WO2012124151A1 - 交信処理装置および交信処理装置における距離計測方法 - Google Patents

交信処理装置および交信処理装置における距離計測方法 Download PDF

Info

Publication number
WO2012124151A1
WO2012124151A1 PCT/JP2011/056908 JP2011056908W WO2012124151A1 WO 2012124151 A1 WO2012124151 A1 WO 2012124151A1 JP 2011056908 W JP2011056908 W JP 2011056908W WO 2012124151 A1 WO2012124151 A1 WO 2012124151A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
intermediate frequency
carrier wave
distance
tag
Prior art date
Application number
PCT/JP2011/056908
Other languages
English (en)
French (fr)
Inventor
英克 野上
広和 笠井
修一 松井
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN2011800029786A priority Critical patent/CN103026258A/zh
Priority to EP11807850.0A priority patent/EP2523018A4/en
Priority to US13/358,855 priority patent/US8436765B2/en
Publication of WO2012124151A1 publication Critical patent/WO2012124151A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/84Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted for distance determination by phase measurement

Definitions

  • the present invention relates to a communication processing apparatus that communicates with an RFID tag using a continuous carrier wave.
  • the present invention relates to an RFID tag that responds to a command from the communication processing apparatus (hereinafter sometimes simply referred to as a “tag”).
  • the present invention relates to a technique for measuring a distance to a communication processing device.
  • the process of sending a response from the tag and sending the response from the tag is performed alternately.
  • the tag receiving the command responds to the command by changing the impedance of its own circuit.
  • a signal (reflected wave) in which a response signal to a command is superimposed on an unmodulated carrier wave is returned to the communication processing device, and the response signal is decoded.
  • radio waves can reach far beyond the required distance. May arrive.
  • radio waves may be reflected on the floor or wall of the site and guided to far away tags. As a result, there is a possibility that a tag existing in a place where communication is not required responds to the command and a problem occurs in information processing.
  • FIG. 1 A specific example is shown in FIG.
  • the antennas A1 and A2 of the communication processing device are arranged on the side of the parallel routes B1 and B2, respectively, and the antennas A1 and A2 are attached to the vehicle C traveling on the routes B1 and B2.
  • Information is read from the tag T.
  • the radio wave from the antenna A2 of the adjacent route B2 also reaches the tag T.
  • the tag T responds to the command from the antenna A2, and there is a possibility that wrong information is read and written.
  • Patent Document 1 two types of carrier waves having different frequencies are sequentially transmitted, the amount of change in the phase of the reflected wave from the tag is detected for each frequency, and the tag and the tag are calculated by using the difference between the amounts of change. It is described that the distance is calculated.
  • Patent Document 2 communication using two antennas is performed on a tag attached to a moving body (train) passing through a predetermined route (track), and each antenna receives a response signal received from the tag. Is obtained, and the distance ⁇ L is obtained using the phase difference and the wavelength of the response signal. Further, Patent Document 2 uses the fact that this distance ⁇ L corresponds to the difference between the distance L1 from one antenna to the tag and the distance L2 from the other antenna to the tag, and thus the difference in distance from each antenna. It is described that a hyperbola formed by a point where ⁇ L becomes ⁇ L is set, and the position of the tag is specified using this hyperbola and the distance from the tag reader to the tag moving path (paragraph 0057 of Patent Document 1). ⁇ 0061, see FIG.
  • the phase shift amount of the reflected wave from the tag with respect to the carrier wave transmitted from the antenna is detected, and the detected shift amount and the wavelength of the carrier wave are used.
  • a method of measuring the distance to the tag can be considered. However, this method is premised on that the radio wave transmitted from the antenna returns to the antenna through a path that is reciprocated within a cycle. That is, the distance that can be measured by this method is up to the length of a half cycle of the carrier wave.
  • the wavelength of the carrier wave is about 30 cm.
  • This type of radio wave causes the tag to react even when it reaches a place about 10 meters away from the antenna. It has the strength that can be.
  • a communication distance in units of several meters is generally set. For such a specification, distance measurement using a phase difference of a signal having a wavelength of about 30 cm is not useful at all.
  • the present invention pays attention to the above-mentioned problem, actually transmits a carrier wave on which an intermediate frequency is superimposed during a period of receiving a reflected wave from the tag, and performs distance measurement using the phase shift of the intermediate frequency. It is an object to realize measurement that can correspond to the setting of the communication process.
  • the communication processing apparatus transmits a command to an RFID tag by modulating a carrier wave transmitted from an antenna, and transmits an unmodulated carrier wave (CW) from the antenna in response to the command transmission.
  • a reception process for receiving a reflected wave from the RFID tag with respect to the unmodulated carrier wave and a decoding process for decoding a response signal from the RFID tag from the received reflected wave are executed.
  • the communication processing device extracts carrier frequency processing means for superimposing the intermediate frequency signal on the carrier wave transmitted from the antenna, and extracts the intermediate frequency signal from the reflected wave in response to the start of reception of the reflected wave in the reception process.
  • a phase difference detecting means for detecting a phase difference of the extracted intermediate frequency signal with respect to an intermediate frequency signal in a carrier wave transmitted at a timing corresponding to the extraction, and the phase difference detected by the phase difference detecting means and the intermediate frequency Distance measuring means for measuring the distance to the RFID tag that returned the reflected wave using the wavelength of the signal.
  • the intermediate frequency signal is superimposed on an unmodulated carrier wave for receiving a response from the tag to the command, and the distance to the tag is measured using the phase difference generated in the intermediate frequency signal. It is possible to measure the distance that can be used for general applications that use the. For example, when a signal having a frequency of 15 MHz is used as the intermediate frequency signal, the wavelength is about 20 m, and thus the distance to 10 m, which is half of the wavelength, can be measured.
  • the phase difference detection means executes the extraction of the intermediate frequency signal and the detection of the phase difference in response to the detection of the preamble in the response information by the decoding process. Since the preamble in the response signal has a configuration in which bit signals of “1” and “0” are arranged in a fixed pattern, it is easily determined that reception of the reflected wave is started by detecting this pattern. Thus, it is possible to extract an intermediate frequency signal and detect a phase difference. Further, it is possible to prevent a noise reflected wave that has been reflected from the floor or wall and returned to the communication processing device from being erroneously recognized as a reflected wave from the tag.
  • the communication processing apparatus further includes a determination unit that determines whether or not an RFID tag that returns a reflected wave based on the distance measured by the distance measurement unit is appropriate as a communication target. In this way, it becomes easy to adopt only the response signal from the tag within the predetermined distance range, and it is possible to prevent erroneous information processing from being performed.
  • the preferred embodiment of the communication processing apparatus of the present invention is an RFID reader / writer that reads and writes information from and to an RFID tag, but is not limited thereto, and may be configured as an RFID reader that only reads information.
  • the distance measurement method includes a command transmission process for transmitting a command to an RFID tag by modulating a carrier wave transmitted from an antenna, and this non-modulation while transmitting an unmodulated carrier wave from the antenna in response to the command transmission.
  • the communication processing apparatus executes a reception process for receiving a reflected wave from the RFID tag with respect to the carrier wave and a decoding process for decoding a response signal from the RFID tag included in the received reflected wave.
  • the intermediate frequency signal is superimposed on the carrier wave transmitted from the antenna, and the intermediate frequency signal is extracted from the reflected wave in response to the start of reception of the reflected wave in the reception process, and this extraction is supported.
  • the phase difference of the extracted intermediate frequency signal with respect to the intermediate frequency signal in the carrier wave transmitted at the timing is detected. Then, the distance to the RFID tag that returns the reflected wave is measured using the detected phase difference and the wavelength of the intermediate frequency.
  • an intermediate frequency signal is superimposed on an unmodulated carrier wave transmitted from an antenna in order to receive a response from an RFID tag in response to a command, and an intermediate frequency signal included in a reflected wave from the RFID tag and a carrier wave being transmitted are superimposed. Since the distance to the tag is measured using the phase difference from the included intermediate frequency signal, it is possible to measure the distance of the length corresponding to the communication distance that can be set.
  • FIG. 1 shows a configuration of a reader / writer as an example of a communication processing apparatus to which the present invention is applied.
  • the reader / writer 1 of this embodiment communicates with a passive type or semi-passive type RFID tag 2 using radio waves in the UHF band, and reads information from the tag 2 or writes information into the tag 2.
  • the transmitter / receiver circuit 100 including the antenna 10 and the control unit 110 that controls the operation of the transmitter / receiver circuit are provided.
  • the radio wave to be used is not limited to the UHF band, and radio waves in other bands may be used.
  • the transmission / reception circuit 100 includes a circulator 101, a 90-degree phase shifter 102, two types of oscillators 11A and 11B, mixers 12A and 12B for transmission processing, mixers 13A, 13B, 16i, and 16q for reception processing,
  • the distributors 14 and 15, the amplifier 18, the A / D converters 17i, 17q, and 19 are included.
  • the substance of the control unit 110 is a program logic circuit (FPGA), and includes functions of a transmission control unit 111, a phase difference detection unit 112, a distance calculation unit 113, a decoding processing unit 114, and an output processing unit 115.
  • FPGA program logic circuit
  • the reader / writer 1 is provided with an interface circuit for a host device (not shown).
  • the control unit 110 performs a communication process with the tag 2 based on an instruction transmitted from the host device, and transmits the processing result to the host device.
  • An intermediate frequency signal (hereinafter referred to as “IF signal”) of about 15 MHz is output from the first oscillator 11A.
  • IF signal An intermediate frequency signal
  • RF signal a high frequency signal of about 1 GHz
  • the IF signal is supplied to the mixer 12A on the transmission side, and is also supplied to the mixer 13A on the reception side and the 90-degree phase shifter 102 via the distributor 14.
  • the RF signal is supplied to the mixer 12B on the transmission side and the mixer 13B on the reception side.
  • the mixer 12A inputs the data signal output from the transmission control unit 111 and the IF signal and mixes both signals, and the mixer 12B inputs the mixed signal and the RF signal from the mixer 13A. Mix.
  • the IF signal is superimposed on the carrier signal based on the RF signal, and the carrier signal modulated by the data signal is generated.
  • the generated signal is guided from the mixer 12B to the antenna 10 via the circulator 101 and sent out as an electromagnetic wave.
  • the transmission control unit 111 transmits a continuous wave after outputting the data signal constituting the command. Substantial modulation occurs on the carrier during the period in which the command is transmitted.
  • a signal obtained by superimposing the IF signal on the RF signal is transmitted as an unmodulated carrier wave CW (hereinafter referred to as “unmodulated wave”).
  • unmodulated wave an unmodulated carrier wave CW
  • the reflected wave received by the antenna 10 from the tag 2 is guided to the mixer 13B via the circulator 101.
  • the mixer 13B removes the RF component from the received signal by the mixing process with the RF signal, and outputs an IF signal on which the response signal from the tag 2 is superimposed.
  • the IF signal including the response signal (hereinafter referred to as “received IF signal”) is distributed by the distributor 15 to the mixers 13A, 16i, and 16q.
  • the mixer 13A demodulates the response signal by mixing the received IF signal with the IF signal (hereinafter referred to as “reference IF signal”) from the oscillator 11A.
  • the demodulated response signal is amplified by the amplifier 18 and then digitally converted by the A / D converter 19.
  • the response signal after the digital conversion is input to the decoding processing unit 114 of the control unit 110, and information (response information) indicating the response content is decoded.
  • the mixer 16i extracts the I signal included in the received IF signal by mixing the reference IF signal from the oscillator 12A and the received IF signal.
  • the mixer 16q extracts the Q signal included in the reception IF signal by mixing the reference IF signal whose phase is shifted by 90 degrees by the 90-degree phase converter 102 and the reception IF signal.
  • the I signal and the Q signal are digitally converted by the A / D conversion circuits 17i and 17q, respectively, and then input to the phase difference detection unit 112.
  • the phase difference detection unit 112 checks whether or not the decoding processing unit 114 has started decoding the response information, and the I signal I (t) and the Q signal Q (t at an arbitrary timing after the decoding is started. ) Is used to calculate the angle ⁇ > indicating the phase difference of the received IF signal with respect to the reference IF signal.
  • the distance calculation unit 113 calculates the distance R from the antenna 10 to the tag 2 by performing the calculation of ⁇ Equation 2> using the phase difference ⁇ obtained by the phase difference detection unit 112 and the frequency ⁇ of the IF signal. To do.
  • tan ⁇ 1 (Q (t) / I (t))
  • R ( ⁇ / 2 ⁇ ) * ⁇ / 2
  • the output processing unit 115 compares the distance R calculated by the distance calculation unit 113 with the reference distance transmitted from the host device in advance, and sends the response signal from the tag whose distance within the reference distance is calculated to the host device. Send.
  • the decoding processing unit 114 determines that the tag being communicated is not appropriate as a communication target, and stops the decoding process.
  • FIG. 2 shows the flow of communication processing performed between the reader / writer 1 and the tag 2 along the time axis.
  • the reader / writer 1 alternates between a period for transmitting a carrier wave on which a command is superimposed and a period for receiving a response from the tag 2 while transmitting a non-modulated wave (CW). carry out. Processing for measuring the distance to the tag 2 is also performed during the transmission period of the unmodulated wave.
  • CW non-modulated wave
  • the reader / writer 1 transmits a detection command (query command) to all the tags 2 included in the communicable range ((a) of FIG. 2).
  • the tag 2 that has received this command generates a random number and transmits the random number to the reader / writer 1 ((b) of FIG. 2).
  • the reader / writer 1 that has received the random number recognizes the number of tags that can be communicated based on the received number, and then transmits a command (Ack command) for specifying a communication partner based on the received random number and requesting reading of information.
  • processing for receiving a response signal from the tag in response to the command is executed in order for each tag ((c) and (d) in FIG. 2).
  • reception of a response signal to the Ack command is started, the above-described processing for detecting the phase difference of the IF signal and measurement processing for the distance R are performed ((e) in FIG. 2). Note that reception of the response signal can be determined by detecting the leading preamble of the response signal by the decoding processing unit 114.
  • FIG. 3 shows a flow of a series of processes performed in the control unit 110 of the reader / writer 1 in order to realize the process shown in FIG.
  • step S1 transmission of a query command and processing for receiving and decoding a response from the tag 2 are performed, and a tag 2 that can be communicated is detected.
  • step S2 the processing from step S2 onward is executed for each detected tag 2.
  • step S2 an Ack command is transmitted, and in next step S3, transmission and decoding processing of an unmodulated wave on which an IF signal is superimposed are started. Thereafter, the process waits until decoding of the preamble of the response signal is started in the decoding process (step S4).
  • step S4 When decoding of the preamble is started (“YES” in step S4), the phase difference ⁇ of the received IF signal with respect to the reference IF signal is detected using the I signal and the Q signal that are input while the preamble continues (step S4). S5). Further, the distance R from the antenna 10 to the tag 2 is calculated using the detected phase difference ⁇ and the frequency ⁇ of the IF signal (step S6).
  • step S7 the calculated distance R is compared with the reference distance R0. If R ⁇ R0 (“YES” in step S7), the decoding process is continued to decode all response signals (step S8). Further, the decoded response signal is transmitted to the higher-level device together with the distance R (step S9). On the other hand, if R> R0 (step S8 is “NO”), the process proceeds to step S10 and the decoding process is stopped.
  • step S11 is “YES” with the processing for all tags being completed, the processing is terminated.
  • the wavelength is about 20 m, so that it is possible to measure the distance to the tag 2 that is within 10 m from the antenna 10. . Therefore, when it is assumed that the maximum distance that the radio wave of the intensity that can react the tag reaches is about 10 m, it is possible to measure the distance in the range corresponding to the condition.
  • the reader / writer 1 measures the distance R while performing the process of decoding the response signal from the tag 2, so that the distance measurement is completed in the normal communication processing cycle, and the information of the tag 2 is stored. Can be acquired. Therefore, there is no possibility that troubles occur in communication with the moving tag 2.
  • the decoding of the response signal is stopped for the tag 2 whose distance R exceeds the reference distance R0, the processing can be efficiently performed and unnecessary information can be prevented from being transmitted to the host device. it can.
  • the host device since the calculation result of the distance R is transmitted to the host device together with the decoded response signal, the host device can identify the information of the tag 2 and recognize the distance between the tag 2 and the antenna 10. .
  • the response signal from the tag 2 with the reader / writer 1 it is not essential to select the response signal from the tag 2 with the reader / writer 1. That is, regardless of the value of the distance R, the response signals from all the tags 2 to be communicated may be decoded, and each response signal may be transmitted together with the distance R to the host device. Alternatively, the process up to the comparison process between the distance R and the reference distance R0 may be performed, and the response signal from each tag associated with the data indicating the distance comparison result may be transmitted to the host device. In this way, the response signal can be easily selected in the host device.
  • the write command is transmitted after the reading of the information from the tag 2 is completed. Therefore, when a response from the tag 2 to the first command specifying the communication target is received. If the processing for the tag 2 determined to be in a place exceeding the reference distance R0 is stopped, it is possible to prevent erroneous information from being written to the tag 2.
  • 1 communication processing device reader / writer
  • 2 RFID tag 11A, 11B oscillator, 12A, 12B, 13A, 13B mixer, 16 adder, 100 transmission / reception circuit, 110 control unit, 112 phase difference detection unit, 113 distance calculation unit, 114 Decryption processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 交信処理装置(1)に、高周波信号発振器(11B)と中間周波発振器(11A)とを組み込み、これらの発振器(11A,11B)を用いて中間周波信号が重畳された搬送波を生成し、アンテナ(10)から送出する。またミキサ(16i,16q)により、アンテナ(10)が受信した信号中の中間周波信号からI信号のQ信号とを分離して抽出する。位相差検出部(112)は、タグ(2)からの反射波の受信が開始された後のI信号およびQ信号を用いて、搬送波中の中間周波信号に対する反射波中の中間周波信号の位相差を検出する。距離算出部(113)は、位相差と中間周波信号の波長とを用いてアンテナ(10)からタグ(2)までの距離を算出する。

Description

交信処理装置および交信処理装置における距離計測方法
 本発明は、連続搬送波を用いてRFIDタグとの交信を行う交信処理装置に関するもので、特に、交信処理装置からのコマンドに応答したRFIDタグ(以下、単に「タグ」という場合もある。)と交信処理装置との間の距離を計測する技術に関する。
 RFID方式の交信処理装置では、交信処理装置において、一定の周波数による搬送波を連続的に送出しながらこの搬送波を変調することによりタグへのコマンドを送信する処理と、無変調の搬送波(Continuous Wave;略してCWと呼ばれる。)を送出してタグからの応答を受け付ける処理とを交互に実施する。コマンドを受信したタグでは自回路のインピーダンスを変化させることによりコマンドに応答する。このタグの応答動作により、無変調搬送波にコマンドへの応答信号が重畳された信号(反射波)が交信処理装置に返送され、応答信号が復号される。
 生産現場や物流現場などでのRFIDシステムでは、あらかじめ定めた交信距離の範囲でタグとの交信を行う必要があるが、使用される電波の波長によっては、必要とする距離を上回る場所にまで電波が届くことがある。また現場の床や壁などに電波が反射して遠くのタグにまで導かれることもある。この結果、交信の必要がない場所に存在するタグがコマンドに応答して、情報処理に問題が生じるおそれがある。その具体例を図4に示す。
 図4の例は、並列する経路B1,B2の横手に、それぞれ交信処理装置のアンテナA1,A2を配置して、これらのアンテナA1,A2により経路B1,B2を走行する車両Cに取り付けられたタグTから情報を読み取るものである。図示例の場合には、車両Cが位置する経路B1に対応するアンテナA1のみがタグTと交信できるようにする必要があるが、隣の経路B2のアンテナA2からの電波もタグTに届いて、アンテナA2からのコマンドにタグTが応答し、誤った情報の読み書きが実施されるおそれがある。
 上記の問題点を解決するための方法として、アンテナからタグまでの距離を計測し、計測された距離が交信距離の範囲に含まれるか否かを判別する方法がある。またアンテナからタグまでの距離を計測する方法として、アンテナから送出される搬送波に対するタグからの反射波の位相のずれを利用した計測方法が提案されている。
 たとえば、特許文献1には、周波数が異なる2通りの搬送波を順に送出して、周波数毎にタグからの反射波の位相の変化量を検出し、各変化量の差を利用した演算によりタグとの距離を算出することが記載されている。
 また特許文献2には、定められた経路(線路)を通過する移動体(列車)に取り付けられたタグに対して2つのアンテナを用いた交信を行い、各アンテナがタグから受信した応答信号間の位相差を求め、この位相差と応答信号の波長とを用いて距離ΔLを求めることが記載されている。また、特許文献2には、この距離ΔLが一方のアンテナからタグまでの距離L1と他方のアンテナからタグまでの距離L2との差に相当することを利用して、各アンテナからの距離の差がΔLになる点が構成する双曲線を設定して、この双曲線とタグリーダからタグの移動経路までの距離とを用いて、タグの位置を特定することが記載されている(特許文献1の段落0057~0061、図4を参照。)。
特許第4265686号公報 特開2011-37371号公報
 上記特許文献1,2に記載された発明より簡単な方法として、アンテナから送信される搬送波に対するタグからの反射波の位相のずれ量を検出し、検出されたずれ量と搬送波の波長とを用いてタグまでの距離を計測する方法が考えられる。しかし、この方法では、アンテナから送出された電波が往復で一周期以内の長さとなる経路を経てアンテナに戻ることが前提となる。すなわちこの方法により計測できる距離は搬送波の半周期分の長さまでとなる。
 しかしながら、波長の短い搬送波が使用されるケースでこのような条件が満たされるとは考えにくく、実用化は困難である。
 たとえば、UHF帯域にある1GHzの電波を利用する場合には、搬送波の波長は約30cm程度となるが、この種の電波はアンテナから10メートル程度離れた場所に到達しても、タグを反応させることができる強度を有する。またこの特性を生かして、一般に、数メートル単位の交信距離が設定される。このような仕様に対しては、30cm程度の波長の信号の位相差を用いた距離計測は全く用をなさない。
 本発明は、上記の問題に着目し、タグからの反射波を受け付ける期間中に中間周波数が重畳された搬送波を送出し、この中間周波数の位相のずれを利用した距離計測を行うことによって、実際の交信処理の設定に対応可能な計測を実現することを課題とする。
 本発明による交信処理装置は、アンテナから送出される搬送波を変調することによってRFIDタグに対するコマンドを送信するコマンド送信処理と、コマンドの送信に応じてアンテナから無変調の搬送波(CW)を送出しながらこの無変調搬送波に対するRFIDタグからの反射波を受信する受信処理と、受信した反射波からRFIDタグからの応答信号を復号する復号処理とを実行するものである。この交信処理装置は、アンテナから送出される搬送波に中間周波信号を重畳させる搬送波処理手段と、受信処理において反射波の受信が開始されたことに応じて当該反射波から中間周波信号を抽出すると共に、この抽出に対応するタイミングで送出される搬送波中の中間周波信号に対する前記抽出された中間周波信号の位相差を検出する位相差検出手段と、位相差検出手段により検出された位相差と中間周波信号の波長とを用いて反射波を返したRFIDタグまでの距離を測定する距離測定手段とを具備する。
 上記の構成によれば、コマンドに対するタグからの応答を受け付けるための無変調搬送波に中間周波信号を重畳し、この中間周波信号に生じる位相差を利用してタグまでの距離を計測するので、RFIDを利用する一般的なアプリケーションに対応可能な距離を計測することが可能になる。たとえば、中間周波信号として15MHzの周波数の信号を使用すると、その波長は約20mとなるので、その半分の10mまでの距離を計測することができる。
 上記交信処理装置における一実施形態では、位相差検出手段は、復号処理により応答情報中のプリアンブルが検出されたことに応じて中間周波信号の抽出および位相差の検出を実行する。応答信号中のプリアンブルは、「1」および「0」のビット信号が一定のパターンで配列された構成を有するから、このパターンを検出することによって反射波の受信が開始されたことを容易に判別して、中間周波信号の抽出や位相差の検出を行うことができる。また床や壁などで反射して交信処理装置に戻ったノイズ反射波がタグからの反射波として誤認識されるのを防ぐことができる。
 他の実施形態による交信処理装置は、距離計測手段により計測された距離に基づき反射波を返したRFIDタグが交信対象として適切であるか否かを判別する判別手段を、さらに具備する。このようにすれば、定められた距離の範囲内にあるタグからの応答信号のみを採用することが容易になり、誤った情報処理が実施されるのを防ぐことができる。
 本発明の交信処理装置の好ましい形態は、RFIDタグに対する情報の読み出しおよび書き込みを行うRFIDリーダライタであるが、これに限らず、情報の読み出しのみを行うRFIDリーダとして構成してもよい。
 本発明による距離計測方法は、アンテナから送出される搬送波を変調することによってRFIDタグに対するコマンドを送信するコマンド送信処理と、コマンドの送信に応じてアンテナから無変調の搬送波を送出しながらこの無変調搬送波に対するRFIDタグからの反射波を受信する受信処理と、受信した反射波に含まれるRFIDタグからの応答信号を復号する復号処理とを実行する交信処理装置において実施される。この方法では、アンテナから送出される搬送波に中間周波信号を重畳し、受信処理において反射波の受信が開始されたことに応じて当該反射波から中間周波信号を抽出すると共に、この抽出に対応するタイミングで送出される搬送波中の中間周波信号に対する前記抽出された中間周波信号の位相差を検出する。そして検出された位相差と中間周波数の波長とを用いて反射波を返したRFIDタグまでの距離を計測する。
 本発明によれば、コマンドに対するRFIDタグからの応答を受け付けるためにアンテナから送出する無変調搬送波に中間周波信号を重畳し、RFIDタグからの反射波に含まれる中間周波信号と送信中の搬送波に含まれる中間周波信号との位相差とを用いてタグまでの距離を計測するので、設定され得る交信距離に対応する長さの距離を計測することが可能になる。
本発明が適用されるリーダライタの構成を示すブロック図である。 交信処理の流れを示すタイムチャートである。 交信処理装置の制御部における処理手順を示すフローチャートである。 誤った交信処理の例を示す説明図である。
 図1は、本発明が適用された交信処理装置の一例であるリーダライタの構成を示す。
 この実施例のリーダライタ1は、UHF帯域の電波を用いてパッシブタイプまたはセミパッシブタイプのRFIDタグ2と交信をして、このタグ2から情報を読み出したり、タグ2に情報を書き込む処理を実施するもので、アンテナ10を含む送受信回路100と、この送受信回路の動作を制御する制御部110とを具備する。なお、使用する電波はUHF帯域に限らず、他の帯域の電波を使用してもよい。
 送受信回路100には、アンテナ10のほか、サーキュレータ101、90度位相器102、2種類の発振器11A,11B、送信処理用のミキサ12A,12B、受信処理用のミキサ13A,13B,16i,16q、分配器14,15、アンプ18、A/D変換器17i,17q,19などが含まれる。制御部110の実体はプログラムロジック回路(FPGA)であって、送信制御部111、位相差検出部112、距離算出部113、復号処理部114、出力処理部115の各機能が設けられる。
 また図1には示していないが、このリーダライタ1には、図示しない上位機器に対するインタフェース回路が設けられる。制御部110は、上位機器から送信される指示に基づいてタグ2との交信処理を実施し、その処理結果を上位機器に送信する。
 第1の発振器11Aからは、約15MHzの中間周波信号(以下「IF信号」という。)が出力される。第2の発振器11Bからは、約1GHzの高周波信号(以下「RF信号」という。)が出力される。IF信号は送信側のミキサ12Aに供給されるほか、分配器14を介して受信側のミキサ13Aおよび90度位相器102に供給される。RF信号は送信側のミキサ12Bと受信側のミキサ13Bとに供給される。
 ミキサ12Aは、送信制御部111から出力されるデータ信号と上記のIF信号とを入力して両信号を混合し、ミキサ12Bは、ミキサ13Aからの混合信号とRF信号とを入力して両信号を混合する。この2段階の混合処理により、RF信号による搬送波信号にIF信号が重畳され、データ信号による変調が生じた搬送波信号が生成される。生成された信号は、ミキサ12Bからサーキュレータ101を介してアンテナ10に導かれ、電磁波として送出される。
 送信制御部111は、コマンドを構成するデータ信号を出力した後は、連続波を送信する。搬送波に実質的な変調が生じるのはコマンドが送信される期間である。データ信号が連続波になると、RF信号にIF信号が重畳された信号が無変調搬送波CW(以下「無変調波」という。)として送出される。この無変調波が送出される期間にタグ2がコマンドに対する応答動作を行うと、その動作による反射波がアンテナ10に到着する。
 アンテナ10がタグ2から受信した反射波は、サーキュレータ101を介してミキサ13Bへと導かれる。ミキサ13Bでは、RF信号との混合処理により受信信号からRF成分を取り除き、タグ2からの応答信号が重畳されたIF信号を出力する。この応答信号を含むIF信号(以下「受信IF信号」という。)は、分配器15によりミキサ13A,16i,16qに分配される。
 ミキサ13Aでは、受信IF信号を発振器11AからのIF信号(以下「基準IF信号」という。)と混合することによって、応答信号を復調する。復調された応答信号はアンプ18で増幅された後にA/D変換器19によりディジタル変換される。ディジタル変換後の応答信号は制御部110の復号処理部114に入力され、応答内容を示す情報(応答情報)が復号される。
 ミキサ16iは、発振器12Aからの基準IF信号と受信IF信号とを混合することにより、受信IF信号に含まれるI信号を抽出する。ミキサ16qは、90度位相変換器102により位相が90度ずらされた基準IF信号と受信IF信号とを混合することにより、受信IF信号に含まれるQ信号を抽出する。I信号およびQ信号は、それぞれA/D変換回路17i,17qによりディジタル変換された後に、位相差検出部112に入力される。
 位相差検出部112では、復号処理部114が応答情報の復号を開始したか否かをチェックし、復号が開始された後の任意のタイミングでのI信号I(t)およびQ信号Q(t)を用いて以下の<式1>の演算を実施することにより、基準IF信号に対する受信IF信号の位相差を示す角度φを算出する。距離算出部113は、位相差検出部112が求めた位相差φとIF信号の周波数λとを用いて<式2>の演算を実施することにより、アンテナ10からタグ2までの距離Rを算出する。
 <式1> φ=tan-1(Q(t)/I(t))
 <式2> R=(φ/2π)*λ/2
 出力処理部115は、距離算出部113により算出された距離Rをあらかじめ上位機器から送信された基準の距離と比較し、基準の距離以内の距離が算出されたタグからの応答信号を上位機器に送信する。距離算出部113により算出された距離が基準の距離を上回った場合には、復号処理部114は、交信中のタグは交信対象として適切ではないと判別して、復号処理を中止する。
 以下、アンテナ10からタグ2までの距離を計測する方法を中心に、リーダライタ1において実施される交信処理を詳細に説明する。
 まず図2は、上記のリーダライタ1とタグ2との間で実施される交信処理の流れを、時間軸に沿って示したものである。この実施例では、EPCglobal C1 Gen2仕様に基づき、リーダライタ1において、コマンドが重畳された搬送波を送出する期間と無変調波(CW)を送出しながらタグ2からの応答を受け付ける期間とを交互に実施する。タグ2までの距離を計測するための処理も無変調波の送出期間中に実施される。
 図2を参照して、交信処理の具体的な流れを説明する。まずリーダライタ1は、交信可能な範囲に含まれる全てのタグ2を対象に、検出用のコマンド(クエリーコマンド)を送信する(図2の(a))。このコマンドを受信したタグ2では乱数を生成し、この乱数をリーダライタ1に送信する(図2の(b))。乱数を受信したリーダライタ1は、その受信数により交信可能なタグの数を認識し、以下、受信した乱数により交信相手を特定して情報の読み出しを求めるコマンド(Ackコマンド)を送信する処理と、当該コマンドに対するタグからの応答信号を受け付ける処理とを、タグ毎に順に実行する(図2の(c)(d))。
 さらに上記のAckコマンドに対する応答信号の受信が開始されると、上述したIF信号の位相差を検出する処理および距離Rの計測処理が実施される(図2の(e))。なお、応答信号の受信が開始されたことは、復号処理部114により応答信号の先頭のプリアンブルが検出されたことによって判別することができる。
 図3は、図2に示した処理を実現するためにリーダライタ1の制御部110において実施される一連の処理の流れを示す。
 まずステップS1では、クエリーコマンドの送信およびタグ2からの応答を受信して復号する処理を実施して、交信が可能なタグ2を検出する。
 この後は、検出されたタグ2毎にステップS2以下の処理を実行する。
 まず、ステップS2ではAckコマンドを送信し、つぎのステップS3ではIF信号が重畳された無変調波の送信および復号処理を開始する。この後は、復号処理において応答信号のプリアンブルの復号が開始されるまで待機する(ステップS4)。
 プリアンブルの復号が開始されると(ステップS4が「YES」)、プリアンブルが続く間に入力されるI信号およびQ信号を用いて、基準IF信号に対する受信IF信号の位相差φを検出する(ステップS5)。さらに検出された位相差φおよびIF信号の周波数λを用いてアンテナ10からタグ2までの距離Rを算出する(ステップS6)。
 つぎに算出された距離Rを基準の距離R0と比較する。R≦R0であれば(ステップS7が「YES」)、引き続き復号処理を続けて全ての応答信号を復号する(ステップS8)。さらに、復号された応答信号を距離Rと共に上位機器に送信する(ステップS9)。一方、R>R0となった場合(ステップS8が「NO」)には、ステップS10に進み、復号処理を中止する。
 以下、同様の処理を実施することにより、距離Rが基準の距離R0以内となったタグからの応答信号のみが復号され、距離Rと共に上位機器に送信される。全てのタグに対する処理が終了したことをもってステップS11が「YES」となると、処理を終了する。
 上記のリーダライタ1で使用されるIF信号の周波数(15MHz)によれば、その波長は約20mとなるから、アンテナ10から10m以内の距離にあるタグ2に対する距離計測を行うことが可能になる。よって、タグを反応させることができる強度の電波が届く最大の距離が約10mになると想定される場合には、その条件に対応する範囲の距離を計測することが可能になる。
 また、このリーダライタ1では、タグ2からの応答信号を復号する処理を行いながら距離Rを計測するので、通常の交信処理のサイクルの中で距離の計測を完了すると共に、タグ2の情報を取得することができる。したがって、移動するタグ2との交信においても支障が生じるおそれがない。また、距離Rが基準の距離R0を上回るタグ2に対しては応答信号の復号を中止するので、効率良く処理を進めることができ、上位機器に不要な情報が送信されるのを防ぐことができる。また、復号された応答信号と共に距離Rの算出結果を上位機器に送信するので、上位機器では、タグ2の情報を識別すると共にこのタグ2とアンテナ10との距離を認識することが可能になる。
 ただし、タグ2からの応答信号をリーダライタ1で選別することは必須ではない。すなわち距離Rの値に関わらず、交信対象の全てのタグ2からの応答信号を復号し、各応答信号を距離Rと共に上位機器に送信してもよい。または、距離Rと基準の距離R0との比較処理までを実施し、各タグからの応答信号に距離の比較結果を示すデータを紐付けたものを上位機器に送信してもよい。このようにすれば、上位機器において応答信号を容易に選別することができる。
 タグ2に情報の書き込みを行う場合にも、タグ2からの情報の読み取りが終了してから書き込みコマンドを送信するので、交信対象を特定した最初のコマンドに対するタグ2からの応答を受信したときに、基準の距離R0を上回る場所にあると判別したタグ2に対する処理を中止すれば、当該タグ2に誤った情報が書き込まれるのを防ぐことができる。
 1 交信処理装置(リーダライタ)、2 RFIDタグ、11A,11B 発振器、12A,12B,13A,13B ミキサ、16 加算器、100 送受信回路、110 制御部、112 位相差検出部、113 距離算出部、114 復号処理部

Claims (4)

  1.  アンテナから送出される搬送波を変調することによってRFIDタグに対するコマンドを送信するコマンド送信処理と、前記コマンドの送信に応じてアンテナから無変調の搬送波を送出しながらこの無変調搬送波に対するRFIDタグからの反射波を受信する受信処理と、受信した反射波からRFIDタグからの応答信号を復号する復号処理とを実行する装置であって、
     前記アンテナから送出される搬送波に中間周波信号を重畳させる搬送波処理手段と、
     前記受信処理において反射波の受信が開始されたことに応じて当該反射波から中間周波信号を抽出すると共に、この抽出に対応するタイミングで送出される搬送波中の中間周波信号に対する前記抽出された中間周波信号の位相差を検出する位相差検出手段と、
     位相差検出手段により検出された位相差と前記中間周波信号の波長とを用いて前記反射波を返したRFIDタグまでの距離を計測する距離計測手段とを具備する、交信処理装置。
  2.  前記位相差検出手段は、前記復号処理により応答信号中のプリアンブルが検出されたことに応じて中間周波信号の抽出および位相差の検出を実行する請求項1に記載された交信処理装置。
  3.  前記距離計測手段により計測された距離に基づき前記反射波を返したRFIDタグが交信対象として適切であるか否かを判別する判別手段を、さらに具備する請求項1に記載された交信処理装置。
  4.  アンテナから送出される搬送波を変調することによってRFIDタグに対するコマンドを送信するコマンド送信処理と、前記コマンドの送信に応じて前記アンテナから無変調の搬送波を送出しながらこの無変調搬送波に対するRFIDタグからの反射波を受信する受信処理と、受信した反射波に含まれるRFIDタグからの応答信号を復号する復号処理とを実行する交信処理装置において実施される方法であって、
     前記アンテナから送出される搬送波に中間周波信号を重畳し、前記受信処理において反射波の受信が開始されたことに応じて当該反射波から中間周波信号を抽出すると共に、この抽出に対応するタイミングで送出される搬送波中の中間周波信号に対する前記抽出された中間周波信号の位相差を検出し、検出された位相差と前記中間周波数の波長とを用いて前記反射波を返したRFIDタグまでの距離を計測する、
    ことを特徴とする交信処理装置における距離計測方法。
PCT/JP2011/056908 2011-03-14 2011-03-23 交信処理装置および交信処理装置における距離計測方法 WO2012124151A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800029786A CN103026258A (zh) 2011-03-14 2011-03-23 通讯处理装置及通讯处理装置的距离计测方法
EP11807850.0A EP2523018A4 (en) 2011-03-14 2011-03-23 COMMUNICATION PROCESSING DEVICE AND METHOD FOR SPACING MEASUREMENT BY THE COMMUNICATION PROCESSING DEVICE
US13/358,855 US8436765B2 (en) 2011-03-14 2012-01-26 Communication processing device and distance measurement method in communication processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011055459A JP2012189542A (ja) 2011-03-14 2011-03-14 交信処理装置および交信処理装置における距離計測方法
JP2011-055459 2011-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/358,855 Continuation US8436765B2 (en) 2011-03-14 2012-01-26 Communication processing device and distance measurement method in communication processing device

Publications (1)

Publication Number Publication Date
WO2012124151A1 true WO2012124151A1 (ja) 2012-09-20

Family

ID=45651046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056908 WO2012124151A1 (ja) 2011-03-14 2011-03-23 交信処理装置および交信処理装置における距離計測方法

Country Status (4)

Country Link
EP (1) EP2523018A4 (ja)
JP (1) JP2012189542A (ja)
CN (1) CN103026258A (ja)
WO (1) WO2012124151A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108881809A (zh) * 2017-05-09 2018-11-23 杭州海康威视数字技术股份有限公司 视频监控方法、装置及系统
TWI736043B (zh) * 2019-11-29 2021-08-11 財團法人金屬工業研究發展中心 多目標射頻定位系統、定位方法及初始距離量測方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340891A (ja) * 1986-08-05 1988-02-22 Nec Corp 人工衛星追跡局用距離測定装置
WO2006095463A1 (ja) * 2005-03-09 2006-09-14 Omron Corporation 距離測定装置、距離測定方法、反射体、および通信システム
JP2011037371A (ja) 2009-08-11 2011-02-24 Mitsubishi Electric Corp 列車位置検知装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE767458C (de) * 1937-11-05 1953-01-26 Telefunken Gmbh Einrichtung zur Abstandsbestimmung eines Pilotballons von einer Bodenstation
DE884831C (de) * 1944-01-08 1953-07-30 Lorenz C Ag Verfahren zur gegenseitigen Entfernungsmessung zwischen zwei Stationen auf drahtlosem Wege
GB2315943A (en) * 1996-08-01 1998-02-11 Paul Michael Wood Distance measuring system
US7180580B2 (en) * 2004-07-02 2007-02-20 Venkata Guruprasad Passive distance measurement using spectral phase gradients

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340891A (ja) * 1986-08-05 1988-02-22 Nec Corp 人工衛星追跡局用距離測定装置
WO2006095463A1 (ja) * 2005-03-09 2006-09-14 Omron Corporation 距離測定装置、距離測定方法、反射体、および通信システム
JP4265686B2 (ja) 2005-03-09 2009-05-20 オムロン株式会社 距離測定装置、距離測定方法、反射体、および通信システム
JP2011037371A (ja) 2009-08-11 2011-02-24 Mitsubishi Electric Corp 列車位置検知装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2523018A4 *

Also Published As

Publication number Publication date
CN103026258A (zh) 2013-04-03
JP2012189542A (ja) 2012-10-04
EP2523018A4 (en) 2014-02-19
EP2523018A1 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5712680B2 (ja) 交信処理装置および交信処理装置における距離計測方法
AU2002303212B2 (en) Frequency-hopping rfid system
US10423812B2 (en) Tag reader calculating minimum distance between antenna and tag
US9581689B2 (en) Reader/writer and article sorting system
US8537881B2 (en) Method and apparatus for detecting offset signal of transmission leakage signal in RF transceiver
AU2002303212A1 (en) Frequency-hopping rfid system
EP1738195A1 (en) Contactless reader/writer
US20100060423A1 (en) Radio frequency identification (RFID) reader with multiple receive channels
JP5514707B2 (ja) 無線通信装置および無線通信方法
JP4537248B2 (ja) キャリアセンス方法及び送受信装置
US20130181858A1 (en) Radar system, transponder device, method for radar processing and computer readable media
US8436765B2 (en) Communication processing device and distance measurement method in communication processing device
EP3229167B1 (en) Wireless tag communication apparatus, wireless tag communication system, and communication method
US20070176747A1 (en) Reader for rfid and rfid system
EP3379450B1 (en) Wireless tag passing determination apparatus
WO2012124151A1 (ja) 交信処理装置および交信処理装置における距離計測方法
CN101809587B (zh) 对应答器和/或源自应答器和读出器的信号分类的方法
JP2008028551A (ja) 特性表示装置と特性表示方法
RU2551132C1 (ru) Система дистанционного считывания информации с подвижных объектов и их узлов
JP2008301235A (ja) リーダ装置
JP4685960B2 (ja) リーダー
JP2010108148A (ja) リーダライタシステム
JP2010088089A (ja) 通信装置及び通信方法
JP2007074640A (ja) 移動体識別装置
JP2017191592A (ja) 無線タグ装置、無線タグ通信装置、無線タグ通信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002978.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011807850

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11807850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE