WO2012121329A1 - 潤滑剤分布取得装置及び潤滑剤分布取得方法 - Google Patents

潤滑剤分布取得装置及び潤滑剤分布取得方法 Download PDF

Info

Publication number
WO2012121329A1
WO2012121329A1 PCT/JP2012/055957 JP2012055957W WO2012121329A1 WO 2012121329 A1 WO2012121329 A1 WO 2012121329A1 JP 2012055957 W JP2012055957 W JP 2012055957W WO 2012121329 A1 WO2012121329 A1 WO 2012121329A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
imaging
lubricant
electromagnetic wave
rotation angle
Prior art date
Application number
PCT/JP2012/055957
Other languages
English (en)
French (fr)
Inventor
幸一 持木
裕之 野瀬
昭 伊藤
高野 武寿
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to US14/002,400 priority Critical patent/US20130342685A1/en
Priority to EP20120755431 priority patent/EP2685246B1/en
Priority to KR1020137024555A priority patent/KR101564572B1/ko
Publication of WO2012121329A1 publication Critical patent/WO2012121329A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/30Oils, i.e. hydrocarbon liquids for lubricating properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N29/00Special means in lubricating arrangements or systems providing for the indication or detection of undesired conditions; Use of devices responsive to conditions in lubricating arrangements or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • F16C33/6622Details of supply and/or removal of the grease, e.g. purging grease
    • F16C33/6625Controlling or conditioning the grease supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/05Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using neutrons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Definitions

  • the present invention relates to a lubricant distribution acquisition device and a lubricant distribution acquisition method.
  • This application claims priority based on Japanese Patent Application No. 2011-53438 for which it applied to Japan on March 10, 2011, and uses the content here.
  • Patent Document 1 discloses an invention for inspecting the presence or absence of a lubricant in a fluid bearing using a neutron radiography method.
  • a neutron radiography method By using the invention disclosed in Patent Document 1, it is possible to inspect for the presence or absence of a lubricant, which has been conventionally disassembled and confirmed, without disassembling the bearing.
  • Patent Document 1 since only the presence or absence of the lubricant is inspected and the behavior of the lubricant is not detected, the rotation of the bearing and the timing of imaging are not synchronized. For this reason, when the rotational speed of the bearing is non-uniform or changes with time, the pitch of the rotational angle for each imaged data becomes non-uniform and the contrast is reduced.
  • the present invention has been made in view of the above-described problems, and is capable of making the rotation angle pitch uniform for each imaging data and capable of accurately acquiring the behavior of the lubricant inside the bearing.
  • An object is to provide a distribution acquisition device and a lubricant distribution acquisition method.
  • the present inventors have studied the relationship between the behavior of the lubricant inside the bearing and the life of the bearing. As a result, it has been found that there are individual differences in the life of the bearing even when the usage environment is the same. As a result of disassembling investigation of these bearings having different lifetimes, it was found that the state of the lubricant remaining in the bearings was greatly different. In particular, in rolling bearings, it has been found that the behavior of the internal lubricant greatly affects the service life. This suggests that the bearing life depends on the behavior of the internal lubricant. That is, if the behavior of the lubricant inside the bearing can be known, the life of the bearing may be improved.
  • the first invention is to receive and image an electromagnetic wave converting means that receives a neutron beam that has passed through a bearing and converts it into an electromagnetic wave, and an electromagnetic wave emitted from the electromagnetic wave converting means.
  • Imaging processing means for acquiring lubricant distribution data indicating the distribution of lubricant in the bearing, an encoder for outputting a rotation angle signal indicating the rotation angle of the bearing, and the imaging processing means based on the rotation angle signal
  • a configuration of a lubricant distribution acquisition device including a control unit that controls imaging timing is employed.
  • the electromagnetic wave emitted from the electromagnetic wave converting means includes an electromagnetic wave amplifying means for amplifying the electromagnetic wave before reaching the imaging processing means.
  • a configuration is adopted in which the electromagnetic wave amplification means amplifies the electromagnetic waves in accordance with the imaging timing.
  • the exposure period start timing in the imaging processing unit is longer than the afterimage period in the electromagnetic wave amplification unit than the electromagnetic wave amplification start timing in the electromagnetic wave amplification unit.
  • a configuration in which the setting is delayed is adopted.
  • a fourth invention according to the present invention is the rolling bearing according to any one of the first to third inventions, wherein the bearing is a rolling bearing in which at least one rolling element is made of a material having a neutron absorption rate different from that of the other rolling elements.
  • the control unit causes the imaging processing unit to acquire a plurality of imaging data by causing the imaging processing unit to capture images at a predetermined set rotation angle, and calculates the slip amount of the rolling element using the plurality of imaging data. Adopting a configuration that allows
  • a fifth invention according to the present invention is a lubricant distribution acquisition method, wherein the neutron beam transmitted through the bearing is converted into an electromagnetic wave, and the electromagnetic wave is based on a rotation angle signal indicating a rotation angle of the bearing output from the encoder. Then, a configuration is adopted in which the lubricant distribution data indicating the lubricant distribution in the bearing is acquired by taking an image.
  • imaging is performed based on a rotation angle signal that is a signal indicating the rotation angle of the bearing output from the encoder. For this reason, even when the rotational speed of the bearing is non-uniform or changes with time, imaging can always be performed accurately in accordance with the rotational angle of the bearing. Therefore, the rotation angle pitch for each imaging data can be made uniform, and the behavior of the lubricant inside the bearing can be accurately acquired.
  • FIGS. 1A and 1B are diagrams schematically illustrating a schematic configuration of a lubricant distribution acquisition device 1 of the present embodiment.
  • FIG. 1A is a schematic diagram showing a part of the mechanism of the lubricant distribution acquisition device 1
  • FIG. 1B is a block diagram showing a part of the function of the lubricant distribution acquisition device 1.
  • the lubricant distribution acquisition device 1 of the present embodiment acquires the distribution of the lubricant Y (for example, grease) inside the bearing X, thereby acquiring the lubricant Y while the bearing X, which is a ball bearing, is being rotationally driven. Get the behavior.
  • the lubricant Y for example, grease
  • the lubricant distribution acquisition device 1 of this embodiment includes a neutron beam irradiation device 2, a bearing support mechanism 3, a rotation drive device 4 (rotation drive means), and a rotary encoder. 5 (encoder), scintillator 6 (electromagnetic wave converting means), light guide mechanism 7, optical amplifier 8 (electromagnetic wave amplifying means), imaging device 9, signal processing unit 10, and control device 11 (control means) It has.
  • the neutron beam irradiation apparatus 2 guides a neutron beam L1 emitted from a neutron source such as a nuclear reactor, for example, and irradiates the bearing X from the axial direction. If the bearing X can be irradiated from the axial direction without guiding the neutron beam emitted from the neutron source, the neutron beam irradiation apparatus 2 can be omitted.
  • the lubricant distribution acquisition device 1 of the present embodiment may further include a neutron source that generates a neutron beam by, for example, irradiating the target with ions such as hydrogen or helium derived from an ion generator.
  • the bearing support mechanism 3 is a member for supporting the bearing X, and includes a housing 3a and a housing 3b.
  • the housing 3a is a frame or a box-like member that houses the housing 3b and the bearing X fixed to the housing 3b.
  • the housing 3a also functions as a support for the rotation drive device 4 as shown in FIG. 1A.
  • the housing 3b is a member that covers and supports the outer ring of the bearing X, and supports the bearing X in a detachable manner.
  • the housing 3b supports the bearing X so that the axis of the bearing X faces the neutron irradiation apparatus 2 side, as shown in FIG. 1A.
  • the housing 3a and the housing 3b preferably have a shape that avoids the passage region of the neutron beam L1, but the passage of the neutron beam L1 if formed by an aluminum material having an extremely low absorption rate of the neutron beam L1 It is also possible to have a shape that straddles the region.
  • the rotational drive device 4 is a member that rotationally drives the bearing X, and as shown in FIG. 1A, a motor 4a (power unit) that generates power for rotationally driving the bearing X and power generated by the motor 4a.
  • a motor 4a power unit
  • the pulley 4b is coupled to the shaft portion of the motor 4a by a coupling or the like.
  • the drive shaft portion 4d is a rod-like member that is long in the axial direction of the bearing X, is fixed to the inner ring of the bearing X, and is horizontally disposed through the center of the bearing X.
  • the belt 4c which consists of an endless belt is wound around the pulley 4b and the drive shaft part 4d.
  • the rotary encoder 5 outputs a rotation angle signal indicating the rotation angle of the bearing X.
  • the rotary encoder 5 is connected to a rotation shaft of a motor 4a that rotates in synchronization with the bearing X, and outputs a pulse signal corresponding to a rotation angle (rotation speed) when the rotation shaft of the motor 4a is driven to rotate.
  • a pulse output (incremental) type rotary encoder can be used as this rotary encoder 5.
  • the scintillator 6 is a member that receives the neutron beam L1 transmitted through the bearing X and emits light L2, and converts the neutron beam L1 into visible light.
  • this scintillator 6 for example, LiF / ZnS (Ag), BN / ZnS (Ag), Gd 2 O 3 / ZnS (Ag), Gd 2 O 3 S (Tb) can be used.
  • the light guide mechanism 7 guides the light L ⁇ b> 2 emitted from the scintillator 6 to the imaging device 9 via the optical amplifier 8. As shown in FIG. 1A, the light guide mechanism 7 includes a mirror 7a that reflects and guides the light L2, a lens 7b that collects the light L2, and the like.
  • the optical amplifier 8 is a member that increases the intensity of light incident through the light guide mechanism 7 and outputs it.
  • the optical amplifier 8 for example, an image intensifier can be used.
  • the optical amplifier 8 amplifies the intensity of the light L2 only during the period instructed by the control device 11 under the control of the control device 11. More specifically, the optical amplifier 8 receives a gate signal indicating a light amplification period from the control device 11, and amplifies the light L2 based on the gate signal.
  • the optical amplifier 8 since the optical amplifier 8 amplifies the intensity of the light L2 only during the period instructed by the control device 11, it is possible to obtain a pause period instead of always amplifying the light L2.
  • the output is increased during the period of amplifying the light L2. ing.
  • clear imaging data can be obtained even if the exposure time in the imaging device 9 is shortened.
  • imaging data with less blur can be obtained by shortening the exposure time.
  • the imaging device 9 is a member that receives the light L2 emitted from the scintillator 6 and arrives through the light guide mechanism 7 and the optical amplifier 8, and outputs the imaging result as imaging data.
  • a CCD camera, a SIT tube camera, a high-speed camera, or the like can be used as the imaging device 9, a CCD camera, a SIT tube camera, a high-speed camera, or the like.
  • the lubricant Y moves at a high speed inside the bearing X that rotates at a high speed of about 6000 rpm. Therefore, it is preferable to use a high-speed camera capable of imaging with a high frame rate of about 2000 fps.
  • the imaging device 9 performs imaging at a timing instructed by the control device 11 under the control of the control device 11. More specifically, a trigger signal indicating imaging timing is input from the control device 11 to the imaging device 9, and the imaging device 9 performs imaging based on the trigger signal.
  • the optical amplifier 8 has a characteristic that the response to the input of the gate signal is delayed for a certain time. That is, the optical amplifier 8 has a certain afterimage period.
  • the start timing of the exposure period of the imaging device 9 is set later than the afterimage period of the optical amplifier 8.
  • the start timing of the exposure period of the imaging device 9 is set later than the afterimage period of the optical amplifier 8, so that imaging is started before the light L2 is amplified by the imaging device 9. Can be prevented.
  • the exposure period end timing may be set shorter than a period obtained by adding the afterimage period to the end timing of the optical amplification period of the optical amplifier 8.
  • the signal processing unit 10 processes the imaging data input from the imaging device 9 and outputs it as the required lubricant distribution data.
  • the lubricant distribution data referred to here is data including the distribution information of the lubricant in the radial direction around the axial center and the thickness distribution information of the lubricant in the axial direction.
  • the signal processing unit 10 calculates the lubricant distribution data from the brightness information in the imaging data, or performs a process of associating the lubricant distribution data with the detection result of the rotary encoder 5.
  • the imaging data itself captured by the imaging device 9 includes the distribution information of the lubricant in the radial direction centered on the axial center and the thickness distribution information of the lubricant in the axial direction, the required lubricant distribution is included. It is also possible to use data as imaging data. In this case, the signal processing unit 10 outputs the imaging data input from the imaging device 9 as the lubricant distribution data as it is.
  • the imaging processing means of the present invention is configured by the imaging device 9 and the signal processing unit 10.
  • the control device 11 is a member that controls the overall operation of the lubricant distribution acquisition device 1 of the present embodiment. As shown in FIG. 1B, the neutron beam irradiation device 2, the rotary drive device 4, the rotary encoder 5, the optical amplifier 8, The imaging device 9 and the signal processing unit 10 are electrically connected.
  • control apparatus 11 controls the imaging timing of the imaging device 9 based on the rotation angle signal input from the rotary encoder 5, and amplifies the light L2 to the optical amplifier 8 according to the imaging timing.
  • control device 11 includes a frequency divider 11a and a delay device 11b as shown in FIG. 1B.
  • the control device 11 generates a trigger signal by dividing the rotation angle signal input from the rotary encoder 5 by the frequency divider 11a, and indicates the operation period of the optical amplifier from the trigger signal as a starting point.
  • a gate signal (a signal indicating the timing of optical amplification by the optical amplifier 8) having a wide width is generated and input to the optical amplifier 8.
  • the exposure timing start timing of the imaging device 9 is set so as to be delayed from the optical amplification start timing in consideration of the afterimage time of the optical amplifier 8.
  • the control device 11 is an exposure command having a temporal width that indicates the exposure time starting from the time when the trigger signal obtained by dividing the rotation angle signal by the frequency divider 11a is delayed for a certain time.
  • a signal (a signal indicating the timing at which the imaging device 9 captures an image) is generated, and an exposure command signal is input to the imaging device 9.
  • the optical amplifier 8 operates in accordance with the frequency of the divided trigger signal.
  • the operation period of the optical amplifier 8 may be stored in the optical amplifier 8 in advance, and a trigger signal may be directly input from the control device 11 to the optical amplifier 8.
  • the exposure time of the imaging device 9 may be stored in the imaging device 9 in advance, and the control device 1 may provide the imaging device 9 with a signal obtained by delaying the trigger signal for a predetermined time.
  • the exposure time of the imaging device 9 is in a range that takes into account the operation period and afterimage period of the optical amplifier 8.
  • the control device 11 since it is assumed that the frequency of the pulse signal that is the rotation angle signal from the rotary encoder 5 is higher than the frequency of the gate signal or the trigger signal, the control device 11 includes the frequency divider 11a. It is configured. However, when the pulse signal output from the rotary encoder 5 is lower than the frequency of the gate signal or trigger signal, the control device 11 includes a multiplier instead of the frequency divider 11a.
  • the bearing X is a ball bearing (rolling bearing) containing a lubricant therein, and is configured as a radial bearing in the present embodiment.
  • FIG. 2 is a perspective view of a cut model showing a schematic configuration of the bearing X.
  • the bearing X includes an annular outer ring X1 and an inner ring X2 that are arranged to face each other in the radial direction, a plurality of balls X3 that are arranged between the outer ring X1 and the inner ring X2, and a distance between the balls X3. Are provided at equal intervals, and a seal X5 for sealing the accommodation space of the ball X3 is provided.
  • the components of the bearing X are not reflected in the imaging data. For this reason, it is preferable that these components (the outer ring X1, the inner ring X2, the ball X3, the cage X4, and the seal X5) of the bearing X are made of an aluminum material having a low absorption rate of the neutron beam L1.
  • the main body of the operation of the lubricant distribution acquisition device 1 of the present embodiment described below is the control device 11.
  • the control device 11 causes the rotation drive device 4 to drive the bearing X to rotate.
  • the inner ring X2 of the bearing X is rotationally driven and the ball X3 sandwiched between the inner ring X2 and the outer ring X1 rotates while revolving around the axis, and the lubricant Y moves along with the movement of the ball X3.
  • the control device 11 causes the rotation drive device 4 to drive the bearing X to rotate.
  • the inner ring X2 of the bearing X is rotationally driven and the ball X3 sandwiched between the inner ring X2 and the outer ring X1 rotates while revolving around the axis, and the lubricant Y moves along with the movement of the ball X3.
  • a pulse signal that is a rotation angle signal is input from the rotary encoder 5 to the control device 11.
  • the control device 11 generates a gate signal and a trigger signal from the pulse signal, inputs the gate signal to the optical amplifier 8, and inputs the trigger signal to the imaging device 9.
  • the imaging device 9 always performs imaging in synchronization with the rotation angle of the bearing X, and the optical amplifier 8 amplifies the light L2 in accordance with the timing when the imaging device 9 captures an image.
  • the neutron beam L1 is guided from the neutron beam irradiation device 2 to the bearing X side.
  • the neutron beam L1 enters the bearing X from the axial direction of the bearing X, and the neutron beam L1 that has passed through the bearing X enters the scintillator 6.
  • the scintillator 6 When the neutron beam L1 enters the scintillator 6, the scintillator 6 emits light L2 having an intensity distribution similar to the intensity distribution of the neutron beam L1. That is, the scintillator 6 converts the neutron beam L1 into light L2 and emits it.
  • the light L2 emitted from the scintillator 6 is guided by the light guide mechanism 7 and amplified by the optical amplifier 8, and then enters the imaging device 9. Then, the control device 11 causes the imaging device 9 to perform imaging. As a result, imaging data is acquired by the imaging device 9.
  • the control device 11 causes the signal processing unit 10 to process the imaging data, and obtains the lubricant distribution data including the lubricant distribution information in the radial direction around the axial center and the lubricant thickness distribution information in the axial direction. Let it be calculated.
  • the control device 11 performs processing for associating the calculated lubricant distribution data with the detection result of the rotation detector 5. As a result, the lubricant distribution data is output in association with the rotation angle of the bearing X.
  • the lubricant Y is made of an organic material and has a higher neutron absorption rate than the bearing X. For this reason, the neutron beam L1 transmitted through the bearing X is greatly attenuated in the region where the lubricant Y exists.
  • the intensity distribution of the neutron beam L1 is proportional to the intensity distribution of the light L2 converted from the neutron beam L1. Therefore, the neutron beam L1 is incident on the bearing X from the axial direction, and the neutron beam L1 transmitted through the bearing X is converted into the light L2 and imaged, whereby the axis is centered from the brightness distribution of the imaging data.
  • the distribution of the lubricant Y in the radial direction can be acquired.
  • the attenuation amount of the neutron beam L1 is proportional to the thickness of the lubricant Y in the passage region. That is, the thicker the lubricant Y in the passage region, the greater the attenuation amount of the neutron beam L1, and the intensity of the neutron beam L1 after passage decreases.
  • the intensity distribution of the neutron beam L1 is proportional to the intensity distribution of the light L2 converted from the neutron beam L1. Therefore, by irradiating the bearing X with the neutron beam L1 from the axial direction, and converting the neutron beam L1 transmitted through the bearing X into the light L2 and taking an image, the brightness distribution of the imaging data can be used in the axial direction. Lubricant thickness distribution can be obtained.
  • the neutron beam L1 incident on the bearing X from the axial direction and transmitted is changed to the light L2, and the light L2 is received. Then, lubricant distribution data indicating the distribution of the lubricant Y in the bearing X is acquired.
  • the distribution of the lubricant Y in the radial direction around the axis and the axial direction of the axis Lubricant distribution data including the thickness distribution of the lubricant Y can be acquired, and the behavior of the lubricant Y inside the bearing X can be acquired in detail.
  • imaging is performed based on a rotation angle signal that is a signal indicating the rotation angle of the bearing X output from the rotary encoder 5. Is called. For this reason, even when the rotational speed of the bearing X is non-uniform or changes with time, imaging can always be performed accurately in accordance with the rotational angle of the bearing X. Therefore, the rotation angle pitch for each imaging data can be made uniform, and the behavior of the lubricant inside the bearing X can be accurately acquired.
  • the ball X3A can be distinguished from other balls X3 in the imaging data. Further, the ball X3 and the ball X3A revolve inside the bearing X when the bearing X is driven to rotate. The revolution amount can be calculated by the frictional force acting on the ball X3 and the ball X3A. Therefore, according to the lubricant distribution acquisition device 1 of the present embodiment, the rotation angle pitch for each imaging data can be made uniform, and the revolution amount of the ball X3 and the ball X3A is accurately calculated from this rotation angle pitch. be able to.
  • the signal processing unit 10 For this reason, for example, acquiring a plurality of imaging data, causing the signal processing unit 10 to calculate the revolution amounts of the ball X3 and the ball X3A from the rotation angle pitch, and comparing them with the positions of the balls X3 and X3A in the actual imaging data.
  • the slip amount of the ball X3 and the ball X3A can be calculated.
  • one ball X3A uses the bearing XA having a neutron absorption rate different from that of the other balls X3, thereby reducing the sliding amount of the balls X3 and X3A. Can be calculated.
  • the number of balls X3A having different neutron absorption rates is not necessarily one, and may be plural. Further, it is not necessary to change the neutron absorption rate of the entire ball X3A.
  • the neutron absorption rate of the ball X3A may be changed by changing a part of the material of the ball X3A.
  • a part of the material of the ball X3A may be appropriately selected from, for example, iron, aluminum, ceramic and the like.
  • the present invention is not limited to this, and other encoders such as an absolute encoder can be used.
  • a toothed pulley or a toothed belt can be used.
  • Sprockets and chains can also be used.
  • the bearing X is a ball bearing that receives a load in the radial direction
  • the present invention can also be used to acquire the behavior of lubricants in other bearings, such as roller bearings, sliding bearings, or bearings that receive a load in the thrust direction.
  • transmits a bearing from the axial center direction was demonstrated.
  • the present invention is not limited to this, and it is also possible to employ a configuration in which the neutron beam L1 passes through the bearing from an oblique direction with respect to the axis.
  • the structure which converts the neutron beam L1 into the light L2 using the scintillator 6 was demonstrated.
  • the present invention is not limited to this, and imaging may be performed by converting the neutron beam L1 into radiation (electromagnetic waves) such as ⁇ rays.
  • the present invention is not limited to this, and film shooting may be performed with an imaging device.
  • a lubricant distribution acquisition device and a lubricant distribution acquisition method capable of accurately acquiring the behavior of the lubricant inside the bearing by making the rotation angle pitch for each imaging data uniform.
  • SYMBOLS 1 Lubricant distribution acquisition apparatus, 2 ... Neutron beam irradiation apparatus, 4 ... Rotary drive device, 5 ... Rotary encoder (encoder), 6 ... Scintillator (electromagnetic wave conversion means), 8 ... Optical amplifier (electromagnetic wave) Amplifying means), 9 ... imaging device (imaging means), 10 ... signal processing unit, 11 ... control device, L1 ... neutron beam, L2 ... light (electromagnetic wave), X, XA ... bearing, Y ... ...lubricant

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

この潤滑剤分布取得装置(1)では、軸受(X)を透過した中性子線を電磁波に変換し、エンコーダ(5)から出力される軸受の回転角度を示す回転角度信号に基づいて上記電磁波を受けて撮像することにより上記軸受内部における潤滑剤の分布を示す潤滑剤分布データを取得する。その結果、撮像データごとの回転角度ピッチを均一として、軸受内部における潤滑剤の挙動を正確に取得することが可能となる。

Description

潤滑剤分布取得装置及び潤滑剤分布取得方法
 本発明は、潤滑剤分布取得装置及び潤滑剤分布取得方法に関する。
本願は、2011年3月10日に日本に出願された特願2011-53438号に基づき優先権を主張し、その内容をここに援用する。
 例えば、特許文献1には、中性子ラジオグラフィ法を用いて、流体軸受内部の潤滑剤の有無を検査する発明が開示されている。
 このような特許文献1に開示された発明を用いることによって、従来は分解して確認を行っていた潤滑剤の有無の検査を、軸受を分解することなく行うことができる。
特開2000-292373号公報
 ところが、特許文献1では、潤滑剤の有無のみを検査し、潤滑剤の挙動を検出しないため、軸受の回転と撮像のタイミングとに同期がとられていない。このため、軸受の回転速度に不均一性や経時変化があった場合には、撮像データごとの回転角度のピッチが不均一となり、比較対照性が低下してしまう。
 本発明は、上述する問題点に鑑みてなされたもので、撮像データごとの回転角度ピッチを均一とすることが可能で、軸受内部における潤滑剤の挙動を正確に取得することが可能な潤滑剤分布取得装置及び潤滑剤分布取得方法を提供することを目的とする。
 本発明者等は、軸受内部における潤滑剤の挙動と軸受の寿命との関係について、研究を行った。その結果、軸受の寿命には、使用環境等が同様の場合であっても個体差が存在することが分かった。寿命の異なるこれらの軸受の分解調査を行ったところ、内部に残存する潤滑剤の様子が大きく異なることが分かった。特に、転がり軸受では、内部の潤滑剤の挙動が寿命に大きく影響していることが分かった。
 これは、軸受の寿命が内部の潤滑剤の挙動に依存することを示唆している。つまり、軸受内部の潤滑剤の挙動を知ることができれば、軸受の寿命を改善できる可能性がある。
 かかる研究結果を踏まえ、本発明に係る第1の発明は、軸受を透過した中性子線を受けて電磁波に変換する電磁波変換手段と、上記電磁波変換手段から射出される電磁波を受けて撮像することにより上記軸受内部における潤滑剤の分布を示す潤滑剤分布データを取得する撮像処理手段と、上記軸受の回転角度を示す回転角度信号を出力するエンコーダと、上記回転角度信号に基づいて上記撮像処理手段による撮像タイミングを制御する制御手段とを備える潤滑剤分布取得装置という構成を採用する。
 本発明に係る第2の発明は、上記第1の発明において、上記電磁波変換手段から射出された電磁波を上記撮像処理手段に到達する前に増幅する電磁波増幅手段を備え、上記制御手段が、上記撮像タイミングに合わせて上記電磁波増幅手段に上記電磁波を増幅させるという構成を採用する。
 本発明に係る第3の発明は、上記第2の発明において、上記撮像処理手段における露光期間の開始タイミングが、上記電磁波増幅手段における上記電磁波の増幅開始タイミングよりも上記電磁波増幅手段における残像期間以上遅れて設定されているという構成を採用する。
 本発明に係る第4の発明は、上記第1~第3いずれかの発明において、軸受が少なくとも1つの転動体が他の転動体と中性子線吸収率が異なる材料である転がり軸受とされ、上記制御手段が、予め定められた設定回転角度で上記撮像処理手段に撮像させることで複数の撮像データを取得させると共に、上記撮像処理手段に複数の撮像データを用いて上記転動体の滑り量を算出させるという構成を採用する。
 本発明に係る第5の発明は、潤滑剤分布取得方法であって、軸受を透過した中性子線を電磁波に変換し、エンコーダから出力される軸受の回転角度を示す回転角度信号に基づいて上記電磁波を受けて撮像することにより上記軸受内部における潤滑剤の分布を示す潤滑剤分布データを取得するという構成を採用する。
 本発明によれば、エンコーダから出力される軸受の回転角度を示す信号である回転角度信号に基づいて撮像が行われる。
 このため、軸受の回転速度の不均一性や経時変化が生じた場合であっても、常に正確に軸受の回転角度に合わせて撮像を行うことができる。
 したがって、撮像データごとの回転角度ピッチを均一とすることが可能で、軸受内部における潤滑剤の挙動を正確に取得することが可能となる。
本発明の第1実施形態の潤滑剤分布取得装置の概略構成を示す、その機構の一部の模式図である。 本発明の第1実施形態の潤滑剤分布取得装置の概略構成を示す、その機能の一部を示すブロック図である。 本発明の一実施形態の潤滑剤分布取得装置に設置される軸受の概略構成を示すカットモデルの斜視図である。 本発明の一実施形態の潤滑剤分布取得装置における撮像タイミングを示すタイミングチャートである。 本発明の一実施形態の潤滑剤分布取得装置に用いられる軸受の変化例を示す模式図である。 本発明による軸受内部の撮像結果を示す写真である。
 以下、図面を参照して、本発明に係る潤滑剤分布取得装置及び潤滑剤分布取得方法の一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。
 図1A及び図1Bは、本実施形態の潤滑剤分布取得装置1の概略構成を模式的に示す図である。図1Aは、潤滑剤分布取得装置1の機構の一部を示す模式図であり、図1Bは、潤滑剤分布取得装置1の機能の一部を示すブロック図である。
 本実施形態の潤滑剤分布取得装置1は、軸受Xの内部における潤滑剤Y(例えばグリース)の分布を取得することにより玉軸受である軸受Xが回転駆動されている最中の潤滑剤Yの挙動を取得する。
 そして、本実施形態の潤滑剤分布取得装置1は、図1A及び図1Bに示すように、中性子線照射装置2と、軸受支持機構3と、回転駆動装置4(回転駆動手段)と、ロータリエンコーダ5(エンコーダ)と、シンチレータ6(電磁波変換手段)と、導光機構7と、光増幅器8(電磁波増幅手段)と、撮像装置9と、信号処理部10と、制御装置11(制御手段)とを備えている。
 中性子線照射装置2は、例えば原子炉等の中性子源から射出された中性子線L1を案内して軸受Xに対して軸心方向から照射する。
 なお、中性子源から射出される中性子線を案内することなく軸心方向から軸受Xに照射可能である場合には、中性子線照射装置2を省略することもできる。
 また、本実施形態の潤滑剤分布取得装置1では、例えばイオン発生器で派生させた水素あるいはヘリウム等のイオンをターゲットに照射することによって中性子線を発生する中性子源を別途備えていても良い。
 軸受支持機構3は、軸受Xを支持するための部材で、筐体3aと、ハウジング3bとを備えている。
 筐体3aは、内部にハウジング3b及びハウジング3bに固定される軸受Xを収容する枠体あるいは箱状の部材である。本実施形態において筐体3aは、図1Aに示すように、回転駆動装置4の支持台としても機能する。
 ハウジング3bは、軸受Xの外輪を覆って支持する部材で、軸受Xを着脱可能に支持している。そして、本実施形態においてハウジング3bは、図1Aに示すように、軸受Xの軸心が中性子線照射装置2側を向くように軸受Xを支持する。
 なお、筐体3a及びハウジング3bは、中性子線L1の通過領域を避ける形状を有していることが好ましいが、中性子線L1の吸収率が極めて低いアルミニウム材料等によって形成すれば中性子線L1の通過領域を跨ぐ形状を有することも可能である。
 回転駆動装置4は、軸受Xを回転駆動する部材で、図1Aに示すように、軸受Xを回転駆動するための動力を発生するモータ4a(動力部)と、モータ4aにて発生された動力を軸受Xにベルト伝達するためのプーリ4b、ベルト4c(帯状部材)及び駆動軸部4dとを備えている。
 より詳細には、プーリ4bは、カップリング等によってモータ4aの軸部と連結されている。また、駆動軸部4dは、軸受Xの軸心方向に長い棒状の部材で、軸受Xの内輪に固定されると共に軸受Xの中央を貫通して水平に配設されている。そして、無端ベルトからなるベルト4cは、プーリ4b及び駆動軸部4dに廻し掛けられている。
 ロータリエンコーダ5は、軸受Xの回転角度を示す回転角度信号を出力する。
 このロータリエンコーダ5は、軸受Xと同期して回転するモータ4aの回転軸に対して接続され、モータ4aの回転軸が回転駆動されることによって回転角度(回転速度)に応じたパルス信号を出力する。このロータリエンコーダ5としては、例えば、パルス出力(インクリメンタル)型のロータリエンコーダを用いることができる。
 シンチレータ6は、軸受Xを透過した中性子線L1を受けて光L2を発光する部材で、中性子線L1を可視光に変換する。
 このシンチレータ6としては、例えば、LiF/ZnS(Ag)、BN/ZnS (Ag)、Gd/ZnS(Ag)、GdS(Tb)を用いることができる。
 導光機構7は、シンチレータ6から射出された光L2を光増幅器8を介して撮像装置9まで導光する。
 この導光機構7は、図1Aに示すように、光L2を反射して案内するミラー7aと、光L2を集光するレンズ7b等を備えている。
 光増幅器8は、導光機構7を介して入射される光の強度を高めて出力する部材である。光増幅器8としては、例えば、イメージインテンシファイアを用いることができる。
 そして、本実施形態において光増幅器8は、制御装置11の制御の下、制御装置11から指示された期間のみ光L2の強度を増幅する。より詳細には、光増幅器8は、制御装置11から光の増幅期間を示すゲート信号が入力され、このゲート信号に基づいて光L2の増幅を行う。
 なお、本実施形態において光増幅器8は、制御装置11から指示された期間のみ光L2の強度を増幅するため、常に光L2の増幅を行っているのではなく休止期間を得ることができる。このような休止期間を得ることによって、光増幅器8の焼き付きを防止して耐久性を向上することができるため、本実施形態の光増幅器8では、光L2を増幅する期間において、その出力を高めている。
 このように、光増幅器8の出力を高めることによって、撮像装置9における露光時間を短くしても鮮明な撮像データを得ることができる。また、露光時間を短くすることによってブレの少ない撮像データを得ることができる。
 撮像装置9は、シンチレータ6から射出され、導光機構7及び光増幅器8を介して到達した光L2を受光して撮像する部材で、撮像結果を撮像データとして出力する。
 なお、撮像装置9としては、CCDカメラ、SIT管カメラ、高速度カメラ等を用いることが可能であるが、例えば6000rpm程度で高速回転する軸受Xの内部での潤滑剤Yの移動は高速であるため、2000fps程度のフレームレートの高い撮像が可能な高速度カメラを用いることが好ましい。
 そして、本実施形態において撮像装置9は、制御装置11の制御の下、制御装置11から指示されたタイミングで撮像を行う。より詳細には、撮像装置9には、制御装置11から撮像タイミングを示すトリガ信号が入力され、撮像装置9は、このトリガ信号に基づいて撮像を行う。
 なお、光増幅器8では、上記ゲート信号の入力に対する応答が一定時間遅れる特性がある。つまり、光増幅器8は、一定の残像期間を有している。このため、本実施形態においては、撮像装置9の露光期間の開始タイミングが、光増幅器8の残像期間以上に遅れて設定されている。
 このように、撮像装置9の露光期間の開始タイミングが、光増幅器8の残像期間以上に遅れて設定されることによって、撮像装置9で光L2が増幅されるより前に撮像が開始されることを防止できる。
 なお、露光期間の終了タイミングは、光増幅器8の光増幅期間の終了タイミングから残像期間を足した期間よりも短く設定されれば良い。
 信号処理部10は、撮像装置9から入力される撮像データを加工して要求される潤滑剤分布データとして出力する。
 ここで言う潤滑剤分布データとは、軸心を中心とする半径方向における潤滑剤の分布情報及び軸心方向の潤滑剤の厚み分布情報を含むデータである。そして、本実施形態において信号処理部10は、例えば、撮像データにおける明るさ情報から潤滑剤分布データを算出したり、潤滑剤分布データをロータリエンコーダ5の検出結果と関連付ける処理を行ったりする。
 なお、撮像装置9で撮像された撮像データ自体にも軸心を中心とする半径方向における潤滑剤の分布情報及び軸心方向の潤滑剤の厚み分布情報が含まれるため、要求される潤滑剤分布データを撮像データとすることも可能である。この場合には、信号処理部10は、撮像装置9から入力される撮像データをそのまま潤滑剤分布データとして出力する。
 なお、本実施形態においては、本発明の撮像処理手段が、撮像装置9と信号処理部10とによって構成されている。
 制御装置11は、本実施形態の潤滑剤分布取得装置1の動作全体を制御する部材で、図1Bに示すように、中性子線照射装置2、回転駆動装置4、ロータリエンコーダ5、光増幅器8、撮像装置9及び信号処理部10と電気的に接続されている。
 そして、本実施形態において制御装置11は、ロータリエンコーダ5から入力される回転角度信号に基づいて撮像装置9の撮像タイミングを制御し、撮像タイミングに合わせて光増幅器8に光L2を増幅させる。
 より詳細には、制御装置11は、図1Bに示すように、分周器11aと遅延器11bとを備えている。そして、制御装置11は、ロータリエンコーダ5から入力された回転角度信号を分周器11aで分周することによってトリガ信号を生成し、このトリガ信号を起点とし光増幅器の動作期間を示す、時間的な幅を持ったゲート信号(光増幅器8で光増幅するタイミングを示す信号)を生成して、光増幅器8に入力する。
 また、上述のように本実施形態においては、撮像装置9の露光時間の開始タイミングが光増幅器8の残像時間を考慮して光増幅の開始タイミングよりも遅れるように設定されている。このため、制御装置11は、回転角度信号を分周器11aで分周して得られたトリガ信号を一定時間遅延させた時点を起点とし露光時間を示す、時間的な幅を持った露光指令信号(撮像装置9で撮像するタイミングを示す信号)を生成し、露光指令信号を撮像装置9に入力する。
 この結果、図3に示すように、分周後のトリガ信号の周波数に合わせて光増幅器8が動作する。なお、光増幅器8の動作期間は予め光増幅器8に記憶させ、制御装置11から光増幅器8にトリガ信号を直接入力する構成としても良い。また、撮像装置9の露光時間を予め撮像装置9に記憶させ、制御装置1から撮像装置9にトリガ信号を一定時間遅延させた信号を与える構成としても良い。撮像装置9の露光時間は、光増幅器8の動作期間と残像期間を考慮した範囲となる。
 なお、本実施形態においては、ロータリエンコーダ5からの回転角度信号であるパルス信号の周波数がゲート信号やトリガ信号の周波数よりも高いことを前提としているため、制御装置11が分周器11aを備える構成としている。しかしながら、ロータリエンコーダ5から出力されるパルス信号がゲート信号やトリガ信号の周波数よりも低い場合には、制御装置11は分周器11aに換えて逓倍器を備える。
 軸受Xは、内部に潤滑剤を含む玉軸受(転がり軸受)であり、本実施形態においてはラジアル軸受として構成されている。
 図2は、軸受Xの概略構成を示すカットモデルの斜視図である。この図に示すように、軸受Xは、半径方向に対向配置される環状の外輪X1及び内輪X2と、外輪X1と内輪X2との間に配置される複数の玉X3と、玉X3同士の間隔を等間隔に保持するための保持器X4と、玉X3の収容空間を封止するシールX5とを備えている。
 なお、撮像データにおける潤滑剤Yの視認性を高めてより正確な分布を取得するためには、撮像データに軸受Xの構成要素が写らないことが望ましい。このため、軸受Xのこれらの構成要素(外輪X1、内輪X2、玉X3、保持器X4及びシールX5)は、中性子線L1の吸収率が低いアルミニウム材料から形成されていることが好ましい。
 次に、上述のように構成された本実施形態の潤滑剤分布取得装置1の動作(潤滑剤分布取得方法)について説明する。なお、以下に説明する本実施形態の潤滑剤分布取得装置1の動作の主体は、制御装置11である。
 まず、制御装置11は、回転駆動装置4に軸受Xを回転駆動させる。この結果、軸受Xの内輪X2が回転駆動されて内輪X2と外輪X1との間に挟まれた玉X3が自転しながら、軸心を中心として公転し、潤滑剤Yが玉X3の移動に伴って軸受X内部を移動する。
 このように軸受Xが回転駆動されると、ロータリエンコーダ5から回転角度信号であるパルス信号が制御装置11に入力される。
 制御装置11は、パルス信号からゲート信号及びトリガ信号を生成し、ゲート信号を光増幅器8に入力し、トリガ信号を撮像装置9に入力する。
 この結果、撮像装置9は常に軸受Xの回転角度に同期して撮像を行い、光増幅器8は撮像装置9で撮像されるタイミングに合わせて光L2を増幅するようになる。
 次いで、中性子線照射装置2から中性子線L1が軸受X側に案内される。その結果、図1Aに示すように、中性子線L1が軸受Xの軸心方向から軸受Xに入射し、軸受Xを透過した中性子線L1がシンチレータ6に入射する。
 中性子線L1がシンチレータ6に入射すると、シンチレータ6が中性子線L1の強度分布と同様の強度分布を有する光L2を発光する。つまり、シンチレータ6は、中性子線L1を光L2に変換して射出する。
 シンチレータ6から射出された光L2は、導光機構7に案内されて光増幅器8にて増幅された後、撮像装置9に入射する。
 そして、制御装置11は、撮像装置9に撮像を行わせる。この結果、撮像装置9にて撮像データが取得される。
 続いて制御装置11は、信号処理部10に撮像データを加工させ、軸心を中心とする半径方向における潤滑剤の分布情報及び軸心方向の潤滑剤の厚み分布情報を含む潤滑剤分布データを算出させる。
 また、制御装置11は、算出した潤滑剤分布データを回転検出器5の検出結果と関連付ける処理を行う。この結果、潤滑剤分布データは、軸受Xの回転角度に関連付けられて出力される。
 ここで、潤滑剤Yは有機物からなり軸受Xよりも中性子線の吸収率が高い。このため、軸受Xを透過した中性子線L1は、潤滑剤Yが存在する領域で大きく減衰する。一方で、中性子線L1の強度分布と中性子線L1が変換された光L2の強度分布とは比例する。
 したがって、軸受Xに対して軸心方向から中性子線L1が入射し、軸受Xを透過した中性子線L1を光L2に変換して撮像することによって、撮像データの明るさの分布から軸心を中心とする半径方向における潤滑剤Yの分布を取得することができる。
 また、中性子線L1の減衰量は、通過領域における潤滑剤Yの厚みに比例する。つまり、通過領域における潤滑剤Yの厚みが厚い程、中性子線L1の減衰量が大きくなって、通過後の中性子線L1の強度が低下する。一方で、中性子線L1の強度分布と中性子線L1が変換された光L2の強度分布とは比例する。したがって、軸受Xに対して軸心方向から中性子線L1を射させ、軸受Xを透過した中性子線L1を光L2に変換して撮像することによって、撮像データの明るさの分布から軸心方向の潤滑剤の厚みの分布を取得することができる。
 そして、本実施形態の潤滑剤分布取得装置1及び潤滑剤分布取得方法においては、軸受Xに対して軸心方向から入射されて透過した中性子線L1を光L2に変化させ、光L2を受光して撮像することにより軸受X内部における潤滑剤Yの分布を示す潤滑剤分布データを取得する。
 このため、本実施形態の潤滑剤分布取得装置1及び潤滑剤分布取得方法によれば、軸受Xを分解することなく、軸心を中心とする半径方向における潤滑剤Yの分布及び軸心方向の潤滑剤Yの厚み分布を含む潤滑剤分布データを取得することができ、軸受X内部における潤滑剤Yの挙動を詳細に取得することが可能となる。
 以上のような本実施形態の潤滑剤分布取得装置1及び潤滑剤分布取得方法によれば、ロータリエンコーダ5から出力される軸受Xの回転角度を示す信号である回転角度信号に基づいて撮像が行われる。
 このため、軸受Xにおいて回転速度の不均一性や経時変化が生じた場合であっても、常に正確に軸受Xの回転角度に合わせて撮像を行うことができる。
 したがって、撮像データごとの回転角度ピッチを均一とすることが可能で、軸受X内部における潤滑剤の挙動を正確に取得することが可能となる。
 なお、本実施形態の潤滑剤分布取得装置1においては、図4に示すように、1つのみが材質の異なった(中性子線吸収率の異なった)玉X3A(転動体)を備える軸受けXAを設置しても良い。
 このような軸受XAを設置することによって、撮像データにおいて玉X3Aを他の玉X3と区別することができる。
 また、玉X3及び玉X3Aは、軸受Xが回転駆動されることによって、軸受Xの内部にて公転する。そして公転量は、玉X3及び玉X3Aに作用する摩擦力等によって計算することができる。したがって、本実施形態の潤滑剤分布取得装置1によれば、撮像データごとの回転角度ピッチを均一とすることができるため、この回転角度ピッチから玉X3及び玉X3Aの公転量を正確に算出することができる。
 このため、例えば、複数の撮像データを取得し、信号処理部10に回転角度ピッチから玉X3及び玉X3Aの公転量を算出させ、実際の撮像データにおける玉X3及び玉X3Aの位置と比較させることで、玉X3及び玉X3Aの滑り量を算出させることができる。
 このように、本実施形態の潤滑剤分布取得装置1によれば、1つの玉X3Aが他の玉X3と中性子線吸収率が異なる軸受XAを用いることによって、玉X3及び玉X3Aの滑り量を算出することができる。
 なお、中性子線吸収率の異なる玉X3Aは必ずしも1つである必要はなく、複数であっても良い。
 また、玉X3A全体の中性子吸収率を変化させる必要もなく、例えば、玉X3Aの一部の材質を変化させることによって玉X3Aの中性子吸収率を変化させるようにしても良い。玉X3Aの一部の材質は、例えば鉄、アルミニウム、セラミック等から適宜選べば良い。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は、上記実施形態に限定されないことは言うまでもない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の趣旨から逸脱しない範囲において、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 例えば、上記実施形態においては、本発明のエンコーダとして、インクリメンタルエンコーダを用いる構成について説明した。
 しかしながら、本発明は、これに限定されるものではなく、例えば、アブソリュートエンコーダ等の他のエンコーダを用いることも可能である。
 例えば、回転駆動装置において、歯付きのプーリや歯付きのベルトを用いることもできる。また、スプロケットとチェーンを用いることも可能である。
 また、上記実施形態においては、軸受Xがラジアル方向に荷重を受ける玉軸受である構成について説明した。
 しかしながら、本発明は、例えば、コロ軸受、滑り軸受、またはスラスト方向に荷重を受ける軸受等の他の軸受内部における潤滑剤の挙動の取得に用いることも可能である。
 また、上記実施形態においては、中性子線L1が軸心方向から軸受を透過する構成について説明した。
 しかしながら、本発明はこれに限定されるものではなく、中性子線L1が軸心に対して斜め方向から軸受を透過する構成を採用することも可能である。
 また、上記実施形態においては、シンチレータ6を用いて中性子線L1を光L2に変換する構成について説明した。
 しかしながら、本発明はこれに限定されるものではなく、中性子線L1をγ線等の放射線(電磁波)に変換して撮像しても良い。
 また、上記実施形態においては、撮像装置9でデジタル撮影を行う構成について説明した。
 しかしながら、本発明はこれに限定されるものではなく、撮像装置でフィルム撮影を行っても良い。
 なお、本発明の潤滑剤分布取得装置を用い、上述のように中性子線L1をγ線に変換してフィルム撮影を行った結果、図5に示すような画像が撮像された。
 この撮像結果から分かるように、本発明によれば、軸受の内部を撮像することができる。
 本発明によれば、撮像データごとの回転角度ピッチを均一として、軸受内部における潤滑剤の挙動を正確に取得することが可能な潤滑剤分布取得装置及び潤滑剤分布取得方法を提供することができる。
 1……潤滑剤分布取得装置、2……中性子線照射装置、4……回転駆動装置、5……ロータリエンコーダ(エンコーダ)、6……シンチレータ(電磁波変換手段)、8……光増幅器(電磁波増幅手段)、9……撮像装置(撮像手段)、10……信号処理部、11……制御装置、L1……中性子線、L2……光(電磁波)、X,XA……軸受、Y……潤滑剤

Claims (7)

  1.  軸受を透過した中性子線を受けて電磁波に変換する電磁波変換手段と、
     前記電磁波変換手段から射出される電磁波を受けて撮像することにより前記軸受内部における潤滑剤の分布を示す潤滑剤分布データを取得する撮像処理手段と、
     前記軸受の回転角度を示す回転角度信号を出力するエンコーダと、
     前記回転角度信号に基づいて前記撮像処理手段による撮像タイミングを制御する制御手段と
     を備える潤滑剤分布取得装置。
  2.  前記電磁波変換手段から射出された電磁波を前記撮像処理手段に到達する前に増幅する電磁波増幅手段を備え、
    前記制御手段は、前記撮像タイミングに合わせて前記電磁波増幅手段に前記電磁波を増幅させる
    請求項1に記載の潤滑剤分布取得装置。
  3.  前記撮像処理手段における露光期間の開始タイミングが、前記電磁波増幅手段における前記電磁波の増幅開始タイミングよりも前記電磁波増幅手段における残像期間以上遅れて設定されている請求項2に記載の潤滑剤分布取得装置。
  4.  前記軸受が少なくとも1つの転動体が他の転動体と中性子線吸収率が異なる材料である転がり軸受とされ、
     前記制御手段は、予め定められた設定回転角度で前記撮像処理手段に撮像させることで複数の撮像データを取得させると共に、前記撮像処理手段に複数の撮像データを用いて前記転動体の滑り量を算出させる
    請求項1に記載の潤滑剤分布取得装置。
  5.  前記軸受が少なくとも1つの転動体が他の転動体と中性子線吸収率が異なる材料である転がり軸受とされ、
     前記制御手段は、予め定められた設定回転角度で前記撮像処理手段に撮像させることで複数の撮像データを取得させると共に、前記撮像処理手段に複数の撮像データを用いて前記転動体の滑り量を算出させる
    請求項2に記載の潤滑剤分布取得装置。
  6.  前記軸受が少なくとも1つの転動体が他の転動体と中性子線吸収率が異なる材料である転がり軸受とされ、
     前記制御手段は、予め定められた設定回転角度で前記撮像処理手段に撮像させることで複数の撮像データを取得させると共に、前記撮像処理手段に複数の撮像データを用いて前記転動体の滑り量を算出させる
     請求項3に記載の潤滑剤分布取得装置。
  7.  軸受を透過した中性子線を電磁波に変換し、エンコーダから出力される軸受の回転角度を示す回転角度信号に基づいて前記電磁波を受けて撮像することにより前記軸受内部における潤滑剤の分布を示す潤滑剤分布データを取得する潤滑剤分布取得方法。
PCT/JP2012/055957 2011-03-10 2012-03-08 潤滑剤分布取得装置及び潤滑剤分布取得方法 WO2012121329A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/002,400 US20130342685A1 (en) 2011-03-10 2012-03-08 Lubricant distribution acquisition device and lubricant distribution acquisition method
EP20120755431 EP2685246B1 (en) 2011-03-10 2012-03-08 Lubricant distribution acquisition device and lubricant distribution acquisition method
KR1020137024555A KR101564572B1 (ko) 2011-03-10 2012-03-08 윤활제 분포 취득 장치 및 윤활제 분포 취득 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-053438 2011-03-10
JP2011053438A JP2012189456A (ja) 2011-03-10 2011-03-10 潤滑剤分布取得装置及び潤滑剤分布取得方法

Publications (1)

Publication Number Publication Date
WO2012121329A1 true WO2012121329A1 (ja) 2012-09-13

Family

ID=46798284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055957 WO2012121329A1 (ja) 2011-03-10 2012-03-08 潤滑剤分布取得装置及び潤滑剤分布取得方法

Country Status (5)

Country Link
US (1) US20130342685A1 (ja)
EP (1) EP2685246B1 (ja)
JP (1) JP2012189456A (ja)
KR (1) KR101564572B1 (ja)
WO (1) WO2012121329A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101579282B1 (ko) * 2014-07-23 2015-12-21 한국과학기술연구원 베어링의 내구성을 시험하기 위한 베어링의 시험 장치
CN104728583B (zh) * 2015-01-22 2017-04-26 河南科技大学 轴承注脂机用注脂定位装置的定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292374A (ja) * 1999-04-07 2000-10-20 Matsushita Electric Ind Co Ltd 流体軸受液面検査方法
JP2000292373A (ja) 1999-04-07 2000-10-20 Matsushita Electric Ind Co Ltd 流体軸受内部検査方法
JP2005069288A (ja) * 2003-08-21 2005-03-17 Nsk Ltd 転がり軸受内部のグリース封入状態検査方法
JP2007248325A (ja) * 2006-03-17 2007-09-27 Utsunomiya Univ 外観検査装置、外観検査方法、外観検査プログラム及びそれを記録した情報記録媒体
JP2010054500A (ja) * 2008-07-29 2010-03-11 Nsk Ltd 転動装置及びこの転動装置を用いた転動装置内部観察方法
JP2010286069A (ja) * 2009-06-12 2010-12-24 Nsk Ltd 転がり軸受の観察方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670572B2 (ja) 2005-10-05 2011-04-13 株式会社島津製作所 X線検査装置
EP2006640B1 (en) * 2006-03-14 2015-10-07 NTN Corporation Rotation angle detector and rotational angle detector incorporated bearing assembly
DE102007042254A1 (de) * 2007-09-06 2009-04-02 Carl Freudenberg Kg Messvorrichtung und Verfahren zur Analyse des Schmiermittels eines Lagers
JP4992739B2 (ja) 2008-01-25 2012-08-08 株式会社島津製作所 放射線撮像装置
JP5543448B2 (ja) * 2008-06-27 2014-07-09 アール.ヤーリッシュ ウォルフラム 高効率コンピュータ断層撮影
US8660330B2 (en) * 2008-06-27 2014-02-25 Wolfram Jarisch High efficiency computed tomography with optimized recursions
WO2010073435A1 (ja) * 2008-12-26 2010-07-01 エスケーエイ株式会社 食用油又は工業用油の劣化防止方法と装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292374A (ja) * 1999-04-07 2000-10-20 Matsushita Electric Ind Co Ltd 流体軸受液面検査方法
JP2000292373A (ja) 1999-04-07 2000-10-20 Matsushita Electric Ind Co Ltd 流体軸受内部検査方法
JP2005069288A (ja) * 2003-08-21 2005-03-17 Nsk Ltd 転がり軸受内部のグリース封入状態検査方法
JP2007248325A (ja) * 2006-03-17 2007-09-27 Utsunomiya Univ 外観検査装置、外観検査方法、外観検査プログラム及びそれを記録した情報記録媒体
JP2010054500A (ja) * 2008-07-29 2010-03-11 Nsk Ltd 転動装置及びこの転動装置を用いた転動装置内部観察方法
JP2010286069A (ja) * 2009-06-12 2010-12-24 Nsk Ltd 転がり軸受の観察方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOHN T.LINDSAY ET AL.: "X-ray vision on steroids", MACHINE DESIGN, vol. 70, no. 6, April 1998 (1998-04-01), pages 49 - 51, XP008171668 *
See also references of EP2685246A4 *

Also Published As

Publication number Publication date
EP2685246A1 (en) 2014-01-15
KR20130122800A (ko) 2013-11-08
US20130342685A1 (en) 2013-12-26
EP2685246B1 (en) 2015-05-20
EP2685246A4 (en) 2014-09-03
KR101564572B1 (ko) 2015-10-30
JP2012189456A (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
US20170122886A1 (en) Radiation image acquisition system
JP2008029393A5 (ja)
WO2012121329A1 (ja) 潤滑剤分布取得装置及び潤滑剤分布取得方法
JP2010233906A (ja) X線診断装置及び長尺画像作成方法
WO2012121384A1 (ja) 軸受、潤滑剤分布取得装置及び潤滑剤分布取得方法
JP2006296915A (ja) 撮影装置,被検体移動装置および走査ガントリ装置
JPH07171142A (ja) 放射線診断装置
JP4866567B2 (ja) 撮影装置および被検体移動装置
JP2009189741A (ja) 放射線照射装置および放射線撮像システム
JP2009156788A5 (ja) X線検査装置
JP5049836B2 (ja) 放射線撮影方法
WO2012121339A1 (ja) 潤滑剤分布取得装置及び潤滑剤分布取得方法
US9074987B2 (en) Lubricant distribution acquisition device and lubricant distribution acquisition method
JPH10300893A (ja) 高速x線シャッタ
JPH05312735A (ja) X線断層撮影方法及びその装置
JP2009201730A (ja) 放射線画像検出装置
JP2640575B2 (ja) 放射線画像撮影装置
JPH05292402A (ja) X線診断装置
JP2003052674A (ja) X線画像診断装置
KR20120011983A (ko) 간접변환방법을 이용한 라인타입 방사선 영상센서, 이로 이루어진 영상센싱유닛 및 이를 포함하여 이루어진 방사선 영상 촬영장치
JP2013153973A (ja) X線ct装置
JP2010094241A (ja) X線撮影装置及びその制御方法、コンピュータプログラム
JPH05302900A (ja) X線撮像方法
JPS6016084A (ja) X線透視検査装置
JP2013244148A (ja) X線ct装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14002400

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012755431

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137024555

Country of ref document: KR

Kind code of ref document: A