WO2012121321A1 - 液晶表示装置及び液晶表示装置の製造方法 - Google Patents

液晶表示装置及び液晶表示装置の製造方法 Download PDF

Info

Publication number
WO2012121321A1
WO2012121321A1 PCT/JP2012/055942 JP2012055942W WO2012121321A1 WO 2012121321 A1 WO2012121321 A1 WO 2012121321A1 JP 2012055942 W JP2012055942 W JP 2012055942W WO 2012121321 A1 WO2012121321 A1 WO 2012121321A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
display device
carbon atoms
crystal display
Prior art date
Application number
PCT/JP2012/055942
Other languages
English (en)
French (fr)
Inventor
真伸 水▲崎▼
仲西 洋平
健史 野間
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/003,976 priority Critical patent/US9151987B2/en
Publication of WO2012121321A1 publication Critical patent/WO2012121321A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133703Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by introducing organic surfactant additives into the liquid crystal material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133765Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers without a surface treatment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a liquid crystal display device and a method for manufacturing a liquid crystal display device. More specifically, an existing alignment film is not formed, and a liquid crystal display device that controls the alignment of liquid crystal molecules using a polymer layer formed by polymerizing monomers contained in the liquid crystal composition, and a polymer layer are formed.
  • the present invention relates to a method for manufacturing a liquid crystal display device suitable for the above.
  • Liquid crystal display devices are widely used as display devices such as televisions, personal computers, and PDAs because they are thin, light, and have low power consumption.
  • the size of liquid crystal display devices has been rapidly increasing, as represented by liquid crystal display devices for television.
  • a multi-domain vertical alignment mode (MVA) that can be manufactured with a high yield even in a large area and has a wide viewing angle is preferably used.
  • the liquid crystal molecules are aligned perpendicular to the substrate surface when no voltage is applied to the liquid crystal layer, so that a high contrast ratio is obtained compared to the conventional TN mode (TN: Twisted Nematic). be able to.
  • TN Twisted Nematic
  • the alignment film does not regulate the tilt direction of the liquid crystal molecules, but the tilt direction of the liquid crystal molecules is determined by the influence of protrusions (ribs) formed of an insulating material. Therefore, it is not necessary to perform an alignment treatment step on the alignment film, and static electricity and dust generated by rubbing or the like are not generated, so that a cleaning step after the alignment treatment is unnecessary. In addition, there is little variation in the initial tilt of the liquid crystal molecules, which is effective for simplification of the process, improvement of yield, and cost reduction.
  • a liquid crystal composition in which polymerizable components such as monomers and oligomers (hereinafter abbreviated as monomers) are mixed between substrates is sealed between substrates, and a voltage is applied between the substrates to tilt the liquid crystal molecules.
  • a pretilt angle imparting technique that forms a polymer layer by polymerizing monomers or the like in the state of being attracted attention (see, for example, Patent Documents 1 and 2). Due to the influence of such a polymer layer (hereinafter also referred to as a PSA (Polymer Sustained Alignment) layer), the liquid crystal has a predetermined pretilt angle even when the voltage is removed, so that the tilt of the liquid crystal molecules can be achieved even without the alignment film. Direction is maintained.
  • Such polymerization of monomers and the like is carried out by irradiation with heat or light (for example, ultraviolet rays).
  • VHR voltage holding ratio
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a liquid crystal display device in which display defects and a decrease in voltage holding ratio are unlikely to occur even when an alignment film is not formed. It is.
  • the inventors of the present invention have studied various methods for obtaining good display without forming an alignment film, and have focused on the type of monomer mixed in the liquid crystal composition.
  • the lauryl acrylate represented by the chemical formula (13) has a weak interaction with the liquid crystal molecules, and thus easily causes alignment defects, and affects the display.
  • the inventors of the present invention have made further studies, and at least one monomer to be mixed into the liquid crystal composition, and at least one of them has a structure that generates a radical by a self-cleavage reaction by light irradiation. It has been found that by mixing a monomer having two or more radical polymerizable groups, the orientation can be stabilized and the voltage holding ratio can be maintained.
  • the present inventors pay attention to the point that the polymerization initiator remains in the liquid crystal layer because the conventional polymerization initiator does not have a polymerizable group, and the polymerizable group is used as a PSA layer forming material.
  • a bonded self-cleaving photopolymerization initiator is added to the liquid crystal material, and self-cleavage is caused by light irradiation to generate radicals efficiently in the liquid crystal layer to promote polymerization, and the components generated by cleavage during the reaction are It has been found that by having a polymerizable group, the initiator itself forms a PSA layer by polymerization, so that the initiator component can be effectively phase separated from the liquid crystal layer.
  • the present invention provides a pair of substrates substantially not having an alignment film, a liquid crystal layer sandwiched between the pair of substrates and containing a liquid crystal material, and at least one surface of the pair of substrates.
  • a polymer layer that controls alignment of liquid crystal molecules, and the polymer layer is formed by polymerization of one or more radical polymerizable monomers added to the liquid crystal layer, and the radical polymerizable At least one of the monomers is a liquid crystal display device which is a compound having a structure that generates a radical by a self-cleavage reaction by light irradiation and having two or more radical polymerizable groups.
  • the configuration of the liquid crystal display device of the present invention is not particularly limited by other components as long as such components are essential.
  • the liquid crystal material may be either one having a positive dielectric anisotropy or one having a negative dielectric anisotropy, but adopts one having a negative dielectric anisotropy,
  • a vertical alignment (VA) mode liquid crystal display device with a high contrast ratio can be obtained.
  • one of the pair of substrates provided in the liquid crystal display device of the present invention is used as an array substrate and the other as a color filter substrate.
  • the array substrate includes a plurality of pixel electrodes, whereby the alignment of the liquid crystal is controlled on a pixel-by-pixel basis.
  • a plurality of color filters are arranged at positions where they overlap with the pixel electrodes of the array substrate, respectively, and the display color is controlled in units of pixels.
  • the alignment film is a single layer film or a multilayer film composed of polyimide, polyamic acid, polymaleimide, polyamide, polysiloxane, polyphosphazene, polysilsesquioxane, or a copolymer thereof, or It means a film formed by oblique vapor deposition of silicon oxide, which is formed on the outermost surface of the substrate and can control the alignment of liquid crystal.
  • an alignment film material is directly applied to a portion constituting a display region (for example, polyimide, polyamic acid, polymaleimide, polyamide, polysiloxane, polyphosphazene, or polysilsesquioxane, or An alignment film is formed by applying a material containing at least one of these copolymers) or by vapor deposition (for example, oblique deposition of silicon oxide (SiO)).
  • the display area is an area constituting an image recognized by the observer, and does not include, for example, a peripheral area such as a terminal portion.
  • the alignment film is not limited to those subjected to an alignment treatment as long as an existing alignment film material such as polyimide is applied.
  • Examples of the material subjected to the alignment treatment include those subjected to rubbing treatment and photo-alignment treatment.
  • Even without the alignment treatment for example, in the case of a vertical alignment film, liquid crystal molecules can be aligned in a direction perpendicular to the film surface. Can be oriented in the direction. Further, when an alignment control structure is provided as in an MVA mode or a PVA mode described later, the tilt of liquid crystal molecules can be controlled without an alignment treatment.
  • substantially no alignment film means that such an existing alignment film is not formed.
  • a polymer layer for controlling alignment of liquid crystal molecules is formed on at least one surface of the pair of substrates, and the polymer layer is formed by polymerization of one or more radical polymerizable monomers added to the liquid crystal layer. It has been done.
  • the initial tilt of the liquid crystal molecules adjacent to the polymer layer can be tilted in a certain direction even if the alignment film is not provided.
  • the polymer layer is formed in a form having a structure in which the liquid crystal molecules are pretilt-aligned.
  • At least one of the radical polymerizable monomers is a compound having a structure that generates a radical by a self-cleavage reaction by light irradiation and having two or more radical polymerizable groups.
  • the polymerization reaction can proceed in a short time without the need to add a new polymerization initiator, and impurities derived from the polymerization initiator are not generated, so that the voltage in the liquid crystal layer is maintained.
  • the rate (VHR) can be prevented from being lowered, and the deterioration of display quality can be reduced. Further, since light irradiation for a short time is sufficient, deterioration of components due to light irradiation for a long time can be prevented, and a highly reliable liquid crystal display device can be manufactured.
  • radical polymerizable group examples include a (meth) acryloyloxy group, a (meth) acryloylamino group, a vinyl group, and a vinyloxy group.
  • a (meth) acryloyloxy group represents an acryloyloxy group or a methacryloyloxy group
  • a (meth) acryloylamino group represents an acryloylamino group or a methacryloylamino group.
  • the structure that generates radicals by self-cleavage reaction by light irradiation is preferably a structure that generates radicals by irradiation with a wavelength component of 350 nm or more. Moreover, it is preferable that the structure which produces
  • the self-cleaving photopolymerization initiator bonded with a polymer group is irradiated with a wavelength component of 350 nm or more. It is preferable to have a structure that efficiently causes a self-cleavage reaction and generates radicals.
  • radical polymerizable monomer examples include those having a structure in which a polymerization group is bonded to a self-cleaving photopolymerization initiator that generates a radical by a self-cleavage reaction by light irradiation. Specifically, self-cleaving photopolymerization is possible.
  • the compound having a structure that generates a radical by a self-cleavage reaction by light irradiation and having two or more radical polymerizable groups preferably has a wavelength component of 400 nm or more in consideration of driving conditions of a liquid crystal display device.
  • Self-cleaving photopolymerization initiator having an extinction coefficient of 20 ml / g ⁇ cm or less, specifically, 2,2-dimethoxy-1,2-diphenylethane-1-one (trade name: IRGACURE651, BASF Corporation) 1-hydroxy-cyclohexyl-phenyl-ketone (trade name: IRGACURE 184), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (trade name: IRGACURE 1173), 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1-o (Trade name: IRGACURE 2959), 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methyl-propan-1-one (trade name: IRGACURE127), phenylglyoxylic acid methyl ester (trade name: DAROCURMBF), 2-methyl-1- [4- (methylthio
  • the compound having a structure that generates a radical by a self-cleavage reaction by light irradiation and having two or more radical polymerizable groups is more preferably the following chemical formula (1);
  • R 1 represents a linear or branched alkyl group or alkenyl group having 1 to 4 carbon atoms, or Sp 3 -P 3 .
  • R 2 represents a linear or branched alkyl group or alkenyl group having 1 to 4 carbon atoms, or Sp 4 -P 4 .
  • P 1 , P 2 , P 3 and P 4 represent the same or different radical polymerizable groups, and the total number is 2 or more.
  • Sp 1 represents a linear, branched or cyclic alkylene group having 1 to 6 carbon atoms, an alkyleneoxy group or an alkylenecarbonyloxy group, or a direct bond, and when m 1 is 2 or more, Same or different.
  • Sp 2 represents a linear, branched or cyclic alkylene group, alkyleneoxy group or alkylenecarbonyloxy group having 1 to 6 carbon atoms, or a direct bond, and when m 2 is 2 or more, Same or different.
  • Sp 3 represents a linear, branched or cyclic alkylene group, alkyleneoxy group or alkylenecarbonyloxy group having 1 to 6 carbon atoms.
  • Sp 4 represents a linear, branched or cyclic alkylene group, alkyleneoxy group or alkylenecarbonyloxy group having 1 to 6 carbon atoms.
  • L 1 represents a —F group, a —OH group, a linear or branched alkyl group or alkenyl group having 1 to 12 carbon atoms, or an aralkyl group.
  • n 1 is 2 or more, Are the same or different from each other.
  • two L 1 are respectively bonded to two adjacent carbon atoms in the aromatic ring, they may be bonded to each other to form a cyclic structure, and the two L 1 may be the same or different and have a carbon number 1 to 12, a linear or branched alkylene group or alkenylene group.
  • L 2 represents an —F group, an —OH group, a linear or branched alkyl group or alkenyl group having 1 to 12 carbon atoms, or an aralkyl group, and when n 2 is 2 or more Are the same or different from each other.
  • two L 2 are respectively bonded to two adjacent carbon atoms in the aromatic ring, they may be bonded to each other to form a cyclic structure, and the two L 2 may be the same or different and have a carbon number 1 to 12, a linear or branched alkylene group or alkenylene group.
  • One or more hydrogen atoms of the alkyl group, alkenyl group, alkylene group, alkenylene group or aralkyl group of L 1 and L 2 may be substituted with an —F group or an —OH group.
  • the —CH 2 — group of the alkyl group, alkenyl group, alkylene group, alkenylene group or aralkyl group of L 1 and L 2 is —O— group, —S, unless the oxygen atom, sulfur atom and nitrogen atom are adjacent to each other.
  • n 1 is an integer from 1 to 3.
  • m 2 is an integer from 0 to 3.
  • n 1 is an integer from 0 to 4.
  • n 2 is an integer from 0 to 4.
  • the sum of m 1 and n 1 is an integer from 1 to 5.
  • the sum of m 2 and n 2 is an integer from 0 to 5.
  • the sum of m 1 and m 2 is an integer from 1 to 6. ) It is a compound represented by these.
  • P 1 , P 2 , P 3 and P 4 are preferably the same or different (meth) acryloyloxy group, (meth) acryloylamino group, vinyl group or vinyloxy group.
  • R 1 and R 2 are preferably the same.
  • the P 1 and the P 2 are more preferably the same.
  • R 3 represents a linear or branched alkyl group or alkenyl group having 1 to 4 carbon atoms.
  • R 4 represents a linear or branched alkyl group or alkenyl group having 1 to 4 carbon atoms.
  • P 1 and P 2 represent the same or different radical polymerizable groups.
  • Sp 1 represents a linear, branched or cyclic alkylene group, alkyleneoxy group or alkylenecarbonyloxy group having 1 to 6 carbon atoms, or a direct bond.
  • Sp 2 represents a straight, branched or cyclic alkylene group, alkyleneoxy group or alkylenecarbonyloxy group having 1 to 6 carbon atoms, or a direct bond.
  • the compound represented by these is mentioned.
  • the P 1 and the P 2 are preferably the same or different (meth) acryloyloxy group, (meth) acryloylamino group, vinyl group or vinyloxy group.
  • R 3 and R 4 are preferably the same.
  • the P 1 and the P 2 are more preferably the same.
  • R 5 and R 6 are the same or different and each represents a hydrogen atom or a methyl group.
  • the compound represented by these is mentioned.
  • the compounds represented by the above chemical formulas (1) to (3) have a structure in which (i) a radical is generated by irradiation with a wavelength component of 350 nm or more, and (ii) a radical is generated by irradiation with a wavelength component of less than 400 nm. (Iii) a structure having an extinction coefficient of 20 ml / g ⁇ cm or less for a wavelength component of 400 nm or more.
  • the liquid crystal composition preferably further contains one or more radically polymerizable monomers having a ring structure and having a monofunctional or polyfunctional polymerizable group.
  • the radical polymerizable monomer having the ring structure and having a monofunctional or polyfunctional polymerizable group has the following chemical formula (4):
  • R 7 represents —R 8 —Sp 5 —P 5 group, hydrogen atom, halogen atom, —CN group, —NO 2 group, —NCO group, —NCS group, —OCN group, —SCN group, —SF 5 group. Or a linear or branched alkyl group having 1 to 18 carbon atoms.
  • P 5 represents a radical polymerizable group.
  • Sp 5 represents a linear, branched or cyclic alkylene group or alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
  • the hydrogen atom that R 7 has may be substituted with a fluorine atom or a chlorine atom.
  • the —CH 2 — group possessed by R 7 is an —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group unless an oxygen atom and a sulfur atom are adjacent to each other.
  • —O—COO— group —OCH 2 — group, —CH 2 O— group, —SCH 2 — group, —CH 2 S— group, —N (CH 3 ) — group, —N (C 2 H 5 ) — Group, —N (C 3 H 7 ) — group, —N (C 4 H 9 ) — group, —CF 2 O— group, —OCF 2 — group, —CF 2 S— group, —SCF 2 — Group, —N (CF 3 ) — group, —CH 2 CH 2 — group, —CF 2 CH 2 — group, —CH 2 CF 2 — group, —CF 2 CF 2 — group, —CH ⁇ CH— group, It may be substituted with a —CF ⁇ CF— group, —C ⁇ C— group, —CH ⁇ CH—COO— group, or —OCO—CH ⁇ CH— group.
  • R 8 represents —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —O—COO— group, —OCH 2 — group, —CH 2 O— group, —SCH 2 — group, —CH 2 S— group, —N (CH 3 ) — group, —N (C 2 H 5 ) — group, —N (C 3 H 7 ) — group, —N (C 4 H 9 ) — group, —CF 2 O— group, —OCF 2 — group, —CF 2 S— group, —SCF 2 — group, —N (CF 3 ) — group, —CH 2 CH 2 — Group, —CF 2 CH 2 — group, —CH 2 CF 2 — group, —CF 2 CF 2 — group, —CH ⁇ CH— group, —CF ⁇ CF— group, —C ⁇ C— group, —CH ⁇ It
  • a 1 and A 2 are the same or different and each represents 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group , Naphthalene-2,6-diyl group, 1,4-cyclohexylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group , Naphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, indane-1,3-diyl group, indane- 1,5-diyl group, indan-2,5-diyl group, phenanthrene-1,6-diyl group, phenanthrene-1,8
  • the —CH 2 — groups of A 1 and A 2 may be substituted with —O— groups or —S— groups as long as they are not adjacent to each other.
  • One or more hydrogen atoms of A 1 and A 2 are a fluorine atom, a chlorine atom, a —CN group, or an alkyl group, alkoxy group, alkylcarbonyl group, alkoxycarbonyl group, or alkyl having 1 to 6 carbon atoms. It may be substituted with a carbonyloxy group.
  • Z represents —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —O—COO— group, —OCH 2 — group, —CH 2 O.
  • n is 0, 1 or 2.
  • P 5 is preferably the same or different (meth) acryloyloxy group.
  • P 6 represents a (meth) acryloyloxy group, a vinyl group, or an allyl group.
  • A is 0 or 1.
  • b is 0 or 1.
  • m is any one of 1-18. It is a natural number.
  • N is a natural number of any one of 1 to 6).
  • this invention is also a manufacturing method which can manufacture suitably the liquid crystal display device of the said invention.
  • the present invention includes a step of sandwiching a liquid crystal composition containing a liquid crystal material and one or more radical polymerizable monomers between a pair of substrates without passing through the step of forming an alignment film, and the liquid crystal composition Irradiating the product with light and polymerizing the radical polymerizable monomer to form a polymer layer for controlling alignment of liquid crystal molecules on at least one surface of the pair of substrates, and the radical polymerizable monomer At least one of these is also a method for producing a liquid crystal display device, which is a compound having a structure that generates radicals by a self-cleavage reaction by light irradiation and having two or more radical polymerizable groups.
  • the method for producing a liquid crystal display device of the present invention includes a step of sandwiching a liquid crystal composition containing a liquid crystal material and one or more radically polymerizable monomers between a pair of substrates without a step of forming an alignment film.
  • at least one of the above radical polymerizable monomers is a compound having a structure that generates a radical by a self-cleavage reaction by light irradiation and having two or more radical polymerizable groups.
  • the liquid crystal material and the radical polymerizable monomer the same materials as those described in the above-described liquid crystal display device of the present invention can be used.
  • the method for producing a liquid crystal display device of the present invention includes a step of irradiating the liquid crystal composition with light and polymerizing the radical polymerizable monomer to form a polymer layer for controlling the alignment of liquid crystal molecules on the surface of the substrate. .
  • the polymerization reaction can proceed in a short time without the need to newly add a polymerization initiator.
  • impurities derived from the polymerization initiator are not generated, a decrease in voltage holding ratio (VHR) in the liquid crystal layer can be prevented, and deterioration in display quality can be reduced.
  • VHR voltage holding ratio
  • the polymer layer is formed on the surface of the substrate, in other words, the liquid crystal composition is sandwiched between a pair of substrates substantially having no alignment film, and then the polymer A process for forming the layer is performed. According to the manufacturing method of the present invention, the alignment of the liquid crystal can be controlled without forming the alignment film, and the decrease in the voltage holding ratio can be suppressed. No additional investment or capital investment is required.
  • the production method of the present invention is not particularly limited by other steps as long as such steps are essential.
  • Preferred forms of the method for producing a liquid crystal display device of the present invention include the following forms (a) to (o) which are the same as those described as the preferred form of the liquid crystal display device of the present invention. That is, (A) The structure that generates radicals by self-cleavage reaction by light irradiation is a form that generates radicals by irradiation with a wavelength component of 350 nm or more, (B) The structure that generates radicals by self-cleavage reaction by light irradiation is a form that generates radicals by irradiation with a wavelength component of less than 400 nm, (C) The above compound has a form in which an extinction coefficient for a wavelength component of 400 nm or more is 20 ml / g ⁇ cm or less, (D) The compound having a structure that generates radicals by a self-cleavage reaction by light irradiation and having two or more radical polymerizable groups is a form represented by the chemical formula (1), (
  • Examples of the step of forming the polymer layer include a mode in which a voltage equal to or higher than a threshold is applied to the liquid crystal layer.
  • a polymer is formed in a form following liquid crystal molecules that are aligned in a state where a voltage higher than a threshold is applied to the liquid crystal layer by applying light. Therefore, the formed PSA layer has a structure that defines the initial pretilt angle with respect to the liquid crystal molecules even when the voltage is not applied later.
  • Examples of the step of forming the polymer layer include a mode that is performed without applying a voltage higher than a threshold value to the liquid crystal layer. Even in a state where a voltage higher than the threshold voltage is not applied, it is possible to form a polymer layer capable of controlling the alignment of the liquid crystal by appropriately combining the types of monomers.
  • VHR voltage holding ratio
  • Embodiment 1 The liquid crystal display device of the present invention and the liquid crystal display device manufactured by the manufacturing method of the present invention can be used for display devices such as a television, a personal computer, a mobile phone, an information display, etc., and have excellent display characteristics. It can be demonstrated.
  • the liquid crystal display device according to the first embodiment includes a liquid crystal sandwiched between a pair of substrates including an array substrate 1, a color filter substrate 2, and the array substrate 1 and the color filter substrate 2.
  • Layer 5 The array substrate 1 includes an insulating transparent substrate made of glass or the like, various wirings formed on the transparent substrate, pixel electrodes, TFTs (Thin Film Transistors), and the like.
  • the color filter substrate 2 includes an insulating transparent substrate made of glass or the like, a color filter formed on the transparent substrate, a black matrix, a common electrode, and the like.
  • the liquid crystal layer 5 Prior to the PSA polymerization step, the liquid crystal layer 5 contains a liquid crystal material and one or more radical polymerizable monomers 4.
  • a liquid crystal material either a material having a positive dielectric anisotropy or a material having a negative dielectric anisotropy can be used.
  • At least one of the radical polymerizable monomers 4 is a compound having a structure that generates a radical by a self-cleavage reaction by light irradiation and having two or more radical polymerizable groups.
  • the liquid crystal layer 5 When the liquid crystal layer 5 is irradiated with light, at least one of the radically polymerizable monomers 4 generates radicals by a self-cleavage reaction, and the radically polymerizable groups of the radically polymerizable monomer 4 are successively formed using the radicals as active species. Chain polymerization is started and advanced, and the polymer formed by the polymerization is deposited as a polymer layer 7 on the surfaces of the substrates 1 and 2 by phase separation as shown in FIG.
  • the radically polymerizable monomers 4 used in Embodiment 1 absorbs light alone and generates radicals to initiate chain polymerization, it is not necessary to administer a polymerization initiator. Moreover, since it has two or more functional groups, the polymerization initiator itself functions as a monomer, so that the amount remaining in the liquid crystal layer 5 can be greatly reduced.
  • the liquid crystal layer 5 is irradiated with light in a state where a voltage equal to or higher than the threshold is applied. Since the polymer is formed in such a shape, the formed PSA layer has a structure that defines the initial pretilt angle with respect to the liquid crystal molecules even if the voltage is not applied later. However, when the PSA layer forming material in the first embodiment is used even when the voltage exceeding the threshold is not applied to the liquid crystal layer 5 during the PSA polymerization process, vertical alignment is induced. It is possible to produce a PSA layer.
  • neither the array substrate 1 nor the color filter substrate 2 has an alignment film. That is, the members constituting the surfaces of the array substrate 1 and the color filter substrate 2 are electrodes and insulating films, respectively. Further, between the array substrate 1 and the color filter substrate 2, a sealing material 3 is directly attached on the substrates 1 and 2 along the outer edges of the substrates 1 and 2, and the liquid crystal layer 5 is sealed. The material 3 is sealed between the array substrate 1 and the color filter substrate 2. Further, since the light irradiation to the liquid crystal layer 5 is performed after the liquid crystal layer 5 is sealed with the sealing material 3, the PSA layer 7 is formed in a region surrounded by the sealing material 3.
  • the alignment of the liquid crystal molecules is defined by, for example, a linear slit provided in a pixel electrode of the array substrate 1 or a common electrode of the color filter substrate 2 (PVA (Patterned Vertical (Alignment) mode).
  • PVA Plasma Exponed Vertical
  • the liquid crystal molecules have a uniform alignment toward the linear slit when a voltage is applied.
  • a PSA layer that imparts a pretilt angle to the liquid crystal molecules can be formed.
  • an alignment film 106 made of a polymer material (polyimide) having a main chain including an imide structure is formed on each of the array substrate 101 and the color filter substrate 102.
  • an alignment process such as a rubbing process or an optical alignment process on the surface of the alignment film 106, the pretilt angle of the liquid crystal molecules can be oriented vertically or horizontally (initially tilted).
  • a sealing material 103 is attached between the array substrate 101 and the color filter substrate 102 along the outer edges of the substrates 101 and 102, and the liquid crystal layer 105 is connected to the array substrate 101 and the color filter by the sealing material 103.
  • the alignment film 106 needs to be formed by applying a polyimide solution or the like before sealing with the sealing material 103, the alignment film 106 is also formed under the sealing material 103.
  • a material for forming the alignment film 106 in addition to the polyimide, a material containing at least one of polyamic acid, polymaleimide, polyamide, polysiloxane, polyphosphazene, polysilsesquioxane, or a copolymer thereof. Is mentioned.
  • a compound represented by the above chemical formula (1) can be used, and more specifically, in the above chemical formula (1).
  • the compound represented by the above chemical formula (2) can be used, and more specifically, as the compound represented by the above chemical formula (2), the compound represented by the above chemical formula (3). Can be used.
  • the compound represented by the chemical formula (1) has a structure that generates radicals by self-cleavage, there is no need to add another polymerization initiator when mixing with a liquid crystal material, and light irradiation is performed.
  • the polymerization reaction can be efficiently started only by this.
  • the PSA layer is formed by forming the PSA layer with the bonded polymer groups, so the PSA layer is formed using the polymerization initiator. It is possible to make the image sticking less likely than the case.
  • other monomers can be added to the liquid crystal composition.
  • the radical polymerizable monomer has one or more ring structures and has a monofunctional or polyfunctional polymerizable group.
  • a compound represented by the above chemical formula (4) can be used, and more specifically, a compound represented by the above chemical formula (4).
  • the bifunctional monomer represented by the chemical formulas (5-1) to (5-5), or the monofunctional monomer represented by the chemical formula (6) can be used.
  • specific examples of the compound represented by the chemical formula (6) include a compound represented by the chemical formula (7).
  • the array substrate 1, the liquid crystal layer 5, and the color filter substrate 2 are stacked in this order from the back side of the liquid crystal display device to the observation surface side.
  • a polarizing plate is provided on the back side of the array substrate 1.
  • a polarizing plate is also provided on the observation surface side of the color filter substrate 2.
  • a retardation plate may be further arranged for these polarizing plates, and the polarizing plate may be a circularly polarizing plate.
  • the liquid crystal display device may be any of a transmission type, a reflection type, and a reflection / transmission type. If it is a transmission type or a reflection / transmission type, the liquid crystal display device of Embodiment 1 further includes a backlight. The backlight is arranged further on the back side of the array substrate 1 and arranged so that light passes through the array substrate 1, the liquid crystal layer 5, and the color filter substrate 2 in this order.
  • the array substrate 1 includes a reflection plate for reflecting outside light. Further, at least in a region where reflected light is used as a display, the polarizing plate of the color filter substrate 2 needs to be a circularly polarizing plate provided with a so-called ⁇ / 4 retardation plate.
  • the liquid crystal display device according to the first embodiment may be in the form of a color filter-on-array including color filters on the array substrate 1.
  • the liquid crystal display device according to the first embodiment may be a monochrome display. In that case, the color filter does not need to be arranged.
  • the liquid crystal layer 5 is filled with a liquid crystal material having a characteristic of being oriented in a specific direction when a constant voltage is applied.
  • the orientation of the liquid crystal molecules in the liquid crystal layer 5 is controlled by applying a voltage higher than a threshold value.
  • the alignment mode of the liquid crystal molecules includes, for example, TN mode, IPS mode, VA mode and the like, and is not particularly limited. However, when the monofunctional monomer represented by the chemical formula (7) is used, the alignment mode is excellent. Since vertical alignment can be obtained, it is more preferable to apply to a mode in which initial alignment such as VA mode and TBA mode becomes vertical alignment.
  • the liquid crystal display device disassembles a liquid crystal display device (for example, a mobile phone, a monitor, a liquid crystal TV (television), an information display), a nuclear magnetic resonance analysis method (NMR: Nuclear Magnetic Resonance), and a Fourier transform. Analysis of monomer components in the PSA layer by performing chemical analysis using infrared spectroscopy (FT-IR: Fourier Transform Infrared Spectroscopy), mass spectrometry (MS: Mass Spectrometry), etc. The abundance ratio of the monomer components present, the amount of the PSA layer forming monomer contained in the liquid crystal layer, and the like can be confirmed.
  • FT-IR Fourier Transform Infrared Spectroscopy
  • MS mass spectrometry
  • Example 1 in which a liquid crystal cell included in the liquid crystal display device according to Embodiment 1 was actually produced is shown below.
  • a pair of substrates provided with electrodes on the surface was prepared, a sealing material was applied to one substrate, beads were dispersed on the other substrate, and then bonded.
  • a liquid crystal composition containing a liquid crystal material having negative dielectric anisotropy and a monomer for forming a polymer layer was injected between the pair of substrates.
  • the sealing material any one that is cured by heat, one that is cured by irradiation with ultraviolet light, or one that is cured by either heat or ultraviolet light irradiation may be used.
  • monomers represented by the following chemical formula (7) and the following chemical formula (8) were used in combination.
  • the compound represented by the following chemical formula (7) is a biphenyl monofunctional acrylate monomer
  • the compound represented by the following chemical formula (8) is a benzyl ketal bifunctional methacrylate monomer.
  • an annealing treatment was performed at 130 ° C. for 1 hour, followed by irradiation with non-polarized ultraviolet light (0.33 mW / cm 2 ) for 10 minutes from the normal direction (0. 2J / cm 2 ) to polymerize the monomer.
  • a non-polarized ultraviolet light source a black light FHF-32BLB manufactured by Toshiba Lighting & Technology was used.
  • FHF-32BLB is an ultraviolet light source having a small emission intensity at 310 nm and a large emission intensity at 330 nm or more.
  • the electrode a flat electrode without a slit was used.
  • radicals are generated as shown in the chemical reaction formula (9) below. Then, polymer groups of monomers are successively bonded to the radicals, and a polymer is formed so as to grow in a chain manner.
  • Comparative Example 1 In order to verify the effect of the liquid crystal display device of Example 1, a liquid crystal cell similar to Example 1 was prepared without mixing a monomer that generates radicals by self-cleavage by light irradiation into the liquid crystal composition.
  • the liquid crystal composition contains the following chemical formula (10);
  • a monofunctional acrylate monomer represented by the formula (4-acryloyloxy-4'-octylbiphenyl) was mixed.
  • Example 1 the introduction amount of the benzyl ketal-based bifunctional methacrylate monomer represented by the chemical formula (8) was 0 wt%, 0.1 wt%, 0.3 wt%, respectively, with respect to the entire liquid crystal composition.
  • Four types of samples with 0.5 wt% were prepared.
  • the introduction amount was fixed at 1.0 wt% with respect to the entire liquid crystal composition. Below, the result of having verified the characteristic about each is shown.
  • VHR voltage holding ratio
  • VHR voltage holding ratio
  • the monofunctional monomer represented by the chemical formula (7) is fixed at an introduction concentration of 1.0 wt%, and the polymerization initiator monomer represented by the chemical formula (8) is less than the monofunctional monomer represented by the chemical formula (7).
  • these monomers were polymerized by irradiation with ultraviolet light. As shown in Table 1, vertical alignment cells having no alignment defect were obtained. Moreover, VHR also became a high value of 98% or more.
  • VHR maintained a high value of 99% or more, but polymerization did not occur and vertical alignment was not obtained. It was.
  • Example 2 in which a liquid crystal cell included in the liquid crystal display device according to Embodiment 1 was actually produced is shown below.
  • a pair of substrates provided with electrodes on the surface was prepared, a sealing material was applied to one substrate, beads were dispersed on the other substrate, and then bonded.
  • a liquid crystal composition containing a liquid crystal material having negative dielectric anisotropy and a monomer for forming a polymer layer was injected between the pair of substrates.
  • the sealing material any of a material that is cured by heat, a material that is cured by irradiation with ultraviolet light, and a material that is cured by irradiation of heat and ultraviolet light may be used.
  • the monomers represented by the chemical formulas (7) and (8) were used in combination.
  • the compound represented by the following chemical formula (7) is a biphenyl monofunctional acrylate monomer
  • the compound represented by the following chemical formula (8) is a benzyl ketal bifunctional methacrylate monomer.
  • annealing was performed at 130 ° C. for 1 hour, and then the substrate was irradiated with non-polarized ultraviolet light (0.33 mW / cm 2 ) from the normal direction with no voltage applied. Was polymerized.
  • the electrode a flat electrode without a slit was used.
  • Comparative Example 2 In order to verify the effect of the liquid crystal display device of Example 2, a liquid crystal cell similar to that of Example 2 was prepared without mixing a monomer that generates radicals by self-cleavage by light irradiation into the liquid crystal composition.
  • Example 2 the introduction amount of the benzyl ketal-based bifunctional methacrylate monomer represented by the chemical formula (8) was 0.1 wt%, 0.3 wt%, 0.5 wt% with respect to the entire liquid crystal composition, respectively.
  • Three types of samples were prepared.
  • the introduction amount was fixed at 1.0 wt% with respect to the entire liquid crystal composition.
  • a total of 12 types of samples were prepared with an ultraviolet irradiation time of 0 minutes, 1 minute, 5 minutes, and 10 minutes.
  • a total of four types were prepared with the ultraviolet irradiation time being 0 minutes, 1 minute, 5 minutes, and 10 minutes, respectively. Below, the result of having verified the characteristic about each is shown.
  • VHR voltage holding ratio
  • Table 4 is a table showing the measurement results and orientation states of VHR (%) in which the amount of the compound represented by the chemical formula (8) in Example 2 is 0.3 wt%.
  • Table 5 is a table showing the measurement results and orientation state of VHR (%) in which the amount of the compound represented by the chemical formula (8) in Example 2 is 0.5 wt%.
  • VHR voltage holding ratio
  • Example 3 in which a liquid crystal cell included in the liquid crystal display device according to Embodiment 1 is actually manufactured will be described below.
  • a pair of substrates provided with electrodes on the surface was prepared, a sealing material was applied to one substrate, beads were dispersed on the other substrate, and then bonded.
  • a liquid crystal composition containing a liquid crystal material having negative dielectric anisotropy and a monomer for forming a polymer layer was injected between the pair of substrates.
  • the sealing material any of a material that is cured by heat, a material that is cured by irradiation with ultraviolet light, and a material that is cured by irradiation of heat and ultraviolet light may be used.
  • the monomers represented by the chemical formulas (7) and (8) were used in combination.
  • the compound represented by the chemical formula (7) is a biphenyl monofunctional acrylate monomer
  • the compound represented by the chemical formula (8) is a benzyl ketal bifunctional methacrylate monomer.
  • an annealing treatment was performed at 130 ° C. for 1 hour, followed by irradiation with non-polarized ultraviolet light (0.33 mW / cm 2 ) for 10 minutes from the normal direction (0. 2J / cm 2 ) to polymerize the monomer.
  • the electrode a flat electrode without a slit was used.
  • a liquid crystal cell similar to that of Example 3 was prepared using a monomer that generates a radical by self-cleavage caused by light irradiation but has no polymerizability.
  • the reaction path of the monomer represented by the chemical formula (11) in Example 3 is represented by the following chemical reaction formula (12);
  • VHR voltage holding ratio
  • Example 3 the introduction amount of the benzyl ketal bifunctional methacrylate monomer represented by the chemical formula (8) was 0.1 wt% with respect to the entire liquid crystal composition, and the biphenyl represented by the chemical formula (7) was used. A sample was prepared in which the amount of the monofunctional acrylate monomer introduced was 1.0 wt% with respect to the entire liquid crystal composition. Further, the introduction amount of the benzyl ketal polymerization initiator represented by the chemical formula (11) is 0.1 wt% with respect to the entire liquid crystal composition, and the biphenyl monofunctional acrylate represented by the chemical formula (7) is used. A sample was prepared in which the amount of monomer introduced was 1.0 wt% with respect to the entire liquid crystal composition. Below, the result of having verified the characteristic about each is shown.
  • VHR voltage holding ratio
  • Table 7 shows the measurement results of VHR (%) before performing backlight aging for each liquid crystal cell of Example 3 and Comparative Example 3, and 100 hours of backlight aging for each liquid crystal cell. It is a table

Abstract

本発明は、配向膜を形成しない場合であっても、表示不良及び電圧保持率の低下が発生しにくい液晶表示装置を提供する。本発明の液晶表示装置は、実質的に配向膜を有していない一対の基板と、上記一対の基板間に挟持され、液晶材料を含有する液晶層と、上記一対の基板の表面上に形成され、液晶分子を配向制御するポリマー層とを備え、上記ポリマー層は、液晶層中に添加された一種以上のラジカル重合性モノマーが重合することによって形成されたものであり、上記ラジカル重合性モノマーの少なくとも一つは、光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物である液晶表示装置である。

Description

液晶表示装置及び液晶表示装置の製造方法
本発明は、液晶表示装置及び液晶表示装置の製造方法に関する。より詳しくは、既存の配向膜は形成せず、液晶組成物中に含まれるモノマーを重合させて形成したポリマー層を用いて液晶分子の配向性を制御する液晶表示装置、及び、ポリマー層を形成するのに適した液晶表示装置の製造方法に関するものである。
液晶表示装置は薄型、軽量、低消費電力であることから、テレビ、パソコン、PDA等の表示機器として広く使用されている。特に近年、テレビ用液晶表示装置等に代表されるように、液晶表示装置の大型化が急速に進んでいる。大型化を行うにあたっては、大きな面積であっても高い歩留まりで製造でき、かつ広視野角を有するマルチドメイン垂直配向モード(MVA:Multi-domain Vertical Alignment)が好適に用いられる。マルチドメイン垂直配向モードでは、液晶層内に電圧が印加されていない時点において液晶分子が基板面に対して垂直に配向するため、従来のTNモード(TN:Twisted Nematic)と比べ高いコントラスト比を得ることができる。
MVA方式では、配向膜が液晶分子の傾斜方向を規制するわけではなく、絶縁材料で形成された突起物(リブ)の影響によって液晶分子の傾斜方向が決まる。したがって、配向膜に対して配向処理工程を行う必要がなく、ラビング等によって発生する静電気やごみが発生しないので、配向処理後の洗浄工程等が不要となる。また、液晶分子の初期傾斜のばらつきも少なく、プロセスの簡略化、歩留まりの向上及び低コスト化に効果的である。
ただし、MVA方式においては、配向処理の必要性はなくなるものの、配向膜に相当する下地膜を形成すること自体は必要である。この下地膜の膜厚むらや異物の混入による液晶分子の配向への影響、及び、下地膜形成のための製造工程の増加や設備投資を考慮すると、下地膜自体をなくしてしまうことがより好ましい。
これに対し、近年、液晶にモノマーやオリゴマー等の重合性成分(以下、モノマー等と略称する)を混合した液晶組成物を基板間に封入し、基板間に電圧を印加して液晶分子を傾斜させた状態でモノマー等を重合してポリマー層を形成するプレチルト角付与技術が注目を集めている(例えば、特許文献1及び2参照)。このようなポリマー層(以下、PSA(Polymer Sustained Alignment)層ともいう)の影響により、電圧印加を取り去っても液晶は所定のプレチルト角を有するので、配向膜を有していなくとも液晶分子の傾斜方向が維持される。なお、このようなモノマー等の重合は熱又は光(例えば、紫外線)照射で行われる。
特開2010-191450号公報 特開2006-145992号公報
しかしながら、本発明者らが検討を行ったところ、液晶材料、モノマー、重合開始剤等を含む液晶組成物を一対の基板間に注入し、所定の条件で重合反応を生じさせてポリマー層を形成したとしても、用いる材料や製造条件によっては良好な表示が得られない場合があることが明らかとなった。具体的には、特許文献1に示されている下記化学式(13);
Figure JPOXMLDOC01-appb-C000009
で表されるモノマーを用いた場合、V-T特性にヒステリシスが生じて配向に欠陥が生じ、黒表示の中に小さな輝点や輝線が現れることがあった。また、特許文献2に示されている下記化学式(11);
Figure JPOXMLDOC01-appb-C000010
で表される重合開始剤を用いた場合、重合開始に寄与しなかったものが液晶層内に残存し、それが原因で、電圧保持率(VHR)の低下を引き起こすことがあった。
本発明は、上記現状に鑑みてなされたものであり、配向膜を形成しない場合であっても、表示不良及び電圧保持率の低下が発生しにくい液晶表示装置を提供することを目的とするものである。
本発明者らは、配向膜を形成しなくとも良好な表示が得られる方法について種々検討したところ、液晶組成物に混入させるモノマーの種類に着目した。そして、上記化学式(13)で表されるラウリルアクリレートは、液晶分子との相互作用が弱いために配向欠陥となりやすく、表示に影響が出ていたことを見いだすとともに、例えば、下記化学式(10);
Figure JPOXMLDOC01-appb-C000011
で表されるような、液晶分子との相互作用を充分に有するビフェニル骨格を有する化合物を用いたときに、配向膜を形成しなくともPSA層のみで安定な配向を得ることができることを見いだした。ところが、更なる検討を行ったところ、上記化学式(10)で示されるモノマーのみを単独で用いた場合には、電圧保持率が低下してしまう場合があることが明らかとなった。
そこで本発明者らは、更に鋭意検討を行ったところ、液晶組成物に混入させるモノマーを少なくとも一種以上にするとともに、そのうちの少なくとも一つに、光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有するモノマーを混入させることで、配向を安定化させるとともに、電圧保持率を維持することができることを見いだした。
すなわち、本発明者らは、従来の重合開始剤が重合性基を持たないために、液晶層中に重合開始剤が残存してしまう点に着目し、PSA層形成用材料として、重合基を結合した自己開裂型光重合開始剤を液晶材料に添加し、光照射により自己開裂して液晶層中で効率よくラジカルを発生させ重合を促進するものとし、かつ反応中に開裂により生成した成分が重合性基をもつものとすることによって、開始剤自身が重合によりPSA層を形成することになるので、液晶層から開始剤成分を効果的に相分離させることができることを見出した。
こうして、本発明者らは、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、実質的に配向膜を有していない一対の基板と、上記一対の基板間に挟持され、液晶材料を含有する液晶層と、上記一対の基板の少なくとも一方の表面上に形成され、液晶分子を配向制御するポリマー層とを備え、上記ポリマー層は、液晶層中に添加された一種以上のラジカル重合性モノマーが重合することによって形成されたものであり、上記ラジカル重合性モノマーの少なくとも一つは、光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物である液晶表示装置である。
本発明の液晶表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
上記液晶材料は、正の誘電率異方性を有するもの、及び、負の誘電率異方性を有するもののいずれであってもよいが、負の誘電率異方性を有するものを採用し、上記ポリマー層に近接する液晶分子が垂直配向するように上記ポリマー層が形成されることで、コントラスト比の高い垂直配向(VA)モードの液晶表示装置を得ることができる。
本発明の液晶表示装置が備える一対の基板は、例えば、一方をアレイ基板、他方をカラーフィルタ基板として用いられる。アレイ基板は、複数の画素電極を備え、これにより画素単位で液晶の配向が制御される。カラーフィルタ基板は、複数色のカラーフィルタが、アレイ基板の画素電極とそれぞれ重畳する位置に配置され、画素単位で表示色が制御される。
本発明においては、上記一対の基板のいずれも、実質的に配向膜を有していない。上記配向膜とは、ポリイミド、ポリアミック酸、ポリマレイミド、ポリアミド、ポリシロキサン、ポリフォスファゼン、ポリシルセスキオキサン、若しくは、これらの共重合体で構成される単層膜若しくは複層膜、又は、シリコン酸化物が斜方蒸着により形成された膜であって、基板の最表面に形成され、液晶の配向を制御できる膜を意味する。一般的な液晶表示装置においては、表示領域を構成する部位に配向膜材料が直接塗布(例えば、ポリイミド、ポリアミック酸、ポリマレイミド、ポリアミド、ポリシロキサン、ポリフォスファゼン若しくはポリシルセスキオキサン、又は、これらの共重合体の少なくとも一つを含む材料の塗布)又は蒸着(例えば、シリコン酸化物(SiO)の斜方蒸着)されることによって配向膜が形成される。表示領域とは、観察者が認識する画像を構成する領域であり、例えば、端子部等の周辺領域は含まれない。上記配向膜は、ポリイミド等の既存の配向膜材料が塗布されたものである限り、配向処理がなされたものに限定されない。配向処理がなされたものとは、例えば、ラビング処理及び光配向処理がなされたものが挙げられる。配向処理がなくとも、例えば、垂直配向膜であれば、液晶分子を膜面に対して垂直の方向に配向させることができ、水平配向膜であれば、液晶分子を膜面に対して水平の方向に配向させることができる。また、後述するMVAモードやPVAモードのように配向制御構造物を設ける場合、配向処理がなくとも液晶分子の傾斜を制御することができる。本明細書において「実質的に配向膜を有していない」とは、このような既存の配向膜が形成されないことをいう。
上記一対の基板の少なくとも一方の表面上には、液晶分子を配向制御するポリマー層が形成され、上記ポリマー層は、液晶層中に添加された一種以上のラジカル重合性モノマーが重合することによって形成されたものである。上記ポリマー層を形成することにより、配向膜を設けなかったとしても、ポリマー層に近接する液晶分子の初期傾斜を一定の方向に傾かせることができる。例えば、液晶分子がプレチルト配向している状態でモノマーを重合させ、ポリマー層を形成した場合には、ポリマー層は液晶分子に対してプレチルト配向させる構造を有する形で形成されることになる。
上記ラジカル重合性モノマーの少なくとも一つは、光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物である。このようなモノマーを用いることで、新たに重合開始剤を追加する必要なく短時間で重合反応が進行させることができるとともに、重合開始剤に由来する不純物が発生しないので、液晶層内の電圧保持率(VHR)低下を防ぎ、表示品位の劣化を少なくすることができる。また、短時間の光照射で済むので、長時間の光照射による構成部材の劣化を防ぐことができ、信頼性の高い液晶表示装置を作製することができる。
上記ラジカル重合性基としては、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、ビニル基、ビニルオキシ基等が挙げられる。本明細書において、(メタ)アクリロイルオキシ基とは、アクリロイルオキシ基又はメタクリロイルオキシ基を表し、(メタ)アクリロイルアミノ基とは、アクリロイルアミノ基又はメタクリロイルアミノ基を表す。
上記光照射による自己開裂反応によってラジカルを生成する構造は、350nm以上の波長成分の照射によってラジカルを生成する構造であることが好ましい。また、上記光照射による自己開裂反応によってラジカルを生成する構造は、400nm未満の波長成分の照射によってラジカルを生成する構造であることが好ましい。350nm以下の波長成分を照射することによりパネル内構造物が劣化してしまいディスプレイとしての性能を損なう例があるため、重合基を結合した自己開裂型光重合開始剤は350nm以上の波長成分の照射によって効率よく自己開裂反応を起こしラジカルを発生する構造を有することが好ましい。一方で、一般的な使用態様において、表示に用いられるバックライト(冷陰極蛍光管又はLED)からの光である400nm以上に吸収がある場合、未開裂のまま重合により相分離した光重合開始剤が、ディスプレイの駆動中に反応することで、長期信頼性の低下が懸念されるため、上記化合物は400nm以上に吸収が全くないか、又は、充分に小さい光重合性化合物に重合基を結合することで長期信頼性の高い液晶表示装置を作製することができる。
上記ラジカル重合性モノマーとしては、光照射による自己開裂反応によってラジカルを生成する自己開裂型光重合開始剤に重合基を結合した構造を有するものが挙げられ、具体的には、自己開裂型光重合開始剤である、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名:IRGACURE651、BASF社製(以下、同))、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名:IRGACURE184)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(商品名:IRGACURE1173)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(商品名:IRGACURE2959)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(商品名:IRGACURE127)、フェニルグリオキシリックアシッドメチルエステル(商品名:DAROCURMBF)、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(商品名:IRGACURE907)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(商品名:IRGACURE369)、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン(商品名:IRGACURE379)、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(商品名:IRGACURE819)、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(商品名:DAROCURTPO)、ビス(η-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム(商品名:IRGACURE784)、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)](商品名:IRGACUREOXE01)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)(商品名:IRGACUREOXE02)、又は、2-エチルヘキシル-4-ジメチルアミノベンゾエート(商品名:DAROCUREHA)の分子骨格に、重合基を直接結合する、又は、重合基を有する官能基を結合して得られる構造を有するものが挙げられる。
上記光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物は、好ましくは、液晶表示装置の駆動条件を勘案して、400nm以上の波長成分に対する吸光係数が20ml/g・cm以下である自己開裂型光重合開始剤であり、具体的には、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名:IRGACURE651、BASF社製(以下、同))、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名:IRGACURE184)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(商品名:IRGACURE1173)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(商品名:IRGACURE2959)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(商品名:IRGACURE127)、フェニルグリオキシリックアシッドメチルエステル(商品名:DAROCURMBF)、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(商品名:IRGACURE907)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)(商品名:IRGACUREOXE02)、又は、2-エチルヘキシル-4-ジメチルアミノベンゾエート(商品名:DAROCUREHA)の分子骨格に、重合基を直接、又は、重合基を有する官能基を結合して得られる構造を有するものが挙げられる。
上記光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物は、より好ましくは、下記化学式(1);
Figure JPOXMLDOC01-appb-C000012
(式中、
は、炭素数1~4の、直鎖状若しくは分枝状のアルキル基若しくはアルケニル基、又は、Sp-Pを表す。
は、炭素数1~4の、直鎖状若しくは分枝状のアルキル基若しくはアルケニル基、又は、Sp-Pを表す。
、P、P及びPは、同一又は異なるラジカル重合性基を表し、総数が二以上である。
Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基、アルキレンオキシ基若しくはアルキレンカルボニルオキシ基、又は、直接結合を表し、mが2以上の場合は、互いに同一又は異なっている。
Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基、アルキレンオキシ基若しくはアルキレンカルボニルオキシ基、又は、直接結合を表し、mが2以上の場合は、互いに同一又は異なっている。
Spは、炭素数1~6の、直鎖状、分枝状又は環状のアルキレン基、アルキレンオキシ基又はアルキレンカルボニルオキシ基を表す。
Spは、炭素数1~6の、直鎖状、分枝状又は環状のアルキレン基、アルキレンオキシ基又はアルキレンカルボニルオキシ基を表す。
は、-F基、-OH基、又は、炭素数1~12の、直鎖状若しくは分枝状のアルキル基若しくはアルケニル基、又は、アラルキル基を表し、nが2以上の場合は、互いに同一又は異なっている。
2つのLが、芳香環における2つの隣接する炭素原子にそれぞれ結合している場合、互いに結合して環状構造となっていてもよく、該2つのLは、同一又は異なって、炭素数1~12の、直鎖状又は分枝状のアルキレン基又はアルケニレン基となる。
は、-F基、-OH基、又は、炭素数1~12の、直鎖状若しくは分枝状のアルキル基若しくはアルケニル基、又は、アラルキル基を表し、nが2以上の場合は、互いに同一又は異なっている。
2つのLが、芳香環における2つの隣接する炭素原子にそれぞれ結合している場合、互いに結合して環状構造となっていてもよく、該2つのLは、同一又は異なって、炭素数1~12の、直鎖状又は分枝状のアルキレン基又はアルケニレン基となる。
及びLのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する1つ以上の水素原子は、-F基又は-OH基に置換されていてもよい。
及びLのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する-CH-基はそれぞれ、酸素原子、硫黄原子及び窒素原子が互いに隣接しない限り-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、Sp-P基、又は、Sp-P基で置換されていてもよい。
は1~3のいずれかの整数である。
は0~3のいずれかの整数である。
は0~4のいずれかの整数である。
は0~4のいずれかの整数である。
とnの合計は1~5のいずれかの整数である。
とnの合計は0~5のいずれかの整数である。
とmの合計は1~6のいずれかの整数である。)
で表される化合物である。
上記P、P、P及びPは、好ましくは、同一又は異なる(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、ビニル基又はビニルオキシ基である。
上記R及び上記Rは、好ましくは同一である。また、上記P及び上記Pは、より好ましくは同一である。
上記化学式(1)で表される化合物の具体例としては、下記化学式(2);
Figure JPOXMLDOC01-appb-C000013
(式中、
は、炭素数1~4の、直鎖状又は分枝状のアルキル基又はアルケニル基を表す。
は、炭素数1~4の、直鎖状又は分枝状のアルキル基又はアルケニル基を表す。
及びPは、同一又は異なるラジカル重合性基を表す。
Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基、アルキレンオキシ基若しくはアルキレンカルボニルオキシ基、又は、直接結合を表す。
Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基、アルキレンオキシ基若しくはアルキレンカルボニルオキシ基、又は、直接結合を表す。)
で表される化合物が挙げられる。
上記P及び上記Pは、好ましくは、同一又は異なる(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、ビニル基又はビニルオキシ基である。
上記R及び上記Rは、好ましくは同一である。また、上記P及び上記Pは、より好ましくは同一である。
また、上記化学式(2)で表される化合物の具体例としては、下記化学式(3);
Figure JPOXMLDOC01-appb-C000014
(式中、R及びRは、同一又は異なって、水素原子又はメチル基を表す。)
で表される化合物が挙げられる。
なお、上記化学式(1)~(3)で表される化合物は、(i)350nm以上の波長成分の照射によってラジカルを生成する構造を有し、(ii)400nm未満の波長成分の照射によってラジカルを生成する構造を有し、(iii)400nm以上の波長成分に対する吸光係数が20ml/g・cm以下である構造を有する。
上記液晶組成物は、更に一種以上の、環構造を有し、かつ単官能又は多官能の重合性基を有するラジカル重合性モノマーを含有することが好ましい。また、上記環構造を有し、かつ単官能又は多官能の重合性基を有するラジカル重合性モノマーは、下記化学式(4);
Figure JPOXMLDOC01-appb-C000015
(式中、
は、-R-Sp-P基、水素原子、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、又は、炭素数1~18の、直鎖状若しくは分枝状のアルキル基である。
は、ラジカル重合性基を表す。
Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基若しくはアルキレンオキシ基、又は、直接結合を表す。
が有する水素原子は、フッ素原子又は塩素原子に置換されていてもよい。
が有する-CH-基は、酸素原子及び硫黄原子が互いに隣接しない限り-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。
は、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
及びAは、同一又は異なって、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、インダン-1,3-ジイル基、インダン-1,5-ジイル基、インダン-2,5-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、フェナントレン-3,6-ジイル基、アントラセン-1,5‐ジイル基、アントラセン-1,8-ジイル基、アントラセン-2,6-ジイル基、又は、アントラセン-2,7-ジイル基を表す。
及びAが有する-CH-基は、互いに隣接しない限り-O-基又は-S-基で置換されていてもよい。
及びAが有する一又は二以上の水素原子は、フッ素原子、塩素原子、-CN基、又は、炭素数1~6の、アルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基若しくはアルキルカルボニルオキシ基で置換されていてもよい。
Zは、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
nは0、1又は2である。)
で表される化合物であることが好ましい。
上記化学式(4)で表される化合物の具体例としては、下記化学式(5-1)~(5-5);
Figure JPOXMLDOC01-appb-C000016
(式中、Pは、同一又は異なるラジカル重合性基を表す。)で表されるいずれかの化合物が挙げられる。
上記Pは、好ましくは、同一又は異なる(メタ)アクリロイルオキシ基である。
上記化学式(4)で表される化合物の具体例としては、下記化学式(6);
Figure JPOXMLDOC01-appb-C000017
(式中、Pは、(メタ)アクリロイルオキシ基、ビニル基、又は、アリル基を表す。aは0又は1である。bは0又は1である。mは1~18のいずれかの自然数である。nは1~6のいずれかの自然数である。)で表される化合物であることが好ましい。
上記化学式(6)で表される化合物の具体例としては、下記化学式(7);
Figure JPOXMLDOC01-appb-C000018
で表される化合物が挙げられる。
また、本発明は、上記本発明の液晶表示装置を好適に製造することができる製造方法でもある。
すなわち、本発明は、配向膜を形成する工程を経ずに、一対の基板間に、液晶材料と、一種以上のラジカル重合性モノマーとを含有する液晶組成物を挟持させる工程と、上記液晶組成物に光を照射し、上記ラジカル重合性モノマーを重合させて、上記一対の基板の少なくとも一方の表面上に液晶分子を配向制御するポリマー層を形成する工程とを有し、上記ラジカル重合性モノマーの少なくとも一つは、光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物である液晶表示装置の製造方法でもある。
本発明の液晶表示装置の製造方法は、配向膜を形成する工程を経ずに、一対の基板間に、液晶材料と、一種以上のラジカル重合性モノマーとを含有する液晶組成物を挟持させる工程を有する。また、上記ラジカル重合性モノマーの少なくとも一つは、光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物である。ここでの液晶材料及びラジカル重合性モノマーは、上述の本発明の液晶表示装置で説明したものと同様のものを用いることができる。
本発明の液晶表示装置の製造方法は、上記液晶組成物に光を照射し、上記ラジカル重合性モノマーを重合させて、基板の表面上に液晶分子を配向制御するポリマー層を形成する工程を有する。上述したような特徴を有するラジカル重合性モノマーを用いて上記一対の基板の表面上にポリマー層を形成することで、新たに重合開始剤を追加する必要なく短時間で重合反応が進行させることができるとともに、重合開始剤に由来する不純物が発生しないので、液晶層内の電圧保持率(VHR)低下を防ぎ、表示品位の劣化を少なくすることができる。また、短時間の光照射で済むので、長時間の光照射による構成部材の劣化を防ぐことができ、信頼性の高い液晶表示装置を作製することができる。更に、本発明の製造方法では、基板の表面上に上記ポリマー層が形成され、言い換えれば、実質的に配向膜を有していない一対の基板間に液晶組成物を挟持させ、その後、上記ポリマー層を形成するための工程がなされている。本発明の製造方法によれば、配向膜を形成しなくても液晶の配向を制御することができ、かつ電圧保持率の低下も抑制することができるため、配向膜の形成に必要な製造工程の追加や設備投資を行わなくて済む。
本発明の製造方法としては、このような工程を必須とするものである限り、その他の工程により特に限定されるものではない。
本発明の液晶表示装置の製造方法の好ましい形態としては、本発明の液晶表示装置の好ましい形態として説明した内容と同様の下記(a)~(o)の形態が挙げられる。すなわち、
(a)上記光照射による自己開裂反応によってラジカルを生成する構造は、350nm以上の波長成分の照射によってラジカルを生成する形態、
(b)上記光照射による自己開裂反応によってラジカルを生成する構造は、400nm未満の波長成分の照射によってラジカルを生成する形態、
(c)上記化合物は、400nm以上の波長成分に対する吸光係数が20ml/g・cm以下である形態、
(d)上記光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物は、上記化学式(1)で表される化合物である形態、
(e)上記P、P、P及びPは、同一又は異なる(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、ビニル基又はビニルオキシ基である形態、
(f)上記化学式(1)で表される化合物は、上記化学式(2)で表される化合物である形態、
(g)上記化学式(2)で表される化合物は、上記化学式(3)で表される化合物である形態、
(h)上記液晶組成物は、更に一種以上の、環構造を有し、かつ単官能又は多官能の重合性基を有するラジカル重合性モノマーを含有する形態、
(i)上記環構造を有し、かつ単官能又は多官能の重合性基を有するラジカル重合性モノマーは、上記化学式(4)で表される化合物である形態、
(j)上記化学式(4)で表される化合物は、上記化学式(5-1)~(5-5)で表されるいずれかの化合物である形態、
(k)上記化学式(5-1)~(5-5)で表されるいずれかの化合物におけるPは、同一又は異なる(メタ)アクリロイルオキシ基である形態、
(l)上記化学式(4)で表される化合物は、上記化学式(6)で表される化合物である形態、
(m)上記化学式(6)で表される化合物は、上記化学式(7)で表される化合物である形態
(n)上記液晶分子は、閾値以下の電圧印加状態で垂直配向している形態、及び、
(o)上記液晶材料は、負の誘電率異方性を有する形態
が挙げられる。
上記ポリマー層を形成する工程は、液晶層に対して閾値以上の電圧を印加した状態で行われる形態が挙げられる。PSA重合工程を行う際に、液晶層に対し閾値以上の電圧を印加した状態で光照射を行うことで、閾値以上の電圧印加状態で配向した液晶分子にならった形で重合体が形成されるので、形成されるPSA層が、後に電圧無印加状態となっても液晶分子に対し初期プレチルト角を規定する構造をもつことになる。
上記ポリマー層を形成する工程は、液晶層に対して閾値以上の電圧を印加しない状態で行われる形態が挙げられる。閾値以上の電圧を印加しない状態であっても、モノマーの種類を適宜組み合わせることで液晶の配向を制御できるポリマー層を形成することは可能である。
本発明によれば、液晶層内の電圧保持率(VHR)低下を防ぎ、良好な表示品質の液晶表示パネルが得られることになる。また、長時間の光照射による構成部材の劣化が少なく、信頼性の高い液晶表示装置を得ることができる。
実施形態1に係る液晶表示装置の断面模式図であり、PSA重合工程前を示す。 実施形態1に係る液晶表示装置の断面模式図であり、PSA重合工程後を示す。 配向膜を設けた場合の液晶表示装置の断面模式図である。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
実施形態1
本発明の液晶表示装置、及び、本発明の製造方法によって作製された液晶表示装置は、例えば、テレビジョン、パーソナルコンピュータ、携帯電話、インフォメーションディスプレイ等の表示機器に用いることで、優れた表示特性を発揮することができる。
図1及び図2は、実施形態1に係る液晶表示装置の断面模式図である。図1はPSA重合工程前を示し、図2はPSA重合工程後を示す。図1及び図2に示すように実施形態1に係る液晶表示装置は、アレイ基板1と、カラーフィルタ基板2と、アレイ基板1及びカラーフィルタ基板2からなる一対の基板間に狭持された液晶層5とを備える。アレイ基板1は、ガラス等を材料とする絶縁性の透明基板と、透明基板上に形成された各種配線、画素電極、TFT(Thin Film Transistor:薄膜トランジスタ)等とを備える。カラーフィルタ基板2は、ガラス等を材料とする絶縁性の透明基板と、透明基板上に形成されたカラーフィルタ、ブラックマトリクス、共通電極等とを備える。
PSA重合工程前において液晶層5中には、液晶材料と一種以上のラジカル重合性モノマー4とが含まれている。液晶材料としては、正の誘電率異方性を有するもの、及び、負の誘電率異方性を有するもののいずれを用いることもできる。上記ラジカル重合性モノマー4の少なくとも一つは、光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物である。
液晶層5に光が照射されると、ラジカル重合性モノマー4の少なくとも一種は自己開裂反応によってラジカルを生成し、そのラジカルを活性種として、ラジカル重合性モノマー4のもつラジカル重合性基が次々に連鎖重合を開始、進行させ、重合によって形成されたポリマーは、相分離により、図2に示すように、基板1、2の表面上にポリマー層7として析出される。
実施形態1で用いるラジカル重合性モノマー4の少なくとも一種は、単独で光吸収を行い、ラジカルを発生して連鎖重合を開始するので、重合開始剤を投与する必要がない。また、二以上の官能基を有していることから、重合開始剤自体がモノマーとして機能するので、液晶層5に残存する量を大幅に減らすことができる。
実施形態1においては、例えば、PSA重合工程を行う際に、液晶層5に対し閾値以上の電圧を印加した状態で光照射を行うことで、閾値以上の電圧印加状態で配向した液晶分子にならった形で重合体が形成されるので、形成されるPSA層が、後に電圧無印加状態となっても液晶分子に対し初期プレチルト角を規定する構造をもつことになる。ただし、PSA重合工程を行う際に、液晶層5に対し閾値以上の電圧を印加しなかった状態であっても、実施形態1におけるPSA層形成用材料を用いた場合には、垂直配向を誘起するPSA層を作製することが可能である。
実施形態1においては、アレイ基板1及びカラーフィルタ基板2のいずれも配向膜を有していない。すなわち、アレイ基板1及びカラーフィルタ基板2の表面を構成する部材は、それぞれ電極、絶縁膜等である。また、アレイ基板1とカラーフィルタ基板2との間には、これらの基板1、2の外縁に沿って直接基板1、2上にシール材3が貼り付けられており、液晶層5は、シール材3によってアレイ基板1とカラーフィルタ基板2との間に封止される。また、液晶層5に対する光の照射は、シール材3による液晶層5の封止後になされるので、シール材3によって囲まれた領域内にPSA層7が形成されることになる。
実施形態1は、液晶分子の配向が、例えば、アレイ基板1が有する画素電極内、又は、カラーフィルタ基板2が有する共通電極内に設けられた線状のスリットによって規定される形態(PVA(Patterned Vertical Alignment)モード)であってもよい。画素電極内及び/又は共通電極内に細い線状のスリットを形成した場合、液晶分子は電圧印加時において線状のスリットに向かって一律に並んだ配向性を有するので、液晶層5に対し閾値以上の電圧が印加された状態でラジカル重合性モノマー4を重合させることで、液晶分子に対しプレチルト角を付与するPSA層を形成することができる。
参考のために、配向膜を設けた場合の液晶表示装置の構成について、図3を用いて説明する。図3に示す例では、アレイ基板101及びカラーフィルタ基板102のそれぞれに、イミド構造を含む主鎖をもつ高分子材料(ポリイミド)で構成された配向膜106が形成されている。配向膜106の表面に対し、ラビング処理、光配向処理等の配向処理が施されることで、液晶分子のプレチルト角を垂直又は水平に方向付ける(初期傾斜させる)ことができる。アレイ基板101とカラーフィルタ基板102との間には、これらの基板101、102の外縁に沿ってシール材103が貼り付けられており、液晶層105は、シール材103によって、アレイ基板101とカラーフィルタ基板102との間に封止される。配向膜106はシール材103による封止前にポリイミド溶液等の塗布によって形成する必要があるので、シール材103の下層にも配向膜106が形成される。配向膜106を形成する材料としては、上記ポリイミド以外に、ポリアミック酸、ポリマレイミド、ポリアミド、ポリシロキサン、ポリフォスファゼン若しくはポリシルセスキオキサン、又は、これらの共重合体の少なくとも一つを含む材料が挙げられる。
実施形態1で用いる、光照射による自己開裂によりラジカルを発生するモノマーとしては、例えば、上記化学式(1)で表される化合物を用いることができ、より具体的には、上記化学式(1)で表される化合物として、上記化学式(2)で表される化合物を用いることができ、更に具体的には、上記化学式(2)で表される化合物として、上記化学式(3)で表される化合物を用いることができる。
上記化学式(1)で表される化合物は、自己開裂によりラジカルを発生する構造を有しているため、液晶材料と混合させるときに他の重合開始剤を添加する必要がなく、光照射を行うだけで効率よく重合反応を開始することができる。また、重合開始剤に由来すると推定される電荷を帯びやすい不純物が生じても、結合している重合基によりPSA層を形成することで相分離するため、重合開始剤を用いてPSA層を形成した場合よりも焼き付きを生じさせにくくすることができる。なお、実施形態1においては、液晶組成物中に他のモノマーを加えることが可能である。
また、実施形態1においては、上記光照射による自己開裂によりラジカルを発生するモノマーのほかに、一種以上の、環構造を有し、かつ単官能又は多官能の重合性基を有するラジカル重合性モノマーを含有することが好ましく、そのような他のモノマーとしては、例えば、上記化学式(4)で表される化合物を用いることができ、より具体的には、上記化学式(4)で表される化合物として、上記化学式(5-1)~(5-5)で表される二官能モノマー、又は、上記化学式(6)で表される単官能モノマーを用いることができる。また、上記化学式(6)で表される化合物の具体例としては、上記化学式(7)で表される化合物が挙げられる。
実施形態1に係る液晶表示装置の他の構成要素について詳述する。
実施形態1に係る液晶表示装置においては、アレイ基板1、液晶層5及びカラーフィルタ基板2が、液晶表示装置の背面側から観察面側に向かってこの順に積層されている。アレイ基板1の背面側には、偏光板が備え付けられている。また、カラーフィルタ基板2の観察面側にも、偏光板が備え付けられている。これらの偏光板に対しては、更に位相差板が配置されていてもよく、上記偏光板は、円偏光板であってもよい。
実施形態1に係る液晶表示装置は、透過型、反射型及び反射透過両用型のいずれであってもよい。透過型又は反射透過両用型であれば、実施形態1の液晶表示装置は、更に、バックライトを備えている。バックライトは、アレイ基板1の更に背面側に配置され、アレイ基板1、液晶層5及びカラーフィルタ基板2の順に光が透過するように配置される。反射型又は反射透過両用型であれば、アレイ基板1は、外光を反射するための反射板を備える。また、少なくとも反射光を表示として用いる領域においては、カラーフィルタ基板2の偏光板は、いわゆるλ/4位相差板を備える円偏光板である必要がある。
実施形態1に係る液晶表示装置は、カラーフィルタをアレイ基板1に備えるカラーフィルタオンアレイ(Color Filter On Array)の形態であってもよい。また、実施形態1に係る液晶表示装置はモノクロディスプレイであってもよく、その場合、カラーフィルタは配置される必要はない。
液晶層5には、一定電圧が印加されることで特定の方向に配向する特性をもつ液晶材料が充填されている。液晶層5内の液晶分子は、閾値以上の電圧の印加によってその配向性が制御される。実施形態1において液晶分子の配向モードは、例えば、TNモード、IPSモード、VAモード等が挙げられ、特に限定されないが、上記化学式(7)で表される単官能モノマーを用いる場合には、優れた垂直配向が得られることから、VAモード、TBAモード等の初期配向が垂直配向となるモードに適用することがより好適である。
実施形態1に係る液晶表示装置は、液晶表示装置(例えば、携帯電話、モニター、液晶TV(テレビジョン)、インフォメーションディスプレイ)を分解し、核磁気共鳴分析法(NMR:Nuclear Magnetic Resonance)、フーリエ変換赤外分光法(FT-IR:Fourier Transform Infrared Spectroscopy)、質量分析法(MS:Mass Spectrometry)等を用いた化学分析を行うことにより、PSA層中に存在するモノマー成分の解析、PSA層中に存在するモノマー成分の存在比、液晶層中に含まれるPSA層形成用モノマーの混入量等を確認することができる。
実施例1
以下に、実施形態1に係る液晶表示装置が備える液晶セルを実際に作製した実施例1を示す。まず、表面に電極を備える一対の基板を用意し、片側基板にシール材を塗布し、もう一方の基板上に、ビーズを散布後、貼り合わせを行った。続いて、上記一対の基板間に、負の誘電率異方性を有する液晶材料と、ポリマー層形成用のモノマーとを含む液晶組成物を注入した。シール材としては、熱により硬化するもの、紫外光の照射により硬化するもの、並びに、熱及び紫外光照射のいずれによっても硬化するもののいずれを用いてもよい。
上記液晶組成物中には、下記化学式(7)及び下記化学式(8)で表されるモノマーを組み合わせて用いた。下記化学式(7)で表される化合物は、ビフェニル系の単官能アクリレートモノマーであり、下記化学式(8)で表される化合物は、ベンジルケタール系の二官能メタクリレートモノマーである。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
液晶組成物注入後、130℃で1時間アニール処理を行い、引き続き、電圧無印加状態で無偏光紫外光(0.33mW/cm)を基板に対して法線方向から10分間照射(0.2J/cm)することにより、モノマーの重合を行った。なお、無偏光紫外光光源として、東芝ライテック社製ブラックライトFHF-32BLBを用いた。FHF-32BLBは、310nmに小さな発光強度を有し、330nm以上で大きな発光強度を持つ紫外光光源である。電極としては、スリットのない平板な電極を用いた。
上記化学式(8)で表される化合物に対して紫外線が照射された場合、下記化学反応式(9)に示すようにラジカルが発生する。そして、このラジカルに対してモノマーの重合基がつぎつぎに結合し、連鎖的に成長するようにしてポリマーが形成される。
Figure JPOXMLDOC01-appb-C000021
比較例1
実施例1の液晶表示装置の効果を検証するために、液晶組成物中に、光照射による自己開裂によりラジカルを発生するモノマーを混入させず、実施例1と同様の液晶セルを作製した。
比較例1においては、上記液晶組成物中には、下記化学式(10);
Figure JPOXMLDOC01-appb-C000022
で表される単官能アクリレートモノマー(4-アクリロイルオキシ-4’-オクチルビフェニル)を混入させた。
評価試験1
実施例1においては、上記化学式(8)で表されるベンジルケタール系の二官能メタクリレートモノマーの導入量を、液晶組成物全体に対して、それぞれ0wt%、0.1wt%、0.3wt%、0.5wt%とする4種類のサンプルを用意した。また、上記化学式(7)で表されるビフェニル系の単官能アクリレートモノマーについては、導入量を、液晶組成物全体に対して、1.0wt%で固定した。以下に、それぞれについて特性を検証した結果を示す。
完成した実施例1の各液晶セルに対して、それぞれ電圧保持率(VHR)の測定を行った。VHRは、1Vのパルス電圧を印加後、16.61ms間の電荷保持を70℃条件で確認することで決定した(測定装置:東陽テクニカ社製 液晶物性評価システム 6254型)。表1は、実施例1の各サンプルを用いたVHR(%)の測定結果と配向状態を示す表である。
Figure JPOXMLDOC01-appb-T000023
また、比較例1の液晶セルについても、電圧保持率(VHR)の測定を行った。表2は、比較例1の液晶セルを用いたVHR(%)の測定結果と配向状態を示す表である。
Figure JPOXMLDOC01-appb-T000024
上記化学式(7)で示される単官能モノマーを導入濃度1.0wt%に固定し、上記化学式(8)で示される重合開始剤モノマーを上記化学式(7)で示される単官能モノマーよりも少ない量添加した後、紫外光を照射してこれらのモノマーを重合させたところ、表1に示すように、配向欠陥のない垂直配向セルが得られた。また、VHRも98%以上の高い値となった。
一方、上記化学式(8)で示される重合開始剤モノマーを液晶組成物中に添加しなかった場合、VHRは99%以上と高い値を維持したものの、重合は起こらず、垂直配向は得られなかった。
また、表2に示すように、光安定性の低い単官能モノマーのみを用いて紫外光照射を行った場合、垂直配向セルは得られたものの、VHRが70%台にまで低下した。
以上の結果より、光安定性が高く、紫外光を照射してもVHRが高く維持される単官能モノマーと、ラジカル重合を開始する機能を有するモノマーを組み合わせることで、良好な配向状態と、高いVHRとを得られることが明らかになった。
実施例2
以下に、実施形態1に係る液晶表示装置が備える液晶セルを実際に作製した実施例2を示す。まず、表面に電極を備える一対の基板を用意し、片側基板にシール材を塗布し、もう一方の基板上に、ビーズを散布後、貼り合わせを行った。続いて、上記一対の基板間に、負の誘電率異方性を有する液晶材料と、ポリマー層形成用のモノマーとを含む液晶組成物を注入した。シール材としては、熱により硬化するもの、紫外光の照射により硬化するもの、及び、熱及び紫外光照射のいずれによっても硬化するもののいずれを用いてもよい。
上記液晶組成物中には、上記化学式(7)及び(8)で表されるモノマーを組み合わせて用いた。下記化学式(7)で表される化合物は、ビフェニル系の単官能アクリレートモノマーであり、下記化学式(8)で表される化合物は、ベンジルケタール系の二官能メタクリレートモノマーである。
液晶組成物注入後、130℃で1時間アニール処理を行い、引き続き、電圧無印加状態で無偏光紫外光(0.33mW/cm)を基板に対して法線方向から照射することにより、モノマーの重合を行った。電極としては、スリットのない平板な電極を用いた。
比較例2
実施例2の液晶表示装置の効果を検証するために、液晶組成物中に、光照射による自己開裂によりラジカルを発生するモノマーを混入させず、実施例2と同様の液晶セルを作製した。
比較例2においては、上記液晶組成物中には、上記化学式(10)で表される単官能アクリレートモノマー(4-アクリロイルオキシ-4’-オクチルビフェニル)を混入させた。
評価試験2
実施例2においては、上記化学式(8)で表されるベンジルケタール系の二官能メタクリレートモノマーの導入量を、液晶組成物全体に対して、それぞれ0.1wt%、0.3wt%、0.5wt%とする3種類のサンプルを用意した。また、上記化学式(7)で表されるビフェニル系の単官能アクリレートモノマーについては、導入量を、液晶組成物全体に対して、1.0wt%で固定した。更に、このようにして作製されたそれぞれのサンプルについて、紫外線照射時間を0分、1分、5分、10分として、計12種類のサンプルを作製した。また、同様に、比較例2のサンプルについても、それぞれ紫外線照射時間を0分、1分、5分、10分として計4種類作製した。以下に、それぞれについて特性を検証した結果を示す。
完成した実施例2の各液晶セルに対して、それぞれ電圧保持率(VHR)の測定を行った。VHRは、1Vのパルス電圧を印加後、16.61ms間の電荷保持を70℃条件で確認することで決定した(測定装置:東陽テクニカ社製 液晶物性評価システム 6254型)。表3は、実施例2における上記化学式(7)で表される化合物の導入量を0.1wt%として測定したVHR(%)の結果と配向状態を示す表である。
Figure JPOXMLDOC01-appb-T000025
表4は、実施例2における上記化学式(8)で表される化合物の導入量を0.3wt%としたVHR(%)の測定結果と配向状態を示す表である。
Figure JPOXMLDOC01-appb-T000026
表5は、実施例2における上記化学式(8)で表される化合物の導入量を0.5wt%としたVHR(%)の測定結果と配向状態を示す表である。
Figure JPOXMLDOC01-appb-T000027
また、比較例2の液晶セルについても、電圧保持率(VHR)の測定を行った。表6は、比較例2の液晶セルを用いたVHR(%)の測定結果と配向状態を示す表である。
Figure JPOXMLDOC01-appb-T000028
表3~5の結果より、上記化学式(8)で示される重合開始剤モノマーを用いることで、1分の紫外光照射で99%以上の高いVHRを維持したまま、垂直配向となることが示された。また、上記化学式(8)で示される重合開始剤モノマー濃度が0.1~0.5wt%の範囲では、1分の紫外光照射で高いVHRを維持したままポリマー層を形成し、垂直配向となることが示された。
一方、表6に示すように、上記化学式(10)で示される光安定性の低いモノマーを用いた場合、紫外光を10分照射することで垂直配向を示すが、VHRが70%台にまで低下した。
以上の結果より、上記化学式(7)に示すような、光安定性が高く、紫外光を照射してもVHRを高く維持する単官能モノマーと、上記化学式(8)に示すような、ラジカル重合を開始させる機能を有するモノマーを組み合わせることで、1分の紫外光照射で、高いVHRを維持したまま、垂直配向が得られることが明らかになった。
実施例3
以下に、実施形態1に係る液晶表示装置が備える液晶セルを実際に作製した実施例3を示す。まず、表面に電極を備える一対の基板を用意し、片側基板にシール材を塗布し、もう一方の基板上に、ビーズを散布後、貼り合わせを行った。続いて、上記一対の基板間に、負の誘電率異方性を有する液晶材料と、ポリマー層形成用のモノマーとを含む液晶組成物を注入した。シール材としては、熱により硬化するもの、紫外光の照射により硬化するもの、及び、熱及び紫外光照射のいずれによっても硬化するもののいずれを用いてもよい。
上記液晶組成物中には、上記化学式(7)及び(8)で表されるモノマーを組み合わせて用いた。上記化学式(7)で表される化合物は、ビフェニル系の単官能アクリレートモノマーであり、上記化学式(8)で表される化合物は、ベンジルケタール系の二官能メタクリレートモノマーである。
液晶組成物注入後、130℃で1時間アニール処理を行い、引き続き、電圧無印加状態で無偏光紫外光(0.33mW/cm)を基板に対して法線方向から10分間照射(0.2J/cm)することにより、モノマーの重合を行った。電極としては、スリットのない平板な電極を用いた。
比較例3
上記化学式(8)で表されるモノマーの効果を検証するために、液晶組成物中に下記化学式(11);
Figure JPOXMLDOC01-appb-C000029
で表される、光照射による自己開裂によりラジカルを発生するものの、重合性を有していないモノマーを用いて、実施例3と同様の液晶セルを作製した。
実施例3における上記化学式(11)で表されるモノマーの反応経路は、下記化学反応式(12);
Figure JPOXMLDOC01-appb-C000030
で示されるとおりであるが、比較例3においては、上記化学反応式(12)で示されるように、紫外線の照射によって自己開裂は起こるものの、重合基を有していないため、重合反応を起こすモノマーとしては機能しない。
その結果、PSA処理工程が完了した後も、未反応開始剤が液晶層中に残存することになり、一般的なバックライトの使用等の長期のエージングが行われたときに、電圧保持率(VHR)が低下することがある。
評価試験3
実施例3においては、上記化学式(8)で表されるベンジルケタール系の二官能メタクリレートモノマーの導入量を液晶組成物全体に対して0.1wt%とし、上記化学式(7)で表されるビフェニル系の単官能アクリレートモノマーの導入量を液晶組成物全体に対して1.0wt%とするサンプルを用意した。また、上記化学式(11)で表されるベンジルケタール系の重合開始剤の導入量を液晶組成物全体に対して0.1wt%とし、上記化学式(7)で表されるビフェニル系の単官能アクリレートモノマーの導入量を液晶組成物全体に対して1.0wt%とするサンプルを用意した。以下に、それぞれについて特性を検証した結果を示す。
完成した実施例3及び比較例3の各液晶セルに対して、それぞれバックライトエージングを行う前と、100時間のバックライトエージングを行った後の電圧保持率(VHR)の測定を行った。VHRは、1Vのパルス電圧を印加後、16.61ms間の電荷保持を70℃条件で確認することで決定した(測定装置:東陽テクニカ社製 液晶物性評価システム 6254型)。
表7は、実施例3及び比較例3の各液晶セルについて、バックライトエージングを行う前のVHR(%)の測定結果と、各液晶セルに対して、それぞれ100時間のバックライトエージングを行った後のVHR(%)の測定結果を示す表である。
Figure JPOXMLDOC01-appb-T000031
表7に示すように、上記化学式(8)で表される重合開始剤付きモノマー(重合基付き)を用いた場合、100時間のバックライト上エージングを行った後でも、97%台のVHRであったのに対し、上記化学式(11)で表される重合開始剤(重合基なし)を用いた場合、100時間バックライト上エージングで95%を下回った。
この結果より、上記化学式(8)で表される重合基を有する開始剤(重合開始剤モノマー)を用いることで、バックライト上エージングでのVHRの低下を著しく抑えることができることが明らかになった。
なお、本願は、2011年3月9日に出願された日本国特許出願2011-051533号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
1、101:アレイ基板
2、102:カラーフィルタ基板
3、103:シール材
4:ラジカル重合性モノマー
5、105:液晶層
7:PSA層(ポリマー層)
106:配向膜

Claims (26)

  1. 実質的に配向膜を有していない一対の基板と、
    該一対の基板間に挟持され、液晶材料を含有する液晶層と、
    該一対の基板の少なくとも一方の表面上に形成され、液晶分子を配向制御するポリマー層とを備え、
    該ポリマー層は、液晶層中に添加された一種以上のラジカル重合性モノマーが重合することによって形成されたものであり、
    該ラジカル重合性モノマーの少なくとも一つは、光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物である
    ことを特徴とする液晶表示装置。
  2. 前記光照射による自己開裂反応によってラジカルを生成する構造は、350nm以上の波長成分の照射によってラジカルを生成することを特徴とする請求項1記載の液晶表示装置。
  3. 前記光照射による自己開裂反応によってラジカルを生成する構造は、400nm未満の波長成分の照射によってラジカルを生成することを特徴とする請求項1又は2記載の液晶表示装置。
  4. 前記化合物の、400nm以上の波長成分に対する吸光係数は、20ml/g・cm以下であることを特徴とする請求項1~3のいずれかに記載の液晶表示装置。
  5. 前記光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物は、下記化学式(1);
    Figure JPOXMLDOC01-appb-C000001
    (式中、
    は、炭素数1~4の、直鎖状若しくは分枝状のアルキル基若しくはアルケニル基、又は、Sp-Pを表す。
    は、炭素数1~4の、直鎖状若しくは分枝状のアルキル基若しくはアルケニル基、又は、Sp-Pを表す。
    、P、P及びPは、同一又は異なるラジカル重合性基を表し、総数が二以上である。
    Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基、アルキレンオキシ基若しくはアルキレンカルボニルオキシ基、又は、直接結合を表し、mが2以上の場合は、互いに同一又は異なっている。
    Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基、アルキレンオキシ基若しくはアルキレンカルボニルオキシ基、又は、直接結合を表し、mが2以上の場合は、互いに同一又は異なっている。
    Spは、炭素数1~6の、直鎖状、分枝状又は環状のアルキレン基、アルキレンオキシ基又はアルキレンカルボニルオキシ基を表す。
    Spは、炭素数1~6の、直鎖状、分枝状又は環状のアルキレン基、アルキレンオキシ基又はアルキレンカルボニルオキシ基を表す。
    は、-F基、-OH基、又は、炭素数1~12の、直鎖状若しくは分枝状のアルキル基若しくはアルケニル基、又は、アラルキル基を表し、nが2以上の場合は、互いに同一又は異なっている。
    2つのLが、芳香環における2つの隣接する炭素原子にそれぞれ結合している場合、互いに結合して環状構造となっていてもよく、該2つのLは、同一又は異なって、炭素数1~12の、直鎖状又は分枝状のアルキレン基又はアルケニレン基となる。
    は、-F基、-OH基、又は、炭素数1~12の、直鎖状若しくは分枝状のアルキル基若しくはアルケニル基、又は、アラルキル基を表し、nが2以上の場合は、互いに同一又は異なっている。
    2つのLが、芳香環における2つの隣接する炭素原子にそれぞれ結合している場合、互いに結合して環状構造となっていてもよく、該2つのLは、同一又は異なって、炭素数1~12の、直鎖状又は分枝状のアルキレン基又はアルケニレン基となる。
    及びLのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する1つ以上の水素原子は、-F基又は-OH基に置換されていてもよい。
    及びLのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する-CH-基はそれぞれ、酸素原子、硫黄原子及び窒素原子が互いに隣接しない限り-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、Sp-P基、又は、Sp-P基で置換されていてもよい。
    は1~3のいずれかの整数である。
    は0~3のいずれかの整数である。
    は0~4のいずれかの整数である。
    は0~4のいずれかの整数である。
    とnの合計は1~5のいずれかの整数である。
    とnの合計は0~5のいずれかの整数である。
    とmの合計は1~6のいずれかの整数である。)
    で表される化合物である
    ことを特徴とする請求項1~4のいずれかに記載の液晶表示装置。
  6. 前記光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物は、下記化学式(2);
    Figure JPOXMLDOC01-appb-C000002
    (式中、
    は、炭素数1~4の、直鎖状又は分枝状のアルキル基又はアルケニル基を表す。
    は、炭素数1~4の、直鎖状又は分枝状のアルキル基又はアルケニル基を表す。
    及びPは、同一又は異なるラジカル重合性基を表す。
    Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基、アルキレンオキシ基若しくはアルキレンカルボニルオキシ基、又は、直接結合を表す。
    Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基、アルキレンオキシ基若しくはアルキレンカルボニルオキシ基、又は、直接結合を表す。)
    で表される化合物である
    ことを特徴とする請求項5記載の液晶表示装置。
  7. 前記ポリマー層は、更に一種以上の、環構造を有し、かつ単官能又は多官能の重合性基を有するラジカル重合性モノマーが重合することによって形成されたものであることを特徴とする請求項1~6のいずれかに記載の液晶表示装置。
  8. 前記環構造を有し、かつ単官能又は多官能の重合性基を有するラジカル重合性モノマーは、下記化学式(4);
    Figure JPOXMLDOC01-appb-C000003
    (式中、
    は、-R-Sp-P基、水素原子、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、又は、炭素数1~18の、直鎖状若しくは分枝状のアルキル基である。
    は、ラジカル重合性基を表す。
    Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基若しくはアルキレンオキシ基、又は、直接結合を表す。
    が有する水素原子は、フッ素原子又は塩素原子に置換されていてもよい。
    が有する-CH-基は、酸素原子及び硫黄原子が互いに隣接しない限り-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。
    は、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
    及びAは、同一又は異なって、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、インダン-1,3-ジイル基、インダン-1,5-ジイル基、インダン-2,5-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、フェナントレン-3,6-ジイル基、アントラセン-1,5‐ジイル基、アントラセン-1,8-ジイル基、アントラセン-2,6-ジイル基、又は、アントラセン-2,7-ジイル基を表す。
    及びAが有する-CH-基は、互いに隣接しない限り-O-基又は-S-基で置換されていてもよい。
    及びAが有する一又は二以上の水素原子は、フッ素原子、塩素原子、-CN基、又は、炭素数1~6の、アルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基若しくはアルキルカルボニルオキシ基で置換されていてもよい。
    Zは、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
    nは0、1又は2である。)
    で表される化合物である
    ことを特徴とする請求項7記載の液晶表示装置。
  9. 前記Pは、(メタ)アクリロイルオキシ基であることを特徴とする請求項8記載の液晶表示装置。
  10. 前記環構造を有し、かつ単官能又は多官能の重合性基を有するラジカル重合性モノマーは、下記化学式(6);
    Figure JPOXMLDOC01-appb-C000004
    (式中、Pは、(メタ)アクリロイルオキシ基、ビニル基、又は、アリル基を表す。aは0又は1である。bは0又は1である。mは1~18のいずれかの自然数である。nは1~6のいずれかの自然数である。)
    で表される化合物であることを特徴とする請求項8記載の液晶表示装置。
  11. 前記液晶分子は、閾値以下の電圧印加状態で垂直配向していることを特徴とする請求項1~10のいずれかに記載の液晶表示装置。
  12. 前記液晶材料は、負の誘電率異方性を有することを特徴とする請求項1~11のいずれかに記載の液晶表示装置。
  13. 配向膜を形成する工程を経ずに、一対の基板間に、液晶材料と、一種以上のラジカル重合性モノマーとを含有する液晶組成物を挟持させる工程と、
    該液晶組成物に光を照射し、上記ラジカル重合性モノマーを重合させて、該一対の基板の少なくとも一方の表面上に液晶分子を配向制御するポリマー層を形成する工程とを有し、
    該ラジカル重合性モノマーの少なくとも一つは、光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物である
    ことを特徴とする液晶表示装置の製造方法。
  14. 前記光照射による自己開裂反応によってラジカルを生成する構造は、350nm以上の波長成分の照射によってラジカルを生成することを特徴とする請求項13記載の液晶表示装置の製造方法。
  15. 前記光照射による自己開裂反応によってラジカルを生成する構造は、400nm以下の波長成分の照射によってラジカルを生成することを特徴とする請求項13又は14記載の液晶表示装置の製造方法。
  16. 前記化合物の、400nm以上の波長成分に対する吸光係数は、20ml/g・cm以下であることを特徴とする請求項13~15のいずれかに記載の液晶表示装置の製造方法。
  17. 前記光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物は、下記化学式(1);
    Figure JPOXMLDOC01-appb-C000005
    (式中、
    は、炭素数1~4の、直鎖状若しくは分枝状のアルキル基若しくはアルケニル基、又は、Sp-Pを表す。
    は、炭素数1~4の、直鎖状若しくは分枝状のアルキル基若しくはアルケニル基、又は、Sp-Pを表す。
    、P、P及びPは、同一又は異なるラジカル重合性基を表し、総数が二以上である。
    Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基、アルキレンオキシ基若しくはアルキレンカルボニルオキシ基、又は、直接結合を表し、mが2以上の場合は、互いに同一又は異なっている。
    Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基、アルキレンオキシ基若しくはアルキレンカルボニルオキシ基、又は、直接結合を表し、mが2以上の場合は、互いに同一又は異なっている。
    Spは、炭素数1~6の、直鎖状、分枝状又は環状のアルキレン基、アルキレンオキシ基又はアルキレンカルボニルオキシ基を表す。
    Spは、炭素数1~6の、直鎖状、分枝状又は環状のアルキレン基、アルキレンオキシ基又はアルキレンカルボニルオキシ基を表す。
    は、-F基、-OH基、又は、炭素数1~12の、直鎖状若しくは分枝状のアルキル基若しくはアルケニル基、又は、アラルキル基を表し、nが2以上の場合は、互いに同一又は異なっている。
    2つのLが、芳香環における2つの隣接する炭素原子にそれぞれ結合している場合、互いに結合して環状構造となっていてもよく、該2つのLは、同一又は異なって、炭素数1~12の、直鎖状又は分枝状のアルキレン基又はアルケニレン基となる。
    は、-F基、-OH基、又は、炭素数1~12の、直鎖状若しくは分枝状のアルキル基若しくはアルケニル基、又は、アラルキル基を表し、nが2以上の場合は、互いに同一又は異なっている。
    2つのLが、芳香環における2つの隣接する炭素原子にそれぞれ結合している場合、互いに結合して環状構造となっていてもよく、該2つのLは、同一又は異なって、炭素数1~12の、直鎖状又は分枝状のアルキレン基又はアルケニレン基となる。
    及びLのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する1つ以上の水素原子は、-F基又は-OH基に置換されていてもよい。
    及びLのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する-CH-基はそれぞれ、酸素原子、硫黄原子及び窒素原子が互いに隣接しない限り-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、Sp-P基、又は、Sp-P基で置換されていてもよい。
    は1~3のいずれかの整数である。
    は0~3のいずれかの整数である。
    は0~4のいずれかの整数である。
    は0~4のいずれかの整数である。
    とnの合計は1~5のいずれかの整数である。
    とnの合計は0~5のいずれかの整数である。
    とmの合計は1~6のいずれかの整数である。)
    で表される化合物である
    ことを特徴とする請求項13~16のいずれかに記載の液晶表示装置の製造方法。
  18. 前記光照射による自己開裂反応によってラジカルを生成する構造を有し、かつ二以上のラジカル重合性基を有する化合物は、下記化学式(2);
    Figure JPOXMLDOC01-appb-C000006
    (式中、
    は、炭素数1~4の、直鎖状又は分枝状のアルキル基又はアルケニル基を表す。
    は、炭素数1~4の、直鎖状又は分枝状のアルキル基又はアルケニル基を表す。
    及びPは、同一又は異なるラジカル重合性基を表す。
    Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基、アルキレンオキシ基若しくはアルキレンカルボニルオキシ基、又は、直接結合を表す。
    Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基、アルキレンオキシ基若しくはアルキレンカルボニルオキシ基、又は、直接結合を表す。)
    で表される化合物である
    ことを特徴とする請求項17記載の液晶表示装置の製造方法。
  19. 前記ポリマー層は、更に一種以上の、環構造を有し、かつ単官能基又は多官能基を有するモノマーが重合することによって形成されたものであることを特徴とする請求項13~18のいずれかに記載の液晶表示装置の製造方法。
  20. 前記環構造を有し、かつ単官能又は多官能の重合性基を有するラジカル重合性モノマーは、下記化学式(4);
    Figure JPOXMLDOC01-appb-C000007
    (式中、
    は、-R-Sp-P基、水素原子、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、又は、炭素数1~18の、直鎖状若しくは分枝状のアルキル基である。
    は、ラジカル重合性基を表す。
    Spは、炭素数1~6の、直鎖状、分枝状若しくは環状のアルキレン基若しくはアルキレンオキシ基、又は、直接結合を表す。
    が有する水素原子は、フッ素原子又は塩素原子に置換されていてもよい。
    が有する-CH-基は、酸素原子及び硫黄原子が互いに隣接しない限り-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。
    は、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
    及びAは、同一又は異なって、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、インダン-1,3-ジイル基、インダン-1,5-ジイル基、インダン-2,5-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、フェナントレン-3,6-ジイル基、アントラセン-1,5‐ジイル基、アントラセン-1,8-ジイル基、アントラセン-2,6-ジイル基、又は、アントラセン-2,7-ジイル基を表す。
    及びAが有する-CH-基は、互いに隣接しない限り-O-基又は-S-基で置換されていてもよい。
    及びAが有する一又は二以上の水素原子は、フッ素原子、塩素原子、-CN基、又は、炭素数1~6の、アルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基若しくはアルキルカルボニルオキシ基で置換されていてもよい。
    Zは、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
    nは0、1又は2である。)
    で表される化合物である
    ことを特徴とする請求項19記載の液晶表示装置の製造方法。
  21. 前記Pは、(メタ)アクロイルオキシ基であることを特徴とする請求項20記載の液晶表示装置の製造方法。
  22. 前記環構造を有し、かつ単官能又は多官能の重合性基を有するラジカル重合性モノマーは、下記化学式(6);
    Figure JPOXMLDOC01-appb-C000008
    (式中、Pは、(メタ)アクリロイルオキシ基、ビニル基、又は、アリル基を表す。aは0又は1である。bは0又は1である。mは1~18のいずれかの自然数である。nは1~6のいずれかの自然数である。)
    ことを特徴とする請求項20記載の液晶表示装置の製造方法。
  23. 前記ポリマー層を形成する工程は、液晶層に対して閾値以上の電圧を印加した状態で行われることを特徴とする請求項13~22のいずれかに記載の液晶表示装置の製造方法。
  24. 前記ポリマー層を形成する工程は、液晶層に対して閾値以上の電圧を印加しない状態で行われることを特徴とする請求項13~22のいずれかに記載の液晶表示装置の製造方法。
  25. 前記液晶分子は、閾値以下の電圧印加状態で垂直配向していることを特徴とする請求項13~24のいずれかに記載の液晶表示装置の製造方法。
  26. 前記液晶材料は、負の誘電率異方性を有することを特徴とする請求項13~25のいずれかに記載の液晶表示装置の製造方法。
PCT/JP2012/055942 2011-03-09 2012-03-08 液晶表示装置及び液晶表示装置の製造方法 WO2012121321A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/003,976 US9151987B2 (en) 2011-03-09 2012-03-08 Liquid crystal display device and production method for liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-051533 2011-03-09
JP2011051533 2011-03-09

Publications (1)

Publication Number Publication Date
WO2012121321A1 true WO2012121321A1 (ja) 2012-09-13

Family

ID=46798276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055942 WO2012121321A1 (ja) 2011-03-09 2012-03-08 液晶表示装置及び液晶表示装置の製造方法

Country Status (2)

Country Link
US (1) US9151987B2 (ja)
WO (1) WO2012121321A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161865A1 (ja) * 2012-04-27 2013-10-31 シャープ株式会社 液晶表示装置及び液晶表示装置の製造方法
EP2796923A1 (en) * 2013-04-25 2014-10-29 Samsung Display Co., Ltd. Method of manufacturing liquid crystal display device
WO2017026478A1 (ja) * 2015-08-11 2017-02-16 Dic株式会社 液晶表示素子
WO2019009166A1 (ja) * 2017-07-05 2019-01-10 シャープ株式会社 液晶表示装置及び液晶表示装置の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108317A1 (ja) 2011-02-09 2012-08-16 シャープ株式会社 液晶表示装置及び液晶表示装置の製造方法
WO2012121319A1 (ja) * 2011-03-09 2012-09-13 シャープ株式会社 液晶組成物、液晶表示装置及び液晶表示装置の製造方法
US9207495B2 (en) * 2011-03-09 2015-12-08 Sharp Kabushiki Kaisha Liquid crystal display device
JP2015099170A (ja) * 2012-03-05 2015-05-28 シャープ株式会社 液晶表示装置及び液晶表示装置の製造方法
JP6318090B2 (ja) * 2012-10-19 2018-04-25 シャープ株式会社 液晶組成物、液晶表示装置及び液晶表示装置の製造方法
JP2018533072A (ja) * 2015-10-23 2018-11-08 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung ベンジルモノケタール類およびそれらの使用
WO2018008581A1 (ja) * 2016-07-04 2018-01-11 シャープ株式会社 液晶表示装置、及び、液晶表示装置の製造方法
GB2583649A (en) * 2017-12-18 2020-11-04 Merck Patent Gmbh Liquid crystal compound and liquid crystal medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338613A (ja) * 2004-05-28 2005-12-08 Fujitsu Display Technologies Corp 液晶表示装置及びその製造方法
WO2012032857A1 (ja) * 2010-09-07 2012-03-15 シャープ株式会社 液晶層形成用組成物、液晶表示装置及び液晶表示装置の製造方法
WO2012050178A1 (ja) * 2010-10-14 2012-04-19 シャープ株式会社 液晶表示装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3334812B2 (ja) 1993-01-29 2002-10-15 松下電器産業株式会社 シラン系化学吸着化合物及びそれを用いた液晶配向膜並びに液晶表示装置
KR100247640B1 (ko) 1997-06-27 2000-03-15 김영환 액정 표시 소자 및 그 제조방법
JP2000314887A (ja) 1999-04-28 2000-11-14 Matsushita Electric Ind Co Ltd 液晶素子並びにその製造方法
JP4132424B2 (ja) 1999-06-22 2008-08-13 旭硝子株式会社 液晶光学素子の製造方法
JP4037690B2 (ja) 2002-05-31 2008-01-23 シャープ株式会社 液晶表示装置及びその製造方法
JP4342168B2 (ja) 2002-12-05 2009-10-14 シャープ株式会社 液晶表示装置及びその製造方法
US7248318B2 (en) 2002-05-31 2007-07-24 Sharp Kabushiki Kaisha Liquid crystal display device and method of producing the same
JP4029700B2 (ja) 2002-09-09 2008-01-09 チッソ株式会社 液晶配向膜
JP4234473B2 (ja) 2003-03-26 2009-03-04 シャープ株式会社 液晶パネルおよびその製造方法
JP4504626B2 (ja) 2003-03-31 2010-07-14 シャープ株式会社 液晶表示装置及びその製造方法
JP4744801B2 (ja) 2003-12-18 2011-08-10 富士通株式会社 液晶表示装置およびその製造方法
JP4617838B2 (ja) 2003-12-25 2011-01-26 チッソ株式会社 液晶性(メタ)アクリレート誘導体およびそれらを含む組成物
JP4387276B2 (ja) 2004-09-24 2009-12-16 シャープ株式会社 液晶表示装置
JP2006139047A (ja) 2004-11-12 2006-06-01 Sharp Corp 液晶表示装置およびその製造方法
JP2006145992A (ja) 2004-11-22 2006-06-08 Sharp Corp 液晶表示装置及びその製造方法
TWI377234B (en) 2005-02-28 2012-11-21 Jnc Corp Varnish for forming liquid crystal alignment layer and liquid crystal display element using the same
US8284355B2 (en) 2006-11-30 2012-10-09 Sharp Kabushiki Kaisha Active matrix substrate having spacers, liquid crystal display panel having spacers, liquid crystal display element, liquid crystal display device, and substrate for liquid crystal display panels
TWI366597B (en) 2007-09-05 2012-06-21 Au Optronics Corp Liquid crystal medium for polymer stability alignment process and method for manufacturing liquid crystal display having the same
JP5256714B2 (ja) 2007-12-04 2013-08-07 ソニー株式会社 液晶表示素子及びその製造方法
JP2010032860A (ja) 2008-07-30 2010-02-12 Sony Corp 配向膜及びその製造方法、配向基板及びその製造方法、並びに液晶表示素子
TWI395012B (zh) 2008-09-03 2013-05-01 Au Optronics Corp 液晶顯示面板及其製造方法
JP5113869B2 (ja) 2010-03-29 2013-01-09 シャープ株式会社 液晶表示装置及びその製造方法
US8999465B2 (en) 2010-10-07 2015-04-07 Sharp Kabushiki Kaisha Liquid crystal display device
WO2012105479A1 (ja) * 2011-02-02 2012-08-09 東洋合成工業株式会社 2,2-ジメトキシ-1,2-ジ-[4-(メタ)アクリロイルオキシ]フェニルエタン-1-オン、その製造方法及びラジカル重合開始剤並びに光硬化性組成物
WO2012108317A1 (ja) 2011-02-09 2012-08-16 シャープ株式会社 液晶表示装置及び液晶表示装置の製造方法
WO2012121319A1 (ja) * 2011-03-09 2012-09-13 シャープ株式会社 液晶組成物、液晶表示装置及び液晶表示装置の製造方法
US9207495B2 (en) 2011-03-09 2015-12-08 Sharp Kabushiki Kaisha Liquid crystal display device
WO2013018668A1 (ja) * 2011-08-04 2013-02-07 シャープ株式会社 液晶表示装置
JP5667306B2 (ja) * 2011-09-27 2015-02-12 シャープ株式会社 液晶表示装置及びその製造方法
JP2015132635A (ja) * 2012-04-27 2015-07-23 シャープ株式会社 液晶表示装置及びその製造方法
WO2013161865A1 (ja) * 2012-04-27 2013-10-31 シャープ株式会社 液晶表示装置及び液晶表示装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338613A (ja) * 2004-05-28 2005-12-08 Fujitsu Display Technologies Corp 液晶表示装置及びその製造方法
WO2012032857A1 (ja) * 2010-09-07 2012-03-15 シャープ株式会社 液晶層形成用組成物、液晶表示装置及び液晶表示装置の製造方法
WO2012050178A1 (ja) * 2010-10-14 2012-04-19 シャープ株式会社 液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161865A1 (ja) * 2012-04-27 2013-10-31 シャープ株式会社 液晶表示装置及び液晶表示装置の製造方法
US10126601B2 (en) 2012-04-27 2018-11-13 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing liquid crystal display device
EP2796923A1 (en) * 2013-04-25 2014-10-29 Samsung Display Co., Ltd. Method of manufacturing liquid crystal display device
WO2017026478A1 (ja) * 2015-08-11 2017-02-16 Dic株式会社 液晶表示素子
WO2019009166A1 (ja) * 2017-07-05 2019-01-10 シャープ株式会社 液晶表示装置及び液晶表示装置の製造方法

Also Published As

Publication number Publication date
US9151987B2 (en) 2015-10-06
US20130342791A1 (en) 2013-12-26

Similar Documents

Publication Publication Date Title
WO2012121321A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
JP5667306B2 (ja) 液晶表示装置及びその製造方法
WO2013018668A1 (ja) 液晶表示装置
TWI521263B (zh) Liquid crystal display device
TWI574994B (zh) Liquid crystal display device
JP5750111B2 (ja) 液晶層及びポリマー層形成用組成物、並びに、液晶表示装置
JP5587294B2 (ja) 液晶表示装置、液晶表示装置の製造方法、psa層形成用組成物、及び、液晶層形成用組成物
WO2012121319A1 (ja) 液晶組成物、液晶表示装置及び液晶表示装置の製造方法
TWI519868B (zh) Liquid crystal display device
WO2013133082A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
WO2012050177A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
US20120008079A1 (en) Liquid crystal display device, process for producing liquid crystal display device, composition for forming polymer layer, and composition for forming liquid crystal layer
WO2013031393A1 (ja) 液晶表示パネル及び液晶表示装置
JP6318090B2 (ja) 液晶組成物、液晶表示装置及び液晶表示装置の製造方法
WO2013103153A1 (ja) 液晶表示装置、及び、その製造方法
WO2014061755A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
WO2014038431A1 (ja) 配向膜用重合体、及び、液晶表示装置
WO2012077668A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
WO2014061757A1 (ja) モノマー、液晶組成物、液晶表示装置及び液晶表示装置の製造方法
CN117186663A (zh) 液晶取向剂、液晶取向膜和液晶表示元件
WO2013031616A1 (ja) 液晶表示パネル及び液晶表示装置
WO2012017885A1 (ja) 液晶層形成用組成物、液晶表示装置及び液晶表示装置の製造方法
WO2013069487A1 (ja) 液晶表示装置及びその製造方法
WO2013161865A1 (ja) 液晶表示装置及び液晶表示装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14003976

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12754459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP