WO2017056161A1 - 加温制御装置 - Google Patents

加温制御装置 Download PDF

Info

Publication number
WO2017056161A1
WO2017056161A1 PCT/JP2015/077364 JP2015077364W WO2017056161A1 WO 2017056161 A1 WO2017056161 A1 WO 2017056161A1 JP 2015077364 W JP2015077364 W JP 2015077364W WO 2017056161 A1 WO2017056161 A1 WO 2017056161A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
temperature
unit
heating
effective capacity
Prior art date
Application number
PCT/JP2015/077364
Other languages
English (en)
French (fr)
Inventor
徹 大垣
英城 釜谷
由和 見目
圭祐 藤巻
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201580083267.4A priority Critical patent/CN108028442B/zh
Priority to PCT/JP2015/077364 priority patent/WO2017056161A1/ja
Priority to US15/759,614 priority patent/US10770766B2/en
Priority to JP2017542533A priority patent/JP6488398B2/ja
Publication of WO2017056161A1 publication Critical patent/WO2017056161A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a heating control device for a storage battery mounted on an electric vehicle.
  • Patent Document 1 describes an electric vehicle charging system that heats a storage battery by heat transfer from a heat storage material provided in the electric vehicle according to the temperature of the storage battery when charging the storage battery of the electric vehicle.
  • the storage battery can be heated using the heat storage material provided in the electric vehicle, and it is not necessary to secure a part of the charging power for heating power during charging.
  • the heat source at this time is supplied from the home by supplying it from the heat storage material provided in the electric vehicle The supplied power can be efficiently used for charging the storage battery.
  • a so-called plug-in type electric vehicle that receives power supply mainly from a home includes a heat storage material in addition to the storage battery, and heat transfer from the heat storage material prior to charging the storage battery. Preheat the storage battery. The preliminary heating is performed because the performance of the storage battery is deteriorated when the storage battery is charged at a low temperature.
  • the electric power from the external power source is mainly used if the electric vehicle is in a plug-in state, and the electric vehicle is used in a non-plug-in state. Is used.
  • the energy used to warm the storage battery when the electric vehicle is parked is electric power, which warms the storage battery whether the electric vehicle is in a plug-in state or a non-plug-in state. For this purpose, power is consumed.
  • An object of the present invention is to provide a heating control device that can effectively consume the power required for heating the storage battery to improve the performance of the storage battery.
  • a storage battery for example, storage battery 103 in an embodiment described later
  • a heating unit for example, a heater 115 in an embodiment described later
  • the heating unit Based on the temperature of the storage battery and the effective capacity of the storage battery according to the remaining capacity of the storage battery, the heating unit generates heat by energization by power supply from the storage battery and raises the storage battery to a target temperature.
  • An effective capacity estimation unit for example, an effective capacity change estimation unit 167 in an embodiment described later for estimating a change in effective capacity; Only when the effective capacity estimated by the effective capacity estimation unit is expected to be improved, a first control unit that conducts electricity from the storage battery to the heat generating unit (for example, an energization control unit 169 in an embodiment described later). When, Is a heating control device.
  • the invention according to claim 2 is the invention according to claim 1,
  • the effective capacity estimation unit is configured to estimate a change in the remaining capacity of the storage battery when the storage battery supplies power necessary for the heating unit to raise the storage battery to the target temperature.
  • the change in the effective capacity estimated by the effective capacity estimation unit is the addition of the target temperature and the remaining capacity estimation unit estimated from the effective capacity according to the temperature and the remaining capacity of the storage battery before heating by the heating unit. It is a change to the effective capacity according to the remaining capacity after heating,
  • the first control unit energizes the heat generating unit from the storage battery until the temperature of the storage battery reaches the target temperature only when the change in the effective capacity indicates an increase of a predetermined amount or more.
  • the lower limit temperature of the storage battery is lowered stepwise in accordance with the duration of the state where the electric vehicle is not operated, and energization from the storage battery to the heat generating unit is controlled each time the temperature of the storage battery decreases to the lower limit temperature.
  • a second control unit e.g., an ECU 121 in an embodiment described later.
  • the invention according to claim 4 is the invention according to claim 3,
  • the second control unit lowers the lower limit temperature every time power is supplied from the storage battery to the heat generating unit until the lower limit temperature reaches the absolute lower limit temperature.
  • the invention according to claim 5 is the invention according to claim 3 or 4,
  • the second control unit controls energization from the storage battery to the heat generating unit so that the storage battery is heated by a predetermined value from the lower limit temperature each time the temperature of the storage battery decreases to the lower limit temperature.
  • the invention according to claim 6 is the invention according to any one of claims 1 to 5,
  • the electric vehicle when the first control unit or the second control unit controls energization to the heat generating unit is in a state where power is not supplied from an external power source.
  • energization from the storage battery to the heat generating part is performed only when the change in effective capacity is expected to increase by a predetermined amount or more by heating the storage battery even after the power of the storage battery is consumed. Therefore, the power stored in the storage battery can be effectively consumed for improving the performance of the storage battery.
  • the lower limit temperature of the storage battery is lowered stepwise, so the temperature of the storage battery reaches the lower limit temperature. Since the storage battery is heated each time it decreases, the temperature of the storage battery decreases over time. Therefore, compared with the case where the lower limit temperature of the storage battery is uniformly set to the absolute lower limit temperature, the time during which the output of the storage battery whose performance decreases as the temperature decreases can be increased.
  • the power consumption to keep the storage battery above the lower limit temperature when the lower limit temperature is lowered stepwise is to keep the storage battery above the absolute lower limit temperature when the lower limit temperature is uniformly set to the absolute lower limit temperature. Therefore, the power consumption for keeping the storage battery above the absolute lower limit temperature can be reduced.
  • the temperature of the storage battery decreases over time as the temperature of the storage battery rises and falls by lowering the lower limit temperature every time power is supplied from the storage battery to the heat generating part. Therefore, the time when the output of the storage battery is improved can be lengthened.
  • the temperature of the storage battery is lowered over time while raising and lowering the storage battery by a predetermined value each time the temperature of the storage battery is lowered to the lower limit temperature. Therefore, the time when the output of the storage battery is improved can be lengthened.
  • the power source for heating the storage battery in the electric vehicle not supplied with power from the external power source is only the storage battery, but the power stored in the storage battery is used to improve the performance of the storage battery. It can be consumed effectively.
  • the heating control device of the first embodiment includes an EV (Electric Vehicle), an HEV (Hybrid Electrical Vehicle), and the like provided with an electric motor driven by electric power supplied from a storage battery as a drive source. Installed in plug-in electric vehicles.
  • FIG. 1 is a block diagram showing the configuration of the heating control apparatus of the first embodiment. As shown in FIG. 1, the heating control device of the first embodiment includes an electric motor 101, a storage battery 103, a PCU (Power Control Unit) 105, a current sensor 107, a voltage sensor 109, and a temperature sensor 111. , A charger 113, a heater 115, switch units 117 and 119, and an ECU (Electric Control Unit) 121.
  • EV Electric Vehicle
  • HEV Hybrid Electrical Vehicle
  • FIG. 1 is a block diagram showing the configuration of the heating control apparatus of the first embodiment. As shown in FIG. 1, the heating control device of the first embodiment includes an electric motor 101, a storage battery 103, a PCU (Power Control Unit)
  • the electric motor 101 is a drive source that generates power for the electric vehicle to travel.
  • the storage battery 103 has a plurality of storage cells such as a lithium ion battery and a nickel hydride battery, and supplies high voltage power to the motor 101.
  • SOC State : of Charge
  • the storage battery 103 is charged and discharged repeatedly within the SOC range (0% to 100%) in which the storage battery 103 can be used after such control.
  • the SOC of the storage battery 103 is derived based on the integrated value of the charge / discharge current of the storage battery 103 and / or the open circuit voltage (OCV: Open ⁇ Circuit Voltage) of the storage battery 103.
  • the PCU 105 converts direct current power output from the storage battery 103 into alternating current. Note that the PCU 105 may convert the direct current output voltage of the storage battery 103 into alternating current after stepping down or boosting the direct current output voltage while maintaining direct current.
  • the current sensor 107 detects the charging / discharging current of the storage battery 103. A signal indicating the current value detected by the current sensor 107 is sent to the ECU 121.
  • the voltage sensor 109 detects a terminal voltage of the storage battery 103 (also referred to as a closed circuit voltage (CCV: Closed Circuit Voltage)). A signal indicating the voltage value detected by the voltage sensor 109 is sent to the ECU 121.
  • the temperature sensor 111 detects the temperature of the storage battery 103. A signal indicating the temperature of the storage battery 103 detected by the temperature sensor 111 is sent to the ECU 121.
  • the charger 113 converts AC power supplied from the external power source into DC, with the plug 123 connected to an external power source (not shown).
  • the DC power converted by the charger 113 is supplied to at least one of the storage battery 103 and the heater 115.
  • the heater 115 generates heat when a current from the storage battery 103 or a current obtained from an external power source (not shown) through the charger 113 is energized, and the storage battery 103 is heated by the heat.
  • the switch unit 117 opens and closes a current path from the charger 113 to the storage battery 103.
  • the switch unit 119 opens and closes a current path from the storage battery 103 or the charger 113 to the heater 115.
  • the switch units 117 and 119 are opened and closed under the control of the ECU 121.
  • the ECU 121 performs control related to heating of the storage battery 103 using the heater 115 when the electric vehicle is parked.
  • the control is performed when the plug 123 is not connected to an external power source.
  • FIG. 2 is a block diagram showing an internal configuration of the ECU 121 in Example 1 of the first embodiment.
  • the ECU 121 includes a current / voltage acquisition unit 151, a differentiation calculation unit 153, an internal resistance calculation unit 155, an open-circuit voltage calculation unit 157, an SOC derivation unit 159, a temperature acquisition unit 161, It has an effective capacity deriving unit 163, an SOC change estimating unit 165, an effective capacity change estimating unit 167, and an energization control unit 169.
  • the current / voltage acquisition unit 151 acquires the charge / discharge current Ib detected by the current sensor 107 and the terminal voltage Vb detected by the voltage sensor 109.
  • the differential calculation unit 153 performs differential calculation on the charge / discharge current Ib and the terminal voltage Vb acquired by the current / voltage acquisition unit 151, respectively.
  • the open-circuit voltage calculation unit 157 is a storage battery according to the following equation (2).
  • An open circuit voltage OCV of 103 is calculated.
  • OCV Vb + Ib ⁇ Rn (2)
  • the SOC deriving unit 159 derives the SOC of the storage battery 103 from the open circuit voltage OCV calculated by the open circuit voltage calculating unit 157 using a map.
  • the temperature acquisition unit 161 acquires the temperature Tbat of the storage battery 103 detected by the temperature sensor 111.
  • the effective capacity deriving unit 163 derives the current effective capacity Wcur of the storage battery 103 according to the SOC of the storage battery 103 derived by the SOC deriving unit 159 and the temperature Tbat of the storage battery 103 acquired by the temperature acquisition unit 161.
  • the map based on the graph etc. which show the effective capacity according to the temperature and SOC of the storage battery 103 shown in FIG. 3 is used for deriving the effective capacity Wcur.
  • the SOC change estimation unit 165 estimates a change in SOC of the storage battery 103 when the heater 115 is energized by supplying power from the storage battery 103 in order to raise the temperature of the storage battery 103 to the target temperature. Note that the change in the SOC is estimated according to the amount of power consumed by the heater 115.
  • the effective capacity change estimation unit 167 estimates the effective capacity West of the storage battery 103 when the heater 115 generates heat by energizing the power supply from the storage battery 103 and raises the storage battery 103 to the target temperature.
  • the map based on the graph etc. which show the effective capacity according to the temperature and SOC of the storage battery 103 shown in FIG. 3 is also used for the estimation of the effective capacity West, and the target temperature and the SOC of the storage battery 103 are used as the temperature of the storage battery 103.
  • the SOC after heating estimated by the SOC change estimation unit 165 is used.
  • Wcur indicates an increase of a predetermined amount or more
  • the heaters 115 are energized by supplying power from the storage battery 103, so that the switch units 117 and 119 are closed until the temperature Tbat of the storage battery 103 reaches the target temperature.
  • the change in the effective capacity indicates an increase less than the predetermined amount, the energization control unit 169 does not change the open / close state of the switch units 117 and 119.
  • the temperature indicated by “A” in FIG. even if the storage battery 103 in the SOC state is heated to the target temperature Ta, the effective capacity does not change, so that the energization control unit 169 does not change the open / close state of the switch units 117 and 119.
  • the change ⁇ W in the effective capacity is expected to increase by a predetermined amount or more. , 119 are closed and the heater 115 is energized by supplying power from the storage battery 103.
  • the storage battery 103 is energized to the heater 115, so that the power stored in the storage battery 103 can be effectively consumed to improve the performance of the storage battery 103.
  • FIG. 4 is a diagram illustrating control related to heating of the storage battery 103 using the heater 115 in Example 2 of the first embodiment.
  • the plug 123 is not connected to the external power source and the vehicle is parked in the same temperature environment. Yes.
  • the temperature Tbat of the storage battery 103 in the electric vehicle just finished traveling is 0 ° C., for example, the outside air temperature To is an extremely low temperature (eg, ⁇ 40 ° C.) lower than 0 ° C., so the temperature Tbat of the storage battery 103 Will decline.
  • the absolute lower limit temperature Tl (for example, ⁇ 35 ° C.) higher than the outside air temperature To. ) To keep the storage battery 103 at a higher temperature.
  • the ECU 121 controls the switch units 117 and 119 to close.
  • the heater 115 is energized by supplying power from the storage battery 103 so that the temperature Tbat of the battery becomes higher than the absolute lower limit temperature Tl by a predetermined temperature or more. As a result, the heater 115 does not operate for a while after the start of parking, but the heater 115 is periodically operated after the temperature Tbat of the storage battery 103 has dropped to the absolute lower limit temperature Tl.
  • the output of the storage battery 103 decreases as the temperature Tbat decreases even with the same SOC.
  • the ECU 121 of the present embodiment gradually lowers the lower limit temperature Tc of the storage battery 103 to the absolute lower limit temperature Tl according to the duration of parking from the start of parking, and the temperature Tbat of the storage battery 103 decreases to the lower limit temperature Tc.
  • the energization of the heater 115 by the power supply from the storage battery 103 is controlled.
  • the ECU 121 closes the switch units 117 and 119 to energize the heater 115 by supplying power from the storage battery 103 so that the temperature Tbat of the storage battery 103 is higher than the lower limit temperature Tc by a predetermined temperature or more.
  • the temperature Tc is lowered by one step.
  • the lower limit temperature Tc of the storage battery 103 is lowered step by step.
  • the temperature of the storage battery 103 is increased by a predetermined value, so that the temperature Tbat of the storage battery 103 decreases over time. Therefore, the time when the output of the storage battery 103 after the parking start is improved can be lengthened. Further, since the amount of power consumed by the heater 115 is smaller in this embodiment than in the comparative example, the amount of power consumed for keeping the storage battery 103 at or above the absolute lower limit temperature Tl can be reduced.
  • the power consumption control device of the second embodiment includes an EV (Electric Vehicle) or HEV (Hybrid Electrical Vehicle) in which an electric motor driven by electric power supplied from a storage battery is provided as a drive source. Installed in plug-in electric vehicles.
  • FIG. 6 is a block diagram illustrating a configuration of the power consumption control apparatus according to the second embodiment.
  • the power consumption control device of the second embodiment includes an electric motor 201, a storage battery 203, a PCU (Power Control Unit) 205, a current sensor 207, a voltage sensor 209, and a temperature sensor 211.
  • the electric motor 201 is a drive source that generates power for the electric vehicle to travel.
  • the storage battery 203 has a plurality of storage cells such as a lithium ion battery and a nickel metal hydride battery, and supplies high voltage power to the electric motor 201.
  • SOC State of Charge
  • the storage battery 203 is repeatedly charged and discharged within the SOC range (0% to 100%) in which the storage battery 203 can be used after such control.
  • the SOC of the storage battery 203 is derived based on the integrated value of the charge / discharge current of the storage battery 203 and / or the open circuit voltage (OCV: Open Circuit Voltage) of the storage battery 203.
  • the PCU 205 converts DC power output from the storage battery 203 into AC. Note that the PCU 205 may convert the direct current output voltage of the storage battery 203 into alternating current after stepping down or boosting the direct current output voltage while maintaining direct current.
  • the current sensor 207 detects the charge / discharge current of the storage battery 203. A signal indicating the current value detected by the current sensor 207 is sent to the ECU 221.
  • the voltage sensor 209 detects a terminal voltage of the storage battery 203 (also referred to as a closed circuit voltage (CCV: Closed Circuit Voltage)). A signal indicating the voltage value detected by the voltage sensor 209 is sent to the ECU 221.
  • the temperature sensor 211 detects the temperature of the storage battery 203. A signal indicating the temperature of the storage battery 203 detected by the temperature sensor 211 is sent to the ECU 221.
  • the charger 213 converts AC power supplied from the external power source into DC while the plug 223 is connected to an external power source (not shown).
  • the DC power converted by the charger 213 is supplied to at least one of the storage battery 203 and the heater 215.
  • the heater 215 generates heat when a current from the storage battery 203 or a current obtained from an external power source (not shown) through the charger 213 is energized, and the storage battery 203 is heated by the heat.
  • the switch unit 217 opens and closes a current path from the charger 213 to the storage battery 203.
  • the switch unit 219 opens and closes a current path from the storage battery 203 or the charger 213 to the heater 215.
  • the switch units 217 and 219 are opened and closed under the control of the ECU 221.
  • the ECU 221 performs control related to heating of the storage battery 203 using the heater 215 when the electric vehicle is parked.
  • the control is performed when the plug 223 is connected to an external power source.
  • FIG. 7 is a block diagram showing an internal configuration of the ECU 221 in Example 1 of the second embodiment.
  • the ECU 221 includes a current / voltage acquisition unit 251, a differentiation calculation unit 253, an internal resistance calculation unit 255, an open-circuit voltage calculation unit 257, an SOC derivation unit 259, a temperature acquisition unit 261, An effective capacity deriving unit 263, an effective capacity change estimating unit 265, and an energization control unit 267 are included.
  • the current / voltage acquisition unit 251 acquires the charge / discharge current Ib detected by the current sensor 207 and the terminal voltage Vb detected by the voltage sensor 209.
  • the differential calculation unit 253 performs differential calculation on the charge / discharge current Ib and the terminal voltage Vb acquired by the current / voltage acquisition unit 251, respectively.
  • the internal resistance calculation unit 255 calculates the internal resistance Rn of the storage battery 203 from the following equation (3) based on the differential value ⁇ Ib of the charge / discharge current Ib and the differential value ⁇ Vb of the terminal voltage Vb calculated by the differential calculation unit 253. .
  • Rn ⁇ Vb / ⁇ Ib (3)
  • the open-circuit voltage calculation unit 257 is a storage battery according to the following equation (4).
  • An open circuit voltage OCV of 203 is calculated.
  • OCV Vb + Ib ⁇ Rn (4)
  • the SOC deriving unit 259 derives the SOC of the storage battery 203 from the open circuit voltage OCV calculated by the open circuit voltage calculating unit 257 using a map.
  • the temperature acquisition unit 261 acquires the temperature Tbat of the storage battery 203 detected by the temperature sensor 211.
  • the effective capacity deriving unit 263 derives the current effective capacity Wcur of the storage battery 203 according to the SOC of the storage battery 203 derived by the SOC deriving unit 259 and the temperature Tbat of the storage battery 203 acquired by the temperature acquisition unit 261.
  • the map based on the graph etc. which show the effective capacity according to the temperature and SOC of the storage battery 203 shown in FIG. 8 is used for the derivation of the effective capacity Wcur.
  • the effective capacity change estimation unit 265 estimates the effective capacity West of the storage battery 203 when the heater 215 generates heat by energization by power supply from an external power source and raises the storage battery 203 to a target temperature.
  • the map based on the graph etc. which shows the effective capacity according to the temperature and SOC of the storage battery 203 shown in FIG. 8 is also used for the estimation of the effective capacity West, and the temperature of the storage battery 203 is the target temperature, the SOC of the storage battery 203.
  • the SOC derived by the SOC deriving unit 259 is used for.
  • Wcur indicates an increase of a predetermined amount or more
  • the heater 215 is energized by supplying power from an external power source via the charger 213, and thus the switch unit 219 is closed until the temperature Tbat of the storage battery 203 reaches the target temperature. Then, the switch unit 217 is controlled to open.
  • the energization control unit 267 does not change the open / close state of the switch units 217 and 219.
  • the heating control of the storage battery 203 using the heater 215 by the ECU 221 of this embodiment when the electric vehicle is parked with the plug 223 connected to the external power source, it is indicated by “A” in FIG.
  • the energization control unit 267 controls the switch unit 219 to close and the switch unit 217 to open. Then, the heater 215 is energized by supplying power from an external power source.
  • the temperature Tbat of the storage battery 203 is the lower limit. If the temperature is lower than Tlow, the energization control unit 267 controls the switch unit 219 to be closed and the switch unit 217 to be opened until the temperature Tbat of the storage battery 203 reaches the lower limit temperature Tlow. After energization of 215 and the temperature Bat of the storage battery 203 reaches the lower limit temperature Tlow, the switch unit 219 is controlled to open and the switch unit 217 is controlled to charge the storage battery 203 by supplying power from an external power source. .
  • the lower limit temperature Tlow is the lowest temperature at which the effective capacity of the storage battery 203 is expected to increase to some extent by charging the storage battery 203.
  • the electric power from the external power source is supplied to the heater 215. If the change in the effective capacity is not expected to increase by a predetermined amount or more, the power from the external power source is used for charging the storage battery 203. As described above, since the power from the external power source is consumed by the heater 215 only when the effective capacity can be improved by heating the storage battery 203, the power from the external power source is consumed for inefficient heating. Therefore, the battery can be effectively consumed for improving the performance of the storage battery 203.
  • the temperature Tbat of the storage battery 203 is lower than the lower limit temperature Tlow, the temperature Tbat of the storage battery 203 is not expected to increase by more than a predetermined amount by heating the storage battery 203 to the target temperature Ttar.
  • the heater 215 is operated by the electric power from the external power source until the temperature reaches the lower limit temperature Tlow, and the electric power from the external power source is used for charging the storage battery 203 after reaching the lower limit temperature Tlow.
  • the electric power from the external power source can be used to improve the effective capacity of the storage battery.
  • FIG. 9 is a diagram illustrating control related to heating and charging of the storage battery 203 in Example 2 of the second embodiment.
  • the charging start time of the storage battery 203 is set in the ECU 221 in advance, and the ECU 221 controls the charger 213 to start the storage battery 203 by supplying power from an external power source at the set time.
  • the ECU 221 controls the switch unit 219 to close and the switch unit 217 to open,
  • the heater 215 is energized by supplying power from an external power source.
  • the lower limit temperature Tlow is the lowest temperature at which the storage battery 203 can be charged at a high pressure while the SOC of the storage battery 203 is low.
  • the temperature Tbat of the storage battery 203 is raised to the lower limit temperature Tlow by heating from the heater 215 and becomes a state indicated by “B” in FIG. 9, the ECU 221 maintains this state.
  • the ECU 221 controls the switch 219 to be closed and the switch 217 to be closed so that the heater 215 is energized by supplying power from an external power supply and at the same time, the storage battery 203 is charged. At this time, since the temperature Tbat of the storage battery 203 is raised to the lower limit temperature Tlow, the storage battery 203 is charged at a high pressure. Thereafter, when the SOC of the storage battery 203 exceeds a predetermined value, the ECU 221 controls the opening of the switch unit 219 to stop energization of the heater 215 and then continues to charge the storage battery 203.
  • the storage battery 203 when the temperature Tbat of the storage battery 203 before the charging start time is lower than the lower limit temperature Tlow, the storage battery 203 is heated to the lower limit temperature Tlow or higher by the charging start time and charged.
  • the storage battery 203 is also heated by the heater 215.
  • the storage battery 203 is also caused by heat generated by power conversion performed by the charger 213 when the storage battery 203 is charged. Since it is heated, the electric power for heating the storage battery 203 can be reduced. Further, by setting the lower limit temperature Tlow as the lower limit value of the temperature at which the storage battery 203 can be charged at a high pressure, the power required for heating the storage battery 203 until the charging start time can be reduced.
  • the heater 215 The power required for heating the storage battery 203 can be reduced by performing only the charging without conducting the current.
  • FIG. 10 is a diagram illustrating the heating control of the storage battery 203 in Example 3 of the second embodiment.
  • the example shown in FIG. 10 assumes a case where an electric vehicle travels in midwinter, arrives at a garage at room temperature, and continues to be parked in the garage with the plug 223 connected to an external power source. ing.
  • the electric vehicle has a temperature sensor (not shown) that measures the ambient temperature of the electric vehicle.
  • the ECU 221 controls the switch 219 to close the heater 215 by supplying power from the external power source. Energize.
  • the ECU 221 energizes the heater 215 from the external power source until the temperature Tbat of the storage battery 203 reaches a predetermined temperature lower than the target temperature.
  • the ambient temperature of the electric vehicle is higher than the target temperature of the storage battery 203, it is possible to reach the target temperature naturally without heating the storage battery 203 to the target temperature. Therefore, it is sufficient to heat the storage battery 203 to a predetermined temperature lower than the target temperature. In this case, compared with the case where the storage battery 203 is heated to the target temperature, the power required for heating the storage battery 203 can be reduced.
  • FIG. 11 is a block diagram showing an internal configuration of the ECU 221 in Example 4 of the second embodiment.
  • the ECU 221 includes a current / voltage acquisition unit 251, a differentiation calculation unit 253, an internal resistance calculation unit 255, an open-circuit voltage calculation unit 257, an SOC derivation unit 259, a temperature acquisition unit 261, And a target temperature correction unit 269.
  • the current / voltage acquisition unit 251 acquires the charge / discharge current Ib detected by the current sensor 207 and the terminal voltage Vb detected by the voltage sensor 209.
  • the differential calculation unit 253 performs differential calculation on the charge / discharge current Ib and the terminal voltage Vb acquired by the current / voltage acquisition unit 251, respectively.
  • the internal resistance calculation unit 255 calculates the internal resistance Rn of the storage battery 203 from the following equation (5) based on the differential value ⁇ Ib of the charge / discharge current Ib and the differential value ⁇ Vb of the terminal voltage Vb calculated by the differential calculation unit 253. .
  • Rn ⁇ Vb / ⁇ Ib (5)
  • the open-circuit voltage calculation unit 257 is a storage battery according to the following equation (6).
  • An open circuit voltage OCV of 203 is calculated.
  • OCV Vb + Ib ⁇ Rn (6)
  • the SOC deriving unit 259 derives the SOC of the storage battery 203 from the open circuit voltage OCV calculated by the open circuit voltage calculating unit 257 using a map.
  • Target temperature correction unit 269 corrects a preset target temperature of storage battery 203 based on internal resistance Rn and SOC of storage battery 203.
  • FIG. 12 is a graph showing the difference in temperature rise due to self-heating during charging before and after deterioration of the storage battery 203.
  • FIG. 13 is a graph showing the difference in the correction amount of the target temperature before and after the deterioration of the storage battery 203 according to the SOC at the start of charging of the storage battery 203.
  • the internal resistance of the storage battery 203 changes according to the degree of deterioration, the internal resistance before deterioration is low, and the internal resistance increases as the deterioration progresses.
  • the storage battery 203 is charged, the longer the charging time, the higher the temperature Tbat of the storage battery 203 due to self-heating.
  • the amount of heat generated during charging increases. growing.
  • the target temperature correction unit 269 of the present embodiment reduces the internal resistance of the storage battery 203 when the SOC at the start of charging is less than a predetermined value and the charging time is expected to be longer than a predetermined time.
  • the target temperature is corrected to a lower temperature as the corresponding degree of deterioration is larger.
  • the correction amount is larger as the SOC at the start of charging is lower.
  • the target temperature of the storage battery 203 is low and sufficient as the internal resistance increases.
  • the electric power required for the heating of the storage battery 203 can be reduced.
  • the electric power required for the heating of the storage battery 203 can be reduced.

Abstract

加温制御装置は、電動車両の電動機に電力を供給する蓄電池と、通電して生じた熱によって蓄電池を加温する発熱部と、蓄電池の温度及び残容量に応じた有効容量に基づいて、発熱部が蓄電池からの電力供給による通電によって発熱して蓄電池を目標温度まで昇温した際の有効容量の変化を推測する推測部と、推測部が推測した有効容量の向上が見込まれる場合に限って、蓄電池から発熱部への通電を行う制御部とを備える。

Description

加温制御装置
 本発明は、電動車両に搭載される蓄電池の加温制御装置に関する。
 特許文献1には、電動車両の蓄電池を充電する際、蓄電池の温度に応じて、電動車両に備えられる蓄熱材からの伝熱により蓄電池を加温する電動車両充電システムが記載されている。当該システムによれば、電動車両に備えられる蓄熱材を利用して蓄電池を加熱することができ、充電時に加熱用の電力を充電電力の一部を割いて確保する必要がない。蓄電池が低温である場合に、充電による蓄電池の性能低下を防止するために蓄電池を加熱することが必要になるが、この時の熱源を電動車両が備える蓄熱材から供給することで、家庭から供給される供給電力を効率的に蓄電池の充電に充てることができる。
日本国特開2012-209213号公報
 特許文献1に記載の電動車両充電ステムは、主に家庭から電力供給を受けるいわゆるプラグイン方式の電動車両が蓄電池の他に蓄熱材を備え、蓄電池への充電に先立ち蓄熱材からの伝熱により蓄電池を予備加熱する。当該予備加熱は、蓄電池が低温の状態で充電を行うと、蓄電池の性能低下が生じるために行われる。
 しかし、蓄電池が放電する際にも、蓄電池が低温の状態であると、充電時と同様に、蓄電池の性能低下が生じる。例えば、図14に示すように、蓄電池の残容量(SOC:State of Charge)が高くても、氷点下の温度以下であると、当該蓄電池の有効容量が低下する。このため、蓄電池の周囲温度が低い場合、放電が行われるまでには当該蓄電池を加温しておくことが望ましい。
 プラグイン方式の電動車両が駐車されている状態で蓄電池を加温する際、当該電動車両がプラグイン状態であれば外部電源からの電力が主に用いられ、非プラグイン状態であれば電動車両が備える蓄電池の電力が用いられる。このように、電動車両が駐車されている状態において蓄電池を加温するために用いられるエネルギーは電力であり、電動車両がプラグイン状態であろうと非プラグイン状態であろうと、蓄電池を加温するためには電力が消費される。
 本発明の目的は、蓄電池の加温に要する電力を蓄電池の性能向上のため有効に消費可能な加温制御装置を提供することである。
 上記の目的を達成するために、請求項1に記載の発明は、
 電動車両の駆動源である電動機に電力を供給する蓄電池(例えば、後述の実施形態での蓄電池103)と、
 通電して生じた熱によって前記蓄電池を加温する発熱部(例えば、後述の実施形態でのヒータ115)と、
 前記蓄電池の温度及び前記蓄電池の残容量に応じた前記蓄電池の有効容量に基づいて、前記発熱部が前記蓄電池からの電力供給による通電によって発熱して前記蓄電池を目標温度まで昇温した際の前記有効容量の変化を推測する有効容量推測部(例えば、後述の実施形態での有効容量変化推測部167)と、
 前記有効容量推測部が推測した前記有効容量の向上が見込まれる場合に限って、前記蓄電池から前記発熱部への通電を行う第1制御部(例えば、後述の実施形態での通電制御部169)と、
を備える、加温制御装置である。
 請求項2に記載の発明は、請求項1に記載の発明において、
  前記有効容量推測部は、前記発熱部が前記蓄電池を前記目標温度まで昇温するために必要な電力を前記蓄電池が供給した際の、前記蓄電池の残容量の変化を推測する残容量推測部(例えば、後述の実施形態でのSOC変化推測部165)を有し、
 前記有効容量推測部が推測する前記有効容量の変化は、前記発熱部による加温前の前記蓄電池の温度及び残容量に応じた有効容量から、前記目標温度及び前記残容量推測部が推測した加温後の残容量に応じた有効容量への変化であり、
 前記第1制御部は、前記有効容量の変化が所定量以上の増加を示す場合に限って、前記蓄電池の温度が前記目標温度に到達するまで前記蓄電池から前記発熱部への通電を行う。
 請求項3に記載の発明では、請求項1又は2に記載の発明において、
 前記電動車両が操作されない状態の継続時間に応じて前記蓄電池の下限温度を段階的に下げて、前記蓄電池の温度が前記下限温度まで低下するたびに、前記蓄電池から前記発熱部への通電を制御する第2制御部(例えば、後述の実施形態でのECU121)を備える。
 請求項4に記載の発明は、請求項3に記載の発明において、
 前記第2制御部は、前記下限温度が絶対下限温度に到達するまでは、前記蓄電池から前記発熱部への通電を行うたびに前記下限温度を下げる。
 請求項5に記載の発明は、請求項3又は4に記載の発明において、
 前記第2制御部は、前記蓄電池の温度が前記下限温度まで低下するたびに、前記蓄電池が前記下限温度から所定値昇温するよう、前記蓄電池から前記発熱部への通電を制御する。
 請求項6に記載の発明は、請求項1から5のいずれか1項に記載の発明において、
 前記第1制御部又は前記第2制御部が前記発熱部への通電を制御する際の前記電動車両は、外部電源から電力が供給されていない状態である。
 請求項1の発明によれば、蓄電池の電力を消費してまでも蓄電池を加温することによって蓄電池の有効容量の向上が見込まれる場合に限って蓄電池から発熱部への通電が行われるため、蓄電池に蓄電された電力を蓄電池の性能向上のため有効に消費することができる。
 請求項2の発明によれば、蓄電池の電力を消費してまでも蓄電池を加温することによって有効容量の変化が所定量以上増加する見込みである場合に限って蓄電池から発熱部への通電が行われるため、蓄電池に蓄電された電力を蓄電池の性能向上のため有効に消費することができる。
 請求項3の発明によれば、電動車両が極寒の温度環境下で操作されない状態が長時間続く場合であっても、蓄電池の下限温度は段階的に下げられるため、蓄電池の温度が下限温度まで低下するたびに蓄電池は加温されるため、蓄電池の温度は時間をかけて低下していく。したがって、蓄電池の下限温度が一律に絶対下限温度に設定される場合と比較して、温度の低下に従って性能が低下する蓄電池の出力が向上した時間を長くできる。また、下限温度を段階的に下げる場合の蓄電池を下限温度以上に保温するための消費電力量は、下限温度が一律に絶対下限温度に設定される場合の蓄電池を絶対下限温度以上に保温するための消費電力量よりも少ないため、蓄電池を絶対下限温度以上に保温するための消費電力量を低減することができる。
 請求項4の発明によれば、蓄電池から発熱部への通電を行うたびに下限温度を下げることによって、蓄電池の温度が上下しながら時間をかけて低下する。したがって、蓄電池の出力が向上した時間を長くできる。
 請求項5の発明によれば、蓄電池の温度が下限温度まで低下するたびに蓄電池を所定値昇温させることによって、蓄電池の温度は上下しながら時間をかけて低下していく。したがって、蓄電池の出力が向上した時間を長くできる。
 請求項6の発明によれば、外部電源から電力が供給されていない電動車両における蓄電池を加温するための電力源は蓄電池のみであるが、蓄電池に蓄電された電力を蓄電池の性能向上のため有効に消費することができる。
第1の実施形態の加温制御装置の構成を示すブロック図である。 第1実施形態の実施例1におけるECUの内部構成を示すブロック図である。 蓄電池の温度及びSOCに応じた有効容量を示すグラフである。 第1の実施形態の実施例2におけるヒータを用いた蓄電池の加温に係る制御を示す図である。 蓄電池の温度及びSOCに応じた出力を示すグラフである。 第2の実施形態の電力消費制御装置の構成を示すブロック図である。 第2の実施形態の実施例1におけるECUの内部構成を示すブロック図である。 蓄電池の温度及びSOCに応じた有効容量を示すグラフである。 第2の実施形態の実施例2における蓄電池の加温及び充電に係る制御を示す図である。 第2の実施形態の実施例3における蓄電池の加温制御を示す図である。 第2の実施形態の実施例4におけるECUの内部構成を示すブロック図である。 蓄電池の劣化前後における充電時の自己発熱による上昇温度の相違を示すグラフである。 蓄電池の充電開始時のSOCに応じた蓄電池の劣化前後における目標温度の補正量の相違を示すグラフである。 蓄電池の温度及びSOCに応じた有効容量を示すグラフである。
 以下、本発明の実施形態について、図面を参照して説明する。
(第1の実施形態)
 第1の実施形態の加温制御装置は、蓄電池から供給された電力によって駆動する電動機が駆動源として設けられたEV(Electric Vehicle:電気自動車)やHEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)等といったプラグイン方式の電動車両に搭載されている。図1は、第1の実施形態の加温制御装置の構成を示すブロック図である。図1に示すように、第1の実施形態の加温制御装置は、電動機101と、蓄電池103と、PCU(Power Control Unit)105と、電流センサ107と、電圧センサ109と、温度センサ111と、充電器113と、ヒータ115と、スイッチ部117,119と、ECU(Electric Control Unit)121とを備える。
 電動機101は、電動車両が走行するための動力を発生する駆動源である。
 蓄電池103は、リチウムイオン電池やニッケル水素電池等といった複数の蓄電セルを有し、電動機101に高電圧の電力を供給する。なお、2次電池である蓄電池103を利用するにあたっては、蓄電池103の残容量(SOC:State of Charge)を常に監視し、過充電や過放電の防止制御を行う必要がある。蓄電池103は、こういった制御が行われた上で、蓄電池103を使用可能なSOCの範囲(0%~100%)内で充放電が繰り返される。蓄電池103のSOCは、蓄電池103の充放電電流の積算値及び/又は蓄電池103の開放電圧(OCV:Open Circuit Voltage)に基づいて導出される。
 PCU105は、蓄電池103が出力する直流の電力を交流に変換する。なお、PCU105は、蓄電池103の直流出力電圧を直流のまま降圧又は昇圧した後に交流に変換しても良い。
 電流センサ107は、蓄電池103の充放電電流を検出する。電流センサ107が検出した電流値を示す信号はECU121に送られる。電圧センサ109は、蓄電池103の端子電圧(閉路電圧(CCV:Closed Circuit Voltage)ともいう。)を検出する。電圧センサ109が検出した電圧値を示す信号はECU121に送られる。温度センサ111は、蓄電池103の温度を検出する。温度センサ111が検出した蓄電池103の温度を示す信号はECU121に送られる。
 充電器113は、図示しない外部電源にプラグ123が接続された状態で、外部電源から供給された交流の電力を直流に変換する。充電器113によって変換された直流の電力は、蓄電池103及びヒータ115の少なくともいずれか一方に供給される。
 ヒータ115は、蓄電池103からの電流又は図示しない外部電源から充電器113を介して得られる電流が通電することで発熱し、当該熱によって蓄電池103を加温する。
 スイッチ部117は、充電器113から蓄電池103までの電流経路を開閉する。また、スイッチ部119は、蓄電池103又は充電器113からヒータ115までの電流経路を開閉する。スイッチ部117,119は、ECU121の制御によって開閉される。
 ECU121は、電動車両が駐車されている状態のときに、ヒータ115を用いた蓄電池103の加温に係る制御等を行う。なお、本実施形態では、プラグ123が外部電源に接続されていない状態のとき当該制御を行う。
(実施例1)
 図2は、第1実施形態の実施例1におけるECU121の内部構成を示すブロック図である。図2に示すように、ECU121は、電流/電圧取得部151と、微分演算部153と、内部抵抗算出部155と、開放電圧算出部157と、SOC導出部159と、温度取得部161と、有効容量導出部163と、SOC変化推測部165と、有効容量変化推測部167と、通電制御部169とを有する。
 電流/電圧取得部151は、電流センサ107が検出した充放電電流Ib及び電圧センサ109が検出した端子電圧Vbを取得する。微分演算部153は、電流/電圧取得部151が取得した充放電電流Ib及び端子電圧Vbをそれぞれ微分演算する。内部抵抗算出部155は、微分演算部153が算出した充放電電流Ibの微分値ΔIb及び端子電圧Vbの微分値ΔVbに基づいて、以下の式(1)より蓄電池103の内部抵抗Rnを算出する。
 Rn=ΔVb/ΔIb …(1)
 開放電圧算出部157は、内部抵抗算出部155が算出した内部抵抗Rn、並びに、電流/電圧取得部151が取得した充放電電流Ib及び端子電圧Vbに基づいて、以下の式(2)より蓄電池103の開放電圧OCVを算出する。
 OCV=Vb+Ib×Rn …(2)
 SOC導出部159は、開放電圧算出部157が算出した開放電圧OCVから、マップを用いて、蓄電池103のSOCを導出する。温度取得部161は、温度センサ111が検出した蓄電池103の温度Tbatを取得する。有効容量導出部163は、SOC導出部159が導出した蓄電池103のSOC及び温度取得部161が取得した蓄電池103の温度Tbatに応じた、蓄電池103の現状の有効容量Wcurを導出する。なお、当該有効容量Wcurの導出には、図3に示す蓄電池103の温度及びSOCに応じた有効容量を示すグラフ等に基づくマップが用いられる。
 SOC変化推測部165は、蓄電池103を目標温度まで昇温するためにヒータ115が蓄電池103からの電力供給によって通電した際の蓄電池103のSOCの変化を推測する。なお、当該SOCの変化は、ヒータ115によって消費される電力量に応じて推測される。
 有効容量変化推測部167は、ヒータ115が蓄電池103からの電力供給による通電によって発熱して蓄電池103を目標温度まで昇温した際の蓄電池103の有効容量Westを推測する。なお、当該有効容量Westの推測にも、図3に示す蓄電池103の温度及びSOCに応じた有効容量を示すグラフ等に基づくマップが用いられ、蓄電池103の温度には目標温度、蓄電池103のSOCにはSOC変化推測部165が推測した加温後のSOCが用いられる。
 通電制御部169は、有効容量導出部163が導出した蓄電池103の現状の有効容量Wcurから、有効容量変化推測部167が推測した蓄電池103の有効容量Westへの変化(=有効容量West-有効容量Wcur)が所定量以上の増加を示す場合、蓄電池103からの電力供給によってヒータ115を通電するため、蓄電池103の温度Tbatが目標温度に到達するまでスイッチ部117,119を閉制御する。一方、有効容量の変化が所定量未満の増加を示す場合、通電制御部169はスイッチ部117,119の開閉状態を変えない。
 外部電源にプラグ123が接続されずに電動車両が駐車されているときの、本実施例のECU121によるヒータ115を用いた蓄電池103の加温制御によれば、図3に「A」で示す温度及びSOCの状態の蓄電池103を目標温度Taまで昇温しても有効容量は変化しないため、通電制御部169はスイッチ部117,119の開閉状態を変えない。一方、図3に「B」で示す温度及びSOCの状態の蓄電池103を目標温度Tbまで昇温すると有効容量の変化ΔWは所定量以上の増加が見込まれるため、通電制御部169はスイッチ部117,119を閉制御して、蓄電池103からの電力供給によるヒータ115の通電を行う。
 以上説明したように、本実施例によれば、蓄電池103の電力を消費してまでも蓄電池103を加温することによって蓄電池103の有効容量の変化が所定量以上増加する見込みである場合に限って蓄電池103からヒータ115への通電が行われるため、蓄電池103に蓄電された電力を蓄電池103の性能向上のため有効に消費することができる。
(実施例2)
 図4は、第1の実施形態の実施例2におけるヒータ115を用いた蓄電池103の加温に係る制御を示す図である。図4に示す例は、電動車両が極寒の温度環境下で走行を行った後、外部電源にプラグ123が接続されずに同様の温度環境下に駐車された状態が継続する場合を想定している。走行を終えたばかりの電動車両における蓄電池103の温度Tbatが例えば0℃であっても、外気温Toは0℃よりもさらに下回る極低温(例えば、-40℃)であるため、蓄電池103の温度Tbatは低下する。しかし、蓄電池103が外気温Toまで低下してしまうと蓄電池103の出力が著しく低下し電動車両が走行できない状態となってしまうため、外気温Toよりも高い絶対下限温度Tl(例えば、-35℃)よりも高い温度に蓄電池103を保つ必要がある。
 このため、図4の「比較例」に示すように、温度センサ111が検出した蓄電池103の温度Tbatが絶対下限温度Tlまで低下すると、ECU121はスイッチ部117,119を閉制御して、蓄電池103の温度Tbatが絶対下限温度Tlよりも所定温度以上高くなるよう、蓄電池103からの電力供給によるヒータ115の通電を行う。その結果、駐車開始後しばらくの間、ヒータ115は作動しないが、蓄電池103の温度Tbatが絶対下限温度Tlまで低下した後はヒータ115が定期的に作動される。
 しかし、蓄電池103の出力は、図5に示すように、同じSOCであっても温度Tbatが低下するに従って低下する。このため、本実施例のECU121は、駐車開始から駐車の継続時間に応じて蓄電池103の下限温度Tcを絶対下限温度Tlまで段階的に下げて、蓄電池103の温度Tbatが下限温度Tcまで低下するたびに、蓄電池103からの電力供給によるヒータ115の通電を制御する。このとき、ECU121はスイッチ部117,119を閉制御して、蓄電池103の温度Tbatが下限温度Tcよりも所定温度以上高くなるよう、蓄電池103からの電力供給によるヒータ115の通電を行うと共に、下限温度Tcを一段階下げる。このように、蓄電池103の温度Tbatが下限温度Tcまで低下するたびに蓄電池103を昇温させることによって、蓄電池103の温度Tbatは上下しながら時間をかけて低下していく。
 以上説明したように、本実施例によれば、電動車両が極寒の温度環境下で駐車された状態が長時間続く場合であっても、蓄電池103の下限温度Tcは段階的に下げられ、蓄電池103の温度Tbatが下限温度Tcまで低下するたびに蓄電池103を所定値昇温させることによって、蓄電池103の温度Tbatは上下しながら時間をかけて低下していく。したがって、駐車開始後の蓄電池103の出力が向上した時間を長くできる。また、ヒータ115によって消費される電力量は、比較例と比べて本実施例の方が少ないため、蓄電池103を絶対下限温度Tl以上に保温するための消費電力量を低減することができる。
(第2の実施形態)
 第2の実施形態の電力消費制御装置は、蓄電池から供給された電力によって駆動する電動機が駆動源として設けられたEV(Electric Vehicle:電気自動車)やHEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)等といったプラグイン方式の電動車両に搭載されている。図6は、第2の実施形態の電力消費制御装置の構成を示すブロック図である。図6に示すように、第2の実施形態の電力消費制御装置は、電動機201と、蓄電池203と、PCU(Power Control Unit)205と、電流センサ207と、電圧センサ209と、温度センサ211と、充電器213と、ヒータ215と、スイッチ部217,219と、ECU(Electric Control Unit)221とを備える。
 電動機201は、電動車両が走行するための動力を発生する駆動源である。
 蓄電池203は、リチウムイオン電池やニッケル水素電池等といった複数の蓄電セルを有し、電動機201に高電圧の電力を供給する。なお、2次電池である蓄電池203を利用するにあたっては、蓄電池203の残容量(SOC:State of Charge)を常に監視し、過充電や過放電の防止制御を行う必要がある。蓄電池203は、こういった制御が行われた上で、蓄電池203を使用可能なSOCの範囲(0%~100%)内で充放電が繰り返される。蓄電池203のSOCは、蓄電池203の充放電電流の積算値及び/又は蓄電池203の開放電圧(OCV:Open Circuit Voltage)に基づいて導出される。
 PCU205は、蓄電池203が出力する直流の電力を交流に変換する。なお、PCU205は、蓄電池203の直流出力電圧を直流のまま降圧又は昇圧した後に交流に変換しても良い。
 電流センサ207は、蓄電池203の充放電電流を検出する。電流センサ207が検出した電流値を示す信号はECU221に送られる。電圧センサ209は、蓄電池203の端子電圧(閉路電圧(CCV:Closed Circuit Voltage)ともいう。)を検出する。電圧センサ209が検出した電圧値を示す信号はECU221に送られる。温度センサ211は、蓄電池203の温度を検出する。温度センサ211が検出した蓄電池203の温度を示す信号はECU221に送られる。
 充電器213は、図示しない外部電源にプラグ223が接続された状態で、外部電源から供給された交流の電力を直流に変換する。充電器213によって変換された直流の電力は、蓄電池203及びヒータ215の少なくともいずれか一方に供給される。
 ヒータ215は、蓄電池203からの電流又は図示しない外部電源から充電器213を介して得られる電流が通電することで発熱し、当該熱によって蓄電池203を加温する。
 スイッチ部217は、充電器213から蓄電池203までの電流経路を開閉する。また、スイッチ部219は、蓄電池203又は充電器213からヒータ215までの電流経路を開閉する。スイッチ部217,219は、ECU221の制御によって開閉される。
 ECU221は、電動車両が駐車されている状態のときに、ヒータ215を用いた蓄電池203の加温に係る制御等を行う。なお、本実施形態では、プラグ223が外部電源に接続されている状態のとき当該制御を行う。
(実施例1)
 図7は、第2の実施形態の実施例1におけるECU221の内部構成を示すブロック図である。図7に示すように、ECU221は、電流/電圧取得部251と、微分演算部253と、内部抵抗算出部255と、開放電圧算出部257と、SOC導出部259と、温度取得部261と、有効容量導出部263と、有効容量変化推測部265と、通電制御部267とを有する。
 電流/電圧取得部251は、電流センサ207が検出した充放電電流Ib及び電圧センサ209が検出した端子電圧Vbを取得する。微分演算部253は、電流/電圧取得部251が取得した充放電電流Ib及び端子電圧Vbをそれぞれ微分演算する。内部抵抗算出部255は、微分演算部253が算出した充放電電流Ibの微分値ΔIb及び端子電圧Vbの微分値ΔVbに基づいて、以下の式(3)より蓄電池203の内部抵抗Rnを算出する。
 Rn=ΔVb/ΔIb …(3)
 開放電圧算出部257は、内部抵抗算出部255が算出した内部抵抗Rn、並びに、電流/電圧取得部251が取得した充放電電流Ib及び端子電圧Vbに基づいて、以下の式(4)より蓄電池203の開放電圧OCVを算出する。
 OCV=Vb+Ib×Rn …(4)
 SOC導出部259は、開放電圧算出部257が算出した開放電圧OCVから、マップを用いて、蓄電池203のSOCを導出する。温度取得部261は、温度センサ211が検出した蓄電池203の温度Tbatを取得する。有効容量導出部263は、SOC導出部259が導出した蓄電池203のSOC及び温度取得部261が取得した蓄電池203の温度Tbatに応じた、蓄電池203の現状の有効容量Wcurを導出する。なお、当該有効容量Wcurの導出には、図8に示す蓄電池203の温度及びSOCに応じた有効容量を示すグラフ等に基づくマップが用いられる。
 有効容量変化推測部265は、ヒータ215が外部電源からの電力供給による通電によって発熱して蓄電池203を目標温度まで昇温した際の蓄電池203の有効容量Westを推測する。なお、当該有効容量Westの推測にも、図8に示す蓄電池203の温度及びSOCに応じた有効容量を示すグラフ等に基づくマップが用いられ、蓄電池203の温度には目標温度、蓄電池203のSOCにはSOC導出部259が導出したSOCが用いられる。
 通電制御部267は、有効容量導出部263が導出した蓄電池203の現状の有効容量Wcurから、有効容量変化推測部265が推測した蓄電池203の有効容量Westへの変化(=有効容量West-有効容量Wcur)が所定量以上の増加を示す場合、充電器213を介した外部電源からの電力供給によってヒータ215を通電するため、蓄電池203の温度Tbatが目標温度に到達するまでスイッチ部219を閉制御し、スイッチ部217を開制御する。一方、有効容量の変化が所定量未満の増加を示す場合、通電制御部267はスイッチ部217,219の開閉状態を変えない。
 外部電源にプラグ223が接続された状態で電動車両が駐車されているときの、本実施例のECU221によるヒータ215を用いた蓄電池203の加温制御によれば、図8に「A」で示す温度及びSOCの状態の蓄電池203を目標温度Ttarまで昇温すると有効容量の変化ΔWaは所定量以上の増加が見込まれるため、通電制御部267はスイッチ部219を閉制御、スイッチ部217を開制御して、外部電源からの電力供給によるヒータ215の通電を行う。一方、図8に「B」で示す温度及びSOCの状態の蓄電池203を目標温度Ttarまで昇温すると有効容量の変化ΔWbは所定量以上の増加が見込まれない場合、蓄電池203の温度Tbatが下限温度Tlow未満であれば、通電制御部267は、蓄電池203の温度Tbatが下限温度Tlowに到達するまでスイッチ部219を閉制御、スイッチ部217を開制御して、外部電源からの電力供給によるヒータ215の通電を行い、蓄電池203の温度Batが下限温度Tlowに到達した後は、スイッチ部219を開制御、スイッチ部217を閉制御して、外部電源からの電力供給による蓄電池203の充電を行う。なお、下限温度Tlowは、蓄電池203の充電によって蓄電池203の有効容量の増加がある程度見込まれる最も低い温度である。
 以上説明したように、本実施例によれば、蓄電池203を目標温度Ttarまで加温することによって有効容量の変化が所定量以上増加する見込みであれば外部電源からの電力がヒータ215の通電のために使用され、当該有効容量の変化が所定量以上増加しない見込みであれば外部電源からの電力が蓄電池203の充電のために使用される。このように、蓄電池203の加温による有効容量の向上が見込める場合に限って外部電源からの電力がヒータ215で消費されるため、外部電源からの電力を非効率的な加温のために消費することなく、蓄電池203の性能向上のため有効に消費することができる。但し、蓄電池203の温度Tbatが下限温度Tlow未満であるとき、蓄電池203を目標温度Ttarまで加温することによって有効容量の変化が所定量以上増加しない見込みであっても、蓄電池203の温度Tbatが下限温度Tlowに昇温するまでは外部電源からの電力によってヒータ215を作動し、下限温度Tlowに到達した後は外部電源からの電力は蓄電池203の充電のために使用される。このように、蓄電池203の温度Tbatは下限温度Tlow以上に昇温されるため、外部電源からの電力を蓄電池の有効容量の向上のために利用することができる。
(実施例2)
 図9は、第2の実施形態の実施例2における蓄電池203の加温及び充電に係る制御を示す図である。図9に示す例では、蓄電池203の充電の開始時刻が予めECU221に設定されており、ECU221は、当該設定された時刻に外部電源からの電力供給によって蓄電池203を開始するよう充電器213を制御する。本実施例では、充電開始時刻前の蓄電池203の温度Tbatが図9に「A」で示す下限温度Tlow未満の場合、ECU221は、スイッチ部219を閉制御、スイッチ部217を開制御して、外部電源からの電力供給によるヒータ215の通電を行う。なお、下限温度Tlowは、蓄電池203のSOCが低い状態で高圧での充電が可能な最も低い温度である。ヒータ215からの加温によって蓄電池203の温度Tbatが下限温度Tlowまで昇温して図9に「B」で示す状態になると、ECU221は、この状態を保つ。
 充電開始時刻になると、ECU221は、スイッチ部219を閉制御、スイッチ部217も閉制御して、外部電源からの電力供給によるヒータ215の通電を行うと同時に蓄電池203の充電を行う。このとき、蓄電池203の温度Tbatは下限温度Tlowまで昇温されているため、蓄電池203は高圧で充電される。その後、蓄電池203のSOCが所定値を超えると、ECU221は、スイッチ部219を開制御してヒータ215の通電を停止した上で、蓄電池203の充電を継続する。
 以上説明したように、本実施例によれば、充電開始時刻前の蓄電池203の温度Tbatが下限温度Tlow未満であると、蓄電池203は充電開始時刻までに下限温度Tlow以上に昇温され、充電開始時刻以降に蓄電池203を充電する際にはヒータ215による蓄電池203の加温も行われるが、蓄電池203を充電する際に充電器213が行う電力変換に伴って発生する熱によっても蓄電池203が加温されるため、蓄電池203を加温するための電力を低減できる。また、蓄電池203を高圧で充電可能な温度の下限値に下限温度Tlowを設定することによって、充電開始時刻までの蓄電池203の加温に要する電力を低減できる。また、蓄電池203のSOCが所定値を超えると加温による蓄電池203の性能向上よりもSOCの増加による性能向上の方が効率が良いため、蓄電池203のSOCが所定値を超えた以降はヒータ215の通電は行わず充電のみを行うことによって、蓄電池203の加温に要する電力を低減できる。
(実施例3)
 図10は、第2の実施形態の実施例3における蓄電池203の加温制御を示す図である。図10に示す例は、電動車両が真冬に走行を行った後、常温のガレージに到着し、外部電源にプラグ223が接続された状態で当該ガレージに駐車された状態が継続する場合を想定している。なお、電動車両は、電動車両の周囲温度を測定する温度センサ(図示せず)を有する。
 外部電源にプラグ223が接続されると、走行を超えたばかりの電動車両における蓄電池203の温度Tbatは低いため、ECU221は、スイッチ部219を閉制御して、外部電源からの電力供給によるヒータ215の通電を行う。このときの電動車両の周囲温度が蓄電池203の目標温度よりも高い場合、ECU221は、蓄電池203の温度Tbatが目標温度よりも低い所定温度に到達するまで外部電源からヒータ215への通電を行う。
 以上説明したように、本実施例によれば、電動車両の周囲温度が蓄電池203の目標温度よりも高い場合は、蓄電池203を目標温度まで加温しなくても自然と目標温度に到達する可能性が高いため、目標温度よりも低い所定温度まで蓄電池203を加温すれば十分である。この場合、蓄電池203を目標温度まで加温する場合と比べて、蓄電池203の加温に要する電力を低減できる。
(実施例4)
 図11は、第2の実施形態の実施例4におけるECU221の内部構成を示すブロック図である。図11に示すように、ECU221は、電流/電圧取得部251と、微分演算部253と、内部抵抗算出部255と、開放電圧算出部257と、SOC導出部259と、温度取得部261と、目標温度補正部269とを有する。
 電流/電圧取得部251は、電流センサ207が検出した充放電電流Ib及び電圧センサ209が検出した端子電圧Vbを取得する。微分演算部253は、電流/電圧取得部251が取得した充放電電流Ib及び端子電圧Vbをそれぞれ微分演算する。内部抵抗算出部255は、微分演算部253が算出した充放電電流Ibの微分値ΔIb及び端子電圧Vbの微分値ΔVbに基づいて、以下の式(5)より蓄電池203の内部抵抗Rnを算出する。
 Rn=ΔVb/ΔIb …(5)
 開放電圧算出部257は、内部抵抗算出部255が算出した内部抵抗Rn、並びに、電流/電圧取得部251が取得した充放電電流Ib及び端子電圧Vbに基づいて、以下の式(6)より蓄電池203の開放電圧OCVを算出する。
 OCV=Vb+Ib×Rn …(6)
 SOC導出部259は、開放電圧算出部257が算出した開放電圧OCVから、マップを用いて、蓄電池203のSOCを導出する。目標温度補正部269は、蓄電池203の内部抵抗RnとSOCとに基づいて、予め設定された蓄電池203の目標温度を補正する。
 図12は、蓄電池203の劣化前後における充電時の自己発熱による上昇温度の相違を示すグラフである。また、図13は、蓄電池203の充電開始時のSOCに応じた蓄電池203の劣化前後における目標温度の補正量の相違を示すグラフである。蓄電池203の内部抵抗は劣化程度に応じて変化し、劣化前の内部抵抗は低く、劣化が進むと内部抵抗が増加する。蓄電池203の充電時には、その充電時間が長いほど自己発熱によって蓄電池203の温度Tbatは上昇するが、劣化が進むと充電時の発熱量は大きくなるため、図12に示すように温度上昇の程度は大きくなる。
 したがって、本実施例の目標温度補正部269は、図13に示すように、充電開始時のSOCが所定値未満のため充電時間が所定時間以上要すると見込まれる場合に、蓄電池203の内部抵抗に応じた劣化程度が大きいほど、目標温度を低い温度に補正する。当該補正量は、充電開始時のSOCが低いほど大きい。
 以上説明したように、本実施例によれば、内部抵抗の大きな蓄電池203を加温した後に充電を行う場合において、目標温度を低い温度に補正しても充電時には所望の温度まで上昇する可能性が高いため、蓄電池203の目標温度は内部抵抗が大きいほど低くて十分である。この場合、目標温度を補正しない場合と比較して、蓄電池203の加温に要する電力を低減できる。また、蓄電池203のSOCが低いほど長い充電時間を要するため、蓄電池203の目標温度はSOCが低いほど低くて十分である。この場合、目標温度を補正しない場合と比較して、蓄電池203の加温に要する電力を低減できる。
 以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
101,201 電動機
103,203 蓄電池
105,205 PCU
107,207 電流センサ
109,209 電圧センサ
111,211 温度センサ
113,213 充電器
115,215 ヒータ
117,119,217,219 スイッチ部
121,221 ECU
151,251 電流/電圧取得部
153,253 微分演算部
155,255 内部抵抗算出部
157,257 開放電圧算出部
159,259 SOC導出部
161,261 温度取得部
163,263 有効容量導出部
165SOC変 化推測部
167,265 有効容量変化推測部
169,267 通電制御部
269 目標温度補正部

Claims (6)

  1.  電動車両の駆動源である電動機に電力を供給する蓄電池と、
     通電して生じた熱によって前記蓄電池を加温する発熱部と、
     前記蓄電池の温度及び前記蓄電池の残容量に応じた前記蓄電池の有効容量に基づいて、前記発熱部が前記蓄電池からの電力供給による通電によって発熱して前記蓄電池を目標温度まで昇温した際の前記有効容量の変化を推測する有効容量推測部と、
     前記有効容量推測部が推測した前記有効容量の向上が見込まれる場合に限って、前記蓄電池から前記発熱部への通電を行う第1制御部と、
    を備える、加温制御装置。
  2.  請求項1に記載の加温制御装置であって、
     前記有効容量推測部は、前記発熱部が前記蓄電池を前記目標温度まで昇温するために必要な電力を前記蓄電池が供給した際の、前記蓄電池の残容量の変化を推測する残容量推測部を有し、
     前記有効容量推測部が推測する前記有効容量の変化は、前記発熱部による加温前の前記蓄電池の温度及び残容量に応じた有効容量から、前記目標温度及び前記残容量推測部が推測した加温後の残容量に応じた有効容量への変化であり、
     前記第1制御部は、前記有効容量の変化が所定量以上の増加を示す場合に限って、前記蓄電池の温度が前記目標温度に到達するまで前記蓄電池から前記発熱部への通電を行う、加温制御装置。
  3.  請求項1又は2に記載の加温制御装置であって、
     前記電動車両が操作されない状態の継続時間に応じて前記蓄電池の下限温度を段階的に下げて、前記蓄電池の温度が前記下限温度まで低下するたびに、前記蓄電池から前記発熱部への通電を制御する第2制御部を備える、加温制御装置。
  4.  請求項3に記載の加温制御装置であって、
     前記第2制御部は、前記下限温度が絶対下限温度に到達するまでは、前記蓄電池から前記発熱部への通電を行うたびに前記下限温度を下げる、加温制御装置。
  5.  請求項3又は4に記載の加温制御装置であって、
     前記第2制御部は、前記蓄電池の温度が前記下限温度まで低下するたびに、前記蓄電池が前記下限温度から所定値昇温するよう、前記蓄電池から前記発熱部への通電を制御する、加温制御装置。
  6.  請求項1から5のいずれか1項に記載の加温制御装置であって、
     前記第1制御部又は前記第2制御部が前記発熱部への通電を制御する際の前記電動車両は、外部電源から電力が供給されていない状態である、加温制御装置。
PCT/JP2015/077364 2015-09-28 2015-09-28 加温制御装置 WO2017056161A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580083267.4A CN108028442B (zh) 2015-09-28 2015-09-28 蓄电池的加温控制装置
PCT/JP2015/077364 WO2017056161A1 (ja) 2015-09-28 2015-09-28 加温制御装置
US15/759,614 US10770766B2 (en) 2015-09-28 2015-09-28 Heating control device
JP2017542533A JP6488398B2 (ja) 2015-09-28 2015-09-28 加温制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/077364 WO2017056161A1 (ja) 2015-09-28 2015-09-28 加温制御装置

Publications (1)

Publication Number Publication Date
WO2017056161A1 true WO2017056161A1 (ja) 2017-04-06

Family

ID=58422811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077364 WO2017056161A1 (ja) 2015-09-28 2015-09-28 加温制御装置

Country Status (4)

Country Link
US (1) US10770766B2 (ja)
JP (1) JP6488398B2 (ja)
CN (1) CN108028442B (ja)
WO (1) WO2017056161A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899611A (zh) * 2018-07-09 2018-11-27 陈春丽 一种电动汽车电池高效散热装置
JP2019021512A (ja) * 2017-07-18 2019-02-07 株式会社デンソー 温度調整装置及び二次電池システム
JP2019110649A (ja) * 2017-12-18 2019-07-04 株式会社Subaru 電動車両の制御装置
WO2019220560A1 (ja) * 2018-05-16 2019-11-21 本田技研工業株式会社 電力消費制御装置
CN111094028A (zh) * 2017-08-31 2020-05-01 株式会社电装 车辆用空调装置
WO2023162309A1 (ja) * 2022-02-25 2023-08-31 いすゞ自動車株式会社 電力供給制御装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10742064B2 (en) * 2015-09-15 2020-08-11 Lithium Power, Inc. Solar battery system for low temperature operation
DE102017210303B3 (de) * 2017-06-20 2018-11-22 Audi Ag Verfahren und Batteriemanagementsystem zum Betreiben einer Traktionsbatterie in einem Kraftfahrzeug sowie Kraftfahrzeug mit einem derartigen Batteriemanagementsystem
JP6656284B2 (ja) * 2018-03-22 2020-03-04 本田技研工業株式会社 車両の電池温度表示装置
US10903534B2 (en) * 2018-06-05 2021-01-26 International Business Machines Corporation Battery pack capacity optimization via self-regulation of cell temperature
CN111261977A (zh) * 2018-11-30 2020-06-09 株式会社斯巴鲁 车辆的电池加热装置
CN111682618B (zh) * 2020-06-23 2022-04-29 维沃移动通信有限公司 电子设备、充电方法和装置
US20220080848A1 (en) * 2020-09-14 2022-03-17 Omnitek Partners Llc Portable all-weather electric vehicle charger and internal combustion engine starter and battery conditioner
CN112072217A (zh) * 2020-09-25 2020-12-11 吉林大学 一种基于相变材料与电加热装置的锂电池低温保护系统及控制方法
US11605845B2 (en) 2021-01-07 2023-03-14 Ford Global Technologies, Llc Strategies for warming stationary vehicle traction battery
FR3123598A1 (fr) * 2021-06-04 2022-12-09 Psa Automobiles Sa Groupe motopropulseur electrique avec rechauffeur de fluide caloporteur dans un vehicule automobile electrique ou hybride
DE102021209072A1 (de) 2021-08-18 2023-02-23 Robert Bosch Gesellschaft mit beschränkter Haftung Akkusystem, Akkupack, Akkupackladegerät und Verfahren zu einem Betrieb des Akkusystems
DE102021209949A1 (de) * 2021-09-09 2023-03-09 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung zur Erwärmung einer Traktionsbatterie und Verfahren zur Erwärmung einer Traktionsbatterie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023704A (ja) * 2001-07-06 2003-01-24 Hitachi Ltd 電気車のバッテリ制御装置
JP2011018531A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
JP2012133900A (ja) * 2010-12-20 2012-07-12 Calsonic Kansei Corp 加温装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024915A1 (ja) 2003-09-02 2005-03-17 Nikon Corporation 保守管理装置、保守管理方法、保守管理プログラム、及び情報記録媒体
US9431688B2 (en) * 2010-05-21 2016-08-30 GM Global Technology Operations LLC Method for heating a high voltage vehicle battery
JP5720204B2 (ja) 2010-11-26 2015-05-20 富士通株式会社 アクセス制御プログラム、アクセス制御方法および情報処理装置
JP2012178899A (ja) * 2011-02-25 2012-09-13 Nissan Motor Co Ltd 充電装置
JP5699702B2 (ja) * 2011-03-11 2015-04-15 日産自動車株式会社 車両の充電制御装置
JP2012209213A (ja) 2011-03-30 2012-10-25 Equos Research Co Ltd 電動車両充電システム
US20140333267A1 (en) * 2013-05-10 2014-11-13 Fairchild Semiconductor Corporation Heated accelerated battery charging
JP2015119377A (ja) 2013-12-19 2015-06-25 日本電気株式会社 送信設定調整装置、移動局検出装置、無線通信システム、基地局装置、送信設定調整方法およびプログラム
JP6132788B2 (ja) * 2014-02-28 2017-05-24 株式会社日立製作所 蓄電池システムおよび蓄電池のsoc推定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023704A (ja) * 2001-07-06 2003-01-24 Hitachi Ltd 電気車のバッテリ制御装置
JP2011018531A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
JP2012133900A (ja) * 2010-12-20 2012-07-12 Calsonic Kansei Corp 加温装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021512A (ja) * 2017-07-18 2019-02-07 株式会社デンソー 温度調整装置及び二次電池システム
CN111094028A (zh) * 2017-08-31 2020-05-01 株式会社电装 车辆用空调装置
CN111094028B (zh) * 2017-08-31 2023-06-06 株式会社电装 车辆用空调装置
JP2019110649A (ja) * 2017-12-18 2019-07-04 株式会社Subaru 電動車両の制御装置
WO2019220560A1 (ja) * 2018-05-16 2019-11-21 本田技研工業株式会社 電力消費制御装置
JPWO2019220560A1 (ja) * 2018-05-16 2021-04-22 本田技研工業株式会社 電力消費制御装置
US11342595B2 (en) 2018-05-16 2022-05-24 Honda Motor Co., Ltd. Power consumption control device
CN108899611A (zh) * 2018-07-09 2018-11-27 陈春丽 一种电动汽车电池高效散热装置
WO2023162309A1 (ja) * 2022-02-25 2023-08-31 いすゞ自動車株式会社 電力供給制御装置

Also Published As

Publication number Publication date
JPWO2017056161A1 (ja) 2018-07-05
JP6488398B2 (ja) 2019-03-27
US20190039477A1 (en) 2019-02-07
CN108028442B (zh) 2020-12-15
US10770766B2 (en) 2020-09-08
CN108028442A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
JP6488398B2 (ja) 加温制御装置
JP6634453B2 (ja) 電力消費制御装置
KR101896581B1 (ko) 차량 탑재 전지의 승온 장치 및 승온 방법
CN110077281B (zh) 一种插电式混合动力车动力电池的充电加热方法及系统
US10322645B2 (en) Power storage system
JP6050198B2 (ja) 蓄電システム
US8779728B2 (en) Apparatus for preheating a battery pack before charging
CN103098339B (zh) 电池充电控制装置
US20100072954A1 (en) Battery charging time optimization system
EP2956330B1 (en) Intermittent operation of battery temperature control system
WO2014167914A1 (ja) バッテリ充電システム及びバッテリ充電方法
EP3232049A1 (en) Automobile starting control system and automobile
KR20150118101A (ko) 축전 배터리의 온도를 조절하는 방법
CN112106269B (zh) 电力消耗控制装置
JP6424596B2 (ja) 車両の充電制御装置
JP6841194B2 (ja) 車両
JP6402687B2 (ja) 車両電池システム
US20200369113A1 (en) Vehicle cabin thermal management systems and methods
GB2613786A (en) Battery charging protocols

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905316

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017542533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905316

Country of ref document: EP

Kind code of ref document: A1