WO2012124487A1 - バッテリ充電制御装置 - Google Patents

バッテリ充電制御装置 Download PDF

Info

Publication number
WO2012124487A1
WO2012124487A1 PCT/JP2012/055206 JP2012055206W WO2012124487A1 WO 2012124487 A1 WO2012124487 A1 WO 2012124487A1 JP 2012055206 W JP2012055206 W JP 2012055206W WO 2012124487 A1 WO2012124487 A1 WO 2012124487A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
power
control device
charge control
Prior art date
Application number
PCT/JP2012/055206
Other languages
English (en)
French (fr)
Inventor
敦史 ▲高▼野
一彦 沖野
山本 直樹
真介 樋口
崇 飯森
力 曽我
隻人 長倉
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to KR1020137005792A priority Critical patent/KR101456400B1/ko
Priority to US13/817,769 priority patent/US9136727B2/en
Priority to EP12757236.0A priority patent/EP2685596B1/en
Priority to CN201280002823.7A priority patent/CN103098339B/zh
Publication of WO2012124487A1 publication Critical patent/WO2012124487A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery charge control device used for a system including a battery capable of designating a charging time and a power load that is operated by power via a battery charging power system when a predetermined condition is satisfied.
  • a battery warming device including a battery of an electric vehicle and a heater that heats and adjusts the temperature of the electric vehicle when not in use There is.
  • a battery mounted on an electric vehicle is assumed to be used in a cold region, and the battery electrolyte may freeze during nonuse.
  • the state of charge SOC does not decrease, but the input / output power to the battery decreases due to the increase in internal resistance.
  • the battery electrolyte freezes the input / output power of the battery finally reaches zero.
  • the vehicle cannot run.
  • the battery warm-up device described in Patent Document 1 performs this as follows when the battery is heated with a heater for temperature adjustment as described above, for example. In other words, when the battery temperature falls below the set temperature, the heater is activated to heat the battery, but at this time, if the battery storage state is less than a predetermined value, the battery is also charged. The battery is also heated by the heat generated by charging.
  • the battery charging time is specified so that the battery is fully charged at the departure time. It is advantageous to make it possible.
  • the present invention provides a battery charge control device that can suppress the battery charge for increasing the battery storage state as much as possible at times other than the designated charge time so as to avoid, for example, the above-described problems relating to running costs.
  • the purpose is to provide.
  • the battery charge control device is configured as follows. First, a battery charge control device that is a premise of the present invention will be described. This battery is connected to a battery that can be charged by specifying a charge time, and the charge power system of the battery. And an electric power load that is operated by electric power passing through.
  • the present invention is characterized in that the battery charge control device is provided with the following charging power changing means.
  • the charging power changing means varies the charging power to the battery depending on whether or not the specified charging time is during the operation of the power load.
  • the charge power to the battery varies according to whether or not it is during the specified charge time.
  • the battery charging for increasing the battery charge state is suppressed at times other than the specified charging time. Charging the battery for increasing the state of charge can be performed mainly during the designated charging time, and the intended intention of charging time, for example, a reduction in running cost can be realized.
  • FIG. 1 is a control system diagram showing an outline of a battery charge control device according to an embodiment of the present invention together with a battery temperature control device.
  • 2 is a flowchart showing a battery charge control program executed by a controller in FIG. 3 is an operation time chart of the battery charge control program shown in FIG.
  • FIG. 4 is an operation time chart showing an enlarged time axis between a battery heating start time t1 in FIG. 3 and a specified charging end time t3.
  • FIG. 1 is a control system diagram of a battery charge control device according to an embodiment of the present invention.
  • a main battery 1 used for running an electric vehicle such as an electric vehicle or a hybrid vehicle is used as the battery charge control device. It shall be for charging.
  • the main battery 1 is a large-capacity battery that can be used to drive a motor for driving, in which a plurality of battery modules each formed by stacking a plurality of battery shells are integrated into one set.
  • 2 is a heater for adjusting the temperature of the battery 1, which corresponds to the electric power load in the present invention, and this heater 2 is arranged along the stacking direction of the battery shell with respect to the battery module.
  • the battery 1 is provided in the immediate vicinity of the battery module so that the battery 1 can be heated.
  • reference numeral 3 denotes an electric motor used for driving the electric vehicle.
  • the electric motor 3 is electrically connected to the battery 1 via the inverter 4.
  • a main relay switch 5 is inserted in the electric path between the inverter 4 and the battery 1, and this main relay switch 5 is opened and closed via an unillustrated drive controller in conjunction with an unillustrated ignition switch of the electric vehicle. It is closed when the ignition switch is turned on and opened when the ignition switch is turned off.
  • the main relay switch 5 While the main relay switch 5 is closed in conjunction with the ON of the ignition switch, the DC power from the battery 1 is converted from DC to AC by the inverter 4 and output to the electric motor 3 under the control of the inverter 4. The electric vehicle can be driven by driving the motor 3.
  • the main relay switch 5 When the main relay switch 5 is opened in conjunction with the ignition switch being turned off, the DC power from the battery 1 cannot go to the electric motor 3, and the electric vehicle can be kept stopped by stopping the motor 3.
  • a charger 7 is connected between the DC side of the inverter 4 and the main relay switch 5, and this charger 7 is not shown when connected to an external power source of a charging stand or a battery charging facility at home.
  • the main relay switch 5 is closed by the charging controller, and the battery 1 can be charged by the external power source.
  • the heater 2 provided along the stacking direction of the battery shell in the immediate vicinity of the battery module so that the temperature of the battery 1 can be adjusted is between the DC side of the inverter 4 and the main relay switch 5 as shown in FIG.
  • the heater switch 8 is inserted into the electric path between the connection portion and the heater 2.
  • the opening and closing of the heater switch 8 is controlled via a relay drive circuit 6 by a controller 9 that controls the temperature of the battery 1 and charge control.
  • the controller 9 is further operated while the main relay switch 5 is opened in conjunction with the ignition switch being turned off and while the main relay switch 5 is closed in conjunction with the connection of the charger 7 to the external power source.
  • the main relay switch 5 is also controlled to open and close via the relay drive circuit 6.
  • the controller 9 closes the main relay switch 5 and energizes the heater 2 in synchronization with the heater switch 8 being closed.
  • the main relay switch 5 is also opened in synchronization with the heater switch 8 being “open”, and the heater 2 is deenergized (OFF).
  • the controller 9 opens and closes the main relay switch 5 on the condition that the heater switch 8 is in the “closed” state while the main relay switch 5 is closed in conjunction with the connection of the charger 7 to the external power supply. In this case, the battery charge control described below, which is the target of the present invention, is performed. When the heater switch 8 is “open”, the main relay switch 5 is opened and the battery is not charged.
  • the controller 9 includes a battery 1 for performing ON / OFF control of the heater 2 (battery temperature adjustment ON / OFF) through the above-described opening / closing of the heater switch 8 and the main relay switch 5 and charging control of the battery 1.
  • the signal from the charging time command device 13 that is operated when the battery charging time is commanded is input.
  • the charging time commander 13 can reduce the running cost by fully charging the battery 1 using inexpensive late-night power, or the battery 1 can be fully charged at the departure time so that the mileage becomes the longest. Therefore, the vehicle user instructs the battery charging time.
  • the controller 9 executes a control program (not shown) based on the input information to adjust the battery temperature, and also executes the control program shown in FIG. 2 to control the charging of the battery 1 in the following manner.
  • the temperature adjustment of the battery 1 that is disconnected from the electric motor 3 (inverter 4) and is not in use by turning off the ignition switch ("opening" the main relay switch 5) will be schematically described.
  • Battery 1 that is not in use has zero input / output power due to freezing of the electrolyte, especially in extremely cold regions, and it becomes impossible to run. Therefore, it is necessary to operate heater 2 as appropriate to heat battery 1 and adjust the temperature. There is. For this reason, when the ignition switch is OFF, the battery temperature Tbat is the heating start temperature Tbat_start illustrated in FIG. 3 (for example, less than about ⁇ 17 ° C., or the heating end temperature Tbat_stop illustrated in FIG. 3 is also illustrated, for example ⁇ 10 ° C.). Check if this is the case.
  • the controller 9 Before the instant t1 in FIG. 3 when the battery temperature Tbat falls below the warming start temperature Tbat_start (Tbat ⁇ Tbat_start), the controller 9 has a heater switch 8 and a main relay switch because there is no concern about the battery electrolyte freezing. By opening 5, the heater 2 is turned off and the battery 1 is not heated.
  • the controller 9 turns on the heater 2 by closing the heater switch 8 and the main relay switch 5 to warm the battery 1 I do.
  • the controller 9 checks whether or not the battery temperature Tbat becomes equal to or higher than the heating end temperature Tbat_stop every time the above-described time interval elapses. Continues to heat the battery 1 by turning on the heater 2 by “closing” the heater switch 8 and the main relay switch 5.
  • the controller 9 turns off the heater 2 and ends the heating of the battery 1 by opening the heater switch 8 and the main relay switch 5.
  • the battery 1 is not left as Tbat ⁇ Tbat_stop, and it is possible to prevent the electrolytic solution from freezing and being unable to run. Further, when Tbat ⁇ Tbat_stop, the heater 2 is turned off and the heating of the battery 1 is terminated. Therefore, it is possible to prevent unnecessary power consumption when the heater 2 is turned on.
  • the control program in FIG. 2 connects the charger 7 to the external power source of the charging station or the battery charging facility at home as shown in FIG. 3 at the instant t0, so that the main relay switch 5 is closed and the charging is possible. It will be executed from the time.
  • step S11 it is checked whether the timer charge reservation time is between the charge start time and the charge end time specified by the charge time command unit 13.
  • the designated charging start time is shown as t3 after the instant t1
  • the designated charging end time is shown as the instant t4.
  • step S11 If it is determined in step S11 that the current time is not during the timer charging reservation time (t3 to t4), it is checked in step S12 whether or not the battery 1 is being heated depending on whether the heater switch 8 is ON. In addition, in the charger connected state as in the time t0 and after in FIG. 3, since the power from the charger 7 exists, if the heater switch 8 is ON, regardless of whether the main relay switch 5 is ON or OFF. The heater 2 can be operated, and therefore, in step S12, as described above, it can be checked whether or not the battery 1 is being heated only by whether or not the heater switch 8 is ON.
  • step S12 If it is determined in step S12 that the battery 1 is being heated by turning on the heater 2, whether or not the battery holding capacity SOChold to be acquired at the start of the heating (t1 in FIG. 3) has already been acquired in step S14. Check whether or not. If the battery holding capacity SOChold has not yet been acquired, the battery storage state SOC (t1) at the start of heating (t1 in FIG. 3) is set to the battery holding capacity SOChold in step S15, and then control proceeds to step S16. If the battery holding capacity SOChold has already been acquired by executing step S15, step S15 is skipped and control proceeds to step S16.
  • Step S16 corresponds to the charging power changing means in the present invention.
  • the main relay switch 5 is turned on and off so that the battery charge state SOC is maintained at the battery holding capacity SOChold. Control charging power Pchg.
  • SOC SOChold
  • the main relay switch 5 is turned on to supply charging power from the charger 7 to the battery 1
  • SOC SOChold
  • the main relay switch 5 is turned off to turn off the charger 7. This can be realized by preventing charging power from being supplied to the battery 1.
  • FIG. 4 shows the time axis between the heating start time t1 in FIG. 3 and the specified charging start time t3 in an enlarged manner as compared with FIG. 3, and the heater power consumption Pheat is immediately after the instant t1.
  • the battery storage state SOC is suddenly increased by that amount, and temporarily deteriorates as apparent from the downward trend indicated by the solid line of the battery voltage Vbat immediately after the instant t1. If such deterioration of the battery charge state SOC is left unattended, the battery charge state SOC cannot be fully charged as intended during the timer reserved charge times t3 to t4 in FIG. 3, and the charge rate using inexpensive late-night power is reduced. There arises a problem that the running cost increases due to a decrease, or the running distance is shortened because the battery 1 is not fully charged at the start of running after the end of charging at the instant t4.
  • step S16 the charging power Pchg to the battery 1 is shown in FIG. 4 immediately after the heating start t1 in FIG. 4 so that the battery storage state SOC is maintained at the battery holding capacity SOChold.
  • the battery voltage Vbat can be maintained at a level equivalent to the battery holding capacity SOChold as indicated by the wavy line even immediately after the instant t1. Therefore, there is no battery charging that increases the battery storage state SOC beyond the instant t1 level other than the timer reserved charging times t3 to t4 in FIG. 3, and during the timer reserved charging times t3 to t4 in FIG.
  • the battery state of charge SOC can be fully charged as intended, and the running rate can be suppressed by maximizing the charging rate using inexpensive late-night power, and running after the instant t4 charging ends Sometimes the battery 1 can be fully charged and the mileage can be extended to the maximum.
  • step S17 corresponds to the charging power changing means in the present invention, and the charging power Pchg to the battery 1 is controlled by turning on and off the main relay switch 5 so that the battery storage state SOC becomes the full charging state SOCfull.
  • SOC ⁇ SOCfull the charging power is supplied from the charger 7 to the battery 1 when the main relay switch 5 is turned ON.
  • the designation intention of the timer charge reservation time can be reliably achieved, All the power consumed for full charge is covered by inexpensive late-night power, and running costs can be suppressed.
  • the timer charge reservation time (t3 to t4) is now Otherwise, to control the charging power Pchg to the battery 1 so that the battery storage state SOC is maintained at the battery holding capacity SOChold which is the battery storage state SOC (t1) at the start of heating t1, as shown in FIG.
  • the heater power consumption Pheat rapidly increases immediately after the start of heating t1, and the battery storage state SOC tends to temporarily deteriorate as clearly shown from the decreasing trend indicated by the solid line of the battery voltage Vbat immediately after the instant t1.
  • the battery voltage Vbat immediately after the instant t1 can be maintained at a level equivalent to the battery holding capacity SOChold as indicated by a broken line.
  • the battery charge state SOC can be fully charged as intended, and the running rate can be suppressed by maximizing the charging rate using inexpensive late-night power, and running after the instant t4 charging ends
  • the battery 1 can be surely fully charged at the start, and the mileage can be extended to the maximum.
  • the charging power Pchg to the battery 1 is controlled so that the battery charge state SOC is set to the full charge state SOCfull. All the electric power to be used is covered by cheap late-night electric power, and the running cost can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 バッテリ加温中である場合(S12)、バッテリ加温開始時のバッテリ蓄電状態をバッテリ保持容量SOCholdとし(S14,S15)、SOCがSOCholdに保たれるようバッテリへの充電電力を制御する。タイマ充電予約時刻中である場合(S11)、SOCが満充電状態SOCfullとなるようバッテリへの充電電力を制御する(S16)。加温開始直後にヒーター消費電力の急増でSOCが一時的に悪化する傾向にあっても、SOC=SOCholdの保持により、タイマ予約充電時刻中にSOCを狙い通り満充電状態にすることができ、安価な深夜電力を用いた充電割合を最大限に高めてランニングコストを抑制することができる。

Description

バッテリ充電制御装置
 本発明は、充電時刻を指定可能なバッテリと、所定条件の成立時にバッテリの充電電力系を経由した電力で作動される電力負荷とを具えたシステムに用いる、バッテリ充電制御装置に関するものである。
 このようなバッテリおよび電力負荷を具えたシステムとしては、例えば特許文献1に記載のように、電動車両のバッテリと、これを不使用時に加温して温度調節するヒーターとからなるバッテリ暖機装置がある。
 電動車両に搭載したバッテリは、寒冷地で用いることが想定され、不使用中にバッテリ電解液が凍結することがある。
 バッテリは温度低下すると、蓄電状態SOCが低下するわけではないが、内部抵抗の増大によりバッテリに対する入出力可能電力が低下し、バッテリ電解液が凍結すると、バッテリの入出力可能電力が遂には0になって、バッテリを走行エネルギー源とする電動車両の場合は走行不能に陥る。
 そこで、バッテリの入出力可能電力がかかる不都合を生ずる状態になるまで温度低下する前に、ヒーターでバッテリを加温して温度調節するバッテリ温度制御装置が必要である。
 特許文献1に記載のバッテリ暖機装置は、例えばこのよう目的でバッテリをヒーターにより加温して温度調節するに際し、これを以下のごとくに遂行する。
 つまり、バッテリ温度が設定温度未満に低下した時、ヒーターを作動させてバッテリを加温するが、この際さらに、バッテリ蓄電状態が所定値未満であれば、バッテリへの充電をも併せて行い、充電により発生する熱によってもバッテリを加温しようとするものである。
 しかし特許文献1記載の技術では、バッテリ温度が設定温度未満に低下した時、バッテリ蓄電状態が所定値未満であると、バッテリへの充電をも併せて行うものであるため、この時、バッテリ温度が設定温度未満である限りにおいて、バッテリ蓄電状態が所定値以上になるまで、バッテリが継続的に充電されることとなる。
 ところでバッテリの充電は、安価な深夜電力を用いて充電するのが、ランニングコストを抑える意味合いにおいて好ましく、例えばこのような要求に鑑み、或いは出発時刻に満充電となるよう、バッテリの充電時刻を指定可能にするのが有利である。
 かようにバッテリの充電時刻が指定可能である車両に上記特許文献1のバッテリ暖機装置を用いた場合、以下のような問題を生ずる。
 つまり特許文献1の装置では前記した通り、バッテリ温度が設定温度未満に低下し、且つ、バッテリ蓄電状態が所定値未満であるとき、バッテリ蓄電状態が増大するようバッテリへの充電を行うものであるため、当該バッテリ蓄電状態を増大させるためのバッテリ充電が上記の充電指定時刻以外に行われてしまう。
 かように充電指定時刻以外の時刻にバッテリ蓄電状態を増大させるためのバッテリへの充電が行われると、例えば安価な深夜電力を用いたバッテリの充電が行われなくなったり、少なくとも、充電量のうちの相当に大きな充電量が深夜電力以外の高価な電力により賄われ、ランニングコストが高くなるという問題を生ずる。
特開2000-040536号公報
 本発明は、充電指定時刻以外はできるだけ、バッテリ蓄電状態を増大させるためのバッテリ充電が抑制されるようにして、例えば上記のようなランニングコストに関する問題を回避し得るようにしたバッテリ充電制御装置を提供することを目的とする。
 この目的のため本発明によるバッテリ充電制御装置は、これを以下のように構成する。
 先ず本発明の前提となるバッテリ充電制御装置を説明するに、これは、充電時刻を指定して充電可能なバッテリと、該バッテリの充電電力系に接続され、所定条件の成立時に該充電電力系を経由した電力により作動される電力負荷とを具えたものである。
 本発明は、かかるバッテリ充電制御装置に対し、以下のような充電電力変更手段を設けた構成に特徴づけられる。
 この充電電力変更手段は、上記電力負荷が作動されている間、上記指定した充電時刻中か否かに応じて、バッテリへの充電電力を異ならせるものである。
 かかる本発明のバッテリ充電制御装置によれば、充電電力系を経由した電力により電力負荷が作動されている間、指定の充電時刻中か否かに応じて、バッテリへの充電電力を異ならせるため、指定の充電時刻中である時における充電電力および指定の充電時刻中でない時における充電電力の適切な設定により、充電指定時刻以外はバッテリ蓄電状態を増大させるためのバッテリ充電を抑制して、バッテリ蓄電状態を増大させるためのバッテリへの充電を主に充電指定時刻中に行わせることができ、充電時刻の指定意図、例えばランニングコストの低下を実現することができる。
本発明の一実施例になるバッテリ充電制御装置を、バッテリ温度調節装置と共に、これらの概略を示す制御システム図である。 図1におけるコントローラが実行するバッテリ充電制御プログラムを示すフローチャートである。 図2に示すバッテリ充電制御プログラムの動作タイムチャートである。 図3におけるバッテリ加温開始時t1と、指定された充電終了時刻t3との間における時間軸を拡大して示す動作タイムチャートである。
 以下、本発明の実施の形態を、図示の実施例に基づき詳細に説明する。
 図1は、本発明の一実施例になるバッテリ充電制御装置の制御システム図で、本実施例では、このバッテリ充電制御装置を、電気自動車やハイブリッド車両など電動車両の走行に用いるメインバッテリ1を充電するためのものとする。
 またメインバッテリ1は、複数個の電池シェルを積層してユニット化した電池モジュールを多数個、1セットにして一体化した、走行用モータの駆動に供し得る大容量のバッテリとする。
 図1において、2は、バッテリ1の温度調節を行うためのヒーターで、本発明における電力負荷に相当し、このヒーター2は、上記の電池モジュールに対し、電池シェルの積層方向に沿うよう配置して、電池モジュールの直近に設け、バッテリ1を加温し得るものとする。
 図1において、3は、電動車両の走行駆動に用いる電動モータで、この電動モータ3は、インバータ4を介してバッテリ1に電気接続する。
 そして、インバータ4およびバッテリ1間の電路中にメインリレースイッチ5を挿置し、このメインリレースイッチ5は、電動車両の図示せざるイグニッションスイッチに連動して、同じく図示せざる駆動コントローラを介し開閉され、イグニッションスイッチのON時に閉じ、イグニッションスイッチのOFF時に開くものとする。
 イグニッションスイッチのONに連動してメインリレースイッチ5が閉じている間、バッテリ1からの直流電力は、インバータ4により直流→交流変換されると共に該インバータ4による制御下で電動モータ3に向け出力され、該モータ3の駆動により電動車両を走行させることができる。
 イグニッションスイッチのOFFに連動してメインリレースイッチ5が開いている場合、バッテリ1からの直流電力は電動モータ3に向かい得ず、該モータ3の停止により電動車両を停車状態に保つことができる。
 インバータ4の直流側とメインリレースイッチ5との間には充電器7を接続して設け、この充電器7を、充電スタンドや自宅に在るバッテリ充電設備の外部電源に接続するとき、図示せざる充電コントローラによりメインリレースイッチ5が閉じられ、バッテリ1を外部電源により充電することができる。
 上記の用に供されるバッテリ1の温度調節および充電制御を以下に説明する。
 上記した通りバッテリ1の温度調節を行い得るよう、電池モジュールの直近において電池シェルの積層方向に沿うよう設けたヒーター2は、図1に示すごとくインバータ4の直流側とメインリレースイッチ5との間に電気接続し、この接続部とヒーター2との間の電路中にヒータースイッチ8を挿置する。
 ヒータースイッチ8の開閉は、バッテリ1の温度調節および充電制御を司るコントローラ9により、リレー駆動回路6を介して制御する。
 このコントローラ9は更に、メインリレースイッチ5がイグニッションスイッチのOFFに連動して開かれている間、および、メインリレースイッチ5が充電器7の外部電源への接続に連動して閉じられている間、当該メインリレースイッチ5をも、リレー駆動回路6を介して開閉制御するものとする。
 なおコントローラ9は、メインリレースイッチ5がイグニッションスイッチのOFFに連動して開かれている間、ヒータースイッチ8の「閉」に同期してメインリレースイッチ5をも閉じてヒーター2を附勢(ON)し、ヒータースイッチ8の「開」に同期してメインリレースイッチ5をも開いてヒーター2を滅勢(OFF)するものとする。
 またコントローラ9は、メインリレースイッチ5が充電器7の外部電源への接続に連動して閉じられている間、ヒータースイッチ8が「閉」状態であることを条件に、メインリレースイッチ5を開閉制御して、本発明が狙いとする後述のバッテリ充電制御を行い、またヒータースイッチ8が「開」である場合は、メインリレースイッチ5を開いて、バッテリ充電を行わないものとする。
 コントローラ9には、ヒータースイッチ8およびメインリレースイッチ5の上記閉開を介したヒーター2のON,OFF制御(バッテリ温度調節のON,OFF)、およびバッテリ1の充電制御を行うために、バッテリ1の蓄電状態SOCを検出するバッテリ蓄電状態検出センサ11からの信号と バッテリ1の温度Tbatを検出するバッテリ温度センサ12からの信号と、車両の使用者がバッテリ1の充電開始時刻および充電終了時刻間におけるバッテリ充電時刻を指令する時に操作する充電時刻指令器13からの信号とを入力する。
 なお充電時刻指令器13は、安価な深夜電力を用いたバッテリ1の満充電によりランニングコストを抑えたり、出発時刻に丁度バッテリ1が満充電になって走行距離が最長になるようにするなどのために、車両の使用者がバッテリ充電時刻を指令するためのものである。
 コントローラ9は、これら入力情報を基に図示せざる制御プログラムを実行してバッテリ温度調節を行うと共に、図2に示す制御プログラムを実行して、バッテリ1の充電制御を以下の要領で行う。
 先ず、イグニッションスイッチOFF(メインリレースイッチ5の「開」)により、電動モータ3(インバータ4)から切り離されて不使用状態となっているバッテリ1の温度調節を概略説明する。
 不使用状態のバッテリ1は、特に厳寒地において電解液の凍結により入出力可能電力が0となり、走行不能になることから、適宜ヒーター2を作動させてバッテリ1を加温し、温度調節する必要がある。
 このため、イグニッションスイッチOFF中は、バッテリ温度Tbatが図3に例示する加温開始温度Tbat_start(例えば-17℃程未満か、また同じく図3に例示する加温終了温度Tbat_stop(例えば-10℃)以上か否かをチェックする。
 バッテリ温度Tbatが加温開始温度Tbat_start未満(Tbat<Tbat_start)に低下する図3の瞬時t1以前においては、差し当たってバッテリ電解液の凍結が心配ないから、コントローラ9はヒータースイッチ8およびメインリレースイッチ5を開くことにより、ヒーター2をOFFにしてバッテリ1の加温を行わない。
 バッテリ温度Tbatが加温開始温度Tbat_start未満(Tbat<Tbat_start)となる図3のt1に、コントローラ9はヒータースイッチ8およびメインリレースイッチ5を閉じることにより、ヒーター2をONにしてバッテリ1の加温を行う。
 その後はコントローラ9が、上記時間隔の経過ごとに、バッテリ温度Tbatが加温終了温度Tbat_stop以上になったか否かをチェックし、図3の瞬時t1以降におけるごとくTbat≧Tbat_stopにならない間、コントローラ9は引き続きヒータースイッチ8およびメインリレースイッチ5の「閉」により、ヒーター2をONにしてバッテリ1の加温を継続する。
 そしてTbat≧Tbat_stopになるとき、コントローラ9はヒータースイッチ8およびメインリレースイッチ5の「開」により、ヒーター2をOFFにしてバッテリ1の加温を終了する。
 以上のサイクルの繰り返しにより、バッテリ1はTbat<Tbat_stopのままにされることがなく、電解液が凍結して走行不能になるのを防止することができる。
 また、Tbat≧Tbat_stopになるとき、ヒーター2をOFFにしてバッテリ1の加温を終了するため、不要なヒーター2のONで電力が無駄に消費されるのを防止することができる。
 次に、コントローラ9が実行するバッテリ1の充電制御を、図2に基づき詳述する。
 図2の制御プログラムは、図3の瞬時t0におけるごとく充電器7を、充電スタンドや自宅に在るバッテリ充電設備の外部電源に接続したことで、メインリレースイッチ5が閉じられ、充電可能状態になった時から実行される。
 ステップS11においては、充電時刻指令器13によって指定された充電開始時刻および充電終了時刻間におけるタイマ充電予約時刻中か否かをチェックする。
 図3では、指定された充電開始時刻を瞬時t1の後のt3とし、また指定された充電終了時刻を瞬時t4として示した。
 ステップS11において今がタイマ充電予約時刻中(t3~t4)でないと判定する場合、ステップS12において、ヒータースイッチ8がON中か否かにより、バッテリ1が加温中か否かをチェックする。
 なお、図3の瞬時t0以降におけるように充電器接続状態では、充電器7からの電力が存在しているため、ヒータースイッチ8がONであれば、メインリレースイッチ5のON,OFFに関係なくヒーター2を作動させることができ、従ってステップS12では上記の通り、ヒータースイッチ8がON中か否かのみにより、バッテリ1が加温中か否かをチェックすることができる。
 図3の加温開始瞬時t1よりも前のようにバッテリ1が加温中でなければ、ステップS13において、メインリレースイッチ5の「OFF」によりバッテリ1の充電を、図4の加温開始瞬時t1以前におけるバッテリ充電電力Pchg=0から明らかなように、禁止して行わないようにする。
 ステップS12でヒーター2のONによるバッテリ1の加温中と判定する場合、ステップS14において、当該加温の開始時(図3ではt1)に取得すべきバッテリ保持容量SOCholdを既に取得済みであるか否かをチェックする。
 未だバッテリ保持容量SOCholdを取得済みでなければ、ステップS15において加温開始時(図3ではt1)のバッテリ蓄電状態SOC(t1)をバッテリ保持容量SOCholdに設定した後、制御をステップS16に進め、既にステップS15の実行によりバッテリ保持容量SOCholdを取得済みであれば、このステップS15をスキップして、制御をステップS16に進める。
 ステップS16は、本発明における充電電力変更手段に相当するもので、このステップS16においては、バッテリ蓄電状態SOCがバッテリ保持容量SOCholdに保たれるようメインリレースイッチ5のON,OFFによりバッテリ1への充電電力Pchgを制御する。
 この制御は、SOC<SOCholdであれば、メインリレースイッチ5のONにより充電器7からバッテリ1へ充電電力を供給し、またSOC=SOCholdになったら、メインリレースイッチ5のOFFにより充電器7からバッテリ1へ充電電力が供給されないようにすることで、実現可能である。
 かようにバッテリ蓄電状態SOCがバッテリ保持容量SOCholdに保たれるようバッテリ1への充電電力Pchgを制御する場合、以下のような効果が得られる。
 図4は、図3の加温開始時t1と、指定された充電開始時刻t3との間における時間軸を、図3よりも拡大して示すもので、瞬時t1の直後にヒーター消費電力Pheatが急増し、その分だけバッテリ蓄電状態SOCが、瞬時t1の直後におけるバッテリ電圧Vbatの実線で示す低下傾向から明らかなごとく一時的に悪化する。
 かかるバッテリ蓄電状態SOCの悪化を放置しておくと、図3のタイマ予約充電時刻t3~t4中にバッテリ蓄電状態SOCを狙い通り満充電状態にし得なくなり、安価な深夜電力を用いた充電割合が低下してランニングコストが高くなったり、瞬時t4の充電終了後における走行開始時にバッテリ1が満充電状態でなくて、走行距離が短くなるという問題を生ずる。
 ところで本実施例においてはステップS16で、バッテリ蓄電状態SOCがバッテリ保持容量SOCholdに保たれるようバッテリ1への充電電力Pchgを、図4の加温開始時t1の直後に図4に示すごとくに増大させるため、瞬時t1の直後においてもバッテリ電圧Vbatを波線で示すごとく、バッテリ保持容量SOChold相当のレベルに保つことができる。
 このため、図3のタイマ予約充電時刻t3~t4以外にバッテリ蓄電状態SOCを瞬時t1のレベルよりも増大させるバッテリ充電が行われることがなくて、図3のタイマ予約充電時刻t3~t4中にバッテリ蓄電状態SOCを狙い通り満充電状態にすることができ、安価な深夜電力を用いた充電割合を最大限に高めてランニングコストを抑制することができ、また瞬時t4の充電終了後における走行開始時に確実にバッテリ1を満充電状態にすることができ、走行距離を最大限が延長することができる。
 図2のステップS11で今が、充電開始時刻t3(図3参照)および充電終了時刻t4(図3参照)間におけるタイマ充電予約時刻中と判定する場合、制御をステップS17に進める。
 このステップS17は本発明における充電電力変更手段に相当するもので、バッテリ蓄電状態SOCが満充電状態SOCfullとなるようメインリレースイッチ5のON,OFFによりバッテリ1への充電電力Pchgを制御する。
 この制御は、SOC<SOCfullであれば、メインリレースイッチ5のONにより充電器7からバッテリ1へ充電電力を供給し、またSOC=SOCfullになったら、メインリレースイッチ5のOFFにより充電器7からバッテリ1へ充電電力が供給されないようにすることで、実現可能である。
 かようにタイマ充電予約時刻中t3~t4にバッテリ蓄電状態SOCが満充電状態SOCfullとなるようバッテリ1への充電を行う場合、タイマ充電予約時刻の指定意図を確実に達成することができ、当該満充電のために消費される電力を全て、安価な深夜電力で賄うこととなって、ランニングコストを抑制することができる。
 上記した本実施例のバッテリ充電制御装置によれば、図3,4に示すように、
瞬時t1以降のヒーター2(電力負荷)の作動によるバッテリ1の加温中、今がタイマ充電予約時刻(t3~t4)であるか否かに応じ、今がタイマ充電予約時刻(t3~t4)でなければ、バッテリ蓄電状態SOCが、加温開始時t1のバッテリ蓄電状態SOC(t1)であるバッテリ保持容量SOCholdに保たれるようバッテリ1への充電電力Pchgを制御するため、図4に示すごとく加温開始時t1の直後にヒーター消費電力Pheatが急増し、その分だけバッテリ蓄電状態SOCが、瞬時t1の直後におけるバッテリ電圧Vbatの実線で示す低下傾向から明らかなごとく一時的に悪化する傾向にあっても、瞬時t1の直後におけるバッテリ電圧Vbatを波線で示すごとく、バッテリ保持容量SOChold相当のレベルに保つことができる。
 従って、図3のタイマ予約充電時刻t3~t4以外にバッテリ蓄電状態SOCを瞬時t1のレベルよりも増大させるバッテリ充電が行われることがなくて、その後における図3のタイマ予約充電時刻t3~t4中にバッテリ蓄電状態SOCを狙い通り満充電状態にすることができ、安価な深夜電力を用いた充電割合を最大限に高めてランニングコストを抑制することができ、また瞬時t4の充電終了後における走行開始時に確実にバッテリ1を満充電状態にすることができ、走行距離を最大限が延長することができる。
 また、今がタイマ充電予約時刻(t3~t4)である場合は、バッテリ蓄電状態SOCが満充電状態SOCfullにされるようバッテリ1への充電電力Pchgを制御するため、当該満充電のために消費される電力を全て、安価な深夜電力で賄うこととなって、ランニングコストを抑制することができる。

Claims (5)

  1.  充電時刻を指定して充電可能なバッテリと、該バッテリの充電電力系に接続され、所定条件の成立時に該充電電力系を経由した電力により作動される電力負荷とを具えたバッテリ充電制御装置において、
     前記電力負荷が作動されている間、前記指定した充電時刻中か否かに応じて、前記バッテリへの充電電力を異ならせる充電電力変更手段を設けたバッテリ充電制御装置。
  2.  請求項1に記載のバッテリ充電制御装置において、
     前記充電電力変更手段は、前記指定した充電時刻中か否かに応じ、前記バッテリへの充電電力を、満充電可能な満充電用充電電力と、満充電よりも小さな所定のバッテリ蓄電状態に保持するための蓄電状態保持用充電電力との間で切り替えるものであるバッテリ充電制御装置。
  3.  請求項2に記載のバッテリ充電制御装置において、
     前記充電電力変更手段は、前記指定した充電時刻中でない間、バッテリへの充電電力を前記蓄電状態保持用充電電力とし、前記指定した充電時刻中である間、バッテリへの充電電力を前記満充電用充電電力とするものであるバッテリ充電制御装置。
  4.  請求項2または3に記載のバッテリ充電制御装置において、
     前記蓄電状態保持用充電電力は、前記電力負荷が作動を開始した時のバッテリ蓄電状態にバッテリを保つのに必要な充電電力であるバッテリ充電制御装置。
  5.  請求項1~4のいずれか1項に記載のバッテリ充電制御装置において、
     前記電力負荷は、バッテリを所定温度未満になるときに加温して温度調節するヒーターであるバッテリ充電制御装置。
PCT/JP2012/055206 2011-03-11 2012-03-01 バッテリ充電制御装置 WO2012124487A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137005792A KR101456400B1 (ko) 2011-03-11 2012-03-01 배터리 충전 제어 장치
US13/817,769 US9136727B2 (en) 2011-03-11 2012-03-01 Battery charging control device
EP12757236.0A EP2685596B1 (en) 2011-03-11 2012-03-01 Battery charging control device
CN201280002823.7A CN103098339B (zh) 2011-03-11 2012-03-01 电池充电控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011054088A JP5732930B2 (ja) 2011-03-11 2011-03-11 バッテリ充電制御装置
JP2011-054088 2011-03-11

Publications (1)

Publication Number Publication Date
WO2012124487A1 true WO2012124487A1 (ja) 2012-09-20

Family

ID=46830562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055206 WO2012124487A1 (ja) 2011-03-11 2012-03-01 バッテリ充電制御装置

Country Status (6)

Country Link
US (1) US9136727B2 (ja)
EP (1) EP2685596B1 (ja)
JP (1) JP5732930B2 (ja)
KR (1) KR101456400B1 (ja)
CN (1) CN103098339B (ja)
WO (1) WO2012124487A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736860B2 (ja) * 2011-03-11 2015-06-17 日産自動車株式会社 バッテリ充電制御装置
WO2014003085A1 (en) * 2012-06-27 2014-01-03 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and solar power generation unit
CN103066666B (zh) 2013-01-22 2015-08-26 矽力杰半导体技术(杭州)有限公司 一种升压型电池充电管理系统及其控制方法
US10044214B2 (en) * 2013-03-08 2018-08-07 Texas Instruments Incorporated Battery charger
WO2015008757A1 (ja) * 2013-07-16 2015-01-22 日本電気株式会社 蓄電池の急速充電方法、急速充電システムおよびプログラム
JP6262514B2 (ja) * 2013-12-12 2018-01-17 住友化学株式会社 偏光板
JP6331697B2 (ja) 2014-05-28 2018-05-30 トヨタ自動車株式会社 蓄電システム
KR101610482B1 (ko) * 2014-07-28 2016-04-07 현대자동차주식회사 전기차의 충전 예약 취소 및 즉시 충전을 위한 방법 및 장치
JP6176223B2 (ja) 2014-11-04 2017-08-09 トヨタ自動車株式会社 バッテリシステム
JP6493344B2 (ja) * 2016-09-12 2019-04-03 トヨタ自動車株式会社 自動車
KR20180056238A (ko) 2016-11-18 2018-05-28 삼성전자주식회사 배터리 충전 방법, 배터리 충전 정보 생성 방법 및 배터리 충전 장치
WO2020228653A1 (zh) 2019-05-14 2020-11-19 中车青岛四方机车车辆股份有限公司 一种高速磁浮列车供电电池及供电系统
CN110224158A (zh) * 2019-05-14 2019-09-10 中车青岛四方机车车辆股份有限公司 一种高速磁浮列车供电电池及供电系统
CN113306453B (zh) * 2020-02-27 2022-10-04 北京新能源汽车股份有限公司 一种动力电池保温方法、装置、汽车和保温处理设备
CN114552068B (zh) * 2022-01-29 2024-04-26 北京新能源汽车股份有限公司 车辆及其动力电池加热方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767265A (ja) * 1993-08-30 1995-03-10 Komatsu Forklift Co Ltd 蓄電池の充電装置
JP2000040536A (ja) 1998-07-23 2000-02-08 Toyota Motor Corp バッテリ暖機装置
JP2010246320A (ja) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd 制御装置及び制御方法
JP2010246176A (ja) * 2009-04-01 2010-10-28 Nec Saitama Ltd 充電回路及び充電制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3376718B2 (ja) * 1994-10-17 2003-02-10 日産自動車株式会社 充電システム
JP3712518B2 (ja) * 1998-01-26 2005-11-02 株式会社アイチコーポレーション バッテリ充電装置
JP4126144B2 (ja) * 2000-05-11 2008-07-30 インターナショナル・ビジネス・マシーンズ・コーポレーション 充電システム、インテリジェント電池、および充電方法
CN1277341C (zh) * 2003-04-11 2006-09-27 崧顺电子(深圳)有限公司 电池充电定时器
US7849944B2 (en) * 2007-06-12 2010-12-14 Ut-Battelle, Llc Self-learning control system for plug-in hybrid vehicles
US7683570B2 (en) * 2007-07-18 2010-03-23 Tesla Motors, Inc. Systems, methods, and apparatus for battery charging
JP5441391B2 (ja) * 2008-11-07 2014-03-12 トヨタホーム株式会社 充電装置、充電装置を備えた建物、及び温水生成装置
US20100292855A1 (en) * 2009-05-14 2010-11-18 Michael Kintner-Meyer Battery Charging Control Methods, Electrical Vehicle Charging Methods, Battery Charging Control Apparatus, and Electrical Vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767265A (ja) * 1993-08-30 1995-03-10 Komatsu Forklift Co Ltd 蓄電池の充電装置
JP2000040536A (ja) 1998-07-23 2000-02-08 Toyota Motor Corp バッテリ暖機装置
JP2010246176A (ja) * 2009-04-01 2010-10-28 Nec Saitama Ltd 充電回路及び充電制御方法
JP2010246320A (ja) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd 制御装置及び制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2685596A4

Also Published As

Publication number Publication date
CN103098339B (zh) 2015-07-29
KR101456400B1 (ko) 2014-11-04
EP2685596A4 (en) 2014-09-03
JP5732930B2 (ja) 2015-06-10
JP2012191782A (ja) 2012-10-04
EP2685596B1 (en) 2018-04-25
US9136727B2 (en) 2015-09-15
EP2685596A1 (en) 2014-01-15
CN103098339A (zh) 2013-05-08
US20130147424A1 (en) 2013-06-13
KR20130054361A (ko) 2013-05-24

Similar Documents

Publication Publication Date Title
JP5732930B2 (ja) バッテリ充電制御装置
JP5736860B2 (ja) バッテリ充電制御装置
KR101609034B1 (ko) 배터리 온도 제어 장치
JP6229539B2 (ja) 車両のバッテリ制御装置
WO2017056162A1 (ja) 電力消費制御装置
KR101455946B1 (ko) 차량의 충전 제어 장치
WO2012124485A1 (ja) バッテリ温度制御装置
WO2017056161A1 (ja) 加温制御装置
WO2012124477A1 (ja) バッテリ温度制御装置
WO2013129217A1 (ja) 電動車両
JP2012178899A (ja) 充電装置
JP2016152067A (ja) 蓄電システム
JP2014075297A (ja) 蓄電システム
JP2017097971A (ja) 車載バッテリの温度調整装置
JP2016111721A (ja) 車両の充電制御装置
JP6402687B2 (ja) 車両電池システム
JP7439775B2 (ja) 電動車両の電源システム
JP2016037231A (ja) 車両用電源制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002823.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13817769

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012757236

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137005792

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE