WO2012124412A1 - 含窒素芳香族化合物及び有機電界発光素子 - Google Patents

含窒素芳香族化合物及び有機電界発光素子 Download PDF

Info

Publication number
WO2012124412A1
WO2012124412A1 PCT/JP2012/052937 JP2012052937W WO2012124412A1 WO 2012124412 A1 WO2012124412 A1 WO 2012124412A1 JP 2012052937 W JP2012052937 W JP 2012052937W WO 2012124412 A1 WO2012124412 A1 WO 2012124412A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
layer
organic
nitrogen
Prior art date
Application number
PCT/JP2012/052937
Other languages
English (en)
French (fr)
Inventor
貴也 石山
広幸 林田
坂井 満
将司 新名
白石 和人
和明 吉村
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to CN201280013072.9A priority Critical patent/CN103582641B/zh
Priority to US14/004,991 priority patent/US9543526B2/en
Priority to KR1020137027210A priority patent/KR101941529B1/ko
Priority to JP2013504615A priority patent/JP5778756B2/ja
Priority to EP12757159.4A priority patent/EP2687530B1/en
Publication of WO2012124412A1 publication Critical patent/WO2012124412A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D517/00Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D517/12Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains three hetero rings
    • C07D517/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to a novel nitrogen-containing aromatic compound and an organic electroluminescent device using the same, and more particularly to a thin film type device that emits light by applying an electric field to a light emitting layer made of an organic compound.
  • an organic electroluminescence element (hereinafter referred to as an organic EL element) has a light emitting layer and a pair of counter electrodes sandwiching the layer as its simplest structure. That is, in an organic EL element, when an electric field is applied between both electrodes, electrons are injected from the cathode, holes are injected from the anode, and these are recombined in the light emitting layer to emit light. .
  • CBP 4,4′-bis (9-carbazolyl) biphenyl
  • Ir (ppy) 3 2,4′-bis (9-carbazolyl) biphenyl
  • a host material having high triplet excitation energy and balanced in both charge (hole / electron) injection and transport characteristics is required. Further, a compound that is electrochemically stable and has high heat resistance and excellent amorphous stability is desired, and further improvement is required.
  • Patent Document 3 the following indolocarbazole compounds are disclosed, but only peripheral substitutes useful as organic semiconductors are disclosed.
  • Patent Document 4 although the following indolocarbazole compounds are disclosed, only a copolymer with fluorene is disclosed as a blue light emitting polymer.
  • Patent Document 5 Although the following indolocarbazole compounds are disclosed, only compounds in which a plurality of indolocarbazole skeletons are linked are disclosed.
  • Patent Documents 6 and 7 disclose a vast range of general formulas including an indolocarbazole structure, but no disclosure is made on compounds in which heteroatoms are introduced into the benzene rings at both ends of indolocarbazole. There is no suggestion.
  • An object of this invention is to provide the practically useful organic EL element which has high efficiency and high drive stability in view of the said present condition, and a compound suitable for it.
  • the present invention relates to a nitrogen-containing aromatic compound represented by the general formula (1).
  • ring A represents an aromatic ring represented by formula (1a) fused with two adjacent rings at any position
  • ring B represents formula (1b) fused with two adjacent rings at any position.
  • Y represents CR or N
  • 1 to 4 Ys are N.
  • X represents NZ, O, S or Se.
  • R is hydrogen, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, or an aromatic group having 6 to 50 carbon atoms.
  • Z is an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 50 carbon atoms.
  • a compound represented by the following general formula (2) is preferable.
  • ring A, ring B, Y and Z are the same as in general formula (1).
  • X in ring B is preferably NZ, or one or two of Y are N. Moreover, in General formula (1), it is preferable that one or two of Y is N.
  • the present invention also relates to an organic electroluminescent device containing a nitrogen-containing aromatic compound represented by the general formula (1) or (2).
  • the organic layer containing the compound represented by the general formula (1) or (2) is at least one selected from a light emitting layer, a hole transport layer, an electron transport layer, and a hole blocking layer.
  • a layer is preferred.
  • the organic layer containing the compound represented by the general formula (1) or (2) is more preferably a light emitting layer or a hole transport layer, and the light emitting layer emits phosphorescence. It is also preferred that the layer contains an ionic dopant and a compound represented by the general formula (1) or (2) as a host material.
  • the nitrogen-containing aromatic compound of the present invention is represented by the general formula (1).
  • the nitrogen-containing aromatic compound of the present invention is also referred to as the compound of the present invention or the compound represented by the general formula (1).
  • ring A represents an aromatic ring represented by formula (1a) that is condensed with two adjacent rings at an arbitrary position.
  • Ring B represents a heterocyclic ring represented by the formula (1b) that is condensed with two adjacent rings at an arbitrary position.
  • Formula (1b) since the side including X cannot be condensed with an adjacent ring, the type of skeleton of General Formula (1) is limited.
  • each X independently represents NZ, O, S or Se. Preferred is NZ, O or S, and more preferred is NZ.
  • Z is an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, or an aromatic group having 6 to 50 carbon atoms.
  • An aromatic heterocyclic group having 3 to 50 carbon atoms which does not contain a hydrocarbon group or a condensed heterocyclic ring having 4 or more rings.
  • it is an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • it is an aromatic heterocyclic group having 3 to 30 carbon atoms which does not contain a fused heterocyclic ring having 4 or more rings.
  • X is NZ
  • the aromatic heterocyclic group does not include four or more condensed heterocyclic rings.
  • these groups do not have a condensed heterocyclic ring having 4 or more rings as a substituent.
  • the carbon number is preferably 1 to 20, more preferably 1 to 10.
  • the alkyl group include, when unsubstituted, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group, preferably a methyl group.
  • the alkyl group may be linear or branched.
  • the alkyl group may have a substituent, and when these have a substituent, examples of the substituent include a cycloalkyl group having 3 to 11 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, and a carbon number. 3 to 18 aromatic heterocyclic groups.
  • the total number of substituents is 1-10. Preferably it is 1-6, more preferably 1-4. Moreover, when it has two or more substituents, they may be the same or different.
  • the carbon number is preferably 3 to 20, more preferably 5 to 10.
  • Specific examples of the cycloalkyl group include, when unsubstituted, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclohexyl group, and a decahydronaphthyl group.
  • a cyclopentyl group or a cyclohexyl group is preferable.
  • the cycloalkyl group may have a substituent, and when these have a substituent, the substituent may be an alkyl group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or a carbon number. 3 to 18 aromatic heterocyclic groups.
  • the total number of substituents is 1-10. Preferably it is 1-6, more preferably 1-4. Moreover, when it has two or more substituents, they may be the same or different.
  • Z is an alkenyl group having 2 to 30 carbon atoms or an alkynyl group having 2 to 30 carbon atoms
  • these carbon numbers are preferably 2 to 20, more preferably 2 to 10.
  • Specific examples of the alkenyl group or alkynyl group include, when unsubstituted, an ethylenyl group, a propylenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, an acetylenyl group, a propynyl group, a butynyl group, or a pentynyl group.
  • an alkenyl group or alkynyl group include, when unsubstituted, an ethylenyl group, a propylenyl group, a butenyl group, a pentenyl group, a hexenyl group
  • an ethylenyl group, a propylenyl group, a butenyl group, an acetylenyl group, or a propynyl group is mentioned.
  • the alkenyl group and alkynyl group may be linear or branched.
  • the alkenyl group or alkynyl group may have a substituent.
  • substituents include a cycloalkyl group having 3 to 11 carbon atoms and an aromatic hydrocarbon group having 6 to 18 carbon atoms. Or an aromatic heterocyclic group having 3 to 18 carbon atoms.
  • the carbon number is preferably 6 to 30, more preferably 6 to 18.
  • the carbon number is preferably 3 to 30, more preferably 3 to 18.
  • the aromatic heterocyclic group does not include four or more condensed heterocyclic rings.
  • aromatic hydrocarbon group or aromatic heterocyclic group examples include, in the case of unsubstituted, benzene, pentalene, indene, naphthalene, azulene, heptalene, octalene, indacene, acenaphthylene, phenalene, phenanthrene, anthracene, tridene, fluoranthene.
  • the number to be linked is preferably 2 to 10, more preferably 2 to 7, and the linked aromatic rings may be the same. It may be different.
  • the bonding position of A bonded to nitrogen is not limited, and it may be a ring at the end of a linked aromatic ring or a ring at the center.
  • the aromatic ring is a generic term for an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the linked aromatic ring contains at least one heterocyclic ring, it is included in the aromatic heterocyclic group.
  • the monovalent group generated by connecting a plurality of aromatic rings is represented by the following formula, for example.
  • Ar 1 to Ar 6 represent a substituted or unsubstituted aromatic ring.
  • the aromatic heterocyclic group not containing 4 or more condensed heterocyclic rings means a monocyclic aromatic heterocyclic group or 2 to 3 condensed aromatic heterocyclic groups, and this aromatic heterocyclic group The group may have a substituent.
  • this aromatic heterocyclic group is a group formed by connecting a plurality of aromatic rings as represented by the formula (3), for example, this aromatic ring is a condensed aromatic heterocyclic group having 4 or more rings. There is never.
  • the aromatic hydrocarbon group or aromatic heterocyclic group may have a substituent, and when these have a substituent, the substituent may be an alkyl group having 1 to 20 carbon atoms, or a group having 3 to 20 carbon atoms.
  • An alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or a diarylamino group having 6 to 20 carbon atoms is preferable.
  • the aromatic group branched and connected is not treated as a substituent.
  • the substituent is a dialkylamino group or a diarylamino group
  • the two alkyl groups and aryl groups may be the same or different, and the aryl group may be a heterocyclic group.
  • Z is an aromatic hydrocarbon group or an aromatic heterocyclic group and has a substituent
  • the total number of substituents is 1 to 10.
  • it is 1-6, more preferably 1-4.
  • substituents they may be the same or different.
  • each R is independently hydrogen, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, or an alkynyl group having 2 to 30 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms Preferably, hydrogen, alkyl group having 1 to 20 carbon atoms, cycloalkyl group having 3 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, alkynyl group having 2 to 20 carbon atoms, aromatic carbonization having 6 to 20 carbon atoms
  • An aromatic heterocyclic group having 3 to 20 carbon atoms which does not contain a hydrogen group or a condensed heterocyclic ring having 4 or more rings.
  • alkyl group, cycloalkyl group, alkenyl group or alkynyl group are the same as the alkyl group, cycloalkyl group, alkenyl group or alkynyl group constituting Z.
  • the case where these alkyl group, cycloalkyl group, alkenyl group or alkynyl group has a substituent is the same as in Z.
  • an aromatic hydrocarbon group or an aromatic heterocyclic group which does not include a condensed heterocyclic ring having 4 or more rings are aromatic hydrocarbon groups constituting the above Z or a condensed ring having 4 or more rings except that the total number of carbon atoms is different. It is the same as the aromatic heterocyclic group not containing a heterocyclic ring.
  • aromatic hydrocarbon groups or aromatic heterocyclic groups not containing four or more condensed heterocyclic rings have a substituent is the same as in Z.
  • Y represents CR or N, but 1 to 4 Ys are N. Further, the six-membered rings at both ends each have four Y, and the number of Y being N is preferably 2 or less, and more preferably 2 or less in total.
  • R is the same as above.
  • the compound of the general formula (2) shows a preferred embodiment of the compound of the general formula (1).
  • the common symbols have the same meaning as in general formula (1) except that X is specified as NZ.
  • the nitrogen-containing aromatic compound of the present invention can be synthesized using a known method by selecting an azaindole derivative as a starting material, selecting a raw material according to the structure of the target compound.
  • the skeleton in which X is represented by NZ can be synthesized by the following reaction formula with reference to the synthesis example shown in Tetrahedron, 1999, 2371-2380.
  • a skeleton in which X is represented by any of O, S, and Se can also be synthesized using the above synthesis example.
  • the hydrogen on the nitrogen of the 5-membered heterocyclic ring is substituted with a corresponding substituent by a coupling reaction such as the Ullmann reaction.
  • a coupling reaction such as the Ullmann reaction.
  • the organic EL device of the present invention has an organic layer having at least one light emitting layer between an anode and a cathode laminated on a substrate, and the at least one organic layer is represented by the general formula (1).
  • the layer containing the compound represented by the general formula (1) may be a light emitting layer, a hole transport layer, an electron transport layer, or a hole blocking layer, and may be a light emitting layer or a hole transport layer. More preferred.
  • the structure of the organic EL element of the present invention will be described with reference to the drawings.
  • the structure of the organic EL element of the present invention is not limited to the illustrated one.
  • FIG. 1 is a cross-sectional view showing a structural example of a general organic EL device used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represents an electron transport layer, and 7 represents a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, and may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side of the light emitting layer, or both can be inserted simultaneously.
  • the organic EL device of the present invention has a substrate, an anode, a light emitting layer and a cathode as essential layers, but it is preferable to have a hole injecting and transporting layer and an electron injecting and transporting layer in layers other than the essential layers, and further emit light. It is preferable to have a hole blocking layer between the layer and the electron injecting and transporting layer.
  • the hole injection / transport layer means either or both of a hole injection layer and a hole transport layer
  • the electron injection / transport layer means either or both of an electron injection layer and an electron transport layer.
  • the organic EL element of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited as long as it is conventionally used for an organic EL element.
  • a substrate made of glass, transparent plastic, quartz, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture
  • Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a thickness of 1 to 20 nm on the cathode.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • the light emitting layer may be either a fluorescent light emitting layer or a phosphorescent light emitting layer, but is preferably a phosphorescent light emitting layer.
  • the fluorescent light emitting material may be at least one kind of fluorescent light emitting material, but it is preferable to use the fluorescent light emitting material as a fluorescent light emitting dopant and include a host material. .
  • a compound represented by the general formula (1) can be used as the fluorescent light emitting material in the light emitting layer.
  • the compound is used in any other organic layer, it is known from many patent documents. It is also possible to select and use a fluorescent light emitting material.
  • benzoxazole derivatives benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives, condensed aromatic compounds, perinone derivatives, oxadiazole derivatives, Oxazine derivatives, aldazine derivatives, pyralidine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, cyclopentadiene derivatives, styrylamine derivatives, diketopyrrolopyrrole derivatives, aromatic dimethylidine compounds, Represented by metal complexes of 8-quinolinol derivatives, metal complexes of pyromethene derivatives, rare earth complexes
  • Preferred examples include condensed aromatic compounds, styryl compounds, diketopyrrolopyrrole compounds, oxazine compounds, pyromethene metal complexes, transition metal complexes, and lanthanoid complexes. More preferred are naphthacene, pyrene, chrysene, triphenylene, benzo [c] phenanthrene.
  • the amount of the fluorescent light emitting dopant contained in the light emitting layer is 0.01 to 20% by weight, preferably 0.1 to 10% by weight. It should be in range.
  • an organic EL element injects electric charges into a luminescent material from both an anode and a cathode, generates an excited luminescent material, and emits light.
  • 25% of the generated excitons are excited to the excited singlet state, and the remaining 75% are said to be excited to the excited triplet state.
  • certain fluorescent materials are excited triplet states by intersystem crossing etc.
  • An organic EL device using the compound of the present invention can also exhibit delayed fluorescence. In this case, both fluorescence emission and delayed fluorescence emission can be included. However, light emission from the host material may be partly or partly emitted.
  • the luminescent layer when it is a phosphorescent layer, it includes a phosphorescent dopant and a host material.
  • the phosphorescent dopant material preferably contains an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold.
  • organometallic complexes are known in the prior art documents and the like, and these can be selected and used.
  • Preferred phosphorescent dopants include complexes such as Ir (ppy) 3 having a noble metal element such as Ir as a central metal, complexes such as (Bt) 2 Iracac, and complexes such as (Btp) Ptacac. Specific examples of these complexes are shown below, but are not limited to the following compounds.
  • the amount of phosphorescent dopant contained in the light emitting layer is preferably in the range of 1 to 50% by weight. More preferably, it is 5 to 30% by weight.
  • the host material in the light emitting layer it is preferable to use a nitrogen-containing aromatic compound represented by the general formula (1).
  • the nitrogen-containing aromatic compound represented by the general formula (1) is used for any organic layer other than the light emitting layer, the material used for the light emitting layer is represented by the general formula (1).
  • Other host materials other than the nitrogen-containing aromatic compound may be used.
  • a plurality of known host materials may be used in combination.
  • a known host compound that can be used is preferably a compound that has a hole transporting ability and an electron transporting ability, prevents a long wavelength of light emission, and has a high glass transition temperature.
  • host materials are known from a large number of patent documents and can be selected from them.
  • Specific examples of the host material are not particularly limited, but include indole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine.
  • arylamine derivatives amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquino Heterocyclic tetracarboxylic acid anhydrides such as dimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene,
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the compound of the present invention represented by the general formula (1) is preferably used.
  • a known hole blocking layer material is used. It may be used.
  • the material of the electron carrying layer mentioned later can be used as needed.
  • the electron blocking layer is made of a material that has a function of transporting holes and has a very small ability to transport electrons.
  • the electron blocking layer blocks the electrons while transporting holes, and the probability of recombination of electrons and holes. Can be improved.
  • the compound of the present invention represented by the general formula (1) is preferably used, but the material for the hole transport layer described later can be used as necessary.
  • the thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • Examples of the material for the exciton blocking layer include 1,3-dicarbazolylbenzene (mCP) and bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum (III) (BAlq). It is done.
  • mCP 1,3-dicarbazolylbenzene
  • BAlq bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • the known hole transporting material that can be used the compound of the present invention represented by the general formula (1) is preferably used, but any conventionally known compound can be selected and used.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives,
  • stilbene derivatives silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds are used. It is more preferable to use a tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material which may also serve as a hole blocking material
  • the compound of this invention represented by General formula (1) for an electron carrying layer, it can select and use arbitrary things from a conventionally well-known compound, for example, a nitro substituted fluorene derivative , Diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • intermediate (A-6) 5.5 g (22 mmol), 2-bromodibenzobenzene 17 g (65 mmol), 1,3-dimethyl-2-imidazolidine (DMI) 100 ml, copper iodide 16 g (82 mmol) ) And 20 g (150 mmol) of potassium carbonate were added, and the mixture was stirred for 24 hours while heating at 210 ° C. After cooling the reaction solution to room temperature, Celite 545 was added and filtered, and iodobenzene was distilled off under reduced pressure.
  • DMI 1,3-dimethyl-2-imidazolidine
  • Example 4 Poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid (PEDOT / PSS) on ITO on a glass substrate on which an anode made of ITO with a film thickness of 110 nm is formed: (HCC Stark Co., Ltd.) (Trade name: Clevios PCH8000) was formed to a thickness of 25 nm by spin coating. Next, 40 nm of 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPB) was used as a hole transport layer at a vacuum degree of 4.0 ⁇ 10 -5 Pa by vacuum evaporation The thickness was formed.
  • PDB 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • the compound (1-1) obtained in Synthesis Example 1 as a host material and tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ) Were co-deposited from different deposition sources to form a light emitting layer with a thickness of 40 nm.
  • the concentration of Ir (ppy) 3 in the light emitting layer was 6.0 wt%.
  • tris (8-hydroxyquinolinato) aluminum (III) (Alq3) was formed to a thickness of 20 nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 1.0 nm as an electron injection layer.
  • aluminum (Al) was formed as an electrode to a thickness of 130 nm to produce an organic EL element.
  • Example 5 An organic EL device was produced in the same manner as in Example 4 except that the compound (1-33) was used as the host material for the light emitting layer.
  • Example 6 An organic EL device was produced in the same manner as in Example 4 except that the compound (1-46) was used as the host material for the light emitting layer.
  • Comparative Example 1 An organic EL device was produced in the same manner as in Example 4 except that the following compound (H-1) was used as the host material for the light emitting layer.
  • Comparative Example 2 An organic EL device was produced in the same manner as in Example 4 except that the following compound (H-2) was used as the host material for the light emitting layer.
  • Comparative Example 3 An organic EL device was produced in the same manner as in Example 4 except that the following compound TAZ was used as the host material of the light emitting layer.
  • the maximum wavelength of the device emission spectrum of the organic EL devices obtained in Examples 5 to 6 was 530 nm, and it was found that light emission from Ir (ppy) 3 was obtained.
  • Example 7 Poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid (PEDOT / PSS) on ITO on a glass substrate on which an anode made of ITO with a film thickness of 110 nm is formed: (HCC Starck Co., Ltd.) (Trade name: Clevios PCH8000) was formed to a thickness of 25 nm by spin coating. Next, the compound (1-1) as a hole transporting material (HTM) was dissolved in tetrahydrofuran to prepare a 0.4 wt% solution, and a 20 nm thick hole transporting layer was formed by spin coating.
  • HTM hole transporting material
  • the vacuum degree is 4.0 ⁇ 10 ⁇ 5 Pa
  • the host material is 4,4′-bis (9-carbazolyl) biphenyl (CBP)
  • the phosphorescent dopant Ir (ppy) 3 is Were co-evaporated from different deposition sources to form a light emitting layer with a thickness of 50 nm.
  • the concentration of Ir (ppy) 3 in the light emitting layer was 10.0 wt%.
  • Alq3 was formed to a thickness of 30 nm as an electron transport layer.
  • LiF was formed to a thickness of 0.5 nm as an electron injection layer on the electron transport layer.
  • Al was formed as an electrode with a thickness of 150 nm to produce an organic EL device.
  • Example 8 An organic EL device was produced in the same manner as in Example 7 except that the compound (1-33) was used as the hole transport material.
  • Example 9 An organic EL device was produced in the same manner as in Example 7 except that the compound (1-46) was used as the hole transport material.
  • Comparative Example 4 An organic EL device was produced in the same manner as in Example 7 except that the compound (H-1) was used as the hole transport layer.
  • HTM is a hole transport material.
  • Example 12 An organic EL device was produced in the same manner as in Example 4 except that the compound (2-1) was used as the host material for the light emitting layer.
  • Example 13 An organic EL device was produced in the same manner as in Example 4 except that the compound (3-1) was used as the host material for the light emitting layer.
  • Example 4 The device was evaluated in the same manner as in Example 4.
  • the maximum wavelength of the device emission spectra obtained in Examples 12 to 13 was 530 nm, indicating that light emission from Ir (ppy) 3 was obtained.
  • the emission characteristics are shown in Table 3.
  • Example 14 An organic EL device was produced in the same manner as in Example 7 except that the compound (2-1) was used as the hole transport material.
  • Example 15 An organic EL device was produced in the same manner as in Example 7 except that the compound (3-1) was used as the hole transport material.
  • Example 14 The device was evaluated in the same manner as in Example 7.
  • the maximum wavelength of the device emission spectra obtained in Examples 14 to 15 was 530 nm, indicating that light emission from Ir (ppy) 3 was obtained.
  • the emission characteristics are shown in Table 4.
  • the skeleton of the nitrogen-containing aromatic compound of the present invention is expected to improve charge transfer due to the lone pair of electrons on the nitrogen atom of the compound terminal heterocyclic ring.
  • various energy values of ionization potential, electron affinity, and triplet excitation energy can be controlled by a terminal heterocyclic ring and a substituent on nitrogen.
  • An organic EL device using this can be expected to improve efficiency by excellent charge transfer.
  • since it exhibits good amorphous characteristics and high thermal stability and is electrochemically stable it is considered to realize an organic EL element having a long driving life and high durability.
  • the organic EL device according to the present invention has practically satisfactory levels in terms of light emission characteristics, driving life and durability, flat panel display (mobile phone display device, in-vehicle display device, OA computer display device, television, etc.), surface light emission, etc. Its technical value is great in applications to light sources (lighting, light sources for copying machines, backlight light sources for liquid crystal displays and instruments), display boards, and sign lamps that make use of the characteristics of the body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

 有機電界発光素子として有用な含窒素芳香族化合物と、素子の発光効率を改善し、駆動安定性を充分に確保する有機電界発光素子(有機EL素子)を提供する。 この含窒素芳香族複素環化合物下記式(1)で表される。本発明の有機EL素子は、基板上に積層された陽極と陰極の間に、上記含窒素芳香族複素環化合物を含む有機層を有する。式(1)中、環Aは2つの隣接環と縮合する式(1a)で表される芳香環を表し、環Bは2つの隣接環と縮合する式(1b)で表される複素環を表し、YはC-RまたはNを表す。XはN-Z、O、S又はSeであり、Rは水素、アルキル基、芳香族基等であり、Zは、アルキル基、芳香族基等である。

Description

含窒素芳香族化合物及び有機電界発光素子
  本発明は新規な含窒素芳香族化合物及びこれを用いた有機電界発光素子に関するものであり、詳しくは、有機化合物からなる発光層に電界をかけて光を放出する薄膜型デバイスに関するものである。
  一般に、有機電界発光素子(以下、有機EL素子という)は、その最も簡単な構造としては発光層及び該層を挟んだ一対の対向電極から構成されている。すなわち、有機EL素子では、両電極間に電界が印加されると、陰極から電子が注入され、陽極から正孔が注入され、これらが発光層において再結合し、光を放出する現象を利用する。
  近年、有機薄膜を用いた有機EL素子の開発が行われるようになった。特に、発光効率を高めるため、電極からキャリアー注入の効率向上を目的として電極の種類の最適化を行い、芳香族ジアミンからなる正孔輸送層と8-ヒドロキシキノリンアルミニウム錯体(以下、Alq3という)からなる発光層とを電極間に薄膜として設けた素子の開発により、従来のアントラセン等の単結晶を用いた素子と比較して大幅な発光効率の改善がなされたことから、自発光・高速応答性といった特徴を持つ高性能フラットパネルや有機EL照明への実用化を目指して進められてきた。
  また、素子の発光効率を上げる試みとして、蛍光ではなく燐光を用いることも検討されている。上記の芳香族ジアミンからなる正孔輸送層とAlq3からなる発光層とを設けた素子をはじめとした多くの素子が蛍光発光を利用したものであったが、燐光発光を用いる、すなわち、三重項励起状態からの発光を利用することにより、従来の蛍光(一重項)を用いた素子と比べて、3~4倍程度の効率向上が期待される。この目的のためにクマリン誘導体やベンゾフェノン誘導体を発光層とすることが検討されてきたが、極めて低い輝度しか得られなかった。また、三重項状態を利用する試みとして、ユーロピウム錯体を用いることが検討されてきたが、これも高効率の発光には至らなかった。近年では、特許文献1に挙げられるように発光の高効率化や長寿命化を目的にイリジウム錯体等の有機金属錯体を中心に燐光発光ドーパント材料の研究が多数行われている。
  高い発光効率を得るには、前記ドーパント材料と同時に、使用するホスト材料が重要になる。ホスト材料として提案されている代表的なものとして、特許文献2で紹介されているカルバゾール化合物の4,4'-ビス(9-カルバゾリル)ビフェニル(以下、CBPという)が挙げられる。CBPはトリス(2-フェニルピリジン)イリジウム錯体(以下、Ir(ppy)3という)に代表される緑色燐光発光材料のホスト材料として使用した場合、CBPの正孔を流し易く電子を流しにくい特性上、電荷注入バランスが崩れ、過剰の正孔は電子輸送層側に流出し、結果としてIr(ppy)3からの発光効率が低下する。
  有機EL素子で高い発光効率を得るには、高い三重項励起エネルギーを有し、かつ両電荷(正孔・電子)注入輸送特性においてバランスがとれたホスト材料が必要である。更に、電気化学的に安定であり、高い耐熱性と共に優れたアモルファス安定性を備える化合物が望まれており、更なる改良が求められている。
  特許文献3においては、以下に示すインドロカルバゾール化合物が開示されているものの、有機半導体として有用なペリフェラル置換体の開示のみである。
  
Figure JPOXMLDOC01-appb-I000003
 
  特許文献4においては、以下に示すインドロカルバゾール化合物が開示されているものの、青色発光ポリマーとしてフルオレンとの共重合体を開示するのみである。
  
Figure JPOXMLDOC01-appb-I000004
 
  また、特許文献5においては、以下に示すインドロカルバゾール化合物が開示されているものの、インドロカルバゾール骨格が複数連結する化合物を開示するにとどまる。
  
Figure JPOXMLDOC01-appb-I000005
 
 また、特許文献6及び7においては、インドロカルバゾール構造を含む膨大な範囲の一般式が開示されているが、インドロカルバゾールの両末端のベンゼン環にヘテロ原子が導入された化合物については何ら開示も示唆も無い。
特表2003-515897号公報 特開2001-313178号公報 特開2006-193729号公報 特開2004-204234号公報 WO2007-063754号公報 特表2008-545630号公報 WO2009/148015号公報
  有機EL素子を照明やフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本発明は、上記現状に鑑み、高効率かつ高い駆動安定性を有した実用上有用な有機EL素子及びそれに適する化合物を提供することを目的とする。
  本発明者らは、鋭意検討した結果、次項に示す特定の構造を有する含窒素芳香族化合物を有機EL素子として用いることで優れた特性を示すことを見出し、本発明を完成するに至った。
  本発明は、一般式(1)で表される含窒素芳香族化合物に関する。
 
Figure JPOXMLDOC01-appb-I000006
 
  式(1)中、環Aは2つの隣接環と任意の位置で縮合する式(1a)で表される芳香環を表し、環Bは2つの隣接環と任意の位置で縮合する式(1b)で表される複素環を表し、YはC-R又はNを表すが、1~4つのYはNである。XはN-Z、O、S又はSeを表す。Rは、水素、炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数6~50の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3~50の芳香族複素環基を表す。Zは炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数6~50の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3~50の芳香族複素環基を表す。
 一般式(1)で表される含窒素芳香族化合物の中でも、下記一般式(2)で表される化合物が好ましい化合物として挙げられる。
 
Figure JPOXMLDOC01-appb-I000007
 
 一般式(2)中、環A、環B、Y及びZは一般式(1)と同意である。
  一般式(2)において、環BのXがN-Zであること、又はYの1つまたは2つがNであることが好ましい。また、一般式(1)において、Yの1つまたは2つがNであることが好ましい。
 また、本発明は、上記一般式(1)または(2)で表される含窒素芳香族化合物を含む有機電界発光素子に関する。
  本発明の有機電界発光素子は、上記一般式(1)または(2)で表される化合物を含む有機層が発光層、正孔輸送層、電子輸送層及び正孔阻止層から選ばれる少なくとも一つの層であることが好ましい。また、本発明の燐光発光素子は、上記一般式(1)または(2)で表される化合物を含む有機層が発光層または正孔輸送層であることがより好ましく、該発光層が燐光発光性ドーパントと一般式(1)または(2)で表される化合物をホスト材料として含有する層であることも好ましい。
有機EL素子の一構造例を示す断面図である。
  本発明の含窒素芳香族化合物は、一般式(1)で表される。以下、本発明の含窒素芳香族化合物を、本発明の化合物、又は一般式(1)で表される化合物とも言う。
 一般式(1)において、環Aは2つの隣接環と任意の位置で縮合する式(1a)で表される芳香環を表す。また、環Bは2つの隣接環と任意の位置で縮合する式(1b)で表される複素環を表す。しかし、式(1b)において、Xを含む辺では隣接環と縮合することができないので、一般式(1)の骨格の種類は限定される。
  式(1b)においてXはそれぞれ独立してN-Z、O、S又はSeを表す。好ましくはN-Z、O又はSであり、より好ましくはN-Zである。
 ここで、Zは炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数6~50の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3~50の芳香族複素環基を表す。好ましくは炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~30の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3~30の芳香族複素環基である。XがN-Zである場合は、一般式(1)中にZが2個存在することになるが、この2個のZは同一でも、異なってもよい。ここで、芳香族複素環基は、4環以上の縮合複素環を含まない。また、これらの基は4環以上の縮合複素環を置換基として有しない。
 Zが炭素数1~30のアルキル基である場合、その炭素数は好ましくは1~20、より好ましくは1~10である。アルキル基の具体例としては、無置換の場合、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基が挙げられ、好ましくは、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、又はオクチル基が挙げられる。上記アルキル基は直鎖であっても、分岐していてもよい。
  上記アルキル基は置換基を有しても良く、これらが置換基を有する場合、置換基としては、炭素数3~11のシクロアルキル基、炭素数6~18の芳香族炭化水素基又は炭素数3~18の芳香族複素環基である。
  上記アルキル基が置換基を有する場合、置換基の総数は1~10である。好ましくは1~6であり、より好ましくは1~4である。また、2つ以上の置換基を有する場合、それらは同一でも異なっていてもよい。
  本明細書中、炭素数の計算において、置換基を有する場合はその置換基の炭素数も含む。
  Zが炭素数3~30のシクロアルキル基である場合、その炭素数は好ましくは3~20、より好ましくは5~10である。シクロアルキル基の具体例としては、無置換の場合、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロヘキシル基、デカヒドロナフチル基が挙げられる。好ましくはシクロペンチル基、又はシクロヘキシル基が挙げられる。
  上記シクロアルキル基は置換基を有しても良く、これらが置換基を有する場合、置換基としては、炭素数1~10のアルキル基、炭素数6~18の芳香族炭化水素基又は炭素数3~18の芳香族複素環基である。
  上記シクロアルキル基が置換基を有する場合、置換基の総数は1~10である。好ましくは1~6であり、より好ましくは1~4である。また、2つ以上の置換基を有する場合、それらは同一でも異なっていてもよい。
  Zが炭素数2~30のアルケニル基、又は炭素数2~30のアルキニル基である場合、これらの炭素数は好ましくは2~20、より好ましくは2~10である。アルケニル基又はアルキニル基の具体例としては、無置換の場合、エチレニル基、プロピレニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、アセチレニル基、プロピニル基、ブチニル基、又はペンチニル基が挙げられる。好ましくはエチレニル基、プロピレニル基、ブテニル基、アセチレニル基、又はプロピニル基が挙げられる。上記アルケニル基及びアルキニル基は直鎖であっても、分岐していてもよい。
  上記アルケニル基又はアルキニル基は置換基を有しても良く、これらが置換基を有する場合、置換基としては、炭素数3~11のシクロアルキル基、炭素数6~18の芳香族炭化水素基又は炭素数3~18の芳香族複素環基である。
  Zが炭素数6~50の芳香族炭化水素基である場合、その炭素数は好ましくは6~30、より好ましくは6~18である。Zが炭素数3~50の芳香族複素環基である場合、炭素数は好ましくは3~30、より好ましくは3~18である。ここで、芳香族複素環基は4環以上の縮合複素環を含まない。
  上記芳香族炭化水素基又は芳香族複素環基の具体例としては、無置換の場合、ベンゼン、ペンタレン、インデン、ナフタレン、アズレン、ヘプタレン、オクタレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、ヘリセン、ヘキサフェン、ルビセン、コロネン、トリナフチレン、ヘプタフェン、ピラントレン、フラン、ベンゾフラン、イソベンゾフラン、キサンテン、オキサトレン、ジベンゾフラン、ペリキサンテノキサンテン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、イソキノリン、カルバゾール、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、フェノテルラジン、フェノセレナジン、フェノチアジン、フェノキサジン、アンチリジン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、ベンゾイソチアゾール又はこれら芳香環が複数連結された芳香族化合物等から水素を除いて生じる1価の基が挙げられる。好ましくはベンゼン、ナフタレン、アントラセン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、イソインドール、インダゾール、プリン、イソキノリン、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、インドール、カルバゾール又はこれら芳香環が複数連結された芳香族化合物から水素を除いて生じる1価の基が挙げられる。
 なお、芳香環が複数連結された芳香族化合物から生じる基である場合、連結される数は2~10が好ましく、より好ましくは2~7であり、連結される芳香環は同一であっても異なっていても良い。その場合、窒素と結合するAの結合位置は限定されず、連結された芳香環の末端部の環であっても中央部の環であってもよい。ここで、芳香環は芳香族炭化水素環及び芳香族複素環を総称する意味である。また、連結された芳香環に少なくとも1つの複素環が含まれる場合は芳香族複素環基に含める。
  ここで、芳香環が複数連結されて生じる1価の基は、例えば、下記式で表わされる。
  
Figure JPOXMLDOC01-appb-I000008
 
(式(3)~(5)中、Ar1~Ar6は、置換又は無置換の芳香環を示す。)
  ここで、4環以上の縮合複素環を含まない芳香族複素環基とは、単環の芳香族複素環基又は2~3環の縮合芳香族複素環基を意味し、この芳香族複素環基は置換基を有してもよい。なお、この芳香族複素環基が、例えば式(3)で表わされるような芳香環が複数連結されて生じる基である場合、この芳香環はいずれも4環以上の縮合芳香族複素環基であることはない。
  上記芳香族炭化水素基又は芳香族複素環基は置換基を有しても良く、これらが置換基を有する場合、置換基としては、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数1~20のアルコキシ基、炭素数2~20のアシル基、炭素数2~20のジアルキルアミノ基、炭素数6~28のジアリールアミノ基、炭素数6~18のホスファニル基、又は炭素数3~18のシリル基である。好ましくは炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基又は炭素数6~20のジアリールアミノ基である。尚、上記芳香族炭化水素基又は芳香族複素環基において芳香環が複数連結している場合、分岐して連結する芳香族基は置換基としては扱わない。また、置換基がジアルキルアミノ基及びジアリールアミノ基の場合、2つのアルキル基及びアリール基は同一でも異なっていても良く、アリール基は複素環基であっても良い。
  Zが芳香族炭化水素基又は芳香族複素環基であって、置換基を有する場合、置換基の総数は1~10である。好ましくは1~6であり、より好ましくは1~4である。また、2つ以上の置換基を有する場合、それらは同一でも異なっていてもよい。
  一般式(1)において、Rはそれぞれ独立して水素、炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数6~30の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3~30の芳香族複素環基を表す。好ましくは水素、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3~20の芳香族複素環基を表す。
  アルキル基、シクロアルキル基、アルケニル基又はアルキニル基の具体例は上記Zを構成するアルキル基、シクロアルキル基、アルケニル基又はアルキニル基と同様である。また、これらアルキル基、シクロアルキル基、アルケニル基又はアルキニル基が置換基を有する場合もZにおける場合と同様である。
  芳香族炭化水素基又は4環以上の縮合複素環を含まない芳香族複素環基の具体例は総炭素数が異なることを除いて上記Zを構成する芳香族炭化水素基又は4環以上の縮合複素環を含まない芳香族複素環基と同様である。また、これら芳香族炭化水素基又は4環以上の縮合複素環を含まない芳香族複素環基が置換基を有する場合もZにおける場合と同様である。
 一般式(1)において、YはC-RまたはNを表すが、1~4つYはNである。また、両末端の6員環にはYが各4つあるが、そのYがNである数は各々2以下が好ましく、より好ましくは合計で2以下である。なお、Rの具体例は上記と同意である。
 一般式(2)の化合物は、一般式(1)の化合物の好ましい態様を示す。XがN-Zに特定された以外は、共通の記号は一般式(1)と同じ意味を有する。
  本発明の含窒素芳香族化合物は、アザインドール誘導体を出発原料とし、目的とする化合物の構造に応じて原料を選択し、公知の手法を用いて合成することができる。
  例えば、一般式(1)において、XがN-Zで表される骨格は、Tetrahedron,1999,2371-2380に示される合成例を参考にして以下の反応式により合成することができる。
  
Figure JPOXMLDOC01-appb-I000009
 
  また、一般式(1)において、XがO、S、Seのいずれかで表される骨格についても前述の合成例を用いて合成することができる。
  
Figure JPOXMLDOC01-appb-I000010
 
  前述の反応式で得られる化合物のうち、含窒素5員複素環を有する場合、その5員複素環の窒素上の水素を、例えばウルマン反応などのカップリング反応により、対応する置換基に置換させることで、一般式(1)で表される含窒素芳香族化合物を合成することができる。
  一般式(1)で表される本発明の化合物の具体例を以下に示すが、本発明の化合物はこれらに限定されない。
  
Figure JPOXMLDOC01-appb-I000011
 
  
Figure JPOXMLDOC01-appb-I000012
 
  
Figure JPOXMLDOC01-appb-I000013
 
  
Figure JPOXMLDOC01-appb-I000014
 
  
Figure JPOXMLDOC01-appb-I000015
 
  
Figure JPOXMLDOC01-appb-I000016
 
  
Figure JPOXMLDOC01-appb-I000017
 
  
Figure JPOXMLDOC01-appb-I000018
 
  
Figure JPOXMLDOC01-appb-I000019
 
  
Figure JPOXMLDOC01-appb-I000020
 
  次に、本発明の有機EL素子について説明する。
  本発明の有機EL素子は、基板上に積層された陽極と陰極の間に、少なくとも一つの発光層を有する有機層を有し、且つ少なくとも一つの有機層は、一般式(1)で表される化合物を含む。一般式(1)で表される化合物を含む層は、発光層、正孔輸送層、電子輸送層、又は正孔阻止層であることがよく、発光層、又は正孔輸送層であることがより好ましい。
  次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造は何ら図示のものに限定されるものではない。
  図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を各々表わす。本発明の有機EL素子では発光層と隣接して励起子阻止層を有してもよく、また、発光層と正孔注入層との間に電子阻止層を有しても良い。励起子阻止層は発光層の陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、基板、陽極、発光層及び陰極を必須の層として有するが、必須の層以外の層に、正孔注入輸送層、電子注入輸送層を有することがよく、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか又は両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれか又は両者を意味する。
  なお、図1とは逆の構造、すなわち、基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も、必要により層を追加したり、省略したりすることが可能である。
-基板-
  本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英などからなるものを用いることができる。
-陽極-
  有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
-陰極-
  一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明であれば発光輝度が向上し好都合である。
  また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
-発光層-
  発光層は蛍光発光層、燐光発光層のいずれでも良いが、燐光発光層であることが好ましい。
  発光層が蛍光発光層である場合、蛍光発光材料は少なくとも1種の蛍光発光材料を単独で使用しても構わないが、蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を含むことが好ましい。
  発光層における蛍光発光材料としては、一般式(1)で表される化合物を用いることができるが、該化合物を他の何れかの有機層に使用する場合は、多数の特許文献等により知られている蛍光発光材料を選択して使用することもできる。例えばベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、シクロペンタジエン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリジン化合物、8-キノリノール誘導体の金属錯体やピロメテン誘導体の金属錯体、希土類錯体、遷移金属錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体等が挙げられる。好ましくは縮合芳香族化合物、スチリル化合物、ジケトピロロピロール化合物、オキサジン化合物、ピロメテン金属錯体、遷移金属錯体、ランタノイド錯体が挙げられ、より好ましくは、ナフタセン、ピレン、クリセン、トリフェニレン、ベンゾ[c]フェナントレン、ベンゾ[a]アントラセン、ベンタセン、ペリレン、フルオランテン、アセナフソフルオランテン、ジベンゾ[a,j]アントラセン、ジベンゾ[a,h]アントラセン、ベンゾ[a]ナフタセン、ヘキサセン、アンタントレン、ナフト[2,1‐f]イソキノリン、α-ナフタフェナントリジン、フェナントロオキサゾール、キノリノ[6,5‐f]キノリン、又はベンゾチオファントレンなどが挙げられる。これらは置換基としてアリール基、複素芳香環基、ジアリールアミノ基、又はアルキル基を有していてもよい。
  前記蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を含む場合、蛍光発光ドーパントが発光層中に含有される量は、0.01~20重量%、好ましくは0.1~10重量%の範囲にあることがよい。
  通常、有機EL素子は、陽極、陰極の両電極より発光物質に電荷を注入し、励起状態の発光物質を生成し、発光させる。電荷注入型の有機EL素子の場合、生成した励起子のうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起されると言われている。第57回応用物理学関係連合講演会  講演予稿集(19p-ZK-4及び19p-ZK-5)に示されているように、特定の蛍光発光物質は、系間交差等により励起三重項状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆系間交差され蛍光を放射し、熱活性遅延蛍光を発現することが知られている。本発明の化合物を用いた有機EL素子でも遅延蛍光を発現することができる。この場合、蛍光発光及び遅延蛍光発光の両方を含むこともできる。但し、発光の一部或いは部分的にホスト材料からの発光があっても良い。
  発光層が燐光発光層である場合、燐光発光ドーパントとホスト材料を含む。燐光発光ドーパント材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体を含有するものがよい。かかる有機金属錯体は、前記先行技術文献等で公知であり、これらが選択されて使用可能である。
  好ましい燐光発光ドーパントとしては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、(Bt)2Iracac等の錯体類、(Btp)Ptacac等の錯体類が挙げられる。これらの錯体類の具体例を以下に示すが、下記の化合物に限定されない。
  
Figure JPOXMLDOC01-appb-I000021
 
  
Figure JPOXMLDOC01-appb-I000022
 
  前記燐光発光ドーパントが発光層中に含有される量は、1~50重量%の範囲にあることが好ましい。より好ましくは5~30重量%である。
  発光層におけるホスト材料としては、一般式(1)で表される含窒素芳香族化合物を用いることが好ましい。しかし、該一般式(1)で表される含窒素芳香族化合物を発光層以外の他の何れかの有機層に使用する場合は、発光層に使用する材料は一般式(1)で表される含窒素芳香族化合物以外の他のホスト材料であってもよい。また、一般式(1)で表される含窒素芳香族化合物と他のホスト材料を併用してもよい。更に、公知のホスト材料を複数種類併用して用いてもよい。
  使用できる公知のホスト化合物としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。
  このような他のホスト材料は、多数の特許文献等により知られているので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、インドール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8―キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。
-注入層-
  注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-正孔阻止層-
  正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
  正孔阻止層には一般式(1)で表される本発明の化合物を用いることが好ましいが、該化合物を他の何れかの有機層に使用する場合は、公知の正孔阻止層材料を用いてもよい。また、正孔阻止層材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
-電子阻止層-
  電子阻止層とは、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料から成り、正孔を輸送しつつ電子を阻止することで電子と正孔が再結合する確率を向上させることができる。
  電子阻止層の材料としては、一般式(1)で表される本発明の化合物を用いることが好ましいが、後述する正孔輸送層の材料を必要に応じて用いることができる。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
-励起子阻止層-
  励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
  励起子阻止層の材料としては、例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-正孔輸送層-
  正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
  正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては一般式(1)で表される本発明の化合物を用いることが好ましいが、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
-電子輸送層-
  電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
  電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には一般式(1)で表される本発明の化合物を用いることが好ましいが、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
  以下、本発明を実施例によって更に詳しく説明するが、本発明は勿論、これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。
実施例1
化合物(1-1)の合成
  
Figure JPOXMLDOC01-appb-I000023
 
  大気雰囲気下、7-アザインドール11.9 g (101 mmol)、アセトニトリル(MeCN) 67 mlを加え、50℃で5分撹拌した。得られた溶液にN-ヨードスクシンイミド(NIS)25.0 g (111 mmol)を加え、50℃で2時間撹拌した。得られた懸濁液をろ過し、析出した結晶をろ取した。結晶を水 150ml、次いでMeCN 150mLでリスラリーして中間体 (A-1)を22.7 g( 101 mmol、収率100 mol%)得た。
  大気雰囲気下、インドール 100 g(854 mmol)、二炭酸t-ブチル(Boc2O) 203g(931mmol)、ジクロロメタン(CH2Cl2)1600 ml、N,N-ジメチルアミノピリジン(DMAP) 10.4 g(85.1 mmol)を加え、室温で2時間30分撹拌した。反応溶液に1N-塩酸200mlを加えて攪拌し、水層と有機層とを分画した。有機層に飽和食塩水200mlを加えて攪拌し、水層と有機層とを分画した。有機層を無水硫酸ナトリウムで乾燥した後に、硫酸ナトリウムをろ別し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、中間体(A-2)を184 g(847 mmol、収率99 mol%)得た。
  窒素雰囲気下、中間体(A-2)63.3g(290 mmol)、トリイソプロピルボレート(B(OiPr)3) 99.6g(530mmol)、THFを370 ml加え、0℃まで冷却し、リチウムジイソプロピルアミド/THF溶液(LDA)185 ml(2.0mol/l)を滴下した。反応溶液を室温まで戻し、2時間攪拌後、2N-塩酸 370mlを加えて、水層と有機層とを分画した。水層をTHF(300 ml)で抽出し、合わせた有機層を無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、溶媒を減圧留去し、中間体(A-3)を74.0 g (283 mmol、収率98 mol%)得た。
  中間体(A-1 )68.4 g(280 mmol)、中間体(A-3) 73.0 g(280 mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh3)4)15.6 g(13.5 mmol)、炭酸ナトリウム(Na2CO3)75.3 gの水(280 ml)溶液、トルエン960 ml、エタノールを510 ml加え、70℃で加熱しながら4時間撹拌した。反応溶液を室温まで冷却した後に、水層と有機層とを分画した。水層をトルエン(350 ml)で抽出し、合わせた有機層を無水硫酸マグネシウムで乾燥した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製を行い、中間体(A-4)を78.7 g (236 mmol、収率84 mol%)得た。
  
Figure JPOXMLDOC01-appb-I000024
 
  中間体(A-4) 38.7 g(116mmol)、トリフルオロ酢酸(TFA)100 mlを加え、室温にて2時間30分撹拌した。TFAを減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製を行い、中間体(A-5)を26.0 g (111 mol、収率96 mol%)を得た。
  中間体(A-5) 26.0 g(111 mmol)、(ジメチルアミノ)アセトアルデヒドジエチルアセタール22.5 g(139 mmol)、酢酸50 mlを加え、140℃で加熱しながら16時間攪拌した。反応溶液を室温まで冷却した後に、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製を行い、中間体(A-6)を 15.9 g (61.8mmol、収率55 mol%)得た。
APCI-TOFMS, m/z 257 [M+H]+ 
  窒素雰囲気下、中間体(A-6) を3.6 g (13.9 mmol)、ヨードベンゼンを130 g (634 mmol)、ヨウ化銅8.5 g (44.5 mmol)、炭酸カリウム12.2 g (88.5 mmol)を加え、210℃で加熱しながら17時間撹拌した。反応溶液を室温まで冷却した後に、セライト545を加えてろ取し、ヨードベンゼンを減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として化合物(1-1)を 3.3 g (8.1 mmol、収率59 mol%)得た。
APCI-TOFMS, m/z 410 [M+H]+ 
1H-NMR(DMSO-d6) :8.39 (d, J=8.8Hz,1H), 8.25-8.27(m,1H) , 8.23(dd, J=4.6,1.5Hz,1H),7.63-7.79(m,9H), 7.54-7.59(m,1H), 7.31-7.41(m,3H), 7.24 (d, J=7.8Hz,1H), 6.84(dd, J=8.1,4.6Hz,1H), 5.92(dd, J=8.1,1.5Hz,1H)
実施例2
化合物(1-33)の合成
  
Figure JPOXMLDOC01-appb-I000025
 
  窒素雰囲気下、中間体(A-6)を5.5g(22mmol)、2-ブロモジベンゾベンゼン17g(65mmol)、1,3-ジメチル-2-イミダゾリジンン(DMI)100ml、ヨウ化銅16g(82mmol)、炭酸カリウム20g(150mmol)を加え、210℃で加熱しながら24時間撹拌した。反応溶液を室温まで冷却した後に、セライト545を加えてろ取し、ヨードベンゼンを減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として化合物(1-33)を 8.5g (14mmol、収率62 mol%)得た。
APCI-TOFMS, m/z 622 [M+H]+
1H-NMR(DMSO-d6) :δ8.86(d, J=2.0Hz,1H), 8.67(d, J=2.2Hz,1H), 8.42-8.67(m,4H), 8.31(d, J=8.5Hz,1H), 8.29(d, J=8.1Hz,1H), 8.10-8.17(m,3H), 7.84(dd, J=8.3,2.2Hz,1H), 7.74(dd, J=8.3,2.2Hz,1H), 7.55-7.62(m,2H), 7.47-7.52(m,2H), 7.32-7.39(m,4H), 6.38 (dd, J=8.1,4.9Hz,1H), 5.94 (dd, J=8.1,1.4Hz,1H)
実施例3
化合物(1-46)の合成
  
Figure JPOXMLDOC01-appb-I000026
 
  窒素雰囲気下、水素化ナトリウム(60.5%品)2.7g(68mmol)、DMF20 mlを加え、室温で0.5時間撹拌した。得られた懸濁液に中間体(A-6)7.0g(27mmol)のDMF(200 ml)溶液を加え、室温で30分撹拌した。得られた懸濁液にヨードブタン20g(110mmol)加え、130℃で20時間撹拌した。反応溶液に蒸留水(700ml)を撹拌しながら加え、析出した固体をろ取した。得られた固体をリスラリーにて精製を行い、白色固体として化合物(1-46)を6.3g(17mmol、収率64 mol%)を得た。
APCI-TOFMS, m/z 370 [M+H]+
1H-NMR(DMSO-d6) :δ8.86(dd, J=8.1,1.2Hz,1H), 8.50(dd, J=4.6,1.2Hz,1H), 8.36 (d, J=8.5Hz,1H), 8.18(d, J=7.6Hz,1H), 7.73(d, J=8.3Hz,1H), 7.57(d, J=8.5Hz,1H), 7.41(dd, J=7.1,1.2Hz,1H), 7.35(dd, J=8.0,4.6Hz,1H), 7.24 (t, J=7.0Hz,1H), 4.93 (t, J=7.3Hz,2H), 4.62 (t, J=7.3Hz,2H),1.80-1.94(m,4H), 1.33-1.41(m,4H), 0.91 (t, J=7.3Hz,3H), 0.84 (t, J=7.3Hz,3H)
実施例4
  膜厚110 nmのITOからなる陽極が形成されたガラス基板上に、ITO上にポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸(PEDOT/PSS):(エイチ・シー・シュタルク株式会社製、商品名:クレビオスPCH8000)をスピンコート法により25 nmの厚さに形成した。次に、真空蒸着法にて、真空度4.0×10-5 Paで正孔輸送層として4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(NPB)を40 nmの厚さに形成した。次に、正孔輸送層上に、ホスト材料としての合成例1で得た化合物(1-1)と、燐光発光ドーパントとしてのトリス(2‐フェニルピリジン)イリジウム(III)(Ir(ppy)3)とを異なる蒸着源から、共蒸着し、40 nmの厚さに発光層を形成した。発光層中のIr(ppy)3の濃度は6.0 wt%であった。次に、電子輸送層としてトリス(8-ヒドロキシキノリナト)アルミニウム(III)(Alq3)を20 nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を1.0 nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を130 nmの厚さに形成し、有機EL素子を作製した。
  得られた有機EL素子の初期特性として、素子に外部電源を接続して100 mA/cm2の電流が流れるように直流電圧を印加し、そのときの輝度(cd/m2)、電圧(V)、視感発光効率(lm/W)を測定した。以下の実施例及び比較例で得られた有機EL素子についても同様に測定した。結果を表1に示す。なお、素子発光スペクトルの極大波長は530 nmであり、Ir(ppy)3からの発光が得られていることがわかった。
実施例5
  発光層のホスト材料として、化合物(1-33)を用いた以外は実施例4と同様にして有機EL素子を作製した。
実施例6
  発光層のホスト材料として、化合物(1-46)を用いた以外は実施例4と同様にして有機EL素子を作製した。
比較例1
  発光層のホスト材料として、下記化合物(H-1)を用いた以外は実施例4と同様にして有機EL素子を作製した。
  
Figure JPOXMLDOC01-appb-I000027
 
比較例2
  発光層のホスト材料として、下記化合物(H-2)を用いた以外は実施例4と同様にして有機EL素子を作製した。
  
Figure JPOXMLDOC01-appb-I000028
 
比較例3
  発光層のホスト材料として、下記化合物TAZを用いた以外は実施例4と同様にして有機EL素子を作製した。
  
Figure JPOXMLDOC01-appb-I000029
 
 
 実施例5~6で得られた有機EL素子の素子発光スペクトルの極大波長は530 nmであり、Ir(ppy)3からの発光が得られていることがわかった。
Figure JPOXMLDOC01-appb-T000030
 
実施例7
  膜厚110 nmのITOからなる陽極が形成されたガラス基板上に、ITO上にポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸(PEDOT/PSS):(エイチ・シー・シュタルク株式会社製、商品名:クレビオスPCH8000)をスピンコート法により25 nmの厚さに形成した。次に、正孔輸送用材料(HTM)として化合物(1-1)をテトラヒドロフランに溶解して0.4wt%溶液に調製し、スピンコート法により厚さ20nmの正孔輸送層を製膜した。次に、真空蒸着法にて、真空度4.0×10-5Paでホスト材料として、4,4'-ビス(9-カルバゾリル)ビフェニル(CBP)と、燐光発光ドーパントとしてのIr(ppy)3とを異なる蒸着源から、共蒸着し、50 nmの厚さに発光層を形成した。発光層中のIr(ppy)3の濃度は10.0 wt%であった。次に、電子輸送層としてAlq3を30 nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてLiFを0.5nmの厚さに形成した。最後に、電子注入層上に、電極としてAlを150 nmの厚さに形成し、有機EL素子を作製した。
  得られた有機EL素子の初期特性として、素子に外部電源を接続して100 mA/cm2の電流が流れるように直流電圧を印加し、そのときの輝度(cd/m2)、電圧(V)、視感発光効率(lm/W)を測定した。以下の実施例及び比較例で得た有機EL素子についても同様に測定した。結果を表2に示す。
実施例8
  正孔輸送用材料として、化合物(1-33)を用いた以外は実施例7と同様にして有機EL素子を作製した。
実施例9
  正孔輸送用材料として、化合物(1-46)を用いた以外は実施例7と同様にして有機EL素子を作製した。
比較例4
  正孔輸送層として化合物(H-1)を用いた以外は実施例7と同様にして有機EL素子を作製した。
 実施例7~9で得た有機EL素子の発光スペクトルの極大波長は530 nmであり、Ir(ppy)3からの発光が得られていることがわかった。結果を表2に示す。HTMは正孔輸送用材料である。
Figure JPOXMLDOC01-appb-T000031
 
実施例10
 化合物(2-1)の合成
  
Figure JPOXMLDOC01-appb-I000032
 
  中間体(A-1 )75.9 g(310mmol)、ベンゾフラン-2-ボロン酸(A-7) 50.0 g(30.9 mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh3)4)4.3 g(3.8 mmol)、2規定の炭酸ナトリウム(Na2CO3)水溶液390ml、トルエン815 ml、エタノールを490 ml加え、70℃で加熱しながら21時間撹拌した。反応溶液を室温まで冷却した後に、水層と有機層とを分画した。水層をトルエン(350 ml)で抽出し、合わせた有機層を無水硫酸マグネシウムで乾燥した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製を行い、中間体(A-8)を14.1 g (60 mmol、収率19 mol%)得た。
APCI-TOFMS, m/z 235 [M+H]+
 中間体(A-8) 5.0 g(20.0 mmol)、(ジメチルアミノ)アセトアルデヒドジエチルアセタール5.2 g(32.1 mmol)、酢酸65 mlを加え、140℃で加熱しながら96時間攪拌した。反応溶液を室温まで冷却した後に、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製を行い、中間体(A-9)を 1.3 g (4.9mmol、収率25 mol%)得た。
FD-MS, m/z 258 [M]
  窒素雰囲気下、中間体(A-9)を1.3 g (13.9 mmol)、ヨードベンゼンを32 g (156 mmol)、ヨウ化銅2.0 g (10.7 mmol)、炭酸カリウム2.9 g (21.1 mmol)を加え、210℃で加熱しながら24時間撹拌した。反応溶液を室温まで冷却した後に、セライト545を加えてろ取し、ヨードベンゼンを減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、固体として化合物(2-1)を1.3 g (3.7 mmol、収率73 mol%)得た。
FD-MS, m/z 334 [M] 
1H-NMR(DMSO-d6) :8.63 (d, J=8.8Hz,1H), 8.51-8.53(m,1H), 8.22 (d, J=8.0Hz,1H), 7.82(d,J=8.0Hz,1H), 7.48-7.80(m,6H), 7.20-7.45(m,4H) 
実施例11
 化合物(3-1)の合成
  
Figure JPOXMLDOC01-appb-I000033
 
  中間体(A-1)69.7 g(286mmol)、ベンゾチオフェン-2-ボロン酸(A-10) 50.5 g(284 mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh3)4)5.3 g(4.6 mmol)、2規定の炭酸ナトリウム(Na2CO3)水溶液360ml、トルエン815 ml、エタノールを490 ml加え、70℃で加熱しながら22時間撹拌した。反応溶液を室温まで冷却した後に、水層と有機層とを分画した。水層をトルエン(350 ml)で抽出し、合わせた有機層を無水硫酸マグネシウムで乾燥した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製を行い、中間体(A-11)を10.3 g (41 mmol、収率14 mol%)得た。
APCI-TOFMS, m/z 251 [M+H]+
 中間体(A-11)5.0 g(20.0 mmol)、(ジメチルアミノ)アセトアルデヒドジエチルアセタール4.8 g(30.0 mmol)、酢酸78 mlを加え、140℃で加熱しながら96時間攪拌した。反応溶液を室温まで冷却した後に、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製を行い、中間体(A-12)を 2.3 g (8.4mmol、収率42 mol%)得た。
FD-MS, m/z 274 [M]
  窒素雰囲気下、中間体(A-12)を2.3 g (8.4 mmol)、ヨードベンゼンを53 g (260 mmol)、ヨウ化銅3.4 g (17.8 mmol)、炭酸カリウム4.9g (35.2 mmol)を加え、210℃で加熱しながら24時間撹拌した。反応溶液を室温まで冷却した後に、セライト545を加えてろ取し、ヨードベンゼンを減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、固体として化合物(3-1)を 1.9 g (5.5 mmol、収率65 mol%)得た。
FD-MS, m/z 350 [M+H]+ 
1H-NMR(DMSO-d6) :8.53 (d, J=8.2Hz,1H), 8.47-8.50(m,1H), 8.16 (d, J=8.0Hz,1H), 7.84(d,J=8.0Hz,1H), 7.45-7.78(m,6H), 7.21-7.43(m,4H)
実施例12
  発光層のホスト材料として、化合物(2-1)を用いた以外は実施例4と同様にして有機EL素子を作製した。
実施例13
  発光層のホスト材料として、化合物(3-1)を用いた以外は実施例4と同様にして有機EL素子を作製した。
 実施例4と同様にして素子の評価を行った。実施例12~13で得た素子発光スペクトルの極大波長は530nmであり、Ir(ppy)3からの発光が得られていることがわかった。発光特性を表3に示す。
Figure JPOXMLDOC01-appb-T000034
 
実施例14
  正孔輸送用材料として、化合物(2-1)を用いた以外は実施例7と同様にして有機EL素子を作製した。
実施例15
  正孔輸送用材料として、化合物(3-1)を用いた以外は実施例7と同様にして有機EL素子を作製した。
 実施例7と同様にして素子の評価を行った。実施例14~15で得た素子発光スペクトルの極大波長は530nmであり、Ir(ppy)3からの発光が得られていることがわかった。発光特性を表4に示す。
Figure JPOXMLDOC01-appb-T000035
 
産業上の利用の可能性
  本発明の含窒素芳香族化合物の骨格は化合物末端複素環の窒素原子上の孤立電子対により電荷移動の向上が期待される。また、末端複素環及び窒素上の置換基により、イオン化ポテンシャル、電子親和力、三重項励起エネルギーの各種エネルギー値の制御が可能となると考えられる。これを用いた有機EL素子は優れた電荷移動により効率の向上が期待できる。加えて、良好なアモルファス特性と高い熱安定性を示し、また電気化学的に安定であることから、駆動寿命が長く、耐久性の高い有機EL素子を実現すると考えられる。
  本発明による有機EL素子は、発光特性、駆動寿命ならびに耐久性において、実用上満足できるレベルにあり、フラットパネルディスプレイ(携帯電話表示素子、車載表示素子、OAコンピュータ表示素子やテレビ等)、面発光体としての特徴を生かした光源(照明、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板や標識灯等への応用において、その技術的価値は大きいものである。

Claims (9)

  1.   一般式(1)で表される含窒素芳香族化合物。

    Figure JPOXMLDOC01-appb-I000001
     
      式(1)中、環Aは2つの隣接環と任意の位置で縮合する式(1a)で表される芳香環を表し、環Bは2つの隣接環と任意の位置で縮合する式(1b)で表される複素環を表し、YはC-R又はNを表すが、1~4つのYはNである。XはN-Z、O、S又はSeを表す。Rは、水素、炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数6~50の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3~50の芳香族複素環基を表す。Zは炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数6~50の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3~50の芳香族複素環基を表す。
  2.  下記一般式(2)で表されることを特徴とする請求項1に記載の含窒素芳香族化合物。

    Figure JPOXMLDOC01-appb-I000002
     
     一般式(2)中、環A、環B、Y及びZは一般式(1)と同意である。
  3.   一般式(2)において、環BのXがN-Zであることを特徴とする請求項2に記載の含窒素芳香族化合物。
  4.  一般式(1)において、Yの1つまたは2つがNであることを特徴とする請求項1に記載の含窒素芳香族化合物。
  5.  一般式(2)において、Yの1つまたは2つがNであることを特徴とする請求項2に記載の含窒素芳香族化合物。
  6.   請求項1~5のいずれかに記載の含窒素芳香族化合物を含むことを特徴とする有機電界発光素子。
  7.  上記含窒素芳香族化合物を含む有機層が、発光層、正孔輸送層、電子輸送層及び正孔阻止層から選ばれる少なくとも一つの層である請求項6記載の有機発光素子。
  8.  上記含窒素芳香族化合物を含む有機層が、発光層または正孔輸送層であることを特徴とする請求項6記載の有機電界発光素子。
  9.  上記含窒素芳香族化合物を含む有機層が、基板上に積層された陽極と陰極の間に、発光層を有する有機電界発光素子の発光層であり、該発光層が燐光発光性ドーパントと上記含窒素芳香族化合物をホスト材料として含有する請求項6記載の有機電界発光素子。
PCT/JP2012/052937 2011-03-16 2012-02-09 含窒素芳香族化合物及び有機電界発光素子 WO2012124412A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280013072.9A CN103582641B (zh) 2011-03-16 2012-02-09 含氮芳香族化合物和有机场致发光元件
US14/004,991 US9543526B2 (en) 2011-03-16 2012-02-09 Nitrogen-containing aromatic compounds and organic electroluminescent device
KR1020137027210A KR101941529B1 (ko) 2011-03-16 2012-02-09 함질소 방향족 화합물 및 유기 전계 발광 소자
JP2013504615A JP5778756B2 (ja) 2011-03-16 2012-02-09 含窒素芳香族化合物及び有機電界発光素子
EP12757159.4A EP2687530B1 (en) 2011-03-16 2012-02-09 Nitrogen-containing aromatic compounds and organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011057753 2011-03-16
JP2011-057753 2011-03-16

Publications (1)

Publication Number Publication Date
WO2012124412A1 true WO2012124412A1 (ja) 2012-09-20

Family

ID=46830490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052937 WO2012124412A1 (ja) 2011-03-16 2012-02-09 含窒素芳香族化合物及び有機電界発光素子

Country Status (7)

Country Link
US (1) US9543526B2 (ja)
EP (1) EP2687530B1 (ja)
JP (1) JP5778756B2 (ja)
KR (1) KR101941529B1 (ja)
CN (1) CN103582641B (ja)
TW (1) TWI521043B (ja)
WO (1) WO2012124412A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104346A1 (ja) * 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2014104315A1 (ja) * 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子
KR20150140322A (ko) * 2013-04-08 2015-12-15 메르크 파텐트 게엠베하 열 활성화 지연 형광 재료를 갖는 유기 전계발광 디바이스
JP2016518710A (ja) * 2013-04-08 2016-06-23 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセント素子
JP2016536802A (ja) * 2013-09-11 2016-11-24 メルク パテント ゲーエムベーハー 電子素子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806269B2 (en) * 2014-12-05 2017-10-31 Lg Display Co., Ltd. Delayed fluorescence compound, and organic light emitting diode and display device using the same
CN106349242A (zh) * 2016-08-02 2017-01-25 叶芳 一种3位卤素取代7‑氮杂吲哚的制备方法
US20200006687A1 (en) * 2017-03-21 2020-01-02 Konica Minolta, Inc. Organic electroluminescence element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135146A (ja) * 2004-11-08 2006-05-25 Sony Corp 表示素子用有機材料および表示素子
WO2009136595A1 (ja) * 2008-05-08 2009-11-12 新日鐵化学株式会社 有機電界発光素子用化合物及び有機電界発光素子
JP2010135467A (ja) * 2008-12-03 2010-06-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687834B2 (ja) 1999-07-26 2005-08-24 株式会社ダイフク 作業用台車式搬送装置
DE60045110D1 (de) 1999-12-01 2010-11-25 Univ Princeton Erungsmittel in organischen led's
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
KR100695106B1 (ko) 2002-12-24 2007-03-14 삼성에스디아이 주식회사 청색 발광 고분자 및 이를 채용한 유기 전계 발광 소자
US7402681B2 (en) * 2004-12-14 2008-07-22 Xerox Corporation Compound with indolocarbazole moieties and devices containing such compound
DE102005023437A1 (de) 2005-05-20 2006-11-30 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
US7993760B2 (en) 2005-12-01 2011-08-09 Nippon Steel Chemical Co., Ltd. Compound for use in organic electroluminescent device and organic electroluminescent device
US8049411B2 (en) 2008-06-05 2011-11-01 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
JP5357150B2 (ja) 2008-06-05 2013-12-04 出光興産株式会社 ハロゲン化合物、多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
KR101511072B1 (ko) * 2009-03-20 2015-04-10 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광소자
KR20100118700A (ko) 2009-04-29 2010-11-08 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
DE102009023155A1 (de) * 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135146A (ja) * 2004-11-08 2006-05-25 Sony Corp 表示素子用有機材料および表示素子
WO2009136595A1 (ja) * 2008-05-08 2009-11-12 新日鐵化学株式会社 有機電界発光素子用化合物及び有機電界発光素子
JP2010135467A (ja) * 2008-12-03 2010-06-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2687530A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10186665B2 (en) 2012-12-28 2019-01-22 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
WO2014104315A1 (ja) * 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2014104346A1 (ja) * 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子
JPWO2014104315A1 (ja) * 2012-12-28 2017-01-19 出光興産株式会社 有機エレクトロルミネッセンス素子
US9882144B2 (en) 2012-12-28 2018-01-30 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
JP2016521455A (ja) * 2013-04-08 2016-07-21 メルク パテント ゲーエムベーハー 熱活性化遅延蛍光材料をもつ有機エレクトロルミネッセント素子
JP2016518710A (ja) * 2013-04-08 2016-06-23 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセント素子
US10249828B2 (en) 2013-04-08 2019-04-02 Merck Patent Gmbh Organic electroluminescent device
KR20150140322A (ko) * 2013-04-08 2015-12-15 메르크 파텐트 게엠베하 열 활성화 지연 형광 재료를 갖는 유기 전계발광 디바이스
JP2019145807A (ja) * 2013-04-08 2019-08-29 メルク パテント ゲーエムベーハー 熱活性化遅延蛍光材料をもつ有機エレクトロルミネッセント素子
JP2019149554A (ja) * 2013-04-08 2019-09-05 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセント素子
KR102361072B1 (ko) 2013-04-08 2022-02-09 메르크 파텐트 게엠베하 열 활성화 지연 형광 재료를 갖는 유기 전계발광 디바이스
JP2016536802A (ja) * 2013-09-11 2016-11-24 メルク パテント ゲーエムベーハー 電子素子
EP3044286B1 (de) 2013-09-11 2018-01-31 Merck Patent GmbH Organische elektrolumineszenzvorrichtung

Also Published As

Publication number Publication date
US20140001458A1 (en) 2014-01-02
CN103582641A (zh) 2014-02-12
KR101941529B1 (ko) 2019-01-23
JPWO2012124412A1 (ja) 2014-07-17
KR20140023316A (ko) 2014-02-26
CN103582641B (zh) 2016-05-04
US9543526B2 (en) 2017-01-10
EP2687530B1 (en) 2018-07-11
EP2687530A1 (en) 2014-01-22
EP2687530A4 (en) 2014-09-17
JP5778756B2 (ja) 2015-09-16
TW201249957A (en) 2012-12-16
TWI521043B (zh) 2016-02-11

Similar Documents

Publication Publication Date Title
JP4870245B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
JP5775520B2 (ja) 有機電界発光素子
JP6091428B2 (ja) 有機電界発光素子
JP6334404B2 (ja) 有機電界発光素子用化合物及び有機電界発光素子
JP5778756B2 (ja) 含窒素芳香族化合物及び有機電界発光素子
WO2012077520A1 (ja) 有機電界発光素子
WO2011099451A1 (ja) 有機電界発光素子
WO2014002629A1 (ja) 有機電界発光素子用材料及び有機電界発光素子
WO2013088934A1 (ja) 有機電界発光素子用材料及びそれを用いた有機電界発光素子
WO2010082621A1 (ja) 有機電界発光素子
JP6169078B2 (ja) 有機電界発光素子
JP6360796B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP5390441B2 (ja) 有機電界発光素子
JP5577122B2 (ja) 有機電界発光素子
JP6310850B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2013038929A1 (ja) 含ケイ素四員環構造を有する有機電界発光素子用材料及び有機電界発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280013072.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504615

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14004991

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137027210

Country of ref document: KR

Kind code of ref document: A