b)). Since the positions are different and the other configuration is the same as that of the solar cell module 60 of the fourth embodiment, detailed description thereof is omitted.
  • the position where the wire mesh support 62 is provided is the lower surface 28b of the outer frame member 28 on the back sheet 17 side, and the outer frame member 28 is provided so as to cover the surface 17 b of the back sheet 17 facing from 28.
  • the end portion of the metal mesh support 62 is fixed to the lower surface 28b of the outer frame member 28 by, for example, spot welding, and is provided on the back sheet 17 side.
  • the wire mesh support 62 can be the same as that of the fourth embodiment.
  • the wire mesh support 62 When the wire mesh support 62 is fixed to the lower surface 28 b of the outer frame member 28 as in the present embodiment, a gap is generated between the surface 17 b of the back sheet 17 and the wire mesh support 62.
  • the glass or back sheet (back surface protective layer) 17 which is the surface protective layer 22 receives stress from above in this gap, there is a possibility that it protrudes into a concave shape.
  • the glass of the surface protective layer is 1.1 mm thick blue plate glass
  • the solar cell module 60 a is curved as shown in FIG. 11, and the radius of curvature R is set when part of the glass contacts the metal mesh support 62.
  • the gap is 3 cm or less. That is, in FIG. 11, when the radius of curvature is R (cm), the width of the solar cell module 60a is W (cm), and the displacement at yield is ⁇ (cm), the radius of curvature R and the glass constituting the surface protective layer
  • R radius of curvature
  • radius of curvature
  • the solar cell module 60a of this embodiment can be produced as follows. Similar to the solar cell module 60 of the fourth embodiment, the solar cell module 60a of the present embodiment has a second adhesive filling layer on the back surface 12b side of the solar cell submodule 12 as shown in FIG. 14 and the back sheet 17 are laminated and arranged. Next, the first adhesive filling layer 20 and the surface protective layer 22 are laminated and disposed on the surface 12 a side of the solar cell submodule 12. Thereby, as shown in FIG. 10A, the respective members are stacked and arranged.
  • the solar cell laminated body 30 is formed (refer FIG.10 (b)).
  • the peripheral sealing material 26 of the frame member 24 is attached to the peripheral part ⁇ of the solar cell laminate 30 and a part of the surface protective layer 22 surface and a part of the surface of the back sheet 17.
  • the groove portion (concave portion) of the outer frame material 28 is fitted onto the peripheral seal material 26 and further bonded.
  • the metal mesh support 62 is disposed so as to cover the surface 17b of the back sheet 17 facing the outer frame material 28, and the end of the metal mesh support 62 is placed on the lower surface 28b of the outer frame material 28, for example. Fix by spot welding.
  • the solar cell module 60 of this embodiment is produced.
  • the solar cell module 60a of the present embodiment since the wire net-like support body 62 is provided on the back sheet 17 side similarly to the solar cell module 60 of the fourth embodiment, the solar cell module of the fourth embodiment. The same effect as 60 can be obtained.
  • the present invention is basically configured as described above. As mentioned above, although the solar cell module of this invention and its manufacturing method were demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, you may make a various improvement or change. Of course.
  • test structures of Experimental Examples 1 to 10 shown in Table 1 below were prepared in order to study a lightweight and high mechanical strength solar cell module structure. Then, in order to evaluate the performance (yield stress, bending stress, displacement at yield) of the test structures of Experimental Examples 1 to 10, using a bending test machine (AG-10FD manufactured by Shimadzu Corporation), yield stress, displacement at yield Was measured.
  • the size of the test structures of Experimental Examples 1 to 10 was 15 cm ⁇ 7.5 cm.
  • the test structure of Experimental Examples 1 to 7 was supported with a fulcrum interval of 10 cm, the center of the fulcrum interval was pushed from above, and the pushing speed was 1 mm / min.
  • the white plate reinforced GL of Example 1 is a single piece of white plate tempered glass, and the total thickness is 3.2 mm.
  • GL1.1 indicates that the surface protective layer is blue plate glass and the thickness is 1.1 mm.
  • HM0.8 indicates that the sealing material of the adhesive filling layer is Himiran (registered trademark) -ES (HM) manufactured by Mitsui Deyupon Polychemical Co., Ltd., and the thickness is 0.8 mm.
  • EVA0.8 shows that the sealing material for the adhesive filling layer is Mitsui Chemicals Fabro Co., Ltd. solar eva, and the thickness is 0.8 mm.
  • EVA0.4 shows that the sealing material of the adhesion filling layer is Mitsui Chemicals Fabro Co., Ltd. solar eva, and the thickness is 0.4 mm.
  • the PV substrate 0.08 corresponds to the substrate of the solar cell submodule. This PV substrate 0.08 is a clad material of Al and SUS, and indicates that the thickness is 0.08 mm.
  • the backsheet 0.3 is a repnea TFB MD manufactured by Lintec Corporation, and indicates that the thickness is 0.3 mm.
  • the Al plate 0.4 corresponds to the support plate 16 c of the back surface protective layer 16.
  • the Al plate 0.4 is a 1000th aluminum plate and indicates that its thickness is 0.4 mm.
  • the Al plate 1.0 corresponds to the support plate 16 c of the back surface protective layer 16. This Al plate 1.0 is a 1000th aluminum plate and indicates that its thickness is 1.0 mm.
  • the Galvalume steel plate 0.4 corresponds to the support plate 16c of the back surface protective layer 16, and indicates that its thickness is 0.4 mm.
  • the numerical value at the end indicates the total thickness. In this example, the yield means that the glass of the surface protective layer was broken.
  • test structures of Experimental Examples 2 to 10 were manufactured by laminating the structures shown in Table 1 and then pressing them at 150 ° C. for 20 minutes using a vacuum laminator.
  • the yield stress is 2 .28 kN, the highest value among experimental examples 1-10. These are more than twice the tempered glass.
  • Experimental Example 8 in which the back surface protective layer is composed only of the back sheet although the yield stress is higher than in Experimental Example 7, it is considered that this is because one layer of the sealing material is HM.
  • Experimental Example 6 in which the back sheet is replaced with a Galvalume steel plate compared to Experimental Example 8 both the yield stress and the bending stress are low, and the back surface protective layer is configured only by the back sheet. In Example 8, the bending stress does not reach 100 MPa.
  • At least one adhesive filling layer is used as a sealing material made of a highly rigid ionomer resin, and the back surface protective layer is an Al plate or a galvalume steel plate. It is effective to use a metal sheet such as, and at least a bending stress of 100 MPa or more is required. This is a bending stress value that sufficiently satisfies the wind-resistant load, snow-resistant, and earthquake-resistant load conditions for the photovoltaic power generation system.
  • Experimental example 11 is a white plate reinforcement GL having a thickness of 3.2 mm, an EVA having a thickness of 0.8 mm, a PV substrate having a thickness of 0.08 mm, an EVA having a thickness of 0.8 mm, and a thickness. Is manufactured by laminating 1.1 mm blue glass and pressing it at a temperature of 150 ° C. for 20 minutes using a vacuum laminator. In Experimental Example 11, the back surface protective layer is blue plate glass. For EVA, Solar Eva manufactured by Mitsui Chemicals Fabro Co., Ltd. was used. In the column of test structures of Experimental Examples 11 to 17 shown in Table 2 below, the numerical value at the end indicates the total thickness.
  • the back protective layer is made of an Al plate
  • the weight ratio is 0.51 to 0.65.
  • the back surface protective layer is made of a galvalume steel plate
  • the weight ratio is 0.68 to 0.71.
  • the back surface protective layer is composed of an Al plate or a galvalume steel plate.
  • the back surface protection layer is made of a metal sheet such as an Al plate or a galvalume steel plate. It has become possible to obtain a solar cell module with high mechanical strength.
  • Example 1 A solar cell module 10 having a substrate structure and including a solar cell submodule 12 using a CIGS film as a light absorption layer was manufactured as shown in FIG.
  • Himiran (registered trademark) -ES S7042 made by Mitsui-DuPont Polychemical Co., Ltd., which is an ionomer resin, was used.
  • the thickness of the 1st adhesion filling layer 20 and the 2nd adhesion filling layer 14 was 800 micrometers.
  • the surface protective layer 22 a blue plate glass having a thickness of 1.1 mm was used.
  • a repnea TFB MD manufactured by Lintec Corporation was used as the back sheet 16a.
  • a galvalume steel plate having a thickness of 0.4 mm was used as the support plate 16c, and this was adhered to the back sheet 16a using EVA (Solar EVA manufactured by Mitsui Chemicals Fabro Co., Ltd.) as the third adhesive filling layer 16b.
  • EVA Small EVA manufactured by Mitsui Chemicals Fabro Co., Ltd.
  • the intermediate sealing material 18 a hot melt butyl rubber (M-155) sheet material manufactured by Yokohama Rubber Co., Ltd. is used, cut into a mouth shape, and the intermediate sealing material 18 has a width of 5 mm. The distance from the periphery of the battery module 10 was 5 mm.
  • Example 1 In the production of Example 1, a total of 20 vacuum / press / hold at a temperature of 150 ° C. using a vacuum laminator having lifting and lowering means, a buffer plate, and a heating means in a state where such materials are laminated and arranged. Laminating was performed under the lamination condition of minutes.
  • Example 2 A solar cell module 10b shown in FIG. 4B was produced.
  • the frame member 24 butyl rubber was used as the peripheral sealing material 26, and an Al foil tape was used for the outer frame material 28.
  • the butyl rubber Yokohama Rubber M-155P was used.
  • the back surface protection layer 16 back sheet 16a, third adhesive filling layer 16b, and galvalume steel plate (support plate 16c)).
  • the first adhesive filling layer 20 and the surface protective layer 22 are disposed on the surface 12a side of the solar cell submodule 12, and then vacuum / press / hold at a temperature of 150 ° C. using a vacuum laminator.
  • Lamination was performed under a total of 20 minutes of lamination conditions to obtain a solar cell laminate 30.
  • butyl rubber is melted at 150 to 190 ° C., and the butyl rubber melted at a width of 5 to 10 mm from the periphery is applied to the peripheral portion of the four sides of the laminate and the surface of the surface protective layer and the surface of the back protective layer, and then cooled and cured.
  • the AL foil tape was attached so as to surround the butyl rubber, and the frame member 24 was provided to produce the solar cell module 10b.
  • Example 3 A solar cell module 10b shown in FIG. 4B was produced.
  • the same thing as Example 1 was used except the glass of the surface protective layer 22, and the frame member 24.
  • FIG. A 1.1 mm thick white plate glass was used for the surface protective layer 22, and a silicone seal material was used as the peripheral seal material 26 for the frame member 24.
  • As the silicone sealing material RTV sealing material KE-45 manufactured by Shin-Etsu Chemical Co., Ltd. was used. Further, an L-shaped aluminum frame was used for the outer frame member 28.
  • a solar cell laminate 30 was produced in the same manner as in Example 2, and then a silicone sealant was applied and embedded in an L-shaped aluminum frame groove in advance and laminated. The side was set in the groove of the aluminum frame, and the aluminum frame was fixed with screws. After that, the silicone sealing material was cured by leaving it at room temperature for 7 days to provide a frame member 24, thereby producing a solar cell module 10b.
  • Example 4 A solar cell module 10d shown in FIG. 6B was produced. In addition, the same thing as Example 1 was used except the frame member 24.
  • As the butyl rubber Yokohama Rubber M-155P was used.
  • vacuum lamination was performed as shown in Example 1 to produce a solar cell laminate 30a (see FIG. 6B). Thereafter, butyl rubber is melted at 150 to 190 ° C., applied to and embedded in an L-shaped aluminum frame groove, and the peripheral edges of the four sides of the solar cell laminate 30a are sandwiched between the aluminum frame grooves, and at 90 ° C. in a constant temperature bath. After baking for 30 minutes and bonding, the aluminum frame was screwed and fixed, and the frame member 24 was attached to produce a solar cell module 10d.
  • Comparative Example 1 a blue sheet glass having a thickness of 1.0 mm was used for the surface protective layer 22, the first adhesive filling layer 20 and the second adhesive filling layer 14 were 400 ⁇ m in thickness, and Mitsui Chemicals Fabro Co., Ltd. A solar cell module was produced under the same production conditions as in Example 1 except that it was made of solar eva.
  • Comparative Example 1 shows the rigidity of the solar cell module structure including the surface protective layer, the first adhesive filling layer, the second adhesive filling layer, and the back surface protective layer. Since the strength and impact strength were low, the surface protective layer was cracked and cracked. Cracks also occurred in the CIGS solar cell itself or in the anodic oxide film that is the insulating layer of the metal substrate, and current leakage to the metal substrate caused a significant reduction in conversion efficiency. Furthermore, in the comparative example 1, in the dump heat test after the falling test, moisture penetrates from the cracked portion of the glass of the surface protective layer, the transparent electrode of the solar cell submodule is altered, and the series resistance is increased. It is considered that the conversion efficiency of the module has further decreased.
  • the mechanical strength of the solar cell module is improved by using an ionomer resin as at least the first adhesive filling layer under the blue glass of the surface protective layer, and the yield test is performed. No cracks or cracks occur in the glass of the surface protective layer.
  • the mechanical strength can be obtained by providing a structure in which an intermediate sealing material is provided in which the sealing material is arranged on the inner side from the periphery as in the first and fourth embodiments, or by providing a peripheral sealing material as in the second and third examples. Can be raised.
  • test structures of Experimental Examples 20 to 23 shown in Table 4 below were fabricated in order to examine a lightweight and high mechanical strength solar cell module structure. Then, in order to evaluate the performance (yield stress, bending stress, displacement at yield) of the test structures of Experimental Examples 20 to 23, using a bending test machine (AG-10FD manufactured by Shimadzu Corporation), yield stress, displacement at yield was measured.
  • the size of the test structures of Experimental Examples 20 to 23 was 15 cm ⁇ 7.5 cm.
  • the test structure of Experimental Examples 20 to 23 was supported with a fulcrum interval of 10 cm, the center of the fulcrum interval was pushed from above, and the pushing speed was 1 mm / min.
  • the white plate reinforced GL of Experimental Example 20 is a single piece of white plate tempered glass, and the total thickness is 3.2 mm.
  • GL1.1 indicates that the surface protective layer is blue plate glass and the thickness is 1.1 mm.
  • HM0.8 indicates that the sealing material of the adhesive filling layer is Himiran (registered trademark) -ES (HM) manufactured by Mitsui Deyupon Polychemical Co., Ltd., and the thickness is 0.8 mm.
  • the PV substrate 0.08 corresponds to the substrate of the solar cell submodule. This PV substrate 0.08 is a clad material of Al and SUS, and indicates that the thickness is 0.08 mm.
  • the wire mesh A corresponds to the wire mesh support 62.
  • This wire mesh A is a plain woven wire mesh made of SUS430 and has a wire diameter of 1 mm and an opening of 10 mm.
  • the wire mesh B corresponds to the wire mesh support 62.
  • This wire mesh B is a diamond wire mesh made of SUS430 and has a linear shape of 1.5 mm and an opening of 5 mm.
  • the numerical value at the end indicates the total thickness.
  • test structure of Experimental Example 21 was manufactured by laminating the structures shown in Table 4 and then pressing it at 150 ° C. for 20 minutes using a vacuum laminator.
  • test structures of Experimental Examples 22 and 23 after laminating the structures shown in Table 4, after pressing for 20 minutes at a temperature of 150 ° C. using a vacuum laminator, the wire mesh A or wire mesh B is backed. It was prepared on a sheet.
  • the yield stress is 0.62 kN for the white sheet tempered glass (3.2 mm thickness) of Experimental Example 20 and the strength of the stress is 0.42 kN for only the back sheet of Experimental Example 21. Not as strong as tempered glass.
  • the yield means that the glass of the surface protective layer was broken.
  • those having the wire mesh A and wire mesh B were able to obtain a strength higher than the yield stress of the white sheet tempered glass. From the above, in order to obtain the same strength as that of white tempered glass, it is effective to provide a wire mesh support on the back surface protective layer side, and at least a bending stress of 100 MPa or more is required. This is a bending stress value that sufficiently satisfies the wind-resistant load, snow-resistant, and earthquake-resistant load conditions for the photovoltaic power generation system.
  • Experimental Example 30 is a whiteboard reinforcing GL having a thickness of 3.2 mm, an EVA having a thickness of 0.8 mm, a PV substrate having a thickness of 0.08 mm, an EVA having a thickness of 0.8 mm, and a thickness. Is manufactured by laminating 1.1 mm blue glass and pressing it at a temperature of 150 ° C. for 20 minutes using a vacuum laminator. In Experimental Example 30, the back surface protective layer is blue plate glass. For EVA, Solar Eva manufactured by Mitsui Chemicals Fabro Co., Ltd. was used. In the column of test structures of Experimental Examples 30 to 33 shown in Table 5 below, the numerical value at the end indicates the total thickness.
  • the weight ratio is 0.42, and when the metal screen B is further provided on the back surface protective layer, the weight ratio is 0.45, Significant weight reduction is possible. According to the results of the fourth embodiment and the present embodiment (fifth embodiment), it is effective to provide a wire mesh support on the back surface protective layer side, and thus a light-weight and high mechanical strength solar cell. Modules can be obtained.
  • Example 10 A solar cell module 60 having a substrate structure and having a size of 30 ⁇ 30 cm shown in FIG. 8B including the solar cell submodule 12 using a CIGS film as a light absorption layer was produced.
  • Himiran (registered trademark) -ES S7042 made by Mitsui-DuPont Polychemical Co., Ltd., which is an ionomer resin, was used.
  • the thickness of the 1st adhesion filling layer 20 and the 2nd adhesion filling layer 14 was 800 micrometers.
  • white plate glass having a thickness of 1.1 mm was used.
  • a repnea TFB MD manufactured by Lintec Corporation was used for the back sheet 17.
  • a silicone seal material was used as the peripheral seal material 26.
  • RTV sealing material KE-45 manufactured by Shin-Etsu Chemical Co., Ltd. was used as the silicone sealing material.
  • an L-shaped aluminum frame was used for the outer frame member 28.
  • Example 10 In the production of Example 10, a total of 20 vacuums / presses / holds at a temperature of 150 ° C. using a vacuum laminator having lifting and lowering means, buffer plates, and heating means in a state where such materials are laminated and arranged. Laminating was performed under the lamination condition of minutes. Then, a silicone sealing material is applied and embedded in advance in the L-shaped aluminum frame groove, and the wire diameter as a wire mesh support 62 is formed on the surface 17b of the back sheet 17 of the solar cell laminate 30 obtained by lamination. A plain woven wire mesh made of SUS430 with 1 mm and an opening of 10 mm was piled up, the peripheral edge was set in an aluminum frame groove, and the aluminum frame was fixed with screws. Then, the solar cell module 60 was produced by leaving the film at room temperature for 7 days to cure the silicone sealing material and providing the frame member 24.
  • Example 11 A solar cell module 60a having a size of 30 ⁇ 30 cm shown in FIG.
  • the wire mesh support 62 is a SUS430 rhombus wire mesh having a linear size of 1.5 mm and an opening of 5 mm, and the wire mesh support 62 is fixed to the aluminum frame without overlapping the back sheet 17. Except for the above, this example is the same as Example 10.
  • a solar cell laminate 30 was produced in the same manner as in Example 10, the peripheral portion of the solar cell laminate 30 was set in an aluminum frame groove, and the aluminum frame was screwed and fixed. Thereafter, the wire mesh support 62 was fixed to the lower surface of the aluminum frame by spot welding to produce a solar cell module 60a.
  • interval of the clearance gap between the back sheet 17 and the metal-mesh-like support body 62 was 5 mm.
  • the silicone sealant was cured by leaving it at room temperature for 7 days.
  • Comparative Example 10 A solar cell module 100c shown in FIG. 14 was produced. In addition, it is the same as Example 1 except the point that the thickness of the surface protective layer 120 is 1.1 mm, and the point which does not provide the wire-mesh-like support body 62.
  • a solar cell laminate 30 was produced in the same manner as in Example 1, the peripheral portion of the solar cell laminate 30 was set in an aluminum frame groove, and the aluminum frame was screwed and fixed. Subsequently, the silicone sealant was allowed to stand at room temperature for 7 days to provide a frame member 24, thereby producing a solar cell module 100c.
  • a simple method is a method in which a sand bag having a predetermined stress is placed on a surface protective layer or a back sheet.
  • a test apparatus for applying static pressure may be used. In the mechanical strength test, the glass of the surface protection layer is not broken, the appearance of the solar cell module is not deformed or damaged, the energization of the solar cell module is not changed, and the insulation of the substrate of the solar cell module is changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池モジュールは、太陽電池サブモジュールの表面側にアイオノマー樹脂を含む第1の接着充填層を介して表面保護層が設けられ、太陽電池サブモジュールの裏面側に第2の接着充填層を介して裏面保護層が設けられている。太陽電池サブモジュールは金属シート表面にアルミニウム陽極酸化皮膜が形成された基板にCIGS膜の光吸収層が形成されている。裏面保護層は少なくとも支持板を備え、支持板は厚さが0.1~1.0mmのアルミニウム板、アルミニウム合金板またはガルバリウム鋼板で構成される。表面保護層は0.6~1.5mm厚のガラスで構成される。太陽電池モジュールの曲げ応力は100MPa以上である。

Description

太陽電池モジュールおよびその製造方法
 本発明は、光電変換層にCIGSを用いた薄膜太陽電池モジュール及びその製造方法に関し、特に、表面保護層を薄いガラスとし、裏面保護層を支持板を有するものとするか、または裏面保護層上に金網状支持体を配置して、軽量で機械的強度が高く、かつ低コストな薄膜太陽電池モジュールおよびその製造方法に関する。
 太陽電池は、光吸収により電流を発生する半導体の光吸収層を下部電極(裏面電極)と上部電極(透明電極)とで挟んだ積層構造の太陽電池セルを多数直列に接続して半導体回路を構成し、これを基板の上に形成したものである。このような構成を有する太陽電池は、クリーンなエネルギーとして注目されている。そのため、太陽電池の研究が盛んに行われるようになり、種々の観点から改良が試みられている。
 一例として、太陽電池セルは、水分に弱く、水分が進入すると、変換効率等の特性が劣化してしまう。特に、Ib族、IIIb族、VIb元素からなるカルコパイライト構造を有するCIS(CuInSe)や、CISに、さらにGaを固溶させたCIGS(Cu(In,Ga)Se)等を、光吸収層として用いるカルコパイライト型の太陽電池セルは、透明電極としてZnO膜等が用いられるため、水分の進入によって透明電極が変質してしまう。これにより、透明電極の抵抗値が上昇し、変換効率が大幅に低下してしまう。
 しかしながら、周知のように、太陽電池は、屋外に設置された架台、屋根または屋上など、屋外に設置される場合が多い。そのため、太陽電池モジュールの防水性を向上するための種々の提案がなされている(特許文献1~9等)。
 特許文献1には、ガラス基板上に、アルカリバリア層、金属裏面電極層、光吸収層、バッファ層、窓層の順に積層された複数のCIS系薄膜太陽電池デバイス部が導電パターンにより電気的に接続されたCIS系薄膜太陽電池サーキット(又はサブモジュール)に、加熱して重合反応を起こさせて架橋したエチレンビニルアセテート(以下、EVAという)樹脂フィルム(又はシート)を接着剤として、白板半強化ガラス等からなるカバーガラスを貼着した構造からなるCIS系薄膜太陽電池モジュールが記載されている。
 特許文献2には、太陽電池素子と上部透明保護材及び下部基板保護材とを封止して太陽電池モジュールを形成させる封止材料が記載されている。
 この封止材料として用いられるエチレン・不飽和カルボン酸共重合体又はそのアイオノマーは、不飽和カルボン酸含量が4重量%以上、好ましくは5~20重量%で、DSCによる融点が85℃以上、好ましくは90~110℃のものである。
 また、特許文献2には、太陽電池素子として、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、ガリウム-砒素、銅-インジウム-セレン、カドミウム-テルルなどのIII-V族やII-VI族化合物半導体系等の各種太陽電池素子を用いることができることが記載されている。
 特許文献3~5は、透明性、耐熱性、接着性等に優れた太陽電池封止材料を提供することを目的とするものである。
 特許文献3には、太陽電池封止材料として、不飽和カルボン酸含量が4重量%以上であって、融点が80℃以上のエチレン・不飽和カルボン酸共重合体もしくはそのアイオノマーの下記(A)、(B)及び(C)から選ばれる変性物が記載されている。
 なお、(A)上記エチレン・不飽和カルボン酸共重合体もしくはそのアイオノマーとナイロン塩もしくはアミノカルボン酸とを溶融混練して得られるオリゴアミド変性物、(B)上記エチレン・不飽和カルボン酸共重合体もしくはそのアイオノマーと片末端又は両末端に1級アミノ基を有するポリアミドオリゴマーを溶融混練して得られるポリアミドオリゴマー変性物であり、(C)上記エチレン・不飽和カルボン酸共重合体もしくはそのアイオノマー、数平均分子量50000以下のポリプロピレンワックス、数平均分子量100000以上のエチレン・αーオレフィン共重合体、ラジカル発生剤及び架橋助剤を溶融混練して得られるポリプロピレンワックス変性物である。
 特許文献4には、不飽和カルボン酸含量が4重量%以上であって、融点が85℃以上のエチレン・不飽和カルボン酸共重合体又はそのアイオノマー100重量部に対し、該共重合体又はそのアイオノマーとの屈折率の差異が0.15以下の範囲にある無機フィラーを1~30重量部配合してなる重合体組成物からなる太陽電池素子封止材料が記載されている。また、特許文献4では、無機フィラーが珪素化合物である。
 特許文献5には、不飽和カルボン酸含量が4重量%以上であって、融点が85℃以上のエチレン・不飽和カルボン酸共重合体もしくはそのアイオノマーと、厚みが0.05~1.0mmガラス繊維マットとを、ガラス繊維マットが表層に現れないように積層した積層体からなる太陽電池モジュールにおける太陽電池素子封止材料が記載されている。
 なお、特許文献3~5には、太陽電池素子として、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、ガリウム-砒素、銅-インジウム-セレン、カドミウム-テルルなどのIII-V族やII-VI族化合物半導体系等の各種太陽電池素子を用いることができ、本発明の封止材料はこれらいずれの太陽電池素子の封止にも適用することができることが記載されている。
 また、特許文献6は、アイオノマー組成物、それから誘導されるポリマーフィルムまたはシート、および安全ラミネートならびに太陽電池モジュールにおけるそれらの利用に関するものである。
 特許文献6には、α-オレフィンと、アイオノマーコポリマーの総重量に基づいて約1~約30重量%の、3~8個の炭素を有するα,β-エチレン性不飽和カルボン酸とのアイオノマーコポリマーを含むアイオノマー組成物を含むポリマーフィルムまたはシートであって、前記カルボン酸が、前記アイオノマーコポリマー中のカルボキシレート基のモル総数に基づいて、1種類以上の金属イオンにより、1~100モル%のレベルまで中和されており、前記アイオノマーコポリマーのメルトインデックスが、約20~約300g/10分である、ポリマーフィルムまたはシートが記載されている。
 また、特許文献7には、雹等の衝撃荷重応力を吸収し、耐久性を保持するため、太陽電池パネルの裏面側に太陽電池パネルを回転自在に支持する断面が略山形とされた弾性体を有する支持桟が備えられている太陽電池モジュールが記載されている。特許文献7の太陽電池モジュールは、太陽電池パネルの端部を把持する把持部に、この太陽電池パネルの端部を回転可能に支持する回転支持部材、または太陽電池パネルの端部を略上下方向に移動可能に支持するとともに移動量を吸収する弾力支持部材を備えている。
 特許文献8は、金属からなる基板上に光変換部材としての半導体層を有する光起電力素子と金属からなる裏面材との間にかかる交流成分の影響を減少させ、交流成分からダメージを受けない太陽電池モジュールを提供するものである。
 特許文献8においては、金属からなる基板上に光変換部材としての半導体層を少なくとも一層有する光起電力素子と、金属からなる裏面材と、裏面材と光起電力素子との間に配される封止材とを有する太陽電池モジュールにおいて、裏面材が複数の開口部を有する。
 また、特許文献8では、裏面材の開口率を10%以上とすることにより、キャパシタンスを十分小さくすることができ、起電圧特性に関しより信頼性の高いものとなる。
 特許文献8において、裏面材は、太陽電池モジュールの機械的強度を増すために、あるいは、温度変化による歪、ソリを防止するためのものである。裏面材の材質としては、長期間の屋外使用に耐え得る十分な耐腐食性と剛性を持った材料が望ましいことが記載されている。例えば、溶融亜鉛メッキ鋼板、ガルバリウム鋼板、ガルバナイズド鋼板、ステンレス鋼板、アルミニウム板、FRP(ガラス繊維強化プラスチック)が好ましく、これらの中でも溶融亜鉛メッキ鋼板、ガルバリウム鋼板(溶融亜鉛-アルミ合金メッキ鋼板)、ガルバナイズド鋼板(溶融亜鉛-アルミ合金メッキ鋼板)、ステンレス鋼板がより好ましいことが記載されている。
 特許文献9は、太陽電池モジュールの所定の位置に所定の形状や間隔に透光部が形成でき、しかも自重が軽減されて装着する構築物のコスト低減が図れ、あるいは電位の影響を防止して太陽電池モジュールの発電効率を確保可能とすることを目的とするものである。
 特許文献9には、透光性のガラス板を設け、透光性の封止材料に内包させた太陽電池セルをその太陽光を受ける側をガラス板に向け、かつガラス板に透光部を残して接合させ、さらに少なくとも封止材料を透光性フィルムで覆った透光部を有するシースルー型の太陽電池モジュールが記載されている。この透光性フィルムの裏面側を覆うように、透光性を備えた不燃性のバックカバーが設けられている。このバックカバーは、例えば、パンチングメタル、金網やガラス繊維糸による織布からなる。
特開2007-123725号公報 特開2000-186114号公報 特開2001―119056号公報 特許第4325965号公報 特許第4437348号公報 特表2010-519346号公報 特開2004―165556号公報 特開2001-085708号公報 特開2001-358356号公報
 上述のように、特許文献1は、表面保護層として、最も一般的な白板強化ガラスを設けることにより、衝撃強度、防水性を保持している。しかしながら、一般的に使われている厚さが3.2mmの強化ガラスでは、その重量は7.5kg/mとなる。このため、特許文献1において、軽量化することが難しい。
 特許文献2および特許文献6においては、アイオノマー樹脂封止材料を用いるものの、軽量化及び高強度の両方を同時に実現できるものではない。
 また、特許文献3~5に開示されている太陽電池素子封止材料を用いた太陽電池モジュールであっても、軽量化及び高強度の両方を同時に実現できるものではない。
 特許文献7の太陽電池モジュールは、太陽電池パネルの周縁部を回転支持部材を備えた構造になっており、太陽電池パネルの周縁部が固定されていないため、防水性等の信頼性に欠ける。
 また、特許文献8は、交流成分からダメージを受けない太陽電池モジュールを提供することを目的としており、軽量化及び高強度の両方を同時に実現できるものではない。
 なお、特許文献9においては、バックカバーとして透光性をもつようにパンチングメタル、金網、ガラス繊維を設けているが、太陽電池モジュールの変換効率が大幅に低下してしまう可能性がある。
 ここで、20~30年の長期信頼性を有する太陽電池モジュールに必要とされる特性としては、太陽電池自体の変換効率が高いことは勿論であるが、耐候性、耐熱性、難燃性、耐水性、耐湿性、耐風圧性、耐降雹性、その他の諸特性に優れていることである。また、太陽電池モジュール、パネル自体の低価格化とともに設置するための工事費の低減も必要である。従来の強化ガラスを表面保護層に使った重量の重い太陽電池パネル、太陽電池モジュールでは、一般住宅やスレート屋根等に固定するためには補強工事等のコストもかかり、全体コストを低減するためには軽量化され、性能の優れた太陽電池モジュールの実現が望まれている。
 本発明の目的は、前記従来技術に基づく問題点を解消し、長期間にわたって、所定の性能を発揮し、安定して用いることができ、軽量で機械的強度が高く、かつコストを低くできる太陽電池モジュールおよびその製造方法を提供することにある。
 上記目的を達成するために、本発明の第1の態様は、太陽電池サブモジュールの表面側に第1の接着充填層を介して表面保護層が設けられ、前記太陽電池サブモジュールの裏面側に第2の接着充填層を介して裏面保護層が設けられ、前記第1の接着充填層および前記第2の接着充填層により前記太陽電池サブモジュールが封止された太陽電池モジュールであって、前記裏面保護層は、バックシートおよび前記太陽電池モジュールを補強する支持板のうち、少なくとも前記支持板を備え、前記支持板は厚さが0.1~1.0mmのアルミニウム板、アルミニウム合金板またはガルバリウム鋼板で構成されるものであり、前記第1の接着充填層は、アイオノマー樹脂を含むものであり、前記表面保護層は、厚さが0.6~1.5mmのガラスで構成されており、前記太陽電池サブモジュールは、金属シートの表面にアルミニウムの陽極酸化皮膜が形成された基板に、CIGS膜で構成された光吸収層が形成されたものであり、前記太陽電池モジュールの曲げ応力が100MPa以上であることを特徴とする太陽電池モジュールを提供するものである。
 この場合、前記表面保護層を構成するガラスは、青板ガラスまたは白板ガラスであることが好ましい。
 また、周縁部に設けられた枠部材を有し、前記枠部材は、内側に設けられるシール材と外側に設けられる外枠材とを備え、前記シール材は、ブチルゴムまたはシリコーン樹脂からなるものであり、外枠材はアルミフレームまたは金属箔テープで構成されることが好ましい。
 また、前記太陽電池サブモジュールに用いられる基板は、例えば、アルミニウム、ステンレス鋼およびアルミニウムのクラッド材、またはアルミニウムとステンレス鋼のクラッド材である。
 さらに、例えば、前記第2の接着充填層は、前記アイオノマー樹脂を含まないものであり、前記裏面保護層は、前記バックシートおよび前記ガルバリウム鋼板からなる前記支持板を備える。
 また、前記裏面保護層の周縁部より5~30mm内側に、水蒸気浸入防止のための中間シール材が設けられていることが好ましい。
 また、前記中間シール材は、ブチルゴム、ポリオレフィン、ポリイソプレンまたはイソプレンにより構成されることが好ましい。
 本発明の第2の態様は、太陽電池サブモジュールの表面側に第1の接着充填層を介して表面保護層が設けられ、前記太陽電池サブモジュールの裏面側に第2の接着充填層を介して裏面保護層が設けられ、前記第1の接着充填層および前記第2の接着充填層により前記太陽電池サブモジュールが封止された太陽電池モジュールの製造方法であって、
 前記裏面保護層は、バックシートおよび前記太陽電池モジュールを補強する支持板のうち、少なくとも前記支持板を備え、前記支持板は厚さが0.1~1.0mmのアルミニウム板、アルミニウム合金板またはガルバリウム鋼板で構成されるものであり、前記第1の接着充填層は、アイオノマー樹脂を含むものであり、前記表面保護層は、厚さが0.6~1.5mmのガラスで構成されており、前記太陽電池サブモジュールは、金属シートの表面にアルミニウムの陽極酸化皮膜が形成された基板に、CIGS膜で構成された光吸収層が形成されたものであり、前記太陽電池サブモジュールの表面側に、前記第1の接着充填層および前記表面保護層を積層して配置するとともに、前記太陽電池サブモジュールの裏面側に第2の接着充填層および前記裏面保護層を積層して配置する工程と、前記複数層、積層して配置された状態で真空ラミネートする工程とを有することを特徴とする太陽電池モジュールの製造方法を提供するものである。
 さらに、前記積層して配置する工程において、前記裏面保護層の周縁部より5~30mm内側に、水蒸気浸入防止のための中間シール材を配置することが好ましい。
 また、前記真空ラミネート工程の後、外枠材の内側にシール材が設けられた枠部材を前記真空ラミネートしたものの周縁部に設ける工程を有することが好ましい。
 本発明の第3の態様は、太陽電池サブモジュールの表面側に第1の接着充填層を介して表面保護層が設けられ、前記太陽電池サブモジュールの裏面側に第2の接着充填層を介して裏面保護層が設けられた太陽電池モジュールであって、
 前記第1の接着充填層は、アイオノマー樹脂を含むものであり、前記表面保護層は、厚さが0.6~2.0mmのガラスで構成されており、前記太陽電池サブモジュールは、金属シートの表面にアルミニウムの陽極酸化皮膜が形成された基板に、CIGS膜で構成された光吸収層が形成されたものであり、さらに、前記裏面保護層側に金網状支持体が設けられており、前記太陽電池モジュールの曲げ応力が100MPa以上であることを特徴とする太陽電池モジュールを提供するものである。
 前記第2の接着充填層は、エチレンビニルアセテート樹脂またはアイオノマー樹脂を含むものであることが好ましい。
 この場合、前記表面保護層を構成するガラスは、青板ガラスまたは白板ガラスであることが好ましい。
 また、周縁部に設けられた枠部材を有し、前記枠部材は、内側に設けられるシール材と外側に設けられる外枠材とを備え、前記シール材は、ブチルゴムまたはシリコーン樹脂からなるものであり、外枠材はアルミフレームまたは金属箔テープで構成されるものであることが好ましい。
 また、前記金網状支持体は、例えば、金網または金網状シートであり、前記金網状支持体は、ステンレス線、亜鉛メッキ線、真鍮線、アルミニウム線、またはアルミニウム合金線で構成される。
 さらに、前記金網状支持体の金網は、例えば、平織網、溶接網、クリンプ網、亀甲金網、菱形金網である。
 さらにまた、前記金網状支持体は、前記裏面保護層の表面に設けられていることが好ましい。
 また、前記金網状支持体は、前記裏面保護層を覆うようにして前記枠部材に設けられていることが好ましい。
 本発明の第4の態様は、太陽電池サブモジュールの表面側に第1の接着充填層を介して表面保護層が設けられ、前記太陽電池サブモジュールの裏面側に第2の接着充填層を介して裏面保護層が設けられた太陽電池モジュールの製造方法であって、
 前記第1の接着充填層は、アイオノマー樹脂を含むものであり、前記表面保護層は、厚さが0.6~2.0mmのガラスで構成されており、前記太陽電池サブモジュールは、金属シートの表面にアルミニウムの陽極酸化皮膜が形成された基板に、CIGS膜で構成された光吸収層が形成されたものであり、
 前記太陽電池サブモジュールの表面側に、前記第1の接着充填層および前記表面保護層を積層して配置するとともに、前記太陽電池サブモジュールの裏面側に第2の接着充填層および前記裏面保護層を積層して配置する工程と、前記複数層、積層して配置された状態で真空ラミネートする工程と、前記真空ラミネート工程の後、前記裏面保護層上に金網状支持体を配置し、外枠材の内側にシール材が設けられた枠部材を前記真空ラミネートしたものの周縁部に設ける工程を有することを特徴とする太陽電池モジュールの製造方法を提供するものである。
 前記第2の接着充填層は、エチレンビニルアセテート樹脂またはアイオノマー樹脂を含むものであることが好ましい。
 本発明の第5の態様は、太陽電池サブモジュールの表面側に第1の接着充填層を介して表面保護層が設けられ、前記太陽電池サブモジュールの裏面側に第2の接着充填層を介して裏面保護層が設けられた太陽電池モジュールの製造方法であって、
 前記第1の接着充填層は、アイオノマー樹脂を含むものであり、前記表面保護層は、厚さが0.6~2.0mmのガラスで構成されており、前記太陽電池サブモジュールは、金属シートの表面にアルミニウムの陽極酸化皮膜が形成された基板に、CIGS膜で構成された光吸収層が形成されたものであり、
 前記太陽電池サブモジュールの表面側に、前記第1の接着充填層および前記表面保護層を積層して配置するとともに、前記太陽電池サブモジュールの裏面側に第2の接着充填層および前記裏面保護層を積層して配置する工程と、前記複数層、積層して配置された状態で真空ラミネートする工程と、前記真空ラミネート工程の後、外枠材の内側にシール材が設けられた枠部材を前記真空ラミネートしたものの周縁部に設ける工程と、前記裏面保護層を覆うようにして前記枠部材に前記金網状支持体を設ける工程とを有することを特徴とする太陽電池モジュールの製造方法を提供するものである。
 前記第2の接着充填層は、エチレンビニルアセテート樹脂またはアイオノマー樹脂を含むものであることが好ましい。
 本発明によれば、耐風圧性、耐降雹性等の機械的強度、衝撃強度を白板強化ガラス並みかそれ以上にできる。また、表面保護層の重量を白板強化ガラス(3.2mm厚)の25~47%まで軽量化することが可能となり、さらに、アルミニウム板、アルミニウム合金板またはガルバリウム鋼板で構成される支持板を裏面保護層に設けることにより、太陽電池モジュールの重量を強化ガラスを用いたものに対して、60~80%の重量とすることができ、太陽電池モジュールの軽量化が実現できる。
 前述の支持板の代りに、裏面保護層下に金網または金網状シート等の金網状支持体を設けることで太陽電池モジュールの重量を強化ガラスを用いたものに対して、40~60%の重量とすることができ、太陽電池モジュールの大幅な軽量化が実現できる。
 また、太陽電池サブモジュールにガラス基板を用いることなく、陽極酸化膜が形成された金属シートを基板に用い、ロールツーロール製造方式で、この基板上に光吸収層としてCIGS膜を形成するため、軽量、かつ低コストな太陽電池モジュールを実現できる。
 ここで、水分、水蒸気が太陽電池モジュールの端面(周縁部)から拡散してきて性能劣化、配線腐食等の不良を発生させるが、本発明によれば、端面(周縁部)に対しては、枠部材のシール材により確実に抑制することができる。また、仮に、裏面から水分が浸入しても、太陽電池セル等の透明電極に達することを防止できる。
 このように本発明によれば、太陽電池モジュールへの水分の浸入を防止でき、長期間にわたって、安定した性能を発揮し、安定して用いることができる軽量、かつ機械的強度が高く、しかもコストが低い太陽電池モジュールを実現できる。
 なお、本発明の太陽電池モジュールの製造方法によれば、上述の優れた特性を有する太陽電池モジュールを、好適に製造できる。
(a)は、本発明の第1の実施形態の太陽電池モジュールの真空ラミネート前の各部材の配置状態を示す模式的断面図であり、(b)は、本発明の第1の実施形態の太陽電池モジュールを示す模式的断面図である。 本発明の第1の実施形態の太陽電池モジュールに用いられる太陽電池サブモジュールの一例を示す模式的断面図である。 (a)は、本発明の第1の実施形態の変形例の太陽電池モジュールの真空ラミネート前の各部材の配置状態を示す模式的断面図であり、(b)は、本発明の第1の実施形態の変形例の太陽電池モジュールを示す模式的断面図である。 (a)は、本発明の第2の実施形態の太陽電池モジュールの真空ラミネート前の各部材の配置状態を示す模式的断面図であり、(b)は、本発明の第2の実施形態の太陽電池モジュールを示す模式的断面図である。 (a)は、本発明の第2の実施形態の変形例の太陽電池モジュールの真空ラミネート前の各部材の配置状態を示す模式的断面図であり、(b)は、本発明の第2の実施形態の変形例の太陽電池モジュールを示す模式的断面図である。 (a)は、本発明の第3の実施形態の太陽電池モジュールの真空ラミネート前の各部材の配置状態を示す模式的断面図であり、(b)は、本発明の第3の実施形態の太陽電池モジュールを示す模式的断面図である。 (a)は、本発明の第3の実施形態の変形例の太陽電池モジュールの真空ラミネート前の各部材の配置状態を示す模式的断面図であり、(b)は、本発明の第3の実施形態の変形例の太陽電池モジュールを示す模式的断面図である。 (a)は、本発明の第4の実施形態の太陽電池モジュールの真空ラミネート前の各部材の配置状態を示す模式的断面図であり、(b)は、本発明の第4の実施形態の太陽電池モジュールを示す模式的断面図である。 (a)は、図8の第4の実施形態の太陽電池モジュールに用いられる金網状支持体を示す模式図であり、(b)~(d)は、金網状支持体の他の例を示す模式図である。 (a)は、本発明の第5の実施形態の太陽電池モジュールの真空ラミネート前の各部材の配置状態を示す模式的断面図であり、(b)は、本発明の第5の実施形態の太陽電池モジュールを示す模式的断面図である。 太陽電池モジュールの表面保護層が青板ガラスの場合の降伏時の変位を説明するための模式図である。 従来の第1の太陽電池モジュールを示す模式的断面図である。 従来の第2の太陽電池モジュールを示す模式的断面図である。 従来の第3の太陽電池モジュールを示す模式的断面図である。
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の太陽電池モジュールおよびその製造方法を詳細に説明する。
 図1(a)は、本発明の第1の実施形態の太陽電池モジュールの真空ラミネート前の各部材の配置状態を示す模式的断面図であり、(b)は、本発明の第1の実施形態の太陽電池モジュールを示す模式的断面図である。
 図1(b)に示すように、太陽電池モジュール10においては、太陽電池サブモジュール12の表面12aに、太陽電池サブモジュール12を覆うようにして第1の接着充填層20が設けられている。この第1の接着充填層20の周囲に中間シール材18が設けられている。この中間シール材18は、太陽電池モジュール10の周縁部αから距離mの位置、すなわち、太陽電池モジュール10の内側に設けられている。
 第1の接着充填層20および中間シール材18上に表面保護層22が設けられている。このように、第1の接着充填層20を介して表面保護層22が設けられている。
 また、太陽電池サブモジュール12の裏面12bに、太陽電池サブモジュール12を覆うようにして第2の接着充填層14が設けられている。この第2の接着充填層14下に裏面保護層16が設けられている。このように、第2の接着充填層14を介して裏面保護層16が設けられている。
 裏面保護層16は、例えば、バックシート16aと、第3の接着充填層16bと、支持板16cとを有する3層構造である。
 第1の接着充填層20は、太陽電池サブモジュール12を封止するとともに、表面保護層22を接着するためのものである。この第1の接着充填層20は、アイオノマー樹脂を含むものである。このアイオノマー樹脂は、エチレン・不飽和カルボン酸共重合体との混合物である。アイオノマー樹脂として、具体的には三井・デユポンポリケミカル社の製品名ハイミラン(登録商標)-ESを好適に用いることができる。
 また、第1の接着層20の厚さは、例えば、100~1500μmであり、望ましくは400~1000μmである。
 表面保護層22は、太陽電池モジュール10を屋外に設置した場合、雨、雹、あられ、雪、石等がぶつかることがあるが、これらによって外部から加わる外力、衝撃等から太陽電池サブモジュール12を保護するものであり、耐風圧性、耐降雹性等の機械的強度、衝撃強度が高いものが用いられる。
 これ以外にも、表面保護層22は、透明性、耐候性、耐熱性、難燃性、耐水性、耐湿性、耐薬品性その他の諸特性に優れていることが必要である。
 さらには、表面保護層22は、汚れ等から太陽電池モジュール10を保護するとともに、汚れ等による太陽電池サブモジュール12への入射光量の低下を抑制するものである。
 表面保護層22はガラスで構成される。ガラスとしては、例えば、低コストの青板ガラス(フロートガラス、ソーダライムガラス)または白板ガラスが用いられ、厚さは0.6~1.5mmであり、厚さとしては1.0~1.5mmが好適である。
 表面保護層22の厚さ(ガラスの厚さ)が0.6mm未満では、外部から加わる外力、衝撃等から太陽電池サブモジュール12を十分に保護することができない。一方、表面保護層22の厚さが1.5mmを超えると、軽量化の効果が得られない。
 なお、白板ガラスの方が青板ガラスよりも透過率が1~2%高く、白板ガラスの方が太陽電池モジュールへの入射光量を多くすることができる。
 中間シール材18は、太陽電池サブモジュール12への第1の接着充填層20、第2の接着充填層14等からの水分の浸入を抑制するためのものである。この中間シール材18は、太陽電池モジュール10の周縁部αから距離mの位置に設けられる。この距離mは、製造上のバラツキおよびモジュール効率を下げない距離として、5~30mmであることが好ましい。中間シール材18の幅は、5~20mmが好ましい。
 中間シール材18は、例えば、熱可塑性を示すブチルゴム、ポリイソプレン、イソプレン、ポリオレフィン等が用いられる。
 第2の接着充填層14は、第1の接着充填層20とともに太陽電池サブモジュール12を封止するものである。また、この第2の接着充填層14は、裏面保護層16を接着するためのものである。第2の接着充填層14は、第1の接着充填層20と同じく、例えば、アイオノマー樹脂を含むものである。このアイオノマー樹脂は、エチレン・不飽和カルボン酸共重合体との混合物である。アイオノマー樹脂として、具体的には三井・デユポンポリケミカル社の製品名ハイミラン(登録商標)-ESを好適に用いることができる。
 また、第2の接着層14の厚さは、第1の接着充填層20と同じく、例えば、100~1500μmであり、望ましくは400~1000μmである。
 本実施形態において、裏面保護層16と太陽電池サブモジュール12間の第2の接着充填層14に関して、太陽電池モジュール10全体の機械的強度としての曲げ剛性率を上げるにはアイオノマー樹脂を用いることが望ましい。しかしながら、第1の接着充填層20にアイオノマー樹脂を用い、太陽電池サブモジュール12に金属基板を使用する等によりモジュール積層体の機械的強度が満たされている場合、すなわち、曲げ応力が100MPa以上である場合には、第2の接着充填層14に、通常のEVA(エチレンビニルアセテート)樹脂を用いることもできる。
 裏面保護層16は、太陽電池モジュール10(太陽電池サブモジュール12)を裏側から保護するものである。この裏面保護層16は、上述のように、バックシート16aと、第3の接着充填層16bと、支持板16cとを有する3層構造である。
 バックシート16aには、例えば、表面保護層22と同様に青板ガラスまたは白板ガラスを用いることができ、厚さについても表面保護層22と同様である。
 なお、バックシート16aには、樹脂フィルムを用いることもでき、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PVF(ポリフッ化ビニル)等の樹脂フィルムでアルミニウム箔を挟んだ構造のものを用いることができる。この樹脂フィルムの構成は、特に限定されるものではない。
 第3の接着充填層16bは、バックシート16aと支持板16cとを接着するためのものである。この第3の接着充填層16bには、例えば、通常のEVA(エチレンビニルアセテート)樹脂が用いられ、第1の接着充填層20と同じくアイオノマー樹脂を用いることもできる。また、第3の接着充填層16bの厚さは、第1の接着充填層20と同じく、例えば、100~1500μmであり、望ましくは400~1000μmである。
 支持板16cは、太陽電池モジュール10を軽量化しつつ、その強度を所定の強度に保持するためのものである。この支持板16cは、例えば、アルミニウム板、強度及び耐食性の良い、5000番、6000番、7000番等のアルミニウム合金板、ガルバリウム鋼板、ステンレス鋼板、アルミニウム-ステンレス鋼のクラッド鋼板等の金属シートで構成される。また、これ以外にも、公知の太陽電池モジュールにおいて、裏面保護層または支持体として用いられている各種の金属部材も、支持板16cとして利用することができる。支持板16cとしては、これらの金属板、金属部材を上述のガラス板、または樹脂フィルムと積層したものと用いても良い。
 支持板16cに、アルミニウム板またはアルミニウム合金板の金属シートを用いる場合、耐腐食性向上のため表面をアルマイト処理することが好ましい。特に、軽量化のために支持板16cとしては、金属シート以外にも、ゴム系シートまたはプラスチック樹脂ハニカム構造体等を使うことができる。
 支持板16cは、厚さが0.1~1.0mmである。支持板16cの厚さが0.1mm未満では太陽電池モジュール10において所定の強度を得ることができない。一方、支持板16cが1.0mmを超えると、コストが嵩み、低コストを実現することができない。さらには、太陽電池モジュール10の重量が増し、軽量化も実現できない虞がある。
 本実施形態の太陽電池モジュール10は、その曲げ応力が100MPa以上である。曲げ応力が100MPa以上であれば、厚さが3.2mmの強化ガラスを用いた従来の太陽電池モジュールと同等以上の強度となる。
 なお、太陽電池モジュール10の曲げ応力は、例えば、太陽電池モジュール10を2点支持し、中心に応力印加する方式の曲げ試験機により降伏応力を測定することにより得られるものである。
 本実施形態の太陽電池モジュール10は、以下のようにして作製することができる。
 まず、図1(a)に示すように、太陽電池サブモジュール12の裏面12b側に、第2の接着充填層14、裏面保護層16として、バックシート16a、第3の接着充填層16bおよび支持板16cを積層して配置する。次に、太陽電池サブモジュール12の表面12a側に、第1の接着充填層20、第1の接着充填層20の周囲に中間シール材18を周縁部αから距離m、例えば、5~30mm内側の位置に配置し、さらに表面保護層22を第1の接着充填層20および中間シール材18に積層して配置する。これにより、図1(a)に示すように各部材が積層して配置された状態になる。
 その後、各部材が積層して配置された状態で、例えば、昇降手段、緩衝板、および加熱手段を有する真空ラミネーターを用いて、例えば、温度130~150℃で、真空/プレス/保持のトータル15~30分の条件で真空ラミネートする。これにより、図1(b)に示す本実施形態の太陽電池モジュール10が作製される。
 図1(b)に示す太陽電池モジュール10において、太陽電池サブモジュール12は、図2に示すように、光電変換素子である太陽電池セル40の集積構造体のことである。なお、太陽電池セル40が1つのディスクリート型のものも太陽電池サブモジュールに含まれる。
 以下、太陽電池サブモジュール12の具体例を、図2を参照して詳細に説明する。
 図2に示すように、太陽電池サブモジュール12は、基板50の上に、下部電極32、光吸収層34、バッファ層36、および上部電極38からなる太陽電池セル40を、複数、直列接合してなるものである。この太陽電池セル(光電変換素子)40は、光吸収層34としてCIGSの半導体化合物を用いるものである。太陽電池サブモジュール12は、第1の導電部材42と、第2の導電部材44とを有する。
 太陽電池サブモジュール12において、基板50は、基材52と、Al(アルミニウム)層54と、絶縁層56とから構成されるフレキシブル基板である。
 基材52とAl層54とは、一体的に形成されている。さらに、絶縁層56は、Al層54の表面を陽極酸化してなる、Alのポーラス構造の陽極酸化膜である。なお、基材52とAl層54とが積層されて一体化されたクラッド基板を金属基板55という。
 本発明の太陽電池サブモジュール12においては、基板50を構成する(金属)基材52として、軟鋼、耐熱鋼、またはステンレス鋼が用いられる。
 また、基材52の厚さにも、特に限定はないが、可撓性と強度(剛性)とのバランス、ハンドリング性等を考慮すると、10~1000μmであるのが好ましい。
 Al層54は、Alを主成分とする層で、AlやAl合金が、各種、利用可能である。特に、不純物の少ない、99質量%以上の純度のAlであることが好ましい。純度としては、例えば、99.99質量%Al、99.96質量%Al、99.9質量%Al、99.85質量%Al、99.7質量%Al、99.5質量%Al等が好ましい。
 また、高純度Alではなくても、工業用Alも利用可能である。工業用Alを用いることにより、コストの点で有利である。ただし、絶縁層56の絶縁性の点で、Al中にSiが析出していないことが重要である。
 Al層54の厚さは、特に限定はなく、適宜、選択できるが、太陽電池サブモジュール12となった状態において、0.1μm以上であり、かつ基材52の厚さ以下であるのが好ましい。
 なお、Al層54は、Al表面の前処理、陽極酸化による絶縁層56の形成、光吸収層34の成膜時のAl層54と基材52との面における金属間化合物の生成等によって、厚さが、減少する。従って、後述するAl層54の形成時における厚さは、これらに起因する厚さ減少を加味して、太陽電池サブモジュール12となった状態で、基材52と絶縁層56との間にAl層54が残存している厚さとすることが、重要である。このため、Al層54の厚さとしては、陽極酸化による絶縁層を形成するため10~50μm必要とされる。
 Al層54の上(基材52と反対側面)には、絶縁層56が形成される。絶縁層56は、Al層54の表面を陽極酸化してなる、Alの陽極酸化膜である。
 ここで、絶縁層56は、Alを陽極酸化してなる各種の陽極酸化膜が利用可能であるが、ポーラス型の陽極酸化膜であることが好ましい。この陽極酸化膜は、数10nmの細孔を有する酸化アルミナ被膜であり、被膜ヤング率が低いことにより、曲げ耐性や高温時の熱膨張差により生じるクラック耐性が高いものとなる。
 絶縁層56の厚さは2μm以上が好ましく、5μm以上が更に好ましい。絶縁層56の厚さが過度に厚い場合、可撓性が低下すること、および絶縁層56の形成に要するコスト、時間がかかるため好ましくない。現実的には、絶縁層56の厚さは、最大50μm以下、好ましくは30μm以下である。このため、絶縁層56の好ましい厚さは、2~50μmである。
 本実施形態の太陽電池モジュール10はリジッド型であるが、太陽電池サブモジュール12にフレキシブル基板を用い、例えば、厚さ50~200μmの金属基板55上に、陽極酸化により複数の細孔を有する絶縁層56(絶縁性酸化膜)が形成されたものであり、高い絶縁性が確保されている。
 本実施形態の太陽電池サブモジュール12に用いられる基板50は、Al層54を陽極酸化して絶縁層56を形成した後、特定の封孔処理をしてもよい。その製造工程には、必須の工程以外の各種の工程が含まれていてもよい。例えば、付着している圧延油を除く脱脂工程、Al層54の表面のスマットを溶解するデスマット処理工程、Al層54の表面を粗面化する粗面化処理工程、Al層54の表面に陽極酸化皮膜を形成させる陽極酸化処理工程および陽極酸化皮膜のマイクロポアを封孔する封孔処理を経て基板50とすることが好ましい。
 なお、基板50は、基材52、Al層54および絶縁層56の全てを、可撓性を有するもの、すなわち、フレキシブルなものとすることにより、基板50全体として、フレキシブルなものになる。これにより、例えば、ロールツーロール方式で、基板50の絶縁層56側に、後述するアルカリ供給層、下部電極、光吸収層、上部電極等を形成することができる。
 本発明においては、1回のロール巻出から巻取までの間に、複数の層を連続して製膜することにより太陽電池構造を作製してもよいし、ロール巻出、製膜、巻取の工程を複数回行うことによって太陽電池構造を形成してもよい。また、後述するように各製膜工程の合間に素子を分離、集積させるためのスクライブ工程をロールツーロール方式での製造に加えることで複数の太陽電池セル40を電気的に直列接続させた集積型太陽電池サブモジュールを作製することができる。
 本発明においては、基材52の一面のみにAl層54および絶縁層56を形成するのに限定はされず、基材52の両面に、Al層54および絶縁層56を形成したものを基板としてもよく、Al層が単層、すなわち、Al基板に上述の陽極酸化膜により構成される絶縁層が設けられたものであってもよい。
 なお、金属基板としては、陽極酸化により金属基板表面上に生成する金属酸化膜が絶縁体である材料を利用することができる。このため、アルミニウム(Al)以外にも、具体的には、ジルコニウム(Zr)、チタン(Ti)、マグネシウム(Mg)、銅(Cu)、ニオブ(Nb)及びタンタル(Ta)等、並びにそれらの合金を用いることができる。コストや太陽電池モジュールに要求される特性の観点から、アルミニウムが最も好ましい。
 また、耐熱性向上のために軟鋼、ステンレス鋼等の鉄鋼板上に上記金属の層を圧延または溶融メッキにより形成した所謂、クラッド材であっても良い。
 ここで、絶縁層56(基板50)と下部電極32との間、すなわち、絶縁層56の表面56aにアルカリ供給層58(光吸収層34へのアルカリ金属の供給源)が形成されている。
 アルカリ金属(特にNa)が、CIGSからなる光吸収層34に拡散されると光電変換効率が高くなることが知られている。
 このアルカリ供給層58は、光吸収層34にアルカリ金属を供給するための層であり、アルカリ金属を含む化合物の層である。本発明においては、絶縁層56と下部電極32との間に、このようなアルカリ供給層58を有することにより、光吸収層34の成膜時に、下部電極32を通してアルカリ金属が光吸収層34に拡散し、光吸収層34の変換効率を向上することができる。
 アルカリ供給層58には、限定はなく、NaO2、Na2S、Na2Se、NaCl、NaF、モリブデン酸ナトリウム塩など、アルカリ金属を含む化合物(アルカリ金属化合物を含む組成物)を主成分とするものが、各種、利用可能である。特に、SiO2(酸化ケイ素)を主成分としてNaO2(酸化ナトリウム)を含む化合物であるのが好ましい。
 なお、SiOとNaOの化合物は、耐湿性に乏しく、Na成分が分離して炭酸塩になり易いので、Caを添加した金属成分はSi-Na-Caの3成分とした酸化物がより好ましい。
 なお、本発明においては、光吸収層34へのアルカリ金属供給源は、アルカリ供給層58のみに限定はされない。
 例えば、絶縁層56が、前述のポーラス型の陽極酸化膜である場合には、アルカリ供給層58に加え、絶縁層56のポーラスの中にもアルカリ金属を含む化合物を導入して、光吸収層34へのアルカリ金属供給源としてもよい。あるいは、特にアルカリ供給層58を有さず、絶縁層56のポーラスの中のみにアルカリ金属を含む化合物を導入して、光吸収層34へのアルカリ金属供給源としてもよい。
 一例として、スパッタリングによってアルカリ供給層58を成膜した場合には、絶縁層56中にはアルカリ金属を含む化合物が存在しない、アルカリ供給層58のみを成膜することができる。また、絶縁層56はポーラス型陽極酸化膜であり、かつ、アルカリ供給層58をゾルゲル反応や珪酸Na水溶液の脱水乾燥によって成膜した場合には、アルカリ供給層58のみならず、絶縁層56のポーラス層中にもアルカリ金属を含む化合物を導入して、絶縁層56およびアルカリ供給層58の両者を、光吸収層34へのアルカリ金属供給源とすることができる。
 太陽電池サブモジュール12において、下部電極32は、隣り合う下部電極32と所定の間隙33を設けて配列されて、アルカリ供給層58の上に形成されている。また、各下部電極32の間隙33を埋めつつ、光吸収層34が下部電極32の上に形成されている。この光吸収層34の表面にバッファ層36が形成されている。
 光吸収層34とバッファ層36とは、下部電極32の上で、所定の間隙37を設けて配列される。なお、下部電極32の間隙33と、光吸収層34(バッファ層36)との間隙37は、太陽電池セル40の配列方向の異なる位置に形成される。
 さらに、光吸収層34(バッファ層36)の間隙37を埋めるように、バッファ層36の表面に上部電極38が形成されている。
 上部電極38、バッファ層36および光吸収層34は、所定の間隙39を設けて、配列される。また、この間隔39は、前記下部電極32の間隙と、光吸収層34(バッファ層36)との間隙とは異なる位置に設けられる。
 太陽電池サブモジュール12において、各太陽電池セル40は、下部電極32と上部電極38により、基板50の長手方向(矢印L方向)に、電気的に直列に接続されている。
 下部電極32は、例えば、Mo電極で構成される。光吸収層34は、光電変換機能を有する半導体化合物、例えば、CIGS膜で構成される。さらに、バッファ層36は、例えば、CdSで構成され、上部電極38は、例えば、ZnOで構成される。
 なお、太陽電池セル40は、基板50の長手方向Lと直交する幅方向に長く伸びて形成されている。このため、下部電極32等も基板50の幅方向に長く伸びている。
 図2に示すように、右端の下部電極32上に第1の導電部材42が接続されている。この第1の導電部材42は、後述する負極からの出力を外部に取り出すためのものである。
 第1の導電部材42は、例えば、細長い帯状の部材であり、基板50の幅方向に略直線状に伸びて、右端の下部電極32上に接続されている。また、図2に示すように、第1の導電部材42は、例えば、銅リボン42aがインジウム銅合金の被覆材42bで被覆されたものである。この第1の導電部材42は、例えば、超音波半田により下部電極32に接続される。あるいは第1の導電部材42は、銅箔にIn-Snを溶融メッキし、エンボス構造を有する導電テープであってもよく、この導電テープはローラーによる圧着により下部電極32に貼り合せることにより接続される。
 他方、左端の下部電極32上には、第2の導電部材44が形成される。
 第2の導電部材44は、後述する正極からの出力を外部に取り出すためのもので、第1の導電部材42と同様に細長い帯状の部材であり、基板50の幅方向に略直線状に伸びて、左端の下部電極32に接続されている。
 第2の導電部材44は、第1の導電部材42と同様の構成のものであり、例えば、銅リボン44aがインジウム銅合金の被覆材44bで被覆されたものであるが、同様に導電テープにより接続してもよい。
 なお、本実施形態の太陽電池セル40の光吸収層34は、CIGSで構成されており、公知のCIGS系の太陽電池の製造方法により製造することができる。
 太陽電池サブモジュール12では、太陽電池セル40に、上部電極38側から光が入射されると、この光が上部電極38およびバッファ層36を通過し、光吸収層34で起電力が発生し、例えば、上部電極38から下部電極32に向かう電流が発生する。なお、図2に示す矢印は、電流の向きを示すものであり、電子の移動方向は、電流の向きとは逆になる。このため、光電変換部48では、図2中、左端の下部電極32が正極(プラス極)になり、右端の下部電極32が負極(マイナス極)になる。
 本実施形態において、太陽電池サブモジュール12で発生した電力を、第1の導電部材42と第2の導電部材44から、太陽電池サブモジュール12の外部に取り出すことができる。
 なお、本実施形態において、第1の導電部材42が負極であり、第2の導電部材44が正極である。また、第1の導電部材42と第2の導電部材44とは極性が逆であってもよく、太陽電池セル40の構成、太陽電池サブモジュール12構成等に応じて、適宜変わるものである。
 また、本実施形態においては、各太陽電池セル40を、下部電極32と上部電極38により基板50の長手方向Lに直列接続されるように形成したが、これに限定されるものではない。例えば、各太陽電池セル40が、下部電極32と上部電極38により幅方向に直列接続されるように、各太陽電池セル40を形成してもよい。
 太陽電池セル40において、下部電極32および上部電極38は、いずれも光吸収層34で発生した電流を取り出すためのものである。下部電極32および上部電極38は、いずれも導電性材料からなる。光入射側の上部電極38は透光性を有する必要がある。
 下部電極(裏面電極)32は、例えば、Mo、Cr、またはW、およびこれらを組合わせたものにより構成される。この下部電極32は、単層構造でもよいし、2層構造等の積層構造でもよい。下部電極32は、Moで構成することが好ましい。
 下部電極32は、厚さが100nm以上であることが好ましく、0.45~1.0μmであることがより好ましい。
 また、下部電極32の形成方法は、特に制限されるものではなく、電子ビーム蒸着法、スパッタリング法等の気相成膜法により形成することができる。
 上部電極(透明電極)38は、例えば、Al、B、Ga、In、Sb等が添加されたZnO、ITO(インジウム錫酸化物)やSnO、および、これらを組合わせたものにより構成される。この上部電極38は、単層構造でもよいし、2層構造等の積層構造でもよい。また、上部電極38の厚さは、特に制限されるものではなく、0.3~1μmが好ましい。
 また、上部電極38の形成方法は、特に制限されるものではなく、電子ビーム蒸着法、スパッタリング法等の気相成膜法または塗布法により形成することができる。
 バッファ層36は、上部電極38の形成時の光吸収層34を保護すること、上部電極38に入射した光を光吸収層34まで透過させるために形成されている。
 このバッファ層36は、例えば、CdS、ZnS、ZnO、ZnMgO、またはZnS(O、OH)およびこれらの組合わせたものにより構成される。
 バッファ層36は、厚さが、0.03~0.1μmが好ましい。また、このバッファ層36は、例えば、CBD(ケミカルバス)法により形成される。
 光吸収層34は、上部電極38およびバッファ層36を通過して到達した光を吸収して電流が発生する層であり、光電変換機能を有する。光吸収層34は、CIGS膜で構成されており、CIGS膜はカルコパイライト結晶構造を有する半導体からなる。CIGS膜の組成は、例えば、Cu(In1-xGax)Se2(CIGS)である。
 CIGS膜の形成方法としては、1)多源蒸着法、2)セレン化法、3)スパッタ法、4)ハイブリッドスパッタ法、および5)メカノケミカルプロセス法等が知られている。
 その他のCIGSの成膜法としては、スクリーン印刷法、近接昇華法、MOCVD法、及びスプレー法(ウェット成膜法)などが挙げられる。例えば、スクリーン印刷法(ウェット成膜法)またはスプレー法(ウェット成膜法)等で、Ib族元素、IIIb族元素、及びVIb族元素を含む微粒子膜を基板上に形成し、熱分解処理(この際、VIb族元素雰囲気での熱分解処理でもよい)を実施するなどにより、所望の組成の結晶を得ることができる(特開平9-74065号公報、特開平9-74213号公報等)。
 このような成膜方法は、基板上でCIGSを形成する際にいずれも500℃以上であれば、良好な光電変換効率を示すが、ロールツーロール方式での製造を考慮すると、プロセス時間が短い多源蒸着法が好ましい。とりわけ、バイレイヤー法が好適である。
 前述のように、本発明の太陽電池サブモジュール12は、前述の基板50の上に、太陽電池セル40を直列接合して作製して、製造するが、その製造方法は、公知の各種の太陽電池と同様に行えばよい。
 以下、図2に示す太陽電池サブモジュール12の製造方法の一例を説明する。
 まず、上述のようにして形成された基板50を用意する。次に、基板50の絶縁層56の表面に、例えば、ソーダ石灰ガラスをターゲットとして用いるスパッタリングや、SiおよびNaを含むアルコキシドからを用いたゾルゲル法によって、アルカリ供給層58を成膜する。
 次に、アルカリ供給層58の表面に下部電極32となるMo膜を、例えば、成膜装置を用いて、スパッタ法により形成する。
 次に、例えばレーザースクライブ法を用いて、Mo膜の所定位置をスクライブして、基板50の幅方向に伸びた間隙33を形成する。これにより、間隙33により互いに分離された下部電極32が形成される。
 次に、下部電極32を覆い、かつ間隙33を埋めるように、光吸収層34(p型半導体層)として、CIGS膜を形成する。このCIGS膜は、前述の何れか成膜方法により、形成される。
 次に、光吸収層34(CIGS膜)上にバッファ層36となるCdS層(n型半導体層)を、例えば、CBD(ケミカルバス)法により形成する。これにより、pn接合半導体層が構成される。
 次に、間隙33とは太陽電池セル40の配列方向に異なる所定位置を、例えばレーザースクライブ法を用いてスクライブして、基板50の幅方向に伸びた、下部電極32にまで達する間隙37を形成する。
 次に、バッファ層36上に、間隙37を埋めるように、上部電極38となる、例えば、ITO層、Al、B、Ga、Sb等が添加されたZnO層を、スパッタ法や塗布法により形成する。
 次に、間隙33および37とは、太陽電池セル40の配列方向に異なる所定位置を、例えばレーザースクライブ法を用いてスクライブして、基板50の幅方向に伸びた、下部電極32にまで達する間隙39を形成する。これにより、太陽電池セル40が形成される。
 次に、基板50の長手方向Lにおける左右側の端の下部電極32上に形成された各太陽電池セル40を、例えば、レーザースクライブまたはメカニカルスクラブにより取り除いて、下部電極32を表出させる。次に、右側の端の下部電極32上に第1の導電部材42を、左側の端の下部電極32上に第2の導電部材44を、例えば、導電性テープを用いて接続する。
 これにより、図2に示すように、複数の太陽電池セル40が電気的に直列に接続された太陽電池サブモジュール12を製造することができる。
 図1(b)に示す本実施形態の太陽電池モジュール10においては、裏面保護層16をバックシート16aと支持板16cとの2層構造として、支持板16cに、例えば、金属シートを用いることにより、軽量化と高い機械的強度を両立することができる。
 また、表面保護層22を厚さが0.6~1.5mmのガラスとしているため、その重量を白板強化ガラス(3.2mm厚)の25~47%まで軽量化することができる。
 さらには、裏面保護層16を支持板16cに、例えば、金属シートを用いた場合でも、太陽電池モジュール10の重量を、強化ガラスを用いたものに対して、60~80%の重量とすることができ、太陽電池モジュール10を軽量化できる。
 太陽電池サブモジュール12としてガラス基板でなく、ロールツーロール製造方式で製造可能な金属シートの表面にアルミニウムの陽極酸化皮膜が形成された基板を用いて、光吸収層としてCIGS膜を形成することにより、軽量、かつ低コストの太陽電池モジュールを得ることができる。
 なお、本実施形態の太陽電池モジュール10の製造方法によれば、上述の優れた特性を有する太陽電池モジュール10を好適に製造することができる。
 ここで、従来の第1および第2の太陽電池モジュールの模式的断面図を図12および図13に示す。図12に示す従来の第1の太陽電池モジュール100aは、太陽電池サブモジュール110が接着充填層102によって包囲されており、この接着充填層102の上面に表面保護層104が設けられている。また、この接着充填層102の下面に裏面保護層106が設けられている。
 また、図13の従来の第2の太陽電池モジュール100bは、図12に示す太陽電池モジュール100aに比して、側端面108にシール材112が設けられている点が異なり、それ以外の構成は太陽電池モジュール100aと同じである。
 一般に太陽電池サブモジュールの表面は、ITO膜、ZnO(Al)膜、ZnO(B)膜等の透明導電膜で形成されている。これらの透明導電膜はその材質上、非常に水分に弱い。図12に示す構成の太陽電池モジュール100aの場合、太陽電池サブモジュール110を包囲している接着充填層102の側端面108は外部に晒されており、この側端面108から水分が浸入して太陽電池サブモジュール110の表面に到達し、透明導電膜の抵抗を上昇させたり、透明導電膜下の接合部に達してリーク電流を発生させたりして、太陽電池モジュールの特性を劣化させるという問題を引き起こす。
 これに対して、図13に示す構成の太陽電池モジュール100bの場合には、接着充填層102の側端面108がシール材112によって覆われているため、一見すると側端面108からの水分浸入を阻止できるように見える。しかし、高温、高湿の環境下において接着充填層102、表面保護層104、裏面保護層106等の熱膨張および熱収縮の差異によって、太陽電池モジュール100bの外周が屈曲し、シール材112の周縁部が剥離したり、または一部空洞が発生して水分がそこから内部に浸入したりするため、結果として太陽電池モジュール100bの側端面108からの水分侵入を阻止することはできない。
 これに対して、図1(b)に示す太陽電池モジュール10は、中間シール材18を裏面保護層16の周縁より内側に配置することによって、中間シール材18は表面保護層22と裏面保護層16が接合した太陽電池モジュール10の内部に位置するために外部に晒されることがなく、熱膨張および熱収縮の差異によって中間シール材18が屈曲したり、剥離したりといった問題を生じることがない。また、中間シール材18は少なくとも太陽電池サブモジュール12の裏面12bから表面保護層22まで設けられ、中間シール材18が表面保護層22に当接して第1の接着充填層20をシールするので、第1の接着充填層20側面からの水分浸入を阻止することが可能となり、少なくとも太陽電池サブモジュール12の表面12a側(上側)からの水分浸入を抑制することができる。また、水分と第1の接着充填層20を構成する接着剤の反応によって生成する腐食物質,例えば、酢酸の生成を軽減することができ、長期間にわたって安定した性能を発揮することができる太陽電池モジュール10とすることができる。
 なお、図1(b)に示す太陽電池モジュール10において、中間シール材18は太陽電池サブモジュール12の裏面12bから表面保護層22まで設けられている構成としたが、中間シール材18を裏面保護層16のバックシート16aにも当接させて第2の接着剤層14を分離するように構成してもよい。このような構成とすれば、中間シール材18によって、第2の接着剤層14からの水分侵入も抑制することが可能となり、水分と第2の接着剤層14の反応によって生成する腐食物質をより効果的に軽減することが可能となり、太陽電池サブモジュール12の透明電極の変質による抵抗向上による太陽電池サブモジュール12の変換効率低下を抑制して、長期間にわたって安定した性能を発揮することができる太陽電池モジュール10とすることができる。
 なお、本実施形態においては、裏面保護層16を3層構造としたが、図3(b)に示す太陽電池モジュール10aのように、裏面保護層16としては、少なくとも支持板16cを有するものであればよい。この場合、第2の接着充填層14に裏面保護層16となる支持板16cが直接接着される。太陽電池モジュール10aのように、裏面保護層16を支持板16cだけで構成することにより、太陽電池モジュール10aについて所定の強度を維持しつつ、軽量化およびコストの低減を図ることができる。
 また、図3(b)に示す太陽電池モジュール10aを作製する場合、図3(a)に示すように、裏面保護層16については、裏面保護層16となる支持板16cを第2の接着充填層14の裏面に配置するだけであるため、図1(a)に示す太陽電池モジュール10の作製方法に比して、容易に製造することができる。
 次に、第2の実施形態について説明する。
 図4(a)は、本発明の第2の実施形態の太陽電池モジュールの真空ラミネート前の各部材の配置状態を示す模式的断面図であり、(b)は、本発明の第2の実施形態の太陽電池モジュールを示す模式的断面図である。
 なお、本実施形態において、図1(a)、(b)に示す第1の実施形態の太陽電池モジュール10と同一構成物には同一符号を付して、その詳細な説明は省略する。
 図4(b)に示すように、本実施形態の太陽電池モジュール10bは、第1の実施形態の太陽電池モジュール10(図1(b)参照)に比して、中間シール材18が設けられていない点、太陽電池サブモジュール12、第2の接着充填層14、裏面保護層16、第1の接着充填層20および表面保護層22からなる太陽電池積層体30の周縁部βに枠部材24が設けられている点が異なり、それ以外の構成は、第1の実施形態の太陽電池モジュール10と同様の構成であるため、その詳細な説明は省略する。
 図4(b)に示すように、本実施形態の太陽電池モジュール10bにおいて、枠部材24は、太陽電池モジュール10bの機械耐性を向上させるとともに、周縁部βからの水分拡散耐性および耐湿性を向上させるためのものである。枠部材24は、周縁シール材26および溝部(凹部)を有する外枠材28とからなり、内側に周縁シール材26が設けられ、外側に外枠材28が設けられる。
 周縁シール材26は、例えば、熱可塑性を示すブチルゴム、ポリイソプレン、イソプレン、ポリオレフィン等が用いられる。これ以外に、周縁シール材26として、シリコーンシール材を用いることもできる。
 外枠材28は、箔状のもので構成しても、フレーム状のもので構成してもよい。外枠材28は、例えば、アルミニウム、アルミニウム合金、銅、銅合金を用いて形成することができる。更に耐食性向上のためアルマイト処理をした外枠材であってもよい。また、外枠材28として、例えば、金属箔を用いた場合、アルミニウム、アルミニウム合金、銅、銅合金を用いることができる。金属箔の厚さは、例えば、50~300μmである。金属箔は、粘着材が予め設けられたものであってもよい。
 なお、外枠材28には、太陽電池モジュール10bの美観、意匠性の観点から金属箔に黒色PETフィルムが接着された金属箔テープを用いてもよい。
 更に耐湿性が求められる場合、例えば、周縁シール材26にブチルゴムが用いられ、外枠材28にL字状のアルミフレームが用いられる。
 なお、本実施形態の太陽電池モジュール10bは、以下のようにして作製することができる。
 本実施形態の太陽電池モジュール10bは、第1の実施形態の太陽電池モジュール10と同じく、図4(a)に示すように、太陽電池サブモジュール12の裏面12b側に、第2の接着充填層14、裏面保護層16として、バックシート16a、第3の接着充填層16bおよび支持板16cを積層して配置する。次に、太陽電池サブモジュール12の表面12a側に、第1の接着充填層20および表面保護層22を積層して配置する。これにより、図4(a)に示すように各部材が積層して配置された状態になる。
 その後、各部材が積層して配置された状態で、例えば、昇降手段、緩衝板、および加熱手段を有する真空ラミネーターを用いて、例えば、温度130~150℃で、真空/プレス/保持のトータル15~30分の条件で真空ラミネートをする。これにより、太陽電池積層体30が形成される(図4(b)参照)。
 次に、図4(b)に示すように、枠部材24の周縁シール材26を、太陽電池積層体30の周縁部βに表面保護層22表面の一部および裏面保護層16の支持板16cの表面の一部を覆うように設ける。そして、周縁シール材26上に外枠材28の溝部(凹部)を嵌め込んで、更に接着する。このようして、本実施形態の太陽電池モジュール10bが作製される。
 本実施形態の太陽電池モジュール10bにおいても、第1の実施形態の太陽電池モジュール10と同様の裏面保護層16の構成であるため、第1の実施形態の太陽電池モジュール10と同様の効果を得ることができる。さらには、機械的耐性、ならびに水分拡散耐性および耐湿性を向上させることができる。
 なお、本実施形態においても、裏面保護層16を3層構造としたが、図5(b)に示す太陽電池モジュール10cのように、裏面保護層16としては、少なくとも支持板16cを有するものであればよい。この場合、第2の接着充填層14に裏面保護層16となる支持板16cが直接接着される。太陽電池モジュール10cのように、裏面保護層16を支持板16cだけで構成することにより、太陽電池モジュール10cについて所定の強度を維持しつつ、軽量化およびコストの低減を図ることができる。
 また、図5(b)に示す太陽電池モジュール10cを作製する場合、図5(a)に示すように、裏面保護層16については、裏面保護層16となる支持板16cを第2の接着充填層14の裏面に配置するだけであるため、図4(a)に示す太陽電池モジュール10bの作製造方法に比して、容易に製造することができる。
 次に、第3の実施形態について説明する。
 図6(a)は、本発明の第3の実施形態の太陽電池モジュールの真空ラミネート前の各部材の配置状態を示す模式的断面図であり、(b)は、本発明の第3の実施形態の太陽電池モジュールを示す模式的断面図である。
 なお、本実施形態において、図1(a)、(b)に示す第1の実施形態の太陽電池モジュール10と同一構成物には同一符号を付して、その詳細な説明は省略する。
 図6(b)に示すように、本実施形態の太陽電池モジュール10dは、第1の実施形態の太陽電池モジュール10(図1(b)参照)に比して、太陽電池モジュール10(太陽電池積層体30a)の周縁部βに枠部材24が設けられている点が異なり、それ以外の構成は、第1の実施形態の太陽電池モジュール10と同様の構成であるため、その詳細な説明は省略する。
 本実施形態の太陽電池モジュール10dにおいて、枠部材24は機械耐性を向上させるとともに、周縁部βからの水分拡散耐性および耐湿性を向上させるためのものである。
 なお、枠部材24は第2の実施形態の太陽電池モジュール10bと同様の構成であるため、その詳細な説明は省略する。
 本実施形態の太陽電池モジュール10dは、以下のようにして作製することができる。まず、第1の実施形態と同様に、図6(b)に示すように、太陽電池サブモジュール12の裏面12b側に、第2の接着充填層14、裏面保護層16として、バックシート16a、第3の接着充填層16bおよび支持板16cを積層して配置する。次に、太陽電池サブモジュール12の表面12a側に、第1の接着充填層20、第1の接着充填層20の周囲に中間シール材18を周縁部βから距離m、例えば、5~30mm内側の位置に配置し、さらに表面保護層22を第1の接着充填層20および中間シール材18に積層して配置する。これにより、図6(a)に示すように各部材が積層して配置された状態になる。
 次に、各部材が積層して配置された状態で、例えば、昇降手段、緩衝板、および加熱手段を有する真空ラミネーターを用いて、例えば、温度130~150℃で、真空/プレス/保持のトータル15~30分の条件で真空ラミネートする。これにより、太陽電池積層体30aが形成される(図6(b)参照)。
 次に、図6(b)に示すように、枠部材24の周縁シール材26を、太陽電池積層体30aの周縁部βに表面保護層22表面の一部および裏面保護層16の表面の一部を覆うように設ける。そして、周縁シール材26上に外枠材28の溝部(凹部)を嵌め込んで、更に接着する。このようして、本実施形態の太陽電池モジュール10dが作製される。
 本実施形態の太陽電池モジュール10dにおいては、第1の実施形態の太陽電池モジュール10と同様の効果を得ることができ、さらに、機械的耐性、ならびに水分拡散耐性および耐湿性をより向上させることができる。
 なお、本実施形態においても、裏面保護層16を3層構造としたが、図7(b)に示す太陽電池モジュール10eのように、裏面保護層16としては、少なくとも支持板16cを有するものであればよい。この場合、第2の接着充填層14に裏面保護層16となる支持板16cが直接接着される。太陽電池モジュール10eのように、裏面保護層16を支持板16cだけで構成することにより、太陽電池モジュール10aについて所定の強度を維持しつつ、軽量化およびコストの低減を図ることができる。
 また、図7(b)に示す太陽電池モジュール10eを作製する場合、図7(a)に示すように、裏面保護層16については、裏面保護層16となる支持板16cを第2の接着充填層14の裏面に配置するだけであるため、図6(a)に示す太陽電池モジュール10dの作製方法に比して、容易に製造することができる。
 次に、第4の実施形態について説明する。
 図8(a)は、本発明の第4の実施形態の太陽電池モジュールの真空ラミネート前の各部材の配置状態を示す模式的断面図であり、(b)は、本発明の第4の実施形態の太陽電池モジュールを示す模式的断面図である。
 なお、本実施形態において、図1(a)、(b)に示す第1の実施形態の太陽電池モジュール10および図4(a)、(b)に示す第2の実施形態の太陽電池モジュール10bと同一構成物には同一符号を付して、その詳細な説明は省略する。
 図8(b)に示すように、太陽電池モジュール60においては、太陽電池サブモジュール12の表面12aに、太陽電池サブモジュール12を覆うようにして第1の接着充填層20が設けられている。この第1の接着充填層20上に表面保護層22が設けられている。このように、第1の接着充填層20を介して表面保護層22が設けられている。
 また、太陽電池サブモジュール12の裏面12bに、太陽電池サブモジュール12を覆うようにして第2の接着充填層14が設けられている。この第2の接着充填層14下にバックシート(裏面保護層)17が設けられている。このように、第2の接着充填層14を介してバックシート(裏面保護層)17が設けられている。
 さらに、バックシート(裏面保護層)17の表面17bに金網状支持体62が設けられている。
 太陽電池モジュール60においては、第2の接着充填層14、バックシート17、金網状支持体62、第1の接着充填層20および表面保護層22を積層してなる太陽電池積層体30の周縁部βに、枠部材24が設けられている。
 第1の接着充填層20および表面保護層22は、第1の実施形態と同じ構成であり、その詳細な説明を省略する。
 第2の接着充填層14は、第1の接着充填層20とともに太陽電池サブモジュール12を封止するものであり、かつバックシート(裏面保護層)17を接着するためのものである。第2の接着充填層14も、第1の実施形態と同じ構成であり、その詳細な説明を省略する。
 本実施形態において、バックシート(裏面保護層)17と太陽電池サブモジュール12間の第2の接着充填層14に関して、太陽電池モジュール60全体の機械的強度としての曲げ剛性率を上げるにはアイオノマー樹脂を用いることが望ましい。しかしながら、第1の接着充填層20にアイオノマー樹脂を用い、太陽電池サブモジュール12に金属基板を使用する等によりモジュール積層体の機械的強度が満たされている場合、すなわち、曲げ応力が100MPa以上である場合には、第2の接着充填層14に、通常のEVA(エチレンビニルアセテート)樹脂を用いることもできる。
 バックシート17は、太陽電池モジュール60(太陽電池サブモジュール12)を裏側から保護するものである。
 バックシート17には、例えば、表面保護層22と同様に青板ガラスまたは白板ガラスを用いることができ、厚さについても表面保護層22と同様である。
 なお、バックシート17には、第1の実施形態のバックシート16aと同様に、樹脂フィルムを用いることもでき、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PVF(ポリフッ化ビニル)等の樹脂フィルムでアルミニウム箔を挟んだ構造のものを用いることができる。この樹脂フィルムの構成は、特に限定されるものではない。
 金網状支持体62は、太陽電池モジュール60を軽量化しつつ、その強度を所定の強度に保持するためのものである。この金網状支持体62は、金網または金網状シートからなるものである。
 本実施形態の太陽電池モジュール60では、金網状支持体62は、例えば、図9(a)に示すように、井形状の網で構成される。金網状支持体62は、これに限定されるものではない。例えば、図9(b)~(d)に示す金網62b~62dに示す丸型金網、菱形金網、亀甲型金網を用いることもできる。また、これら以外のものであってもよい。
 また、金網状支持体62は、平織網、溶接網、クリンプ網等の各種の網の織り方、製法、種類の金網を用いることができる。金網状支持体62は、素材として、ステンレス線、亜鉛メッキ線、真鍮線、銅線、丹銅線、アルミニウム線、アルミニウム合金線、チタン線、ニッケル線、ニクロム線、ハステロイ線、インコネル線等を用いることができる。金網状支持体62において、線径は、例えば、0.1~5.0mmであり、0.5~2mmが好適である。また、ピッチまたは開き目は、例えば、5~200mmであり、10~100mmが好適である。なお、金網状支持体62において、網の形状及び製法、種類はこれらに限定されるものではない。
 また、金網状支持体62は、網以外にも、パンチングメタル、エキスパンドメタルを用いることができる。この場合、例えば、上述の網と同じ形状及び素材を用いて形成されたものを用いることができる。
 枠部材24は、太陽電池モジュール60の機械耐性を向上させるとともに、周縁部βからの水分拡散耐性および耐湿性を向上させるためのものである。枠部材24は、周縁シール材26および溝部(凹部)を有する外枠材28とからなり、内側に周縁シール材26が設けられ、外側に外枠材28が設けられる。
 なお、枠部材24については、枠部材24を構成する周縁シール材26および溝部(凹部)を有する外枠材28の構成および用いられる材料が、第2の実施形態の枠材24(図4(b)参照)と同じものであるため、その詳細な説明は省略する。
 本実施形態の太陽電池モジュール60は、その曲げ応力が100MPa以上である。曲げ応力が100MPa以上であれば、厚さが3.2mmの強化ガラスを用いた従来の太陽電池モジュールと同等以上の強度となる。
 なお、太陽電池モジュール60の曲げ応力は、例えば、太陽電池モジュール60を2点支持し、中心に応力印加する方式の曲げ試験機により降伏応力を測定することにより得られるものである。
 本実施形態の太陽電池モジュール60は、以下のようにして作製することができる。
 まず、図8(a)に示すように、太陽電池サブモジュール12の裏面12b側に、第2の接着充填層14、バックシート17を積層して配置する。次に、太陽電池サブモジュール12の表面12a側に、第1の接着充填層20および表面保護層22を積層して配置する。これにより、図8(a)に示すように各部材が積層して配置された状態になる。
 その後、各部材が積層して配置された状態で、例えば、昇降手段、緩衝板、および加熱手段を有する真空ラミネーターを用いて、例えば、温度130~150℃で、真空/プレス/保持のトータル15~30分の条件で真空ラミネートし、図8(b)に示す太陽電池積層体30を得る。
 次に、太陽電池積層体30のバックシート17の表面17bに、図8(b)に示すように金網状支持体62を設け、その後、枠部材24の周縁シール材26を、太陽電池積層体30の周縁部βならびに表面保護層22表面の一部および金網状支持体62の表面の一部を覆うように設ける。
 そして、周縁シール材26上に外枠材28の溝部(凹部)を嵌め込んで、更に接着する。これにより、金網状支持体62が、外枠材28の溝部に周縁シール材26と共に挟み込まれ、図8(b)に示す本実施形態の太陽電池モジュール60が作製される。
 図8(b)に示す太陽電池モジュール60においても、太陽電池サブモジュール12は、上述の図2に示す光電変換素子である太陽電池セル40の集積構造体のことである。このため、その詳細な説明は省略する。なお、太陽電池セル40が1つのディスクリート型のものも太陽電池サブモジュールに含まれる。
 ここで、従来の第3の太陽電池モジュールの模式的断面図を図14に示す。図14に示す従来の第3の太陽電池モジュール100cは、図8に示す本実施形態の太陽電池モジュール60に比して、金網状支持体62が設けられていない点、および表面保護層120が厚い点が異なり、それ以外の構成は図8に示す本実施形態の太陽電池モジュール60と同じである。
 図14に示す従来の第3の太陽電池モジュール100cにおいて、表面保護層120を構成するガラスは、機械的強度を保持させるため3~5mm厚の強化ガラスが用いられる。
 従来の第3の太陽電池モジュール100cでは、太陽電池サブモジュール12下の裏面保護層として、PVF/Al/PVFの積層体、またはPET等からなるバックシート17を設けている。この場合、従来の第3の太陽電池モジュール100cにおいては、強化ガラスが重く、軽量化が困難であった。この場合、第1の接着充填層20および第2の接着充填層14を高剛性の封止材とし、厚さが3mm以下の薄いガラスを組み合わせるか、または裏面保護層に金属等の強度の高いシートを用いることで、軽量かつ機械的強度が高いモジュール構造が可能である。しかしながら、金属シートの材料によってはコストが嵩むという欠点がある。なお、金属シートは本発明の金網状支持体よりも重いことは言うまでもない。
 これに対して、図8(b)に示す本実施形態の太陽電池モジュール60は、金網または金網状シートのような金網状支持体62をバックシート17の下に配置することにより、軽量化と高い機械的強度を両立することができる。しかも、金網状支持体62を用いることにより、金属シートを用いる場合に比して、部材コストも抑えることができる。
 また、表面保護層22を厚さが0.6~2.0mmのガラスとしているため、その重量を白板強化ガラス(3.2mm厚)の25~47%まで軽量化することができる。
 さらには、バックシート17の下に金網状支持体62を設けることにより、太陽電池モジュール60の重量を、強化ガラスを用いたものに対して、40~60%の重量とすることができ、太陽電池モジュール60を大幅に軽量化できる。
 枠部材24を設けることにより、白板強化ガラス並みあるいはそれ以上の耐風圧性、耐降雹性等の機械的強度、衝撃強度とすることができる。水分、水蒸気が太陽電池モジュール60の端面(周縁部)から拡散してきて性能劣化、配線腐食等の不良を発生させるが、端面(周縁部)に対しては周縁シール材26により確実に抑制することができる。仮に、裏面から水分が浸入しても、周縁シール材26により太陽電池セル等の透明電極に達することを防止できる。
 このように、太陽電池モジュール60への水分の浸入を防止して、長期間にわたって、安定した性能を発揮し、安定して用いることができ、かつ軽量で、しかもコストも低い太陽電池モジュール60を実現できる。
 次に、第5の実施形態について説明する。
 図10(a)は、本発明の第5の実施形態の太陽電池モジュールの真空ラミネート前の各部材の配置状態を示す模式的断面図であり、(b)は、本発明の第5の実施形態の太陽電池モジュールを示す模式的断面図である。
 なお、本実施形態において、図8(a)、(b)に示す第4の実施形態の太陽電池モジュール60と同一構成物には同一符号を付して、その詳細な説明は省略する。
 図10(b)に示すように、本実施形態の太陽電池モジュール60aは、第4の実施形態の太陽電池モジュール60(図8(b)参照)に比して、金網状支持体62を設ける位置が異なり、それ以外の構成は、第4の実施形態の太陽電池モジュール60と同様の構成であるため、その詳細な説明は省略する。
 図10(b)に示すように、本実施形態の太陽電池モジュール60aにおいては、金網状支持体62を設ける位置が、外枠材28の、バックシート17側の下面28bであり、外枠材28から臨むバックシート17の表面17bを覆うようにして設けられている。
 金網状支持体62は、外枠材28の下面28bに、例えば、スポット溶接により、その端部が固定されて、バックシート17側に設けられる。なお、本実施形態においては、金網状支持体62は、第4の実施形態と同様のものを用いることができる。
 本実施形態のように、外枠材28の下面28bに金網状支持体62を固定する場合、バックシート17の表面17bと金網状支持体62の間には隙間が生じる。この隙間に、表面保護層22であるガラスまたはバックシート(裏面保護層)17が上から応力を受けた場合、凹形状に突出する可能性がある。
 ここで、表面保護層のガラスが1.1mm厚の青板ガラスの場合、図11に示すように太陽電池モジュール60aが湾曲して、一部が金網状支持体62に接触した時に曲率半径Rを40cm以上とすることが、表面保護層を構成するガラスの降伏応力よりも低いか、または降伏時変位δ以下に保つためには必要である。例えば、1m幅の太陽電池モジュール60aでは、この隙間の間隔は3cm以下である。
 すなわち、図11において、曲率半径をR(cm)、太陽電池モジュール60aの幅をW(cm)、降伏時の変位をδ(cm)とするとき、曲率半径R、表面保護層を構成するガラスの降伏時変位δ、太陽電池モジュール60aの幅Wの関係は、δ/W<0.03、R>40cmで表される。
 なお、本実施形態の太陽電池モジュール60aは、以下のようにして作製することができる。
 本実施形態の太陽電池モジュール60aは、第4の実施形態の太陽電池モジュール60と同じく、図10(a)に示すように、太陽電池サブモジュール12の裏面12b側に、第2の接着充填層14、バックシート17を積層して配置する。次に、太陽電池サブモジュール12の表面12a側に、第1の接着充填層20および表面保護層22を積層して配置する。これにより、図10(a)に示すように各部材が積層して配置された状態になる。
 その後、各部材が積層して配置された状態で、例えば、昇降手段、緩衝板、および加熱手段を有する真空ラミネーターを用いて、例えば、温度130~150℃で、真空/プレス/保持のトータル15~30分の条件で真空ラミネートをする。これにより、太陽電池積層体30が形成される(図10(b)参照)。
 次に、図10(b)に示すように、枠部材24の周縁シール材26を、太陽電池積層体30の周縁部βに表面保護層22表面の一部およびバックシート17の表面の一部を覆うように設ける。そして、周縁シール材26上に外枠材28の溝部(凹部)を嵌め込んで、更に接着する。
 次に、金網状支持体62を、外枠材28から臨むバックシート17の表面17bを覆うようにして配置し、金網状支持体62の端部を、外枠材28の下面28bに、例えば、スポット溶接により固定する。このようして、本実施形態の太陽電池モジュール60が作製される。
 本実施形態の太陽電池モジュール60aにおいても、第4の実施形態の太陽電池モジュール60と同様に、金網状支持体62をバックシート17側に設けているため、第4の実施形態の太陽電池モジュール60と同様の効果を得ることができる。
 本発明は、基本的に以上のように構成されるものである。以上、本発明の太陽電池モジュールおよびその製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。
(第1の実施例)
 以下、本発明の太陽電池モジュールについて、より具体的に説明する。
 本実施例においては、軽量かつ高機械強度の太陽電池モジュール構造の検討のため、下記表1に示す実験例1~10の試験構造体を作製した。そして、実験例1~10の試験構造体の性能(降伏応力、曲げ応力、降伏時変位)を評価するために、曲げ試験機(島津製作所製AG-10FD)を用いて降伏応力、降伏時変位の測定を行った。
 本実施例において、実験例1~10の試験構造体のサイズは15cm×7.5cmとした。曲げ試験は、支点間隔を10cmで実験例1~7の試験構造体を支持し、支点間隔の中心を上より押し、その押し速度を1mm/分で行った。
 なお、本実施例において、曲げ応力は、試験構造体の大きさ10×7.5=75cmに加えた力を応力(N/m)に換算したものであり、曲げ応力は下記式(1)により求めることができる。
 曲げ応力σ=3FL/2bh・・・(1)
 σ:曲げ応力(MPa) F:降伏応力(N) L:支点間距離(mm) b:幅(mm)、h:厚さ(mm)
 下記表1に示す試験構造体の構造において、実施例1の白板強化GLは、白板強化ガラス単体であり、その総厚は3.2mmである。
 GL1.1は、表面保護層が青板ガラスであり、厚さが1.1mmであることを示す。HM0.8は、接着充填層の封止材が三井デユポンポリケミカル社のハイミラン(登録商標)-ES(HM)であり、厚さが0.8mmであることを示す。
 EVA0.8は、接着充填層の封止材が三井化学ファブロ株式会社製ソーラーエバであり、厚さが0.8mmであることを示す。
 EVA0.4は、接着充填層の封止材が三井化学ファブロ株式会社製ソーラーエバであり、厚さが0.4mmであることを示す。
 PV基板0.08は、太陽電池サブモジュールの基板に相当するものである。このPV基板0.08は、AlとSUSのクラッド材であり、厚さが0.08mmであることを示す。
 バックシート0.3は、リンテック株式会社製のリプレアTFB MDであり、厚さが0.3mmであることを示す。
 Al板0.4は、裏面保護層16の支持板16cに相当するものである。このAl板0.4は、1000番のアルミニウム板であり、その厚さが0.4mmであることを示す。
 Al板1.0は、裏面保護層16の支持板16cに相当するものである。このAl板1.0は、1000番のアルミニウム板であり、その厚さが1.0mmであることを示す。
 ガルバリウム鋼板0.4は、裏面保護層16の支持板16cに相当するものであり、その厚さが0.4mmであることを示す。
 また、下記表1に示す実験例2~10の試験構造体の欄において、末尾の数値は総厚を示す。なお、本実施例において、降伏とは、表面保護層のガラスが割れたこととした。
 本実施例では、実験例2~10の試験構造体については、表1に示す各構成のものを積層した後、真空ラミネーターを用いて150℃の温度で、20分プレスして作製した。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、白板強化ガラス(3.2mm厚)の実験例1の降伏応力0.67kNに対して、封止材が2層ともにEVAの実験例7は、降伏応力が0.244kNである。しかし、封止材の少なくとも1層がHMの実験例2~6、および実施例8~10の場合、降伏応力が0.399kN以上である。
 また、裏面保護層を構成するアルミニウム板は、0.4mm以上で0.6kN以上の降伏応力を示した。また、裏面保護層をガルバリウム鋼板とした実験例5は、降伏応力が1.43kNであり、更に裏面保護層にバックシートともに3層構造としてガルバリウム鋼板を設けた実験例10は、降伏応力が2.28kNと実験例1~10の中で最高値である。これらは、いずれも強化ガラスの2倍以上である。
 なお、裏面保護層をバックシートのみで構成した実験例8は、実験例7よりは降伏応力が高いものの、これは、封止材の1層がHMであるためであると考えられる。実験例8に対してバックシートをガルバリウム鋼板に置き換えた構成となっている実験例6と比べると降伏応力、および曲げ応力のいずれも低い値を示し、裏面保護層をバックシートのみで構成した実験例8は、曲げ応力が100MPaに達していない。
 以上のことから、白板強化ガラス並みの強度とするためには、接着充填層を少なくとも1層以上、高剛性のアイオノマー樹脂からなる封止材とすること、および裏面保護層をAl板またはガルバリウム鋼板等の金属シートで構成することが有効であり、少なくとも曲げ応力は100MPa以上必要である。これは、太陽光発電システムに対する耐風荷重、耐積雪、耐地震荷重条件を十分に満足する曲げ応力値である。
(第2の実施例)
 本実施例においては、軽量かつ高機械強度の太陽電池モジュール構造の検討のため、下記表2に示す実験例11~17の試験構造体を、全て同じ大きさ(15cm×7.5cm)で作製した。そして、実験例11~17の試験構造体の各重量を測定し、実験例11を基準として、各実験例11~17の重量比を求めた。この結果を下記表2に示す。
 ここで、実験例12~17は、上述の実施例1の実験例2~7と同一試料である。このため、その詳細な説明は省略する。
 実験例11は、厚さが3.2mmの白板強化GLと、厚さが0.8mmのEVAと、厚さが0.08mmのPV基板と、厚さが0.8mmのEVAと、厚さが1.1mmの青板ガラスとを積層して、真空ラミネーターを用いて150℃の温度で、20分プレスして作製したものである。実験例11では、裏面保護層が青板ガラスである。なお、EVAには、三井化学ファブロ株式会社製ソーラーエバを用いた。
 なお、下記表2に示す実験例11~17の試験構造体の欄において、末尾の数値は総厚を示す。
Figure JPOXMLDOC01-appb-T000002
 上記表2に示すように、裏面保護層をAl板で構成した場合、重量比は0.51~0.65である。また、裏面保護層をガルバリウム鋼板で構成した場合、重量比は0.68~0.71である。このように、裏面保護層をAl板またはガルバリウム鋼板で構成した場合、大幅な軽量化が可能である。
 上記第1の実施例1と本実施例(第2の実施例)の結果により、裏面保護層をAl板またはガルバリウム鋼板等の金属シートで構成することが有効であり、これにより、軽量かつ機械的強度が高い太陽電池モジュールが得られることが可能になった。
(第3の実施例)
 本実施例においては、以下に示す実施例1~4、比較例1の太陽電池モジュールを作製し、その機械的強度を評価した。
 (実施例1)
 サブストレート構造を有する、CIGS膜を光吸収層に用いた太陽電池サブモジュール12を備える図1(b)に示す太陽電池モジュール10を作製した。
 第1の接着充填層20、第2の接着充填層14には、アイオノマー樹脂である三井・デユポンポリケミカル社のハイミラン(登録商標)-ES S7042を用いた。第1の接着充填層20、第2の接着充填層14の厚さは800μmとした。
 表面保護層22には、厚さが1.1mmの青板ガラスを用いた。
 さらに、裏面保護層16には、バックシート16aとして、リンテック株式会社製のリプレアTFB MDを用いた。さらに、支持板16cとして、厚さが0.4mmのガルバリウム鋼板を用い、これを第3の接着充填層16bとして、EVA(三井化学ファブロ株式会社製ソーラーエバ)を用いてバックシート16aと接着した。
 また、中間シール材18としては、横浜ゴム社製のホットメルトブチルゴム(M-155)のシート材を用い、口状に切り抜き、中間シール材18の幅5mmとし、中間シール材18の外周と太陽電池モジュール10周縁部との距離を5mmとした。
 実施例1の作製に際して、このような材料を積層して配置した状態で、昇降手段、緩衝板、および加熱手段を有する真空ラミネーターを用いて、150℃の温度で真空/プレス/保持のトータル20分のラミネート条件でラミネートした。
 (実施例2)
 図4(b)に示す太陽電池モジュール10bを作製した。なお、枠部材24以外は、実施例1と同じものを用いた。
 枠部材24には、周縁シール材26としてブチルゴムを用い、外枠材28にAl箔テープを用いた。なお、ブチルゴムには、横浜ゴムM-155Pを用いた。
 実施例2の作製に際して、太陽電池サブモジュール12の裏面12b側に、第2の接着充填層14、裏面保護層16(バックシート16a、第3の接着充填層16bおよびガルバリウム鋼板(支持板16c))を配置し、太陽電池サブモジュール12の表面12a側に、第1の接着充填層20および表面保護層22を配置した後、真空ラミネーターを用いて、150℃の温度で真空/プレス/保持のトータル20分のラミネート条件でラミネートし、太陽電池積層体30を得た。
 その後、ブチルゴムを150~190℃で溶融させて、ラミネートしたものの4辺周縁部、ならびに表面保護層の表面および裏面保護層の表面に周縁から5~10mm幅で溶融したブチルゴムを塗布し、冷却硬化後にAL箔テープをブチルゴムを包囲するように貼り付けて枠部材24を設け、太陽電池モジュール10bを作製した。
 (実施例3)
 図4(b)に示す太陽電池モジュール10bを作製した。なお、表面保護層22のガラス、枠部材24以外は、実施例1と同じものを用いた。表面保護層22には、1.1mm厚の白板ガラス、枠部材24には、周縁シール材26としてシリコーンシール材を用いた。シリコーンシール材には、信越化学工業(株)のRTVシール材KE-45を用いた。また、外枠材28にL字状のアルミフレームを用いた。
 実施例3の作製に際して、実施例2と同様にして、太陽電池積層体30を作製し、その後、L字状のアルミフレーム溝に予めシリコーンシール材を塗布して埋め込んでおき、ラミネートしたものの4辺をアルミフレームの溝にセットしてアルミフレームをネジ止めして固定した。その後、室温で7日放置してシリコーンシール材を硬化させて枠部材24を設け、太陽電池モジュール10bを作製した。
 (実施例4)
 図6(b)に示す太陽電池モジュール10dを作製した。なお、枠部材24以外は、実施例1と同じものを用いた。
 枠部材24において、周縁シール材26にブチルゴムを用い、外枠材28にL字状のアルミフレームを用いた。なお、ブチルゴムには、横浜ゴムM-155Pを用いた。
 実施例4の作製に際して、実施例1に示すように真空ラミネートして太陽電池積層体30a(図6(b)参照)を作製した。その後、ブチルゴムを150~190℃で溶融させ、L字状のアルミフレーム溝に塗布して埋め込んでおき、太陽電池積層体30aの4辺周縁部をアルミフレーム溝に挟み込み、恒温槽で90℃で30分ベーキングして接着させ、アルミフレームをネジ止めして固定し枠部材24を取り付け、太陽電池モジュール10dを作製した。
 (比較例1)
 比較例1においては、表面保護層22に厚さが1.0mmの青板ガラスを用い、第1の接着充填層20、および第2の接着充填層14を厚さ400μmとし、三井化学ファブロ株式会社製ソーラーエバで構成した以外は、実施例1と同じものを用い、実施例1と同じ製造条件で太陽電池モジュールを作製した。
 作製した実施例1~4および比較例1の5種の太陽電池モジュールについて、降雹試験、ダンプヒートテスト(温度85℃、湿度85RH%の環境に1000時間放置)後の変換効率を測定した。その結果を下記表3に示す。ここで、降雹試験は薄膜太陽電池の国際標準IEC 1646-10.17の評価基準に基づいて実施した。また、降雹試験とダンプヒートテストは連続して行った。
 ダンプヒートテストにおいては、太陽電池モジュールの変換効率が初期値の90%以上を保持したものを◎と評価し、太陽電池モジュールの変換効率が初期値の80%以上90%未満であったものを○と評価し、太陽電池モジュールの変換効率が初期値の60%以上80%未満であったものを△と評価し、太陽電池モジュールの変換効率が初期値の60未満であったものを×と評価した。
Figure JPOXMLDOC01-appb-T000003
 上記表3に示すように、太陽電池モジュールの降雹試験によって、比較例1は、表面保護層、第1の接着充填層、第2の接着充填層および裏面保護層からなる太陽電池モジュール構造の剛性強度、および衝撃強度が低いため、表面保護層のガラスに割れ、クラックが生じた。CIGS太陽電池セル自体、または金属基板の絶縁層である陽極酸化膜にもクラックが発生し、金属基板への電流リークが生じたため変換効率は大幅に低下した。
 更に、比較例1においては、降雹試験後のダンプヒートテストにより、水分が表面保護層のガラスの割れ部より浸入し、太陽電池サブモジュールの透明電極が変質して直列抵抗が高くなり、太陽電池モジュールの変換効率が更に低下したものと考えられる。
 これに対し、実施例1~4のように、少なくとも表面保護層の青板ガラス下の第1の接着充填層をアイオノマー樹脂とすることにより、太陽電池モジュールの機械的強度が向上して、降雹試験において、表面保護層のガラスの割れ、クラックが発生しない。更に、実施例1、実施例4のように、シール材を周縁より内側に配した中間シール材を設けた構造、または実施例2、3のように周縁シール材を設けることにより、機械的強度を上げることができる。これにより、太陽電池サブモジュールの周縁部の剥離、空洞発生を抑制するとともに周縁部からの水分拡散を抑制することができ、ダンプヒートテストでの太陽電池モジュールの変換効率の劣化を抑えることができた。
 以上の結果より、本発明の効果は明らかである。
(第4の実施例)
 本実施例においては、軽量かつ高機械強度の太陽電池モジュール構造の検討のため、下記表4に示す実験例20~23の試験構造体を作製した。そして、実験例20~23の試験構造体の性能(降伏応力、曲げ応力、降伏時変位)を評価するために、曲げ試験機(島津製作所製AG-10FD)を用いて降伏応力、降伏時変位の測定を行った。
 本実施例において、実験例20~23の試験構造体のサイズは15cm×7.5cmとした。曲げ試験は、支点間隔を10cmで実験例20~23の試験構造体を支持し、支点間隔の中心を上より押し、その押し速度を1mm/分で行った。
 なお、本実施例において、曲げ応力は、試験構造体の大きさ10×7.5=75cmに加えた力を応力(N/m)に換算したものであり、曲げ応力は上述の第1の実施例で示した曲げ応力の式(1)により求めることができる。
 下記表4に示す試験構造体の構造において、実験例20の白板強化GLは、白板強化ガラス単体であり、その総厚は3.2mmである。
 GL1.1は、表面保護層が青板ガラスであり、厚さが1.1mmであることを示す。HM0.8は、接着充填層の封止材が三井デユポンポリケミカル社のハイミラン(登録商標)-ES(HM)であり、厚さが0.8mmであることを示す。
 PV基板0.08は、太陽電池サブモジュールの基板に相当するものである。このPV基板0.08は、AlとSUSのクラッド材であり、厚さが0.08mmであることを示す。
 なお、バックシートには、リンテック株式会社製のリプレアTFB MD(製品名)バックシートを用いた。
 金網Aは、金網状支持体62に相当するものである。この金網Aは、SUS430製の平織金網であり、線径が1mm、開き目が10mmであるものを示す。金網Bは、金網状支持体62に相当するものである。この金網Bは、SUS430製の菱形金網であり、線形が1.5mm、開き目が5mmであるものを示す。
 また、下記表4に示す実験例21~23の試験構造体の欄において、末尾の数値は総厚を示す。
 本実施例では、実験例21の試験構造体については、表4に示す各構成のものを積層した後、真空ラミネーターを用いて150℃の温度で、20分プレスして作製した。
 実験例22、23の試験構造体については、表4に示す各構成のものを積層した後、真空ラミネーターを用いて150℃の温度で、20分プレスした後、金網A、または金網Bをバックシート上に設けて作製した。
Figure JPOXMLDOC01-appb-T000004
 上記表4に示すように、実験例20の白板強化ガラス(3.2mm厚)の降伏応力0.67kNに対して、実験例21のバックシートのみのものでは降伏応力が0.42kNと強度は強化ガラスに及ばない。なお、本実施例において、降伏とは、表面保護層のガラスが割れたこととした。
 実験例22、23のように金網A、金網Bを有するものでは、白板強化ガラスの降伏応力以上の強度を得ることができた。
 以上のことから、白板強化ガラス並みの強度とするためには、金網状支持体を裏面保護層側に設けることが有効であり、少なくとも曲げ応力は100MPa以上必要である。これは、太陽光発電システムに対する耐風荷重、耐積雪、耐地震荷重条件を十分に満足する曲げ応力値である。
(第5の実施例)
 本実施例においては、軽量かつ高機械強度の太陽電池モジュール構造の検討のため、下記表5に示す実験例30~33の試験構造体を、全て同じ大きさ(15cm×7.5cm)で作製した。そして、実験例30~33の試験構造体の各重量を測定し、実験例30を基準として、各実験例30~33の重量比を求めた。この結果を下記表5に示す。
 ここで、実験例31~33は、上述の第4の実施例の実験例21~23と同一試料である。このため、その詳細な説明は省略する。
 実験例30は、厚さが3.2mmの白板強化GLと、厚さが0.8mmのEVAと、厚さが0.08mmのPV基板と、厚さが0.8mmのEVAと、厚さが1.1mmの青板ガラスとを積層して、真空ラミネーターを用いて150℃の温度で、20分プレスして作製したものである。実験例30では、裏面保護層が青板ガラスである。なお、EVAには、三井化学ファブロ株式会社製ソーラーエバを用いた。
 なお、下記表5に示す実験例30~33の試験構造体の欄において、末尾の数値は総厚を示す。
Figure JPOXMLDOC01-appb-T000005
 上記表5に示すように、裏面保護層に更に金網Aを設けた場合、重量比は0.42であり、裏面保護層に更に金網Bを設けた場合、重量比は0.45であり、大幅な軽量化が可能である。
 上記第4の実施例と本実施例(第5の実施例)の結果により、金網状支持体を裏面保護層側に設けることが有効であり、これにより、軽量かつ機械的強度が高い太陽電池モジュールが得られることが可能になった。
(第6の実施例)
 本実施例においては、以下に示す実施例10、11、比較例10の太陽電池モジュールを作製し、その機械的強度を評価した。
 (実施例10)
 サブストレート構造を有する、CIGS膜を光吸収層に用いた太陽電池サブモジュール12を備える図8(b)に示す30×30cmサイズの太陽電池モジュール60を作製した。
 第1の接着充填層20、第2の接着充填層14には、アイオノマー樹脂である三井・デユポンポリケミカル社のハイミラン(登録商標)-ES S7042を用いた。第1の接着充填層20、第2の接着充填層14の厚さは800μmとした。
 表面保護層22には、厚さが1.1mmの白板ガラスを用いた。
 さらに、バックシート17には、リンテック株式会社製のリプレアTFB MDを用いた。
 枠部材24には、周縁シール材26としてシリコーンシール材を用いた。シリコーンシール材には、信越化学工業(株)のRTVシール材KE-45を用いた。また、外枠材28にL字状のアルミフレームを用いた。
 実施例10の作製に際して、このような材料を積層して配置した状態で、昇降手段、緩衝板、および加熱手段を有する真空ラミネーターを用いて、150℃の温度で真空/プレス/保持のトータル20分のラミネート条件でラミネートした。
 そして、L字状のアルミフレーム溝に予めシリコーンシール材を塗布して埋め込んでおき、ラミネートして得られた太陽電池積層体30のバックシート17の表面17bに、金網状支持体62として線径1mm、開き目10mmのSUS430製の平織金網を重ね、周縁部をアルミニウムフレーム溝にセットしてアルミニウムフレームをネジ止めして固定した。その後、室温で7日放置してシリコーンシール材を硬化させて枠部材24を設け、太陽電池モジュール60を作製した。
 (実施例11)
 図10(b)に示す30×30cmサイズの太陽電池モジュール60aを作製した。なお、金網状支持体62がSUS430製の菱形金網で線形1.5mm、開き目5mmのものである点、および金網状支持体62がバックシート17に重ねられることなくアルミニウムフレームに固定されている以外は、実施例10と同じである。
 実施例11の作製に際して、実施例10と同様にして、太陽電池積層体30を作製し、太陽電池積層体30の周縁部をアルミニウムフレーム溝にセットしてアルミニウムフレームをネジ止めして固定した。その後、金網状支持体62をアルミニウムフレーム下面にスポット溶接より固定して、太陽電池モジュール60aを作製した。なお、バックシート17と金網状支持体62との隙間の間隔を5mmとした。
 なお、枠部材24を固定するために室温で7日放置してシリコーンシール材を硬化させた。
 (比較例10)
 図14に示す太陽電池モジュール100cを作製した。なお、表面保護層120の厚さが1.1mmである点、金網状支持体62を設けていない点以外は、実施例1と同じである。
 比較例10の作製に際して、実施例1と同様にして、太陽電池積層体30を作製し、太陽電池積層体30の周縁部をアルミニウムフレーム溝にセットしてアルミニウムフレームをネジ止めして固定した。その後、室温で7日放置してシリコーンシール材を硬化させて枠部材24を設け、太陽電池モジュール100cを作製した。
 作製した実施例10、11および比較例10の3種の太陽電池モジュールについて、それぞれ機械的強度試験を行った。
 なお、機械的強度試験は、IEC1646-10.16に従って、表面保護層とバックシート側に静圧で2400Paの圧力を各1時間、3サイクル印加し、最後に表面保護層側に圧力を印加する際には静圧で5400Pa印加する条件で行った。その後、太陽電池モジュールの外観を評価し、太陽電池モジュールの通電状態を評価し、太陽電池モジュールの絶縁性状態を評価し、更にI-V測定による変換効率を測定した。なお、I-V測定による変換効率は、機械的強度試験の前にも測定している。これらの測定結果を総合的に判断した結果を下記表6に示す。
 機械的強度試験において静圧の印加方法は、簡便な方法では、所定の応力となる重さの砂袋を表面保護層またはバックシートに載せる方法がある。また、機械的強度試験において静圧の印加方法としては、静圧を印加する試験装置を用いてもよい。
 機械的強度試験において、表面保護層のガラスが割れたり、太陽電池モジュール変形および損傷等の外観の変化がなく、太陽電池モジュールの通電に変化がなく、太陽電池モジュールの基板の絶縁性に変化がなく、更には太陽電池モジュールの変換効率の試験前後での変化が10%未満のものを◎とし、外観の変化、太陽電池モジュールの通電の変化、太陽電池モジュールの基板の絶縁性の変化、または太陽電池モジュールの試験前後での変化が10%以上のものを×とした。
Figure JPOXMLDOC01-appb-T000006
 上記表6に示すように、実施例10、11は、外観、通電、絶縁性、I-V測定による変換効率の変化もなく合格(評価が◎)あったが、比較例10では表面保護層の青板ガラスが割れ、外観上、不合格(評価が×)となった。
 このように裏面保護層(バックシート)の下に金網状支持体を設けることにより太陽電池モジュールの機械的強度を向上させるとともに軽量化が実現できることが可能となった。以上の結果より、本発明の効果は明らかである。
 10、10a、10b、60、60a、100a~100c 太陽電池モジュール
 12 太陽電池サブモジュール
 14 第2の接着充填層
 16a、17 バックシート
 18 中間シール材
 20 第1の接着充填層
 22 表面保護層
 24 枠部材
 26 周縁シール材
 28 外枠材
 40 太陽電池セル
 50 基板
 62 金網状支持体

Claims (21)

  1.  太陽電池サブモジュールの表面側に第1の接着充填層を介して表面保護層が設けられ、前記太陽電池サブモジュールの裏面側に第2の接着充填層を介して裏面保護層が設けられ、前記第1の接着充填層および前記第2の接着充填層により前記太陽電池サブモジュールが封止された太陽電池モジュールであって、
     前記裏面保護層は、バックシートおよび前記太陽電池モジュールを補強する支持板のうち、少なくとも前記支持板を備え、前記支持板は厚さが0.1~1.0mmのアルミニウム板、アルミニウム合金板またはガルバリウム鋼板で構成されるものであり、
     前記第1の接着充填層は、アイオノマー樹脂を含むものであり、
     前記表面保護層は、厚さが0.6~1.5mmのガラスで構成されており、
     前記太陽電池サブモジュールは、金属シートの表面にアルミニウムの陽極酸化皮膜が形成された基板に、CIGS膜で構成された光吸収層が形成されたものであり、
     前記太陽電池モジュールの曲げ応力が100MPa以上であることを特徴とする太陽電池モジュール。
  2.  前記表面保護層を構成するガラスは、青板ガラスまたは白板ガラスである請求項1に記載の太陽電池モジュール。
  3.  周縁部に設けられた枠部材を有し、前記枠部材は、内側に設けられるシール材と外側に設けられる外枠材とを備え、前記シール材は、ブチルゴムまたはシリコーン樹脂からなるものであり、外枠材はアルミフレームまたは金属箔テープで構成される請求項1または2に記載の太陽電池モジュール。
  4.  前記太陽電池サブモジュールに用いられる基板の前記金属シートは、アルミニウム材、ステンレス鋼およびアルミニウムのクラッド材、またはアルミニウムとステンレス鋼のクラッド材である請求項1~3のいずれか1項に記載の太陽電池モジュール。
  5.  前記第2の接着充填層は、前記アイオノマー樹脂を含まないものであり、
     前記裏面保護層は、前記バックシートおよび前記ガルバリウム鋼板からなる前記支持板を備える請求項1~4のいずれか1項に記載の太陽電池モジュール。
  6.  前記裏面保護層の周縁部より5~30mm内側に、水蒸気浸入防止のための中間シール材が設けられている請求項1~5のいずれか1項に記載の太陽電池モジュール。
  7.  前記中間シール材は、ブチルゴム、ポリオレフィン、ポリイソプレンまたはイソプレンにより構成される請求項6に記載の太陽電池モジュール。
  8.  太陽電池サブモジュールの表面側に第1の接着充填層を介して表面保護層が設けられ、前記太陽電池サブモジュールの裏面側に第2の接着充填層を介して裏面保護層が設けられ、前記第1の接着充填層および前記第2の接着充填層により前記太陽電池サブモジュールが封止された太陽電池モジュールの製造方法であって、
     前記裏面保護層は、バックシートおよび前記太陽電池モジュールを補強する支持板のうち、少なくとも前記支持板を備え、前記支持板は厚さが0.1~1.0mmのアルミニウム板、アルミニウム合金板またはガルバリウム鋼板で構成されるものであり、
     前記第1の接着充填層は、アイオノマー樹脂を含むものであり、
     前記表面保護層は、厚さが0.6~1.5mmのガラスで構成されており、
     前記太陽電池サブモジュールは、金属シートの表面にアルミニウムの陽極酸化皮膜が形成された基板に、CIGS膜で構成された光吸収層が形成されたものであり、
     前記太陽電池サブモジュールの表面側に、前記第1の接着充填層および前記表面保護層を積層して配置するとともに、前記太陽電池サブモジュールの裏面側に第2の接着充填層および前記裏面保護層を積層して配置する工程と、
     前記複数層、積層して配置された状態で真空ラミネートする工程とを有することを特徴とする太陽電池モジュールの製造方法。
  9.  さらに、前記積層して配置する工程において、前記裏面保護層の周縁部より5~30mm内側に、水蒸気浸入防止のための中間シール材を配置する請求項8に記載の太陽電池モジュールの製造方法。
  10.  前記真空ラミネート工程の後、外枠材の内側にシール材が設けられた枠部材を前記真空ラミネートしたものの周縁部に設ける工程を有する請求項8または9に記載の太陽電池モジュールの製造方法。
  11.  太陽電池サブモジュールの表面側に第1の接着充填層を介して表面保護層が設けられ、前記太陽電池サブモジュールの裏面側に第2の接着充填層を介して裏面保護層が設けられた太陽電池モジュールであって、
     前記第1の接着充填層は、アイオノマー樹脂を含むものであり、
     前記表面保護層は、厚さが0.6~2.0mmのガラスで構成されており、
     前記太陽電池サブモジュールは、金属シートの表面にアルミニウムの陽極酸化皮膜が形成された基板に、CIGS膜で構成された光吸収層が形成されたものであり、
     さらに、前記裏面保護層側に金網状支持体が設けられており、
     前記太陽電池モジュールの曲げ応力が100MPa以上であることを特徴とする太陽電池モジュール。
  12.  前記表面保護層を構成するガラスは、青板ガラスまたは白板ガラスである請求項11に記載の太陽電池モジュール。
  13.  周縁部に設けられた枠部材を有し、前記枠部材は、内側に設けられるシール材と外側に設けられる外枠材とを備え、前記シール材は、ブチルゴムまたはシリコーン樹脂からなるものであり、外枠材はアルミフレームまたは金属箔テープで構成されるものである請求項11または12に記載の太陽電池モジュール。
  14.  前記金網状支持体は、金網または金網状シートであり、前記金網状支持体は、ステンレス線、亜鉛メッキ線、真鍮線、アルミニウム線、またはアルミニウム合金線で構成されるものである請求項11~13のいずれか1項に記載の太陽電池モジュール。
  15.  前記金網状支持体の金網は、平織網、溶接網、クリンプ網、亀甲金網、菱形金網である請求項11~14のいずれか1項に記載の太陽電池モジュール。
  16.  前記金網状支持体は、前記裏面保護層の表面に設けられている請求項11~15のいずれか1項に記載の太陽電池モジュール。
  17.  前記金網状支持体は、前記裏面保護層を覆うようにして前記枠部材に設けられている請求項13~15のいずれか1項に記載の太陽電池モジュール。
  18.  前記第2の接着充填層は、エチレンビニルアセテート樹脂またはアイオノマー樹脂を含むものである請求項11~17のいずれか1項に記載の太陽電池モジュール。
  19.  太陽電池サブモジュールの表面側に第1の接着充填層を介して表面保護層が設けられ、前記太陽電池サブモジュールの裏面側に第2の接着充填層を介して裏面保護層が設けられた太陽電池モジュールの製造方法であって、
     前記第1の接着充填層は、アイオノマー樹脂を含むものであり、
     前記表面保護層は、厚さが0.6~2.0mmのガラスで構成されており、
     前記太陽電池サブモジュールは、金属シートの表面にアルミニウムの陽極酸化皮膜が形成された基板に、CIGS膜で構成された光吸収層が形成されたものであり、
     前記太陽電池サブモジュールの表面側に、前記第1の接着充填層および前記表面保護層を積層して配置するとともに、前記太陽電池サブモジュールの裏面側に第2の接着充填層および前記裏面保護層を積層して配置する工程と、
     前記複数層、積層して配置された状態で真空ラミネートする工程と、
     前記真空ラミネート工程の後、前記裏面保護層上に金網状支持体を配置し、外枠材の内側にシール材が設けられた枠部材を前記真空ラミネートしたものの周縁部に設ける工程を有することを特徴とする太陽電池モジュールの製造方法。
  20.  太陽電池サブモジュールの表面側に第1の接着充填層を介して表面保護層が設けられ、前記太陽電池サブモジュールの裏面側に第2の接着充填層を介して裏面保護層が設けられた太陽電池モジュールの製造方法であって、
     前記第1の接着充填層は、アイオノマー樹脂を含むものであり、
     前記表面保護層は、厚さが0.6~2.0mmのガラスで構成されており、
     前記太陽電池サブモジュールは、金属シートの表面にアルミニウムの陽極酸化皮膜が形成された基板に、CIGS膜で構成された光吸収層が形成されたものであり、
     前記太陽電池サブモジュールの表面側に、前記第1の接着充填層および前記表面保護層を積層して配置するとともに、前記太陽電池サブモジュールの裏面側に第2の接着充填層および前記裏面保護層を積層して配置する工程と、
     前記複数層、積層して配置された状態で真空ラミネートする工程と、
     前記真空ラミネート工程の後、外枠材の内側にシール材が設けられた枠部材を前記真空ラミネートしたものの周縁部に設ける工程と、
     前記裏面保護層を覆うようにして前記枠部材に前記金網状支持体を設ける工程とを有することを特徴とする太陽電池モジュールの製造方法。
  21.  前記第2の接着充填層は、エチレンビニルアセテート樹脂またはアイオノマー樹脂を含むものである請求項19または20に記載の太陽電池モジュールの製造方法。
PCT/JP2011/078046 2011-03-18 2011-12-05 太陽電池モジュールおよびその製造方法 WO2012127742A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011060721A JP2012199284A (ja) 2011-03-18 2011-03-18 太陽電池モジュールおよびその製造方法
JP2011-060721 2011-03-18
JP2011065795A JP2012204459A (ja) 2011-03-24 2011-03-24 太陽電池モジュールおよびその製造方法
JP2011-065795 2011-03-24

Publications (1)

Publication Number Publication Date
WO2012127742A1 true WO2012127742A1 (ja) 2012-09-27

Family

ID=46878930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078046 WO2012127742A1 (ja) 2011-03-18 2011-12-05 太陽電池モジュールおよびその製造方法

Country Status (1)

Country Link
WO (1) WO2012127742A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210705A (zh) * 2015-01-29 2017-09-26 京瓷株式会社 太阳能电池模块
US10211355B2 (en) 2012-12-27 2019-02-19 Solar Frontier K.K. Solar cell module

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395257U (ja) * 1986-12-11 1988-06-20
JPH11135811A (ja) * 1997-10-28 1999-05-21 Yazaki Corp Cis系太陽電池モジュール及びその製造方法
JPH11261088A (ja) * 1998-03-13 1999-09-24 Canon Inc 太陽電池モジュール及びその設置方法
JP2000352163A (ja) * 1999-06-09 2000-12-19 Yokogawa Bridge Corp 太陽電池パネルの取付構造
JP2001077381A (ja) * 1999-09-01 2001-03-23 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュール
JP2001196621A (ja) * 2000-01-12 2001-07-19 Dainippon Printing Co Ltd 太陽電池モジュ−ル用裏面保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP2007150084A (ja) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート、太陽電池モジュール用裏面積層体、および、太陽電池モジュール
JP2008147382A (ja) * 2006-12-08 2008-06-26 Honda Motor Co Ltd 太陽電池モジュール及びその製造方法
JP2009099973A (ja) * 2007-09-28 2009-05-07 Fujifilm Corp 太陽電池
WO2010050570A1 (ja) * 2008-10-30 2010-05-06 三井・デュポンポリケミカル株式会社 多層シート、太陽電池素子用封止材、及び太陽電池モジュール
JP2010219518A (ja) * 2009-02-23 2010-09-30 Mitsubishi Chemicals Corp 建材、太陽電池モジュール及び太陽電池モジュールの設置方法
WO2010109947A1 (ja) * 2009-03-27 2010-09-30 コニカミノルタオプト株式会社 防湿フィルム、その製造方法、それを用いた太陽電池モジュール用バックシート及び太陽電池モジュール
JP2010239129A (ja) * 2009-03-10 2010-10-21 Fujifilm Corp 光電変換素子及び太陽電池、光電変換素子の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395257U (ja) * 1986-12-11 1988-06-20
JPH11135811A (ja) * 1997-10-28 1999-05-21 Yazaki Corp Cis系太陽電池モジュール及びその製造方法
JPH11261088A (ja) * 1998-03-13 1999-09-24 Canon Inc 太陽電池モジュール及びその設置方法
JP2000352163A (ja) * 1999-06-09 2000-12-19 Yokogawa Bridge Corp 太陽電池パネルの取付構造
JP2001077381A (ja) * 1999-09-01 2001-03-23 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュール
JP2001196621A (ja) * 2000-01-12 2001-07-19 Dainippon Printing Co Ltd 太陽電池モジュ−ル用裏面保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP2007150084A (ja) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート、太陽電池モジュール用裏面積層体、および、太陽電池モジュール
JP2008147382A (ja) * 2006-12-08 2008-06-26 Honda Motor Co Ltd 太陽電池モジュール及びその製造方法
JP2009099973A (ja) * 2007-09-28 2009-05-07 Fujifilm Corp 太陽電池
WO2010050570A1 (ja) * 2008-10-30 2010-05-06 三井・デュポンポリケミカル株式会社 多層シート、太陽電池素子用封止材、及び太陽電池モジュール
JP2010219518A (ja) * 2009-02-23 2010-09-30 Mitsubishi Chemicals Corp 建材、太陽電池モジュール及び太陽電池モジュールの設置方法
JP2010239129A (ja) * 2009-03-10 2010-10-21 Fujifilm Corp 光電変換素子及び太陽電池、光電変換素子の製造方法
WO2010109947A1 (ja) * 2009-03-27 2010-09-30 コニカミノルタオプト株式会社 防湿フィルム、その製造方法、それを用いた太陽電池モジュール用バックシート及び太陽電池モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10211355B2 (en) 2012-12-27 2019-02-19 Solar Frontier K.K. Solar cell module
CN107210705A (zh) * 2015-01-29 2017-09-26 京瓷株式会社 太阳能电池模块

Similar Documents

Publication Publication Date Title
JP2012199284A (ja) 太陽電池モジュールおよびその製造方法
KR100325955B1 (ko) 태양전지모듈및태양전지모듈용보강부재
JP3618802B2 (ja) 太陽電池モジュール
AU741432B2 (en) Solar cell module and method for manufacturing same
JP5914286B2 (ja) 電子モジュール
WO2012056941A1 (ja) 太陽電池モジュールおよびその製造方法
US20100065116A1 (en) Impact Resistant Thin-Glass Solar Modules
JPH0955524A (ja) 太陽電池モジュール
JPH065782B2 (ja) 太陽電池モジユ−ル
US20170317305A1 (en) Systems and methods for transparent organic photovoltaic devices
JP2012094742A (ja) 太陽電池モジュールおよびその製造方法
JP2012204459A (ja) 太陽電池モジュールおよびその製造方法
KR20100006205A (ko) Cigs 태양전지 모듈 및 그 제조방법
GB2570493A (en) Solar panel arrangement
JP2013089749A (ja) フレームレス太陽電池モジュール
JP2012204458A (ja) 太陽電池モジュールの製造方法
WO2012127742A1 (ja) 太陽電池モジュールおよびその製造方法
US20120305079A1 (en) Solar cell module and method of manufacturing solar cell module
JP2009170771A (ja) 太陽電池バックシート及び太陽電池モジュール
JP3754806B2 (ja) 太陽電池モジュールおよびその製造方法
JP3679548B2 (ja) 太陽電池モジュールの製造方法
JP2014192455A (ja) 太陽電池モジュール
JP2014072480A (ja) 太陽電池モジュール
JP2012195491A (ja) フレキシブル太陽電池用シート
JP2006073706A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861382

Country of ref document: EP

Kind code of ref document: A1