WO2020228653A1 - 一种高速磁浮列车供电电池及供电系统 - Google Patents

一种高速磁浮列车供电电池及供电系统 Download PDF

Info

Publication number
WO2020228653A1
WO2020228653A1 PCT/CN2020/089520 CN2020089520W WO2020228653A1 WO 2020228653 A1 WO2020228653 A1 WO 2020228653A1 CN 2020089520 W CN2020089520 W CN 2020089520W WO 2020228653 A1 WO2020228653 A1 WO 2020228653A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
battery
aluminum
electrolyte
reactor
Prior art date
Application number
PCT/CN2020/089520
Other languages
English (en)
French (fr)
Inventor
梁建英
吴冬华
陈星�
邓桂美
薛健康
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910398886.2A external-priority patent/CN110224158A/zh
Priority claimed from CN201920684890.0U external-priority patent/CN210074046U/zh
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Priority to US17/432,936 priority Critical patent/US11916215B2/en
Priority to EP20806586.2A priority patent/EP3972019A4/en
Priority to CA3123697A priority patent/CA3123697C/en
Priority to JP2021541529A priority patent/JP7202471B2/ja
Publication of WO2020228653A1 publication Critical patent/WO2020228653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the aluminum air battery reactor includes a plurality of aluminum air single cells connected in series, and the aluminum air single cells are used to react with the introduced electrolyte to generate electricity.
  • the aluminum-air battery reactor is arranged above the corresponding electrolyte groove
  • the high-speed maglev train power supply system further includes: a low-voltage converter, a low-voltage power grid, and an on-board control system;
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed can be a fixed connection or a detachable connection.
  • it can be a mechanical connection or an electrical connection
  • it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the aluminum air battery reactor 30 is arranged above the corresponding electrolyte groove 101, and the liquid outlet of the aluminum air battery reactor 30 is arranged on the upper part of the aluminum air battery reactor 30.
  • the electrolyte is pumped in 30
  • the electrolyte is pumped in from below the aluminum-air battery reactor 30 and flows out from above. If the liquid flow pump 20 does not work, the electrolyte will not erroneously enter the aluminum-air battery reactor 30, so that when the aluminum-air battery reactor 30 is not required to generate electricity, even if the maglev train is in operation, the electrolyte in the electrolyte tank 10 will be generated. Shaking does not cause the electrolyte to enter the aluminum-air battery reactor 30 by mistake.
  • the power supply battery further includes a starting power source 40, a battery management system 50 and a cooling device 60.
  • the starting power source 40 is connected to the battery management system 50, and is used for supplying power to the battery management system 50 when starting.
  • the battery management system 50 is connected to the liquid flow pump 20 and is used to provide a working voltage for the liquid flow pump 20.
  • the liquid flow pump 20 needs to be started, that is, the liquid flow pump needs to be powered by the starting power supply 40 first.
  • the battery management system 50 can be provided with a wire that directly electrically connects the starting power source 40 and the liquid flow pump 20, so that the starting power source 40 can supply power to the liquid flow pump 20; a power processing circuit can also be provided in the battery management system 50. The electric energy of the starting power supply 40 is processed and then transmitted to the liquid flow pump 20 so that the liquid flow pump 20 can start and work.
  • the battery management system 50 is specifically used to control the working status of the aluminum-air battery and the liquid flow pump 20, such as controlling start and stop, speed, etc.;
  • the power processing circuit may be a voltage conversion circuit, a switch control circuit, etc., this embodiment is This is not limited.
  • the electrolyte in the electrolyte tank 10 can be introduced into the aluminum-air battery reactor 30, so that the electrolyte reacts with the battery reactor to realize power generation.
  • the electrolyte solution may specifically be potassium hydroxide (KOH) or sodium hydroxide (NaOH) aqueous solution.
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • the electrolyte reacts with the battery reactor 50 it converts chemical energy into electrical energy and also into thermal energy, that is, heat is generated during the reaction, which causes the aluminum air battery reactor 30 to heat up; in the embodiment of the present invention, the cooling device 60 is used
  • the aluminum air battery reactor 30 is radiated to avoid excessively high temperature of the aluminum air battery reactor.
  • secondary batteries such as alkaline batteries, lithium batteries, etc.
  • the secondary battery can be charged and discharged and has the advantage of being able to be used repeatedly; however, long-term storage of the secondary battery will reduce the battery discharge capacity, and there are technical problems such as heavy weight and the need to increase the battery charging control logic circuit design.
  • the aluminum-air battery uses high-purity aluminum (99.99% aluminum) as the negative electrode, oxygen as the positive electrode, and potassium hydroxide (KOH) or sodium hydroxide (NaOH) aqueous solution as the electrolyte.
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • the cooling device 60 includes a cooling fan 601 and a heat sink 602.
  • the current aluminum-air fuel cell has softer load characteristics when discharging and takes up a little more space.
  • the rail transit industry has stricter requirements on the size of equipment.
  • the space for installing power supply batteries on maglev trains is relatively small. It cannot be directly applied to the maglev train.
  • the electrolyte that reacts with the battery reactor is used as the water cooling liquid of the heat sink 602, and no additional water cooling system is required. While reducing the battery space, the electrolyte flowing out of the battery reactor 50 is used for efficient heat dissipation. , Can improve heat dissipation efficiency.
  • the function of 601 dissipates the electrolyte in the heat sink 602, and the electrolyte flows into the electrolyte tank 10 after passing through the heat sink 602, and the flow pump 20 introduces the electrolyte in the electrolyte tank 10 to the aluminum air battery again.
  • the power generation in the reactor 30 is repeated in this way.
  • the cooling device directly uses the electrolyte in the battery reactor as the water-cooling liquid, which is equivalent to directly dissipating the electrolyte in the battery reactor, and has high heat dissipation efficiency; and does not require an additional water cooling system, which can reduce the volume of the battery and is more suitable for Maglev train.
  • the aluminum-air battery reactor 30 can also charge the on-board secondary battery when generating electricity, that is, charge the starting power source 40, ensuring that the starting power source 40 has sufficient power to start the power supply battery.
  • the power supply battery further includes a single-phase diode; the aluminum-air battery reactor 30 supplies power to other devices through the single-phase diode.
  • the single-phase diode is arranged at the output end of the aluminum-air battery reactor 30 to avoid current backflow.
  • the embodiment of the present invention provides a high-speed maglev train power supply battery, which uses aluminum-air batteries as the power source of the high-speed maglev train on-board energy storage system, which has long-term storage without power loss, high energy density, high safety, rich resources, and manufacturing costs Low, clean and easy to recycle.
  • the use of the starting power supply enables the aluminum-air battery to start generating electricity, and then the aluminum-air battery can be used to supply power to the battery management system, liquid flow pump, etc., to achieve continuous work and continue to load the maglev train.
  • the power supply battery is the aluminum-air fuel cell described in the above embodiment, and power supply is realized by n parallel aluminum-air fuel cells; wherein, the voltage converter 200 is used to measure the output voltage of the aluminum-air fuel cell. The voltage is stabilized and converted into the on-board power supply voltage required by the maglev train, such as 440V; then, the power supply grid 300 can supply power to the on-board electrical equipment, such as the air conditioning system and the maglev guidance system in FIG. 5.
  • the power supply system for a high-speed maglev train uses an aluminum-air battery as the power supply of the high-speed maglev train. It has long-term storage without power loss, high energy density, high safety, rich resources, and low manufacturing cost. It is clean and easy to recycle.
  • the redundant design of multiple power supply batteries and multiple voltage converters can realize redundant power supply for trains. When an aluminum-air fuel cell fails abnormally, other aluminum-air fuel cells can continue to supply power to the train, so that aluminum-air fuel cells can be realized
  • the seamless switching power supply connection increases the reliability of the power supply system.
  • the power supply battery pack further includes n contactors KM; each contactor KM is connected in series with a corresponding power supply battery.
  • n contactors (KM1 ⁇ KMn) correspond to n power supply batteries (aluminum air fuel cell 1 ⁇ n), and the contactor KM is arranged at the output end of the power supply battery to facilitate the realization of multiple groups of aluminum air batteries Parallel and cut off.
  • the diode D in Figure 5 is a unidirectional diode for powering the battery to avoid current backflow.
  • the power supply system further includes: a low-voltage converter 400, a low-voltage power grid 500, and an on-board control system 600.
  • the input end of the low-voltage converter 400 is connected to the power supply grid 300, and the output end is connected to the low-voltage power grid 500 for stepping down the on-board power supply voltage of the power supply grid 300;
  • the on-board control system 600 is connected to the low-voltage power grid 500 and is powered by the low-voltage power grid 500 ;
  • the vehicle-mounted control system 600 is also connected to the battery management system 50 of the power supply battery for controlling the working state of the battery management system 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Hybrid Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种高速磁浮列车供电电池及供电系统,其中,该供电电池包括:电解液箱(10)、多个液流泵(20)和多个铝空电池反应堆(30),且多个铝空电池反应堆(30)依次串联;电解液箱(10)包括为多个长条状的电解液凹槽(101),一个液流泵(20)对应一个铝空电池反应堆(30),且对应一个电解液凹槽(101)。该高速磁浮列车供电电池及供电系统,采用铝空电池作为高速磁浮列车车载储能系统的电源,具有长时间存放不失电、能量密度大、安全性高、资源丰富、制造成本低、清洁易回收等优点。且可以保证整个供电电池的高电压,同时减少了自放电,有利于铝空电池的高度集成,缩小安装空间,实现持续工作,持续为磁浮列车负载功能。

Description

一种高速磁浮列车供电电池及供电系统
本申请要求下述专利申请的优先权,其全部内容通过引用结合在本申请中:
1)2019年05月14日提交中国专利局、申请号为201910398886.2、发明名称为“一种高速磁浮列车供电电池及供电系统”的发明专利申请。
2)2019年05月14日提交中国专利局、申请号为201920684890.0、发明名称为“一种高速磁浮列车供电电池及供电系统”的实用新型专利申请。
技术领域
本发明涉及磁浮列车车载供电技术领域,具体而言,涉及一种高速磁浮列车供电电池及供电系统。
背景技术
目前,国内高速磁浮列车最高试验运行速度达到503km/h,最高实际运营时速为可达430km/h。随着时间的推移和技术创新研发,将会出现600km/h以上的更高速磁浮列车,那么,高速磁悬浮列车必然将会成为长距离运行的主要交通工具之一。不过,高速磁悬浮列车的长距离运行也会带来新的技术问题:列车故障停车时,如何保证车内乘客的舒适度;列车故障修复后,如何重新启动和运行。因此,在长距离运行线路上,列车任一地点故障停车时都需要继续给列车供电。
目前高速磁悬浮列车停车时,都是通过接触式受流轨(或非接触式受流线圈)给列车继续供电,以便于车内照明、空调等系统用电;同时也对列车动力电池进行充电,以便于列车再次起浮和运行用电。现在国内在线运营的磁浮轨道交通线路短、单一且在线运营列车数量少,并且,高速磁悬浮列车具有高可靠性冗余设计,所以,列车出现故障问题时,都可以运行至就近停车站的接触式受流轨(或非接触式供电线圈)。所以,目前国内高速磁悬浮列车在短距离运行线路上不存在故障停车供电的技术难题。
在长距离运行线路上,为实现列车任一地点故障停车时能够继续给列车供电而全线铺设受流轨(或供电线圈),会极大增加磁浮轨道投资成本,也增加了维护成本和供电成本;同时,由于列车具有高可靠冗余性设计,使得列车故障停车的概率较小,这样铺设供电轨(或供电线圈)的经济效益也很低。因此,列车需要一种特殊的车载储能系统来解决长距离运行的高速磁悬浮故障停车的供电这一技术难题。
发明内容
为解决上述问题,本发明实施例的目的在于提供一种高速磁浮列车供电电池及供电系统。
第一方面,本发明实施例提供了一种高速磁浮列车供电电池,包括:电解液箱、多个液流泵和多个铝空电池反应堆,且多个所述铝空电池反应堆依次串联;
所述电解液箱包括为多个长条状的电解液凹槽,一个所述液流泵对应一个所述铝空电池反应堆,且对应一个所述电解液凹槽;
所述液流泵的入口设置在所述电解液凹槽内,所述液流泵的出口与所述铝空电池反应堆的入液口相连,所述液流泵用于将所述电解液箱中的电解液导入至所述铝空电池反应堆中;
所述铝空电池反应堆包括多个串联的铝空单体电池,所述铝空单体电池用于与导入的电解液反应进行发电。
在一种可能的实现方式中,所述铝空电池反应堆设置在相应的电解液凹槽的上方;
所述铝空电池反应堆的出液口设置在所述铝空电池反应堆的上部。
在一种可能的实现方式中,所述电解液箱的数量为多个,且每个所述电解液箱对应的铝空电池反应堆与相邻的其他电解液箱对应的铝空电池反应堆之间也依次串联。
在一种可能的实现方式中,该供电电池还包括:启动电源、电池管理系统和冷却装置;
所述启动电源与所述电池管理系统相连,用于在启动时为所述电池管 理系统供电;
所述电池管理系统与所述液流泵相连,用于为所述液流泵提供工作电压;
所述铝空电池反应堆还用于为车载用电负载和所述电池管理系统供电;
所述冷却装置设置在所述铝空电池反应堆的外围,用于对所述铝空电池反应堆进行散热。
在一种可能的实现方式中,所述冷却装置包括冷却风机和散热片;
所述散热片设置在所述铝空电池反应堆的外围,且所述冷却风机的出风口朝向所述散热片;
所述散热片的入口与所述铝空电池反应堆的出液口相连,所述散热片的出口与所述电解液箱的入液口相连。
在一种可能的实现方式中,所述冷却风机的入风口与所述铝空电池反应堆的腔体相连通。
在一种可能的实现方式中,所述启动电源为车载二次电池。
在一种可能的实现方式中,所述铝空电池反应堆还用于为所述车载二次电池充电。
在一种可能的实现方式中,该供电电池还包括:加热装置;
所述加热装置与所述电池管理系统相连,由所述电池管理系统提供电能,并对所述电解液箱进行加热。
在一种可能的实现方式中,该供电电池还包括单相二极管;
所述铝空电池反应堆通过所述单相二极管为其他设备供电。
第二方面,本发明实施例还提供了一种高速磁浮列车供电系统,包括供电电池组、电压变换器和供电电网;所述供电电池组包括n个并联的如上所述的供电电池;
所述供电电池组的输出端通过所述电压变换器与所述供电电网相连;所述电压变换器用于将所述供电电池组的输出电压变换为车载供电电压。
在一种可能的实现方式中,所述供电电池组还包括n个接触器;每个所述接触器与相应的供电电池串联。
在一种可能的实现方式中,所述的高速磁浮列车供电系统还包括:低 压变换器、低压电网和车载控制系统;
所述低压变换器的输入端与所述供电电网,输出端与所述低压电网相连,用于对所述供电电网的车载供电电压进行降压处理;
所述车载控制系统与所述低压电网相连,由所述低压电网供电;且所述车载控制系统还与所述供电电池的电池管理系统相连,用于控制所述电池管理系统的工作状态。
本发明实施例上述第一方面提供的方案中,采用铝空电池作为高速磁浮列车车载储能系统的电源,具有长时间存放不失电、能量密度大、安全性高、资源丰富、制造成本低、清洁易回收等优点。同时,将电解液箱分为多个长条状的电解液凹槽,每个电解液凹槽设置一个铝空电池反应堆和液流泵,可以保证整个供电电池的高电压,同时减少了自放电,有利于铝空电池的高度集成,缩小安装空间,可以实现持续工作,持续为磁浮列车负载功能。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例所提供的高速磁浮列车供电电池的第一结构示意图;
图2示出了本发明实施例所提供的高速磁浮列车供电电池中,电解液箱的俯视结构示意图;
图3示出了本发明实施例所提供的高速磁浮列车供电电池的第二结构示意图;
图4示出了本发明实施例所提供的高速磁浮列车供电电池的第三结构 示意图;
图5示出了本发明实施例所提供的一种高速磁浮列车供电系统的结构示意图。
图标:10-电解液箱、20-液流泵、30-铝空电池反应堆、40-启动电源、50-电池管理系统、60-冷却装置、70-加热装置、101-电解液凹槽、102-通孔、301-铝空单体电池、302-导线、601-冷却风机、602-散热片、100-供电电池组、200-电压变换器、300-供电电网、400-低压变换器、500-低压电网和600-车载控制系统。
具体实施方式
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明实施例提供的一种高速磁浮列车供电电池,参见图1所示,包括:电解液箱10、多个液流泵20和多个铝空电池反应堆30,且多个铝空电池反应堆30依次串联。图1中,两个铝空电池反应堆30之间通过导线 302实现串联。
其中,电解液箱10包括为多个长条状的电解液凹槽101,一个液流泵20对应一个铝空电池反应堆30,且对应一个电解液凹槽101。图3中以包含3个液流泵20和3个铝空电池反应堆30为例说明;同时,铝空电池反应堆包括多个串联的铝空单体电池,图3中每个铝空电池反应堆包含8个铝空单体电池301。
液流泵20的入口设置在电解液凹槽101内,液流泵20的出口与铝空电池反应堆30的入液口相连,液流泵20用于将电解液箱10中的电解液导入至铝空电池反应堆30中;铝空电池反应堆30包括多个串联的铝空单体电池301,铝空单体电池301用于与导入的电解液反应进行发电。
本发明实施例中,选用铝空燃料电池作为高速磁浮列车的供电电池。采用铝空电池作为高速磁浮列车车载储能系统的电源,具有长时间存放不失电、能量密度大、安全性高、资源丰富、制造成本低、清洁易回收等优点。
此外,为了解决长距离运行高速磁悬浮故障停车的供电这一技术难题,需要供电电池具有较高的容量,此时需要串联较多的铝空单体电池。当铝空电池反应堆内的铝空单体电池串联数量过多时,铝空电池反应堆中的电解液相当于一个负载,从而与串联的铝空单体电池形成自放电回路,产生自放电现象;铝空单体电池串联数量越多,自放电越严重,切会导致电解液发热,影响供电电池的散热效果。
本实施例中为了降低自放电效应,将电解液箱10分为多个长条状的电解液凹槽101,每个电解液凹槽101设置一个铝空电池反应堆30和液流泵20,即铝空电池反应堆30之间的电解液回路是相互独立的,从而可以避免铝空单体电池串联过多的问题;同时,铝空电池反应堆30依次串联,从而可以保证整个供电电池的高电压,同时减少了自放电,有利于铝空电池的高度集成,缩小安装空间。
其中,可选的,参见图2所示,图2示意性表示电解液箱10的俯视图,其中,相邻的电解液凹槽101之间可以设置通孔102,使得电解液凹槽101中的电解液可以互通;同时,所有的通孔102依次设置在所述电解液凹槽101的不同侧,使得电解液箱10中可以形成S形的电解液回路,具体参见 图2中虚线所示。将所有的电解液凹槽101组成一个完整的回路,整个回路可以与冷却装置连通,可以简化整体结构。
可选的,电解液箱10的数量也可以为多个,且每个电解液箱10对应的铝空电池反应堆30与相邻的其他电解液箱10对应的铝空电池反应堆30之间也依次串联。
本发明实施例提供的一种高速磁浮列车供电电池,采用铝空电池作为高速磁浮列车车载储能系统的电源,具有长时间存放不失电、能量密度大、安全性高、资源丰富、制造成本低、清洁易回收等优点。同时,将电解液箱分为多个长条状的电解液凹槽,每个电解液凹槽设置一个铝空电池反应堆和液流泵,可以保证整个供电电池的高电压,同时减少了自放电,有利于铝空电池的高度集成,缩小安装空间。
在上述实施例的基础上,铝空电池反应堆30设置在相应的电解液凹槽101的上方;铝空电池反应堆30的出液口设置在铝空电池反应堆30的上部。
本发明实施例中,将铝空电池反应堆30设置在相应的电解液凹槽101的上方,铝空电池反应堆30的出液口设置在铝空电池反应堆30的上部,当需要向铝空电池反应堆30泵入电解液时,电解液从铝空电池反应堆30的下方泵入,从上方流出。若液流泵20不工作,电解液不会误入到铝空电池反应堆30中,使得当不需要铝空电池反应堆30发电时,即使磁浮列车处于运行状态导致电解液箱10中的电解液发生晃动,也不会使得电解液误入到铝空电池反应堆30中。
需要说明的是,为了方便显示供电电池的结构,图1中在每个部件之间设置了缝隙,本领域技术人员可以理解,为了提高空间利用率,各个部件之间可以紧密设置。比如,相邻的电解液凹槽101相互贴紧,相邻的铝空单体电池301也相互贴紧,以节约空间。
在上述实施例的基础上,参见图3所示,该供电电池还包括:启动电源40、电池管理系统50和冷却装置60。
具体的,参见图3所示,启动电源40与电池管理系统50相连,用于在启动时为电池管理系统50供电。电池管理系统50与液流泵20相连,用于为液流泵20提供工作电压。
所述铝空电池反应堆还用于与导入的电解液反应进行发电,并为车载用电负载和电池管理系统50供电。冷却装置60设置在铝空电池反应堆30的外围,用于对铝空电池反应堆30进行散热。
本发明实施例提供的高速磁浮列车供电电池的工作过程具体如下:
当需要使用该供电电池进行供电时,需要启动液流泵20,即需要先通过启动电源40为液流泵供电。具体的,电池管理系统50中可以设置直接电连接启动电源40与液流泵20的导线,使得启动电源40可以为液流泵20供电;也可以在电池管理系统50中设置电源处理电路,对启动电源40的电能进行处理后再传输至液流泵20,以使得液流泵20可以启动并工作。其中,电池管理系统50具体用于控制铝空电池以及液流泵20的工作状态,例如控制启停、转速大小等;该电源处理电路可以是电压转换电路、开关控制电路等,本实施例对此不做限定。
在液流泵20开始工作后,即可将电解液箱10中的电解液导入至铝空电池反应堆30中,以使得电解液与电池反应堆发生反应,实现发电。其中,该电解液具体可以是氢氧化钾(KOH)或氢氧化钠(NaOH)水溶液。同时,电解液与电池反应堆50发生反应时,将化学能转换为电能,且还会转换为热能,即反应过程会发热,从而导致铝空电池反应堆30升温;本发明实施例中通过冷却装置60对铝空电池反应堆30进行散热,避免铝空电池反应堆温度过高。
目前主要将二次电池(如:碱性电池,锂电池等)作为高速磁浮列车车载储能系统的电源。二次电池可以充放电,具有可以重复多次使用的优点;不过二次电池长时间存放会导致电池放电量的减少,还存在重量较大且需要增加电池充电控制逻辑电路设计等技术问题。铝空气电池以高纯度铝Al(含铝99.99%)为负极、氧为正极,以氢氧化钾(KOH)或氢氧化钠(NaOH)水溶液为电解质。铝摄取空气中的氧,在电池放电时产生化学反应,将化学能转换为电能。以氢氧化钠电解质为例,具体反应如下:
Al+O 2+NaOH→NaAlO 2+H 2O;
本发明实施例中采用铝空电池作为高速磁浮列车车载储能系统的电源,具有长时间存放不失电的优点,且铝空电池还具有能量密度大、安全性高、资源丰富、制造成本低、清洁易回收等优点。此外,由于高速磁浮 使用铝空燃料电池作为故障停车的备用电源储能系统,主要用于满足列车必需负载供电和车载动力电池供电,此时需要的功率密度相对较少;且由于列车采用高可靠性冗余设计,使得列车出现非停车站故障概率低。因此,铝空电池是作为高速磁浮列车一种备用储能系统的理想选择。
同时,由于铝空电池放电时,需要液流泵20将电解液箱10中的电解液抽入电池反应堆50中去,且持续时间很短,在电池反应堆50发生反应后即可为液流泵20供电。所以,本发明实施例中,通过额外设置一个启动电源40即可实现铝空电池的启动,且该启动电源40不需要是大容量的电源,对启动电源40的容量要求较低。具体的,可以将高速磁浮列车的车载二次电池作为铝空电池的启动电源。当铝空电池反应堆发出电时,又可以为电池管理系统50、液流泵30和列车负载等设备供电,从而实现了铝空燃料电池的发电过程。
本发明实施例提供的一种高速磁浮列车供电电池,采用铝空电池作为高速磁浮列车车载储能系统的电源,具有长时间存放不失电、能量密度大、安全性高、资源丰富、制造成本低、清洁易回收等优点。利用启动电源使得铝空电池可以开始发电,之后即可利用铝空电池对电池管理系统、液流泵等供电,实现持续工作,持续为磁浮列车负载功能。
在上述实施例的基础上,参见图4所示,冷却装置60包括冷却风机601和散热片602。
其中,散热片602设置在铝空电池反应堆30的外围,且冷却风机601的出风口朝向散热片602;散热片602的入口与铝空电池反应堆30的出液口相连,散热片602的出口与电解液箱10的入液口相连。
现在的铝空燃料电池放电时负载特性较软,占用空间稍大,而轨道交通行业对设备空间大小的要求较为严格,磁浮列车上用于安装供电电池的空间较小,传统的铝空电池并不能直接应用在磁浮列车上。本发明实施例中,将与电池反应堆发生反应的电解液作为散热片602的水冷液,不需要额外的水冷系统,在降低电池空间的同时,还利用电池反应堆50内部流出的电解液进行高效散热,可以提高散热效率。
本发明实施例中冷却装置60的工作过程具体如下:在需要铝空电池发电时,液流泵20将电解液箱10中的电解液泵入至铝空电池反应堆30中, 使得电池反应堆与电解液发生反应并提供电能;同时,铝空电池反应堆内的电解液(包含反应后的溶液)因化学反应从而升温,之后,升温的电解液流入至散热片602内,经散热片602和冷却风机601的作用对散热片602内的电解液进行散热,且电解液再经过散热片602后流入至电解液箱10,供液流泵20再次将电解液箱10中的电解液导入至铝空电池反应堆30内发电,如此循环。该冷却装置直接将电池反应堆内的电解液作为水冷液,相当于直接对电池反应堆内的电解液进行散热,散热效率高;且不需要额外的水冷系统,可以减小电池的体积,更适用于磁浮列车。
在上述实施例的基础上,参见图4所示,图4中的细线箭头表示电路、粗线箭头表示电解液的水路、虚线表示空气通路。具体的,冷却风机601的入风口与铝空电池反应堆30的腔体相连通。当冷却风机601工作时,冷却风机601可以将铝空电池反应堆30的腔体内的空气抽出,同时由于铝空电池反应堆30的腔体内压强降低,从而将外部的空气引入至铝空电池反应堆30内,从而保证铝空电池反应堆30的含氧量,保证铝空电池可以高效地发生化学反应。同时,铝空电池发生化学反应时,铝空电池反应堆30的腔体内的空气也为热空气,通过冷却风机601将热空气抽出,也有利于进一步散热。
在上述实施例的基础上,铝空电池反应堆30在发电时,还可以为车载二次电池充电,即为启动电源40充电,保证启动电源40具有充足的电能启动该供电电池。
在上述实施例的基础上,参见图4所示,该供电电池还包括:加热装置70;加热装置70与电池管理系统50相连,由电池管理系统50提供电能,并对电解液箱10进行加热。
本发明实施例中,电解液箱10主要用于存放电解液,在寒冷天气下电解液可能被冻结;该加热装置70设置在电解液箱10的底部,在电解液被冻结时,由加热装置70对电解液进行加热解冻,保证液流泵20可以正常泵出电解液。在铝空电池正常工作后,即可关闭该加热装置70。
在上述实施例的基础上,该供电电池还包括单相二极管;铝空电池反应堆30通过单相二极管为其他设备供电。本发明实施例中,单相二极管设置在铝空电池反应堆30的输出端,避免电流回流。
本发明实施例提供的一种高速磁浮列车供电电池,采用铝空电池作为高速磁浮列车车载储能系统的电源,具有长时间存放不失电、能量密度大、安全性高、资源丰富、制造成本低、清洁易回收等优点。利用启动电源使得铝空电池可以开始发电,之后即可利用铝空电池对电池管理系统、液流泵等供电,实现持续工作,持续为磁浮列车负载功能。冷却装置直接将电池反应堆内的电解液作为水冷液,相当于直接对电池反应堆内的电解液进行散热,散热效率高;且不需要额外的水冷系统,可以减小电池的体积,更适用于磁浮列车。冷却风机的入风口与铝空电池反应堆的腔体相连通,在保证铝空电池反应堆内具有充足氧气的同时,还可以进一步提高散热效率。
基于同样的发明构思,本发明实施例还提供一种高速磁浮列车供电系统,参见图5所示,包括供电电池组100、电压变换器200和供电电网300。供电电池组100包括n个并联的供电电池;供电电池组100的输出端通过电压变换器200与供电电网300相连;电压变换器200用于将供电电池组100的输出电压变换为车载供电电压。
本发明实施例中,供电电池即为上述实施例所述的铝空燃料电池,通过n个并联的铝空燃料电池实现供电;其中,电压变换器200用于对铝空燃料电池的输出电压进行稳压,并转换为磁浮列车所需的车载供电电压,例如440V;之后通过供电电网300即可为车载用电设备供电,例如对图5中的空调系统、磁浮导向系统等供电。
本发明实施例提供的一种高速磁浮列车供电系统,采用铝空电池作为高速磁浮列车供电系统的电源,具有长时间存放不失电、能量密度大、安全性高、资源丰富、制造成本低、清洁易回收等优点。多供电电池以及多电压变换器的冗余设计,可以实现为列车冗余供电,当一台铝空燃料电池异常故障,可以由其他铝空燃料电池继续为列车供电,这样可以实现铝空燃料电池的无缝切换供电连接,增加供电系统的可靠性。
在上述实施例的基础上,参见图5所示,供电电池组还包括n个接触器KM;每个接触器KM与相应的供电电池串联。如图5所示,n个接触器(KM1~KMn)对应n个供电电池(铝空燃料电池1~n),且接触器KM设置在供电电池的输出端,以便于实现多组铝空电池的并联和切除。同时, 图5中的二极管D为供电电池的单向二极管,避免电流回流。
在上述实施例的基础上,参见图5所示,该供电系统还包括:低压变换器400、低压电网500和车载控制系统600。
低压变换器400的输入端与供电电网300,输出端与低压电网500相连,用于对供电电网300的车载供电电压进行降压处理;车载控制系统600与低压电网500相连,由低压电网500供电;且车载控制系统600还与供电电池的电池管理系统50相连,用于控制电池管理系统50的工作状态。
本发明实施例中,该供电系统通过低压变换器400将高压转换为低压,从而可以为车载用电设备提供低电压;且通过车载控制系统600实现对车载用电设备以及供电电池组100的控制。具体的,参见图5所示,图5中的粗线表示供电线路、细线表示低压线路、虚线表示信号线路。供电电池组100中的铝空电池的故障切除和列车其他非必需负载的切除均可以通过车载控制系统600进行控制。这样便实现了铝空燃料电池与列车供电网络的接口关系,实现对磁浮列车整车供电。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (14)

  1. 一种高速磁浮列车供电电池,其特征在于,包括:电解液箱、多个液流泵和多个铝空电池反应堆,且多个所述铝空电池反应堆依次串联;
    所述电解液箱包括为多个长条状的电解液凹槽,一个所述液流泵对应一个所述铝空电池反应堆,且对应一个所述电解液凹槽;
    所述液流泵的入口设置在所述电解液凹槽内,所述液流泵的出口与所述铝空电池反应堆的入液口相连,所述液流泵用于将所述电解液箱中的电解液导入至所述铝空电池反应堆中;
    所述铝空电池反应堆包括多个串联的铝空单体电池,所述铝空单体电池用于与导入的电解液反应进行发电。
  2. 根据权利要求1所述的高速磁浮列车供电电池,其特征在于,所述铝空电池反应堆设置在相应的电解液凹槽的上方;
    所述铝空电池反应堆的出液口设置在所述铝空电池反应堆的上部。
  3. 根据权利要求1所述的高速磁浮列车供电电池,其特征在于,
    相邻的两个所述电解液凹槽之间设有通孔,且所有的通孔依次设置在所述电解液凹槽的不同侧。
  4. 根据权利要求1所述的高速磁浮列车供电电池,其特征在于,
    所述电解液箱的数量为多个,且每个所述电解液箱对应的铝空电池反应堆与相邻的其他电解液箱对应的铝空电池反应堆之间也依次串联。
  5. 根据权利要求1所述的高速磁浮列车供电电池,其特征在于,还包括:启动电源、电池管理系统和冷却装置;
    所述启动电源与所述电池管理系统相连,用于在启动时为所述电池管理系统供电;
    所述电池管理系统与所述液流泵相连,用于为所述液流泵提供工作电压;
    所述铝空电池反应堆还用于为车载用电负载和所述电池管理系统供电;
    所述冷却装置设置在所述铝空电池反应堆的外围,用于对所述铝空电池反应堆进行散热。
  6. 根据权利要求1所述的高速磁浮列车供电电池,其特征在于,所述 冷却装置包括冷却风机和散热片;
    所述散热片设置在所述铝空电池反应堆的外围,且所述冷却风机的出风口朝向所述散热片;
    所述散热片的入口与所述铝空电池反应堆的出液口相连,所述散热片的出口与所述电解液箱的入液口相连。
  7. 根据权利要求6所述的高速磁浮列车供电电池,其特征在于,所述冷却风机的入风口与所述铝空电池反应堆的腔体相连通。
  8. 根据权利要求5所述的高速磁浮列车供电电池,其特征在于,所述启动电源为车载二次电池。
  9. 根据权利要求8所述的高速磁浮列车供电电池,其特征在于,所述铝空电池反应堆还用于为所述车载二次电池充电。
  10. 根据权利要求5所述的高速磁浮列车供电电池,其特征在于,还包括:加热装置;
    所述加热装置与所述电池管理系统相连,由所述电池管理系统提供电能,并对所述电解液箱进行加热。
  11. 根据权利要求1所述的高速磁浮列车供电电池,其特征在于,还包括单相二极管;
    所述铝空电池反应堆通过所述单相二极管为其他设备供电。
  12. 一种高速磁浮列车供电系统,其特征在于,包括供电电池组、电压变换器和供电电网;所述供电电池组包括n个并联的如权利要求1-11任一所述的供电电池;
    所述供电电池组的输出端通过所述电压变换器与所述供电电网相连;所述电压变换器用于将所述供电电池组的输出电压变换为车载供电电压。
  13. 根据权利要求12所述的高速磁浮列车供电系统,其特征在于,所述供电电池组还包括n个接触器;每个所述接触器与相应的供电电池串联。
  14. 根据权利要求12所述的高速磁浮列车供电系统,其特征在于,还包括:低压变换器、低压电网和车载控制系统;
    所述低压变换器的输入端与所述供电电网,输出端与所述低压电网相连,用于对所述供电电网的车载供电电压进行降压处理;
    所述车载控制系统与所述低压电网相连,由所述低压电网供电;且所 述车载控制系统还与所述供电电池的电池管理系统相连,用于控制所述电池管理系统的工作状态。
PCT/CN2020/089520 2019-05-14 2020-05-11 一种高速磁浮列车供电电池及供电系统 WO2020228653A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/432,936 US11916215B2 (en) 2019-05-14 2020-05-11 Power supply battery and power supply system for high-speed maglev trains
EP20806586.2A EP3972019A4 (en) 2019-05-14 2020-05-11 POWER SUPPLY BATTERY AND POWER SUPPLY SYSTEM FOR HIGH-SPEED MAGNETIC LEVITATION TRAINS
CA3123697A CA3123697C (en) 2019-05-14 2020-05-11 Power supply battery and power supply system for high-speed maglev trains
JP2021541529A JP7202471B2 (ja) 2019-05-14 2020-05-11 高速磁気浮上列車の電力供給電池及び電力供給システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910398886.2A CN110224158A (zh) 2019-05-14 2019-05-14 一种高速磁浮列车供电电池及供电系统
CN201920684890.0U CN210074046U (zh) 2019-05-14 2019-05-14 一种高速磁浮列车供电电池及供电系统
CN201920684890.0 2019-05-14
CN201910398886.2 2019-05-14

Publications (1)

Publication Number Publication Date
WO2020228653A1 true WO2020228653A1 (zh) 2020-11-19

Family

ID=73289328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089520 WO2020228653A1 (zh) 2019-05-14 2020-05-11 一种高速磁浮列车供电电池及供电系统

Country Status (5)

Country Link
US (1) US11916215B2 (zh)
EP (1) EP3972019A4 (zh)
JP (1) JP7202471B2 (zh)
CA (1) CA3123697C (zh)
WO (1) WO2020228653A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149975A (ja) * 1998-11-06 2000-05-30 Sumitomo Electric Ind Ltd レドックスフロー型2次電池
CN103875122A (zh) * 2011-10-21 2014-06-18 日产自动车株式会社 注液式空气电池
CN104900942A (zh) * 2015-04-30 2015-09-09 德阳东深新能源科技有限公司 集成化铝-空气燃料电池系统以及液流、气流控制方法
CN108321344A (zh) * 2018-01-17 2018-07-24 重庆鼎工机电有限公司 一种铝空气电池、电池组及发电机组
CN110224158A (zh) * 2019-05-14 2019-09-10 中车青岛四方机车车辆股份有限公司 一种高速磁浮列车供电电池及供电系统
CN210074046U (zh) * 2019-05-14 2020-02-14 中车青岛四方机车车辆股份有限公司 一种高速磁浮列车供电电池及供电系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3239396C2 (de) * 1982-10-25 1985-01-17 Accumulatorenwerke Hoppecke Carl Zoellner & Sohn GmbH & Co KG, 5790 Brilon Batterie
GB9021221D0 (en) * 1990-09-28 1990-11-14 Chloride Group Plc Metal air batteries
CN201109373Y (zh) 2007-12-11 2008-09-03 株洲南车时代电气股份有限公司 低速磁浮列车辅助电源装置
JP4395576B2 (ja) * 2008-03-21 2010-01-13 トヨタ自動車株式会社 電源制御装置
CN102762409A (zh) * 2009-11-13 2012-10-31 德莱赛公司 再充电电动车辆
JP5732930B2 (ja) 2011-03-11 2015-06-10 日産自動車株式会社 バッテリ充電制御装置
CN103531832B (zh) 2013-09-26 2017-11-03 浙江吉利控股集团有限公司 电动汽车及其铝空气电池系统
CN106602182B (zh) * 2016-12-30 2019-06-11 云南创能斐源金属燃料电池有限公司 金属空气电池系统以及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149975A (ja) * 1998-11-06 2000-05-30 Sumitomo Electric Ind Ltd レドックスフロー型2次電池
CN103875122A (zh) * 2011-10-21 2014-06-18 日产自动车株式会社 注液式空气电池
CN104900942A (zh) * 2015-04-30 2015-09-09 德阳东深新能源科技有限公司 集成化铝-空气燃料电池系统以及液流、气流控制方法
CN108321344A (zh) * 2018-01-17 2018-07-24 重庆鼎工机电有限公司 一种铝空气电池、电池组及发电机组
CN110224158A (zh) * 2019-05-14 2019-09-10 中车青岛四方机车车辆股份有限公司 一种高速磁浮列车供电电池及供电系统
CN210074046U (zh) * 2019-05-14 2020-02-14 中车青岛四方机车车辆股份有限公司 一种高速磁浮列车供电电池及供电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3972019A4

Also Published As

Publication number Publication date
US20220181723A1 (en) 2022-06-09
JP2022517655A (ja) 2022-03-09
EP3972019A1 (en) 2022-03-23
JP7202471B2 (ja) 2023-01-11
CA3123697C (en) 2024-06-04
EP3972019A4 (en) 2024-02-28
US11916215B2 (en) 2024-02-27
CA3123697A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
CN110224158A (zh) 一种高速磁浮列车供电电池及供电系统
CN107516905B (zh) 一种多元耦合储能系统
CN102555765A (zh) 一种燃料电池-锂离子电池混合动力系统
KR101673717B1 (ko) 연료전지 자동차를 이용한 이동식 발전 시스템 및 그 제어 방법
CN212400925U (zh) 增程式混合动力工程机械能量管理系统
JP2004530874A (ja) 原子力発電所の補助構成要素に非常用電源を行うための装置及び方法
CN210074046U (zh) 一种高速磁浮列车供电电池及供电系统
CN110661020A (zh) 一种燃料电池的空气系统
CN111987786A (zh) 一种基于户用热电联合供应的能量管理系统及方法
CN115900054A (zh) 一种集成燃料电池热电联供的能源舱和控制方法
WO2020228653A1 (zh) 一种高速磁浮列车供电电池及供电系统
CN212400926U (zh) 多动力源工程机械能量管理系统
JP7156890B2 (ja) 燃料電池システム
CN214778163U (zh) 一种基于燃料电池的集装箱保温系统
CN213959823U (zh) 一种基于铝空气电池的不间断铝燃料电源系统
CN105184406A (zh) 一种绿色数据中心备用能源系统优化设计方法
CN211127174U (zh) 一种燃料电池应急供电车的发电装置
JP2014063713A (ja) エネルギー管理システム
CN202178611U (zh) 三级保险通信基站供电系统
JP4831063B2 (ja) 燃料電池システム
CN210608673U (zh) 一种ups供电系统
CN217035688U (zh) 一种基于固态储氢的风冷燃料电池供气系统
CN212861169U (zh) 一种燃料电池汽车的开关机系统
CN216981575U (zh) 一种铝空燃料电池混动装置
CN216185971U (zh) 氢燃料电池调配系统及氢燃料电池船舶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3123697

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021541529

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020806586

Country of ref document: EP

Effective date: 20211214