WO2012121229A1 - 微生物検出用センサーおよびその製造方法 - Google Patents

微生物検出用センサーおよびその製造方法 Download PDF

Info

Publication number
WO2012121229A1
WO2012121229A1 PCT/JP2012/055611 JP2012055611W WO2012121229A1 WO 2012121229 A1 WO2012121229 A1 WO 2012121229A1 JP 2012055611 W JP2012055611 W JP 2012055611W WO 2012121229 A1 WO2012121229 A1 WO 2012121229A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer layer
microorganism
electrode
microorganisms
detection
Prior art date
Application number
PCT/JP2012/055611
Other languages
English (en)
French (fr)
Inventor
志保 床波
椎木 弘
長岡 勉
池水 麦平
茉里 高橋
Original Assignee
公立大学法人大阪府立大学
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪府立大学, シャープ株式会社 filed Critical 公立大学法人大阪府立大学
Priority to US14/003,613 priority Critical patent/US9206461B2/en
Priority to EP12754214.0A priority patent/EP2684946B1/en
Priority to CN201280011897.7A priority patent/CN103459583B/zh
Priority to JP2013503547A priority patent/JP6014582B2/ja
Publication of WO2012121229A1 publication Critical patent/WO2012121229A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Definitions

  • the present invention relates to a sensor for detecting microorganisms and a method for producing the same.
  • a technique capable of detecting the pathogenic bacteria quickly and with high sensitivity is required.
  • methods for detecting and identifying microorganisms include ELISA methods and Western blotting methods. These include, for example, an antigen-antibody reaction between an antibody (primary antibody) and a microorganism-specific protein, and then a labeled secondary antibody is reacted with the antibody (primary antibody) to cause chemiluminescence of the secondary antibody or ATP. This is a method of detecting by monitoring the hydrolysis reaction.
  • Patent Document 1 describes a method for detecting anionic molecules (ATP, amino acids, etc.) derived from microorganisms using the electrochemical properties of a polymer having a molecular template.
  • none of the above methods is a method for detecting microorganisms themselves.
  • the ELISA method is not easy because it is necessary to prepare an antibody against a protein unique to a microorganism.
  • An object of the present invention is to provide a novel microorganism detection sensor that can detect microorganisms quickly and easily and with high sensitivity, and a method for producing the same.
  • the present invention includes a detection unit having a detection electrode and a polymer layer that is arranged on the detection electrode and includes a three-dimensional structure template complementary to the three-dimensional structure of the microorganism to be detected. It is a sensor that detects microorganisms based on the capture state of microorganisms.
  • the polymer layer is a polymerization process that forms a polymer layer on the detection electrode by polymerizing monomers in the presence of microorganisms to be detected, and partially destroying the microorganisms incorporated in the polymer layer And a peroxidation process in which the polymer layer is peroxidized to release microorganisms from the polymer layer.
  • a preferred form of the sensor further includes a counter electrode, and an AC voltage is applied between the detection electrode and the counter electrode of the detection unit in a state where the detection unit and the counter electrode are in contact with the sample solution, and the sample is subjected to dielectrophoresis. It is configured to guide the microorganisms in the solution toward the detection unit.
  • the application time of the AC voltage is not particularly limited as long as microorganisms in the sample solution are guided in the direction of the detection unit.
  • a preferred form of the sensor further includes a crystal resonator having the detection electrode of the detection unit as one electrode, and measures the change in the mass of the polymer layer from the change in the resonance frequency of the crystal resonator to determine the capture state of the microorganism. To detect.
  • the monomer is preferably selected from the group consisting of pyrrole, aniline, thiophene and derivatives thereof.
  • the surface on which the polymer layer of the detection electrode is formed is preferably a rough surface.
  • the microorganism As the microorganism, a microorganism having a negative or excessive charge on the entire surface or the surface is preferable.
  • the microorganism is a bacterium, and in this case, the destruction step is a step of performing a lysis treatment.
  • the bacterium include Pseudomonas aeruginosa, Acinetobacter, and Escherichia coli.
  • the present invention also relates to a sensor for detecting a microorganism having a detection portion having a detection electrode and a polymer layer provided on the detection electrode and having a three-dimensional template complementary to the three-dimensional structure of the microorganism.
  • a polymerization process in which a monomer layer is polymerized in the presence of a microorganism to be detected to form a polymer layer in which the microorganism is incorporated on the detection electrode, and the microorganism incorporated in the polymer layer is partially And a step of peroxidizing the polymer layer to release microorganisms from the polymer layer.
  • the senor further includes a counter electrode, and the polymerization step is performed by applying a voltage between the detection electrode and the counter electrode under contact with the monomer solution, This is a step of electrolytic polymerization of monomers.
  • the releasing step is performed by applying a voltage between the detection electrode and the counter electrode under contact with a solution in a neutral to alkaline range to pass the polymer layer. This is a step of oxidizing treatment.
  • the preferred form of the production method includes a roughening step of performing a roughening treatment on the surface of the detection electrode on which the polymer layer is formed.
  • the senor of the present invention it is possible to detect microorganisms quickly and easily with high sensitivity.
  • a sensor capable of detecting microorganisms quickly and easily with high sensitivity is provided.
  • the preferable preparation process of the polymer layer of the sensor concerning this invention is shown typically, (a) before a polymerization process, (b) after a polymerization process, (c) after a destruction process, (d) after a peroxidation process.
  • the sensor of this invention it is a schematic diagram which shows the outline of a mode that the target microorganism is capture
  • FIG. 2 is a diagram showing an electron micrograph of the surface of a polypyrrole layer after the polymerization step of Example 1.
  • FIG. 4 is a graph showing the relationship between time and current in the polymerization process of Example 1, and the relationship between time and the resonance frequency of the crystal resonator. 4 is a graph showing the relationship between time and mass change in Example 1.
  • 2 is an electron micrograph of the surface of a peroxidized polypyrrole layer after the lysis step and the peroxidation step of Example 1.
  • FIG. It is an electron micrograph of the peroxidation polypyrrole layer surface after a lysis process and a peroxidation process at the time of changing lysis conditions from Example 1.
  • the sensor of the present invention includes a detection part having a detection electrode and a polymer layer that is arranged on the detection electrode and has a three-dimensional template complementary to the three-dimensional structure of the microorganism, Microorganisms are detected based on the captured state.
  • the polymer layer of the sensor of the present invention is a polymer that forms a polymer layer on the detection electrode by polymerizing monomers in the presence of microorganisms to be detected (hereinafter also referred to as “target microorganisms”).
  • the manufacturing method includes a step, a destruction step for partially destroying microorganisms incorporated in the polymer layer, and a peroxidation step for peroxidizing the polymer layer to release microorganisms from the polymer layer.
  • FIG. 1 is a cross-sectional view schematically showing a preferred production process of a polymer layer of a sensor according to the present invention.
  • FIG. 1 shows an embodiment in which pyrrole is used as a monomer.
  • a solution 12 containing a microorganism 13 and pyrrole is prepared in an environment in contact with the detection electrode 11.
  • electrolysis using the detection electrode 11 as an anode and a counter electrode (not shown) as a cathode is performed, and polypyrrole (FIG.
  • pyrrole 1B is formed on the detection electrode 11 by an oxidative polymerization reaction of pyrrole.
  • Py is an abbreviation for polypyrrole.
  • Microorganisms 13 are taken into the formed polymer layer 14.
  • the pyrrole itself has a positive charge in order to emit electrons to the detection electrode 11 in the polymerization process, and in order to compensate for this positive charge, the microorganism 13 whose whole or surface charge is in a state of excessive negative charge. Is believed to be incorporated into the polymer layer 14.
  • a destruction step for destroying a part of the microorganisms 13 taken in the polymer layer 14 is performed.
  • the destruction step can be performed by, for example, addition of a degrading enzyme, temperature adjustment, ultrasonic treatment, ozone treatment, presence of residual chlorine, or bacteriophage treatment.
  • the destruction step can be performed by a lysis treatment using a degrading enzyme such as lysozyme (hereinafter, the destruction step by the lysis treatment is also referred to as “lysis step”).
  • lysis step a degrading enzyme such as lysozyme
  • the polymer layer 14 is peroxidized.
  • the polypyrrole constituting the polymer layer 14 becomes peroxide polypyrrole (“Oppy” in FIG. 1D is an abbreviation for peroxide polypyrrole) and becomes electrically neutral. Released from layer 14.
  • the region where the microorganisms 13 exist in the polymer layer 14 becomes a template 15 having a three-dimensional structure complementary to the three-dimensional structure of the microorganisms 13.
  • This peroxidation step (St3) also causes hardening of the polymer layer 14 and stabilizes the template 15 of the microorganism 13.
  • the peroxidation step (St3) is preferably performed by preparing the solution 12 in a neutral to alkaline range and applying a voltage between the detection electrode 11 and a counter electrode (not shown).
  • the laminate of the polymer layer 14 having the template 15 formed in this way and the detection electrode 11 constitutes the detection unit 17 in the sensor of the present invention.
  • the three-dimensional structure of the template formed may vary depending on the solution composition of the peroxidation reaction and the voltage for causing the peroxidation reaction.
  • a template having a close three-dimensional structure is formed by the microorganism 13 to be detected under conditions where the peroxidation reaction proceeds gradually.
  • the microorganism 13 to be detected is not particularly limited as long as the whole or surface of the microorganism has a negative charge excess, such as Escherichia genus of Escherichia coli, Pseudomonas genus such as Pseudomonas aeruginosa, Acinetobacter calocoaceticus, etc.
  • viruses examples include hepatitis A virus, adenovirus, rotavirus, and norovirus, candidia as fungi, and cryptosporidium as protozoa.
  • the total or surface charge of the microorganism varies depending on the water quality of the solution 12 such as pH.
  • the solution 12 may be made alkaline in order to make the negative charge excessive when forming the template or measuring.
  • the monomer used as the raw material for the polymer layer is not limited to pyrrole, and other examples include aniline, thiophene. And derivatives thereof.
  • the material of the detection electrode 11 is not particularly limited, and is a gold electrode, a multilayer electrode of gold and chromium, a multilayer electrode of gold and titanium, a silver electrode, a multilayer electrode of silver and chromium, and a silver and titanium layer. Examples include multilayer electrodes, lead electrodes, platinum electrodes, carbon electrodes, and the like.
  • the surface on which the polymer layer 14 of the detection electrode 11 is formed is preferably subjected to a roughening treatment. Since the surface on which the polymer layer 14 of the detection electrode 11 is formed is a rough surface, the adhesion to the polymer layer 14 is improved, and the surface area of the electrode is increased. For example, when a gold electrode is used as the detection electrode 11, it is possible to perform a roughening process in which the gold electrode surface is subjected to plasma etching and then gold nanoparticles are fixed to roughen the surface.
  • FIG. 2 is a schematic diagram showing an outline of how a target microorganism is captured by a template.
  • FIG. 2A shows a case where the microorganism 13a in the sample solution is a target microorganism
  • FIG. 2B shows a case where the microorganism 13b in the sample solution is not a target microorganism.
  • a sample solution is prepared in an environment in contact with the detection unit 17 including the polymer layer 14 and the detection electrode 11 and the counter electrode 16. Then, an AC voltage is applied between the detection electrode 11 and the counter electrode 16, and microorganisms in the sample solution are moved toward the detection unit 17 by dielectrophoresis.
  • the configuration of the counter electrode 16, adjustment of the applied voltage, and preparation of the sample solution are performed so that the microorganisms move toward the detection electrode 11 by dielectrophoresis.
  • the microorganism 13a having a three-dimensional structure complementary to the three-dimensional structure of the template 15 is captured in the template 15 (FIG. 2A), but is not complementary to the template 15.
  • the microorganism 13b is not captured in the template 15 (FIG. 2B).
  • turbidity other than microorganisms such as mud and iron rust is contained in water, they are not captured because they are different from the template 15 in three-dimensional shape, charged state, etc. and are not complementary.
  • dielectrophoresis can be performed under conditions where microorganisms are collected on the electrode but other turbid substances are not collected.
  • dielectrophoresis can be performed under conditions where microorganisms are collected on the electrode but other turbid substances are not collected.
  • it is necessary to change the conditions of dielectrophoresis such as frequency in accordance with changes in water quality such as water conductivity.
  • water quality such as water conductivity.
  • Detection of target microorganisms When the microorganisms 13a are trapped in the template 15, for example, a change in mass, a change in conductive characteristics, a change in capacitance, a change in light reflectance, a change in temperature, and the like occur in the laminate composed of the polymer layer 14 and the detection electrode 11.
  • a change in mass, a change in conductive characteristics, a change in capacitance, a change in light reflectance, a change in temperature, and the like occur in the laminate composed of the polymer layer 14 and the detection electrode 11.
  • the capture state of the microorganism in the template 15 is detected.
  • the target microorganism can be detected based on the captured state. With such detection, rapid and sensitive detection of the target microorganism can be achieved.
  • the mass change detection method there is a detection method for detecting a change in the resonance frequency of the crystal resonator.
  • a crystal resonator microbalance (QCM) sensor which is a preferred example of the sensor of
  • FIG. 3 is a schematic diagram showing a schematic configuration of the QCM sensor.
  • the QCM sensor 33 includes a cell 27 for holding a solution, a crystal resonator 32 disposed at the bottom of the cell 27, an oscillation circuit 22, and a controller 21 having a frequency counter.
  • the crystal unit 32 is formed by sequentially stacking the detection unit 17, the crystal piece 24, and the counter electrode (second counter electrode) 23 manufactured by the process illustrated in FIG. 1.
  • the QCM sensor 33 further includes a counter electrode (first counter electrode) 16 immersed in the sample solution 31 and a reference electrode 30, and is connected to the detection electrode 11 and the counter electrode 16 of the detection unit 17.
  • An AC power supply 29 is provided.
  • the sample solution 31 is added into the cell 27. Then, by applying an AC voltage between the detection electrode 11 and the counter electrode 16 by the AC power source 29, the microorganisms contained in the sample solution 31 are moved in the direction of the detection unit 17 by dielectrophoresis. At the same time, the oscillation circuit 22 applies an AC voltage between the detection electrode 11 and the counter electrode 23 to vibrate the crystal piece 24. When microorganisms are trapped in the mold 15 of the polymer layer 14, the mass of the detection unit 17 changes, and the resonance frequency of the crystal piece 24 changes. The frequency counter in the controller 21 receives the signal from the oscillation circuit 22 and measures the resonance frequency value. The capture state of the microorganism is detected from the change in the resonance frequency value.
  • a polymer layer can be formed on the detection electrode 11 in accordance with the roughening treatment of the surface of the detection electrode 11 and the process shown in FIG.
  • a crystal resonator in which the detection electrode 11, the crystal piece 24, and the counter electrode 23 are stacked in this order is arranged at the bottom of the cell 27, and a DC power supply is connected instead of the AC power supply 29.
  • the progress of the formation of the polymer layer can be confirmed by monitoring the change in the resonance frequency of the crystal resonator together with the formation of the polymer layer.
  • the templates according to the present invention are individually formed and combined, or a template corresponding to a plurality of microorganisms is contained in a single template. By forming simultaneously, it is also possible to detect a plurality of types of microorganisms simultaneously.
  • bacteria can be detected in several minutes to several tens of minutes, and can be detected much more quickly than in the culture method.
  • it is a device such as a water purifier, a water server or an automatic ice making device. Easy to incorporate and automate.
  • it can be used in water purification plants and beverage / food factories as a bacteria inspection tool for water quality testing and food testing. More specifically, it is possible to automatically detect bacteria in the apparatus such as the water storage tank and the piping path and notify the user, or take measures such as sterilization and washing automatically.
  • the polymer layer in the above-mentioned sensor has a three-dimensional structure template complementary to the three-dimensional structure of the microorganism, a microorganism capturing device, a microorganism shape recognition device, a microorganism tracking device, It can also be used for a catalyst carrier utilizing the porous material.
  • the polymer layer is produced using an electrochemical measurement system (Model 842B, manufactured by ALS), the detection electrode is a gold electrode (corresponding to one electrode 11 of the crystal resonator), and the reference electrode is used.
  • the detection electrode is a gold electrode (corresponding to one electrode 11 of the crystal resonator)
  • the reference electrode is used.
  • Ag / AgCl saturated KCl
  • a counter electrode was a Pt rod (diameter 1 mm, length 4 cm, manufactured by Niraco Co., Ltd.).
  • the potential is a value relative to the potential of the reference electrode.
  • a quartz crystal resonator (electrode area 0.196 cm 2 , fundamental vibration frequency 9 MHz, AT cut, square type, manufactured by Seiko EG & G Co., Ltd.) provided with gold electrodes on both surfaces was used.
  • Example 1 Pseudomonas aeruginosa (zeta potential: ⁇ 33.87 mV) was used as the microorganism to be detected.
  • Example 2 Acinetobactor calcoaceticus (zeta potential: ⁇ 28.14 mV)
  • Example 3 Escherichia coli was used.
  • Example 5 Pseudomonas aeruginosa, Escherichia coli, Acinetobactor calcoaceticus, and Serratia marcescens were used.
  • 4 and 5 show electron micrographs of Pseudomonas aeruginosa and Acinetobacter, respectively. From the micrographs shown in FIGS. 4 and 5, it can be seen that the shape of Pseudomonas aeruginosa is bowl-shaped, and the shape of Acinetobacter is more nearly spherical.
  • Example 1 ⁇ Production of sensor> (Roughening process of gold electrode) The surface of the gold electrode was roughened on the surface of the gold electrode of the quartz crystal laminate according to the following procedure in order to improve the adhesion to the polypyrrole peroxide layer. 1. The gold electrode surface was etched for 30 seconds by a plasma etching apparatus (SEDE / meiwa fossis). 2. A crystal resonator was placed at the bottom of the cell 27 of the QCM sensor 33 as shown in FIG. Thereafter, 500 ⁇ L of a solution containing 30 nm citrate-protected gold nanoparticles (0.0574 wt%) was added to the cell 27 and left at room temperature for 24 hours. 3.
  • SEDE plasma etching apparatus
  • a peroxide polypyrrole layer was prepared on the gold electrode according to the following procedure. 1. A 0.1 M pyrrole aqueous solution containing Pseudomonas aeruginosa and phosphate buffer (0.2 M, pH 2.56) was prepared as a modification solution. 2. The modification solution was added into the cell 27 of the QCM sensor 33 where the gold electrode subjected to the roughening treatment was disposed, and the first counter electrode and the reference electrode were inserted into the modification solution. 3. Polypyrrole was deposited on the gold electrode by constant potential electrolysis (+0.975 V, 90 seconds) in the modification solution, and a polypyrrole layer was produced (polymerization step).
  • the resonance frequency of the crystal resonator was also monitored. 4). Lysozyme (10 mg / mL) was added dropwise to the prepared polypyrrole layer and shaken for 120 minutes, and then a 10% solution of a nonionic surfactant (trade name: triton) was added and shaken for 80 minutes (lysis process). 5. After cleaning the polypyrrole layer several times with ultrapure water, a 0.1M NaOH solution is added into the cell 27, and a constant potential +975 mV is applied for 120 seconds to perform a peroxidation treatment to obtain a peroxidized polypyrrole layer. (Peroxidation process). In the peroxidation process, the resonance frequency of the crystal resonator was also monitored.
  • FIG. 6 shows an electron micrograph of the surface of the polypyrrole layer after the polymerization step. It was observed that Pseudomonas aeruginosa was taken up on the surface of the polypyrrole layer.
  • FIG. 7 is a graph showing the relationship between time and current in the polymerization process, and the relationship between time and the resonance frequency of the crystal resonator. The time at the start of constant potential electrolysis is set to 0 seconds.
  • FIG. 8 is a graph showing the relationship between time and mass change by calculating the mass change amount of the crystal resonator from the change amount of the resonance frequency shown in FIG. From these graphs, it can be seen that the mass of the surface of the crystal resonator increases in proportion to the electrolysis time, and a sufficient mass change, that is, a sufficient polymerization of the polypyrrole layer is achieved in 90 seconds.
  • FIG. 9 shows an electron micrograph of the surface of the peroxidized polypyrrole layer after the lysis step and the peroxidation step. It can be seen that Pseudomonas aeruginosa was not observed on the surface of the peroxide polypyrrole layer, and thus Pseudomonas aeruginosa was released from the surface of the peroxide polypyrrole layer.
  • FIG. 10 shows the surface of the peroxidized polypyrrole layer produced by changing the conditions of the shaking time after dropping lysozyme in the lysis step and the shaking time after adding the nonionic surfactant. The electron micrograph of is shown.
  • FIG. 10 shows the surface of the peroxidized polypyrrole layer produced by changing the conditions of the shaking time after dropping lysozyme in the lysis step and the shaking time after adding the nonionic surfactant. The electron micrograph of is shown.
  • FIGS. 10 (a) shows a case where the shaking time after adding lysozyme is 30 minutes and a shaking time after addition of the nonionic surfactant is 20 minutes.
  • FIG. 10 (b) shows a case where lysozyme is dropped.
  • FIG. 10C shows the shaking time after adding lysozyme is 90 minutes.
  • the electron micrograph when the shaking time after adding an activator is 60 minutes is shown. From FIGS. 10 (a) to 10 (c), it can be seen that release of Pseudomonas aeruginosa is not sufficient under these conditions, and therefore the conditions of the lysis step of Example 1 are suitable conditions.
  • FIG. 11 is a graph showing the relationship between time and current in the peroxidation process and the relationship between time and the resonance frequency of the crystal unit.
  • the time at the constant potential application time in the peroxidation step is set to 0 seconds. It can be seen that the current value decreases with time and the peroxidation process proceeds. It can also be seen that the resonance frequency increases and the mass of the electrode surface decreases. This is understood to be due to the release of Pseudomonas aeruginosa.
  • Detection experiment Microorganisms were detected using a QCM sensor, which was prepared as described above and provided with a quartz crystal resonator having a Pseudomonas aeruginosa template and a peroxide polypyrrole layer formed on the surface of the cell. A sample solution containing microorganisms was added to the cell. Thereafter, an alternating voltage was applied between the gold electrode and the first counter electrode, and microorganisms were concentrated on the surface of the peroxide polypyrrole layer by dielectrophoresis.
  • An alternating voltage (waveform: sine wave, voltage: 2 Vpp, frequency: 10 MHz) was generated by a waveform generator (7075, manufactured by Hioki Electric Co., Ltd.). Further, the voltage was amplified 10 times by an amplifier (HAS4101, manufactured by NF Circuit Design Block Co., Ltd.) and applied as 20 Vpp. In addition, the resonance frequency of the crystal resonator during voltage application was monitored.
  • FIG. 12 is a graph showing the relationship between the AC voltage application time and the resonance frequency of the crystal resonator. From the results shown in FIG. 12, it was found that the resonance frequency was greatly reduced in the detection experiment in which the sample solution containing Pseudomonas aeruginosa was added. A decrease in the resonance frequency means an increase in the mass of the surface of the crystal unit, and the mass of the surface of the crystal unit is increased by the dielectrophoretic force acting on Pseudomonas aeruginosa and being incorporated into the peroxide polypyrrole layer mold. it is conceivable that. On the other hand, almost no change was observed for the Acinetobacter having different shapes as in the blank.
  • Acinetobacter different from the shape of the template is not as easily incorporated into the peroxidized polypyrrole layer as Pseudomonas aeruginosa, and it can be determined that the sensor recognizes the type of bacteria with high accuracy.
  • Example 2 ⁇ Production of sensor> The gold electrode was roughened in the same manner as in Example 1 except that Acinetobacter was used instead of Pseudomonas aeruginosa in Example 1, and the above polymerization process, lysis process, and peroxidation process were further performed. .
  • FIG. 13 shows an electron micrograph of the surface of the polypyrrole layer after the polymerization step. It was observed that Acinetobacter was taken into the surface of the polypyrrole layer.
  • FIG. 14 is a graph showing the relationship between time and current in the polymerization process, and the relationship between time and the resonance frequency of the crystal resonator. The time at the start of constant potential electrolysis is set to 0 seconds. From this graph, it can be seen that the mass of the surface of the crystal resonator increased in proportion to the electrolysis time.
  • FIG. 15 shows an electron micrograph of the surface of the peroxidized polypyrrole layer after the lysis step and the peroxidation step. It can be seen that no Acinetobacter was observed on the surface of the peroxide polypyrrole layer, and thus Acinetobacter was released from the surface of the peroxide polypyrrole layer.
  • FIG. 16 is a graph showing the relationship between time and current in the peroxidation process, and the relationship between time and the resonance frequency of the crystal resonator.
  • the time at the constant potential application time in the peroxidation step is set to 0 seconds. It can be seen that the current value decreases with time and the peroxidation process proceeds. It can also be seen that the resonance frequency increases and the mass of the electrode surface decreases. This is understood to be due to the release of Acinetobacter.
  • Detection experiment Microorganisms were detected using a QCM sensor, which was prepared as described above, and was provided with a quartz crystal resonator having a peroxide polypyrrole layer having an Acinetobacter template on the surface thereof, at the bottom of the cell.
  • the experimental conditions were the same as in Example 1.
  • FIG. 17 is a graph showing the relationship between the AC voltage application time and the resonance frequency of the crystal resonator. From the results shown in FIG. 17, it was found that in the detection experiment in which the sample solution containing Acinetobacter was added, the resonance frequency was greatly reduced. The decrease in resonance frequency means an increase in the mass of the quartz crystal surface, and it is thought that the mass of the quartz crystal surface increased by the dielectrophoretic force acting on the Acinetobacter and being taken into the mold of the peroxide polypyrrole layer. It is done. On the other hand, almost no change was observed for Pseudomonas aeruginosa having different shapes as in the blank.
  • Pseudomonas aeruginosa which is different from the shape of the template, is not easily incorporated into the peroxidized polypyrrole layer as much as Acinetobacter, and it can be determined that the sensor recognizes the type of bacteria with high accuracy.
  • Example 3 ⁇ Production of sensor> The gold electrode was roughened in the same manner as in Example 1 except that Escherichia coli was used in place of Pseudomonas aeruginosa in Example 1, and the above polymerization process, lysis process, and peroxidation process were further performed. .
  • Detection experiment Microorganisms were detected using a QCM sensor provided on the bottom of the cell with a quartz crystal formed on the surface and having a polypyrrole peroxide layer having an Escherichia coli template formed on the surface. As measurement samples, solutions of Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter were used.
  • FIG. 18 is a graph showing the relationship between the AC voltage application time and the resonance frequency of the crystal resonator. From the results shown in FIG. 18, it was found that in the detection experiment in which the sample solution containing E. coli was added, the resonance frequency was greatly reduced. A decrease in the resonance frequency means an increase in the mass of the quartz crystal surface, and it is thought that the mass of the quartz crystal surface has increased due to the dielectrophoretic force acting on E. coli and being incorporated into the peroxide polypyrrole layer mold. It is done. On the other hand, almost no change was observed for Pseudomonas aeruginosa and Acinetobacter as in the blank.
  • Pseudomonas aeruginosa and Acinetobacter which are different from the shape of the template, are not as easily incorporated into the peroxidized polypyrrole layer as E. coli, and it can be determined that the sensor recognizes the type of bacteria with high accuracy.
  • Example 4 ⁇ Production of sensor> Using Pseudomonas aeruginosa, the gold electrode roughening step was performed in the same manner as in Example 1, and the above-described polymerization step, lysis step, and peroxidation step were further performed.
  • Detection experiment Microorganisms were detected using a QCM sensor, which was prepared as described above and provided with a quartz crystal resonator having a Pseudomonas aeruginosa template and a peroxide polypyrrole layer formed on the surface of the cell. Two kinds of measurement samples were used: a solution (a) in which solutions of Pseudomonas aeruginosa, Escherichia coli, Acinetobacter and Serratia were mixed, and a solution (b) in which solutions of Escherichia coli, Acinetobacter and Serratia were mixed.
  • FIG. 19 is a graph showing the relationship between the AC voltage application time and the resonance frequency of the crystal resonator. From the results shown in FIG. 19, it was found that in the detection experiment in which the sample solution containing Pseudomonas aeruginosa was added, the resonance frequency was greatly reduced. A decrease in the resonance frequency means an increase in the mass of the surface of the crystal unit, and the mass of the surface of the crystal unit is increased by the dielectrophoretic force acting on Pseudomonas aeruginosa and being incorporated into the peroxide polypyrrole layer mold. it is conceivable that.
  • Example 5 ⁇ Production of sensor> Using a modification solution containing all of Pseudomonas aeruginosa, Escherichia coli, Acinetobacter, and Serratia bacteria, a roughening process of the gold electrode is performed in the same manner as in Example 1, and the above polymerization process, lysis process, and peroxidation process are further performed. I did it.
  • Detection experiment Microorganisms were detected using a QCM sensor provided on the bottom of the cell with a quartz crystal having a peroxide polypyrrole layer having a template containing four types of microorganisms formed on the surface, prepared as described above. As measurement samples, four types of solutions containing Pseudomonas aeruginosa, Escherichia coli, Acinetobacter, and Serratia were used.
  • (result) 20 to 23 are graphs showing the relationship between the AC voltage application time and the resonance frequency of the crystal resonator. 20 to 23 show the results of detection experiments in which sample solutions each containing Pseudomonas aeruginosa, Escherichia coli, Acinetobacter, and Serratia bacteria were added, and the resonance frequency was greatly reduced regardless of which sample solution was added. I found out that Accordingly, it can be determined that a plurality of types of microorganisms are detected by a sensor having a plurality of types of microorganism templates.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Biophysics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、検出用電極と、検出用電極上に配置され、検出対象の微生物の立体構造に相補的な三次元構造の鋳型を備えたポリマー層とを有する検出部を備え、当該鋳型への微生物の捕捉状態に基づいて微生物を検出するセンサーであって、上記ポリマー層は、検出対象とする微生物の存在下でモノマーを重合して微生物を取り込んだ状態のポリマー層を検出用電極上に形成する重合工程、ポリマー層に取り込まれた微生物を部分的に破壊する破壊工程、およびポリマー層を過酸化処理してポリマー層から微生物を放出する過酸化工程を有する製造方法により形成される。

Description

微生物検出用センサーおよびその製造方法
 本発明は、微生物を検出するためのセンサー、およびその製造方法に関する。
 近年、医療産業、食品産業、農業、畜産、養殖、水処理施設などにおいて、微生物検出への関心が高まっている。食品,医薬品,農薬などに存在する汚染微生物は、微量であるにもかかわらず、人の健康に大きく影響しうる。また、病院、老人介護施設における微生物汚染が社会問題化している。さらに、多様な抗菌商品の流通、需要の高まりに見られるように、一般家庭における衛生管理にも関心が高まっている。たとえば、食品加工工場の場合、出荷される食品の抜き取りでの細菌検査や工場内の環境中の細菌検査を実施しているが、培養法による測定の場合、結果が得られるまでに24~48時間程度要し、出荷するまでの保管コストが高くなる要因となるため、迅速な検出方法が求められている。また、農業分野においても、たとえば水耕栽培の培養液中の細菌数が増加すると発病のリスクが高まる。細菌数を早く把握することで素早く殺菌などの措置が取れるため、迅速な検出方法は有効である。
 このような状況から、微生物汚染を簡単に検出できる技術の必要性が近年急速に高まっている。また、医療現場においては、感染症の原因の病原菌を速やかに特定する必要があることから、病原菌を迅速かつ高感度で検出できる技術が求められている。微生物の検出・特定方法としては、たとえば、ELISA法、ウェスタンブロッティング法などの方法が存在する。これらは、たとえば、抗体(一次抗体)と、微生物固有のタンパク質とを抗原-抗体反応させた後、さらに標識した二次抗体を抗体(一次抗体)と反応させ二次抗体の化学発光やATPの加水分解反応のモニターにより検出を行なう方法である。
 また、特許文献1には、分子鋳型を備えたポリマーの電気化学的性質を利用して、微生物由来のアニオン分子(ATP、アミノ酸など)を検出する方法について記載されている。
特開2009-58232号公報
 しかしながら、上述の方法はいずれも微生物そのものを検出する方法ではない。また、ELISA法などでは、微生物固有のタンパク質等に対する抗体を作製する必要があり容易ではない。
 本発明は、迅速かつ簡便で、高感度に微生物を検出できる新規な微生物検出用センサー、およびその製造方法を提供することを目的とする。
 本発明は、検出用電極と、検出用電極上に配置され、検出対象の微生物の立体構造に相補的な三次元構造の鋳型を備えたポリマー層とを有する検出部を備え、当該鋳型への微生物の捕捉状態に基づいて微生物を検出するセンサーである。上記ポリマー層は、検出対象とする微生物の存在下でモノマーを重合して微生物を取り込んだ状態のポリマー層を検出用電極上に形成する重合工程、ポリマー層に取り込まれた微生物を部分的に破壊する破壊工程、およびポリマー層を過酸化処理してポリマー層から微生物を放出する過酸化工程を有する製造方法により形成される。
 上記センサーの好ましい形態は、対電極をさらに備え、検出部と対電極とを試料溶液に接触させた状態で、検出部の検出用電極と対電極間に交流電圧を印加し、誘電泳動により試料溶液中の微生物を検出部の方向に導くように構成されている。交流電圧の印加時間は、試料溶液中の微生物が検出部の方向に導かれるようであれば、特に限定はない。
 上記センサーの好ましい形態は、検出部の検出用電極を一方の電極とする水晶振動子をさらに備え、水晶振動子の共振周波数の変化からポリマー層の質量の変化を測定して微生物の捕捉状態を検出する。
 上記センサーにおいて、上記モノマーは、好ましくは、ピロール、アニリン、チオフェンおよびそれらの誘導体からなる群から選択される。
 上記センサーにおいて、上記検出用電極の上記ポリマー層の形成面は、好ましくは粗面である。
 上記センサーにおいて、上記微生物として、全体または表面の電荷が負電荷過剰の状態にある微生物が好ましい。たとえば、上記微生物は細菌であり、この場合、上記破壊工程は溶菌処理を行なう工程である。上記細菌として、たとえば、緑膿菌、アシネトバクター、大腸菌が例示される。
 また、本発明は、検出用電極と、検出用電極上に配置され、微生物の立体構造に相補的な三次元構造の鋳型を備えたポリマー層とを有する検出部を備えた微生物を検出するセンサーの製造方法であって、検出対象とする微生物の存在下でモノマーを重合して微生物を取り込んだ状態のポリマー層を検出用電極上に形成する重合工程、ポリマー層に取り込まれた微生物を部分的に破壊する破壊工程、およびポリマー層を過酸化処理してポリマー層から微生物を放出する工程、を有する製造方法である。
 上記製造方法の好ましい形態において、上記センサーは対電極をさらに備え、上記重合工程は、上記モノマーの溶液の接触下にある上記検出用電極と上記対電極との間に電圧を印加して、上記モノマーを電解重合する工程である。
 上記製造方法の好ましい形態において、上記放出工程は、中性からアルカリ性の範囲内の溶液の接触下にある上記検出用電極と上記対電極との間に電圧を印加して、上記ポリマー層を過酸化処理する工程である。
 上記製造方法の好ましい形態は、上記検出用電極のポリマー層の形成面に粗面化処理を行なう粗面化工程を有する。
 本発明のセンサーによると、迅速かつ簡便で、高感度に微生物を検出することが可能である。また、本発明のセンサーの製造方法によると、迅速かつ簡便で、高感度に微生物を検出することができるセンサーが提供される。
本発明にかかるセンサーのポリマー層の好ましい作製工程を模式的に示し、(a)は重合工程前、(b)重合工程後、(c)は破壊工程後、(d)は過酸化工程後の断面図である。 本発明のセンサーにおいて、鋳型へ標的微生物が捕捉される様子の概略を示す模式図であり、(a)は標的微生物である場合、(b)は標的微生物でない場合を示す図である。 本発明にかかるQCMセンサーの概略構成を示す模式図である。 緑膿菌の電子顕微鏡写真である。 アシネトバクターの電子顕微鏡写真である。 実施例1の重合工程後のポリピロール層表面の電子顕微鏡写真を示す図である。 実施例1の重合工程における時間と電流の関係、および時間と水晶振動子の共振周波数の関係を示すグラフである。 実施例1の時間と質量変化の関係を示すグラフである。 実施例1の溶菌工程および過酸化工程後の過酸化ポリピロール層表面の電子顕微鏡写真である。 実施例1から溶菌条件を変更させた場合の、溶菌工程および過酸化工程後の過酸化ポリピロール層表面の電子顕微鏡写真である。 実施例1の過酸化工程における時間と電流の関係、および時間と水晶振動子の共振周波数の関係を示すグラフである。 実施例1のセンサーを用いた微生物検出時の交流電圧印加時間と水晶振動子の共振周波数の関係を示すグラフである。 実施例2の重合工程後のポリピロール層表面の電子顕微鏡写真を示す図である。 実施例2の重合工程における時間と電流の関係、および時間と水晶振動子の共振周波数の関係を示すグラフである。 実施例2の溶菌工程および過酸化工程後の過酸化ポリピロール層表面の電子顕微鏡写真である。 実施例2の過酸化工程における時間と電流の関係、および時間と水晶振動子の共振周波数の関係を示すグラフである。 実施例2のセンサーを用いた微生物検出時の交流電圧印加時間と水晶振動子の共振周波数の関係を示すグラフである。 実施例3のセンサーを用いた微生物検出時の交流電圧印加時間と水晶振動子の共振周波数の関係を示すグラフである。 実施例4のセンサーを用いた微生物検出時の交流電圧印加時間と水晶振動子の共振周波数の関係を示すグラフである。 実施例5のセンサーに、緑膿菌を含む試料溶液を添加した検出実験における交流電圧印加時間と水晶振動子の共振周波数の関係を示すグラフである。 実施例5のセンサーに、大腸菌を含む試料溶液を添加した検出実験における交流電圧印加時間と水晶振動子の共振周波数の関係を示すグラフである。 実施例5のセンサーに、アシネトバクターを含む試料溶液を添加した検出実験における交流電圧印加時間と水晶振動子の共振周波数の関係を示すグラフである。 実施例5のセンサーに、セラチア菌を含む試料溶液を添加した検出実験における交流電圧印加時間と水晶振動子の共振周波数の関係を示すグラフである。
 本発明のセンサーは、検出用電極と、検出用電極上に配置され、微生物の立体構造に相補的な三次元構造の鋳型を備えたポリマー層とを有する検出部を備え、鋳型への微生物の捕捉状態に基づいて微生物を検出するものである。
 本発明のセンサーのポリマー層は、検出対象とする微生物(以下、「標的微生物」ともいう)の存在下でモノマーを重合して微生物を取り込んだ状態のポリマー層を検出用電極上に形成する重合工程と、ポリマー層に取り込まれた微生物を部分的に破壊する破壊工程と、ポリマー層を過酸化処理してポリマー層から微生物を放出する過酸化工程とを有する製造方法により形成される。
 以下、図面を参照しながら、本発明の好ましい実施形態を説明する。
 [センサーにおけるポリマー層の作製]
 図1は、本発明にかかるセンサーのポリマー層の好ましい作製工程を模式的に示す断面図である。図1では、モノマーとしてピロールを用いる場合の実施形態を示す。まず、図1(a)に示すように、検出用電極11に接触する環境下に、微生物13およびピロールを含む溶液12を準備する。重合工程(St1)では、検出用電極11を陽極とし、対電極(不図示)を陰極とする電気分解を行い、ピロールの酸化的重合反応により、検出用電極11上にポリピロール(図1(b)中「PPy」は、ポリピロールの略である)からなるポリマー層14を形成する。形成されたポリマー層14には、微生物13が取り込まれる。ピロールは、重合工程で検出用電極11に電子を放出するためにそれ自体は陽電荷を有し、この陽電荷を補償するために、全体または表面の電荷が負電荷過剰の状態にある微生物13がポリマー層14中に取り込まれると考えられる。
 次に、破壊工程(St2)において、図1(c)に示すように、ポリマー層14に取り込まれた微生物13の一部を破壊する破壊工程を行なう。破壊工程は、たとえば、分解酵素の添加、温度調整、超音波処理、オゾン処理、残留塩素の存在、バクテリオファージ処理により行なうことができる。破壊工程は、微生物13が細菌である場合は、リゾチームなどの分解酵素を用いた溶菌処理(以下、溶菌処理による破壊工程を「溶菌工程」ともいう)により行なうことができる。かかる破壊工程により、微生物13の形状が変化し、微生物13がポリマー層14から放出されやすくなる。
 その後、過酸化工程(St3)において、ポリマー層14を過酸化する。ポリマー層14を構成するポリピロールが過酸化されると過酸化ポリピロール(図1(d)中「Oppy」は、過酸化ポリピロールの略である)となり電気的に中性となるため、微生物13がポリマー層14から放出される。ポリマー層14中の微生物13が存在した領域は、微生物13の立体構造に相補的な三次元構造を有する鋳型15となる。この過酸化工程(St3)は、ポリマー層14の硬化をも引き起こし、微生物13の鋳型15を安定化させる。過酸化工程(St3)は、溶液12を中性からアルカリ性の範囲内に調製して、検出用電極11と対電極(不図示)間に電圧を印加することにより行なうことが好ましい。このように形成された鋳型15を備えたポリマー層14と、検出用電極11との積層体が、本発明のセンサーにおける検出部17を構成する。
 形成される鋳型の三次元構造は、過酸化反応の溶液組成、過酸化反応を引き起こすための電圧に依存して変動し得る。一般に、過酸化反応が徐々に進行するような条件下では、検出対象の微生物13により緊密な三次元構造を有する鋳型が形成される。
 検出対象の微生物13としては、全体または表面の電荷が負電荷過剰の状態にある微生物であれば特に限定されることはなく、大腸菌のEscherichia属、緑膿菌などのPseudomonas属、Acinetobacter calocoaceticusなどのAcinetobacter属を始め、Serratia属、Klebsiella属、Enterobacter属、Citrobacter属、Burkholderia属、Sphingomonadase属、Chromobacterium属、Salmonella属、Vibrio属、Legionella属、Campylobacter属、Yersinia属、Proteus属、Neisseria属、Staphylococcus属、Streptococcus属、Enterococcus属、Clostridium属、Corynebacterium属、Listeria属、Bacillus属、Mycobacterium属、Chlamydia属、Rickettsia属、Haemophilus属の細菌が例示される。また、ウイルスとしては、A型肝炎ウィルス、アデノウィルス、ロタウィルス、ノロウィルスが、真菌としてはカンジダが、原虫としてはクリプトスポリジウムが例示される。微生物の全体または表面の電荷は、pHなどの溶液12の水質により変化する。たとえば、微生物の表面にはカルボキシル基、アミノ基、リン酸基などの種々の官能基があるが、それらの官能基を含む表面はpHが高くなると負に帯電する。そのため、鋳型を形成する際や測定する際に、負電荷過剰の状態にするために、たとえば、溶液12をアルカリ性にするなどしても良い。
 図1においては、モノマーとしてピロールを用い、ポリマー層としてポリピロール層を形成する場合について説明したが、ポリマー層の原料となるモノマーとしてはピロールに限定されることはなく、他には、アニリン、チオフェン、それらの誘導体等が例示される。
 検出用電極11の材料は特に限定されることはなく、金電極、金とクロムとの多層電極、金とチタンとの多層電極、銀電極、銀とクロムとの多層電極、銀とチタンとの多層電極、鉛電極、白金電極、カーボン電極等が例示される。検出用電極11のポリマー層14が形成される面には、粗面化処理が施されていることが好ましい。検出用電極11のポリマー層14が形成される面が粗面であることにより、ポリマー層14との密着性が向上し、また電極の表面積が拡大するという効果がある。たとえば、検出用電極11として金電極を用いた場合、金電極表面にプラズマエッチングを施し、その後金ナノ粒子を固定することにより粗面化処理する粗面化工程を行なうことができる。
 [鋳型への標的微生物の捕捉]
 図2は、鋳型へ標的微生物が捕捉される様子の概略を示す模式図である。図2(a)は試料溶液中の微生物13aが標的微生物である場合を示し、図2(b)は試料溶液中の微生物13bが標的微生物でない場合を示す。図2(a),(b)に示すように、まず、ポリマー層14と検出用電極11とからなる検出部17と、対電極16とに接触する環境下に、試料溶液を準備する。そして、検出用電極11と対電極16間との間に交流電圧を印加し、誘電泳動により試料溶液中の微生物を検出部17の方向に移動させる。なお、微生物が誘電泳動により検出用電極11の方に向かって移動するように、対電極16の構成、印加電圧の調整、試料溶液の調製を行なう。微生物が検出用電極11の方向に移動すると、鋳型15の三次元構造と相補的な立体構造の微生物13aは鋳型15内に捕捉されるが(図2(a))、鋳型15と相補的でない微生物13bは鋳型15内に捕捉されない(図2(b))。また、微生物以外の、たとえば、泥、鉄さびといった濁質が水に含まれていた場合であっても、それらも鋳型15と三次元的形状、荷電状態等が異なり相補的でないため、捕捉されない。そのため、標的微生物と他の濁質の識別が可能である。微生物と他の濁質との分離は、誘電泳動によっても可能である(微生物を電極に集めるが他の濁質は集めないような条件で誘電泳動を行うことができる)が、誘電泳動で微生物と他の濁質を分離するためには、水の導電率などの水質の変化に応じて、周波数などの誘電泳動の条件を変える必要がある。本発明のセンサの場合、対象物の形状で識別できるため、水質の影響を受けにくい。
 [標的微生物の検出]
 微生物13aが鋳型15内に捕捉されると、ポリマー層14および検出用電極11からなる積層体に、たとえば、質量変化、導電特性変化、電気容量変化、光反射率変化、温度変化等が生じる。本発明のセンサーにおいては、このような変化を検出して、微生物の鋳型15への捕捉状態を検出する。そして、捕捉状態に基づいて標的微生物の検出が可能となる。このような検出により、標的微生物の迅速かつ高感度の検出が達成され得る。質量変化の検出方法の具体例として、水晶振動子の共振周波数の変化を検出する検出方法が挙げられる。以下、本発明のセンサーの好ましい一例である、水晶振動子マイクロバランス(QCM)センサーについ説明する。
 (QCMセンサー)
 図3は、QCMセンサーの概略構成を示す模式図である。QCMセンサー33は、溶液を保持するセル27と、セル27の底部に配置された水晶振動子32と、発振回路22と、周波数カウンタを有するコントローラ21とを備える。水晶振動子32は、図1に示した工程により作製された検出部17と、水晶片24と、対電極(第2対電極)23とが順に積層されてなる。QCMセンサー33は、さらに、試料溶液31内に浸漬される対電極(第1対電極)16と、参照電極30とを備え、検出部17の検出用電極11と対電極16とに接続された交流電源29を備える。
 まず、セル27内に試料溶液31を添加する。そして、交流電源29により検出用電極11と対電極16との間に交流電圧を印加することによって、試料溶液31内に含まれる微生物が誘電泳動により検出部17の方向に移動させる。これと同時に、発振回路22により検出用電極11と対電極23との間に交流電圧を印加し、水晶片24を振動させる。ポリマー層14の鋳型15に微生物が捕捉されると、検出部17の質量に変化が生じ、水晶片24の共振周波数が変化する。コントローラ21内の周波数カウンタは、発振回路22からの信号を受けて、共振周波数値を測定する。共振周波数値の変化から微生物の捕捉状態が検出される。
 図3に示すQCMセンサー33を用いて、検出用電極11表面の粗面化処理、および図1に示した工程にしたがって、検出用電極11上にポリマー層を形成することができる。これらの場合は、検出用電極11、水晶片24、対電極23がこの順で積層された水晶振動子をセル27の底部に配置し、交流電源29に代えて直流電源を接続して行なう。QCMセンサー33を用いたポリマー層の形成においては、ポリマー層形成時に併せて水晶振動子の共振周波数変化をモニターすることにより、ポリマー層の形成の進行状況を確認することができる。検出対象の微生物が複数種類存在する場合には、それぞれの本発明にかかる鋳型を個々に形成して、それらを組合せることにより、或いは単一の鋳型の中に複数の微生物に対応した鋳型が同時に形成されることにより、同時に複数種類の微生物を検出することも可能である。
 本発明のセンサーによると、たとえば、数分~数10分で細菌を検出することも可能であり、培養法と比較してはるかに迅速に検出することができる。また、蛍光染色に必要な染色試薬や、ATPで菌数を測定するのに必要なATP抽出試薬などを使用せずに検出することができるため、浄水器、ウォーターサーバーあるいは自動製氷装置などの機器への組み込みや自動化が容易である。また、水質検査、食品検査での細菌検査ツールとして、浄水場や、飲料品・食品工場での利用が可能である。更に具体的には、貯水タンクや配管経路などの装置内の細菌を自動的に検知し、ユーザーに報知したり、自動的に殺菌・洗浄などの対策をしたりすることができる。また、浄水場での上水の配管ラインに装置として組み込んで配水される水の細菌を検知することも可能である。
 上述のセンサーにおけるポリマー層は、センサーの構成要素以外にも、微生物の立体構造に相補的な三次元構造の鋳型を有することを利用した微生物捕捉装置、微生物形状認識装置、微生物追跡装置、また、多孔質体であることを利用した触媒担体などに用いることも可能である。
 以下、本発明を実施例によって説明する。以下の実施例は、本発明を例示するものであって、本発明を制限するものではない。
 以下の実施例において、ポリマー層の作製は電気化学測定システム(Model842B、ALS社製)を用いて行ない、検出用電極には金電極(水晶振動子の一方の電極11に対応)、参照電極にはAg/AgCl(飽和KCl)、対電極(第1対電極)にはPt棒(直径1mm、長さ4cm、(株)ニラコ製)を用いた。下記において、電位はこの参照電極の電位に対する値を記載している。また、両方の面に金電極が設けられた水晶振動子(電極面積0.196cm、基本振動周波数9MHz、ATカット、角型、(株)セイコー・イージーアンドジー製)を用いた。
 実施例1,4では検出対象の微生物として、緑膿菌(Pseudomonas aeruginosa、ゼータ電位:-33.87mV)を用い、実施例2ではアシネトバクター(Acinetobactor calcoaceticus、ゼータ電位:-28.14mV)、実施例3では大腸菌(Escherichia coli)、実施例5では緑膿菌(Pseudomonas aeruginosa)、大腸菌(Escherichia coli)、アシネトバクター(Acinetobactor calcoaceticus)、セラチア菌(Serratia marcescens)用いた。図4、図5はそれぞれ緑膿菌、アシネトバクターの電子顕微鏡写真を示す。図4、図5に示す顕微鏡写真から、緑膿菌の形状は俵形であり、アシネトバクターの形状はそれよりも球状に近い形状であることがわかる。
 [実施例1]
 <センサーの作製>
 (金電極の粗面化工程)
 金電極の表面に、過酸化ポリピロール層との密着性向上のため以下の手順にしたがい水晶振動子積層体の金電極表面の粗面化処理を行なった。
1.プラズマエッチング装置(SEDE/meiwa fosis)により、金電極表面に30秒間エッチングを行なった。
2.水晶振動子を、図3に示すようなQCMセンサー33のセル27の底部に設置した。その後、30nmのクエン酸保護金ナノ粒子(0.0574wt%)を含んだ溶液500μLをセル27に添加し、室温で24時間放置した。
3.金電極を純水で洗浄後、臭化ヘキサデシルトリメチルアンモニウム溶液(0.1M)9mL、塩化金(III)酸四塩化物(0.01M)250μL、NaOH(0.1M)50μL、アスコルビン酸(0.1M)50μLを混合して出来た溶液(成長液)500μLをセル27に添加し、室温で24時間静置した。
4.セル27内の溶液を除去し、金電極を超純水で洗浄した。
 (微生物の鋳型を備えた過酸化ポリピロール層の作製)
 以下の手順に従って金電極上に過酸化ポリピロール層を作製した。
1.緑膿菌、リン酸緩衝液(0.2M、pH2.56)を含む0.1Mのピロール水溶液を調製して修飾溶液とした。
2.上記で粗面化処理を施した金電極が配置されているQCMセンサー33のセル27内に、修飾溶液を添加し、修飾溶液内に第1対電極および参照電極を差し込んだ。
3.修飾溶液中において定電位電解(+0.975V、90秒間)することで金電極上にポリピロールを析出させ、ポリピロール層を作製した(重合工程)。重合工程においては、水晶振動子の共振周波数のモニターも行なった。
4.作製したポリピロール層にリゾチーム(10mg/mL)を滴下し、120分間振盪し、その後非イオン性界面活性剤(商品名:triton)の10%溶液を添加し、80分間振盪した(溶菌工程)。
5.超純水で数回のポリピロール層の洗浄を行った後、セル27内に0.1MのNaOH溶液を添加し、定電位+975mVを120秒間印加して過酸化処理を施し過酸化ポリピロール層を得た(過酸化工程)。過酸化工程においては、水晶振動子の共振周波数のモニターも行なった。
 (結果)
 図6は、重合工程後のポリピロール層表面の電子顕微鏡写真を示す。ポリピロール層の表面に緑膿菌が取り込まれた様子が観察された。図7は、重合工程における時間と電流の関係、および時間と水晶振動子の共振周波数の関係を示すグラフである。定電位電解開始時点の時間を0秒とする。また、図8は、図7に示した共振周波数の変化量から水晶振動子の質量変化量を算出し、時間と質量変化の関係を示すグラフである。これらのグラフから、電解時間に比例して水晶振動子表面の質量が増加し、90秒間で十分な質量変化、すなわち十分なポリピロール層の重合が達成されることがわかる。
 図9は、溶菌工程および過酸化工程後の過酸化ポリピロール層表面の電子顕微鏡写真を示す。過酸化ポリピロール層の表面に緑膿菌が観察されず、したがって過酸化ポリピロール層の表面から緑膿菌が放出されたことがわかる。図10は、上記実施例1とは、溶菌工程におけるリゾチームを滴下した後の振盪時間、および非イオン性界面活性剤を添加した後の振盪時間の条件を変更して作製した過酸化ポリピロール層表面の電子顕微鏡写真を示す。図10(a)は、リゾチームを滴下した後の振盪時間が30分で非イオン性界面活性剤を添加した後の振盪時間が20分とした場合、図10(b)は、リゾチームを滴下した後の振盪時間を60分、非イオン性界面活性剤を添加した後の振盪時間を40分とした場合、図10(c)はリゾチームを滴下した後の振盪時間が90分で非イオン性界面活性剤を添加した後の振盪時間が60分とした場合の電子顕微鏡写真を示す。図10(a)~(c)から、これらの条件においては緑膿菌の放出が十分ではなく、したがって実施例1の溶菌工程の条件が好適な条件であることがわかる。
 図11は、過酸化工程における時間と電流の関係、および時間と水晶振動子の共振周波数の関係を示すグラフである。過酸化工程における定電位印加時点の時間を0秒とする。電流値は時間とともに低下し過酸化処理が進行していることがわかる。また、共振周波数は増加し、電極表面の質量が低下していることがわかる。これは、緑膿菌が放出されたことによるものであると理解される。
 <微生物の検出>
 (検出実験)
 上述のようにして作製した、緑膿菌鋳型を有する過酸化ポリピロール層が表面に形成された水晶振動子をセルの底部に備えたQCMセンサーを用いて微生物の検出を行なった。セル内に微生物を含む試料溶液を添加した。その後、金電極と第1対電極間に交流電圧を印加し、誘電泳動により微生物を過酸化ポリピロール層の表面へ濃縮させた。波形発生装置(7075、日置電機(株)製)により、交流電圧(波形:正弦波、電圧:2Vpp、周波数:10MHz)を発生させた。さらに増幅器(HAS4101,(株)エヌエフ回路設計ブッロク製)で電圧を10倍に増幅し、20Vppとして印加した。また、電圧印加時の水晶振動子の共振周波数をモニタリングした。
 (結果)
 図12は、交流電圧印加時間と水晶振動子の共振周波数の関係を示すグラフである。図12に示す結果から、緑膿菌を含む試料溶液を添加した検出実験では、共振周波数が大きく減少することが分かった。共振周波数の減少は水晶振動子表面の質量の増加を意味しており、緑膿菌に誘電泳動力が作用し過酸化ポリピロール層の鋳型に取り込まれることで水晶振動子表面の質量が増加したものと考えられる。一方、形状の異なるアシネトバクターに対してはブランクと同様にほとんど変化が見られなかった。よって、鋳型の形状とは異なるアシネトバクターは緑膿菌ほど容易に過酸化ポリピロール層に取り込まれていないと考えられ、センサーは細菌の種類を高精度に認識していると判断できる。
 [実施例2]
 <センサーの作製>
 実施例1の緑膿菌に代えて、アシネトバクターを用いた点以外は、実施例1と同様に金電極の粗面化工程を行ない、さらに上述の重合工程、溶菌工程、過酸化工程を行なった。
 (結果)
 図13は、重合工程後のポリピロール層表面の電子顕微鏡写真を示す。ポリピロール層の表面にアシネトバクターが取り込まれた様子が観察された。図14は、重合工程における時間と電流の関係、および時間と水晶振動子の共振周波数の関係を示すグラフである。定電位電解開始時点の時間を0秒とする。このグラフから、電解時間に比例して水晶振動子表面の質量が増加したことがわかる。
 図15は、溶菌工程および過酸化工程後の過酸化ポリピロール層表面の電子顕微鏡写真を示す。過酸化ポリピロール層の表面にアシネトバクターが観察されず、したがって過酸化ポリピロール層の表面からアシネトバクターが放出されたことがわかる。
 図16は、過酸化工程における時間と電流の関係、および時間と水晶振動子の共振周波数の関係を示すグラフである。過酸化工程における定電位印加時点の時間を0秒とする。電流値は時間とともに低下し過酸化処理が進行していることがわかる。また、共振周波数は増加し、電極表面の質量が低下していることがわかる。これは、アシネトバクターが放出されたことによるものであると理解される。
 <微生物の検出>
 (検出実験)
 上述のようにして作製した、アシネトバクター鋳型を有する過酸化ポリピロール層が表面に形成された水晶振動子をセルの底部に備えたQCMセンサーを用いて微生物の検出を行なった。実験条件は、実施例1と同様とした。
 (結果)
 図17は、交流電圧印加時間と水晶振動子の共振周波数の関係を示すグラフである。図17に示す結果から、アシネトバクターを含む試料溶液を添加した検出実験では、共振周波数が大きく減少することが分かった。共振周波数の減少は水晶振動子表面の質量の増加を意味しており、アシネトバクターに誘電泳動力が作用し過酸化ポリピロール層の鋳型に取り込まれることで水晶振動子表面の質量が増加したものと考えられる。一方、形状の異なる緑膿菌に対してはブランクと同様にほとんど変化が見られなかった。よって、鋳型の形状とは異なる緑膿菌はアシネトバクターほど容易に過酸化ポリピロール層に取り込まれていないと考えられ、センサーは細菌の種類を高精度に認識していると判断できる。
 [実施例3]
 <センサーの作製>
 実施例1の緑膿菌に代えて、大腸菌を用いた点以外は、実施例1と同様に金電極の粗面化工程を行ない、さらに上述の重合工程、溶菌工程、過酸化工程を行なった。
 <微生物の検出>
 (検出実験)
 上述のようにして作製した、大腸菌鋳型を有する過酸化ポリピロール層が表面に形成された水晶振動子をセルの底部に備えたQCMセンサーを用いて微生物の検出を行なった。測定サンプルとしては、緑膿菌・大腸菌・アシネトバクターのそれぞれの溶液を用いた。
 (結果)
 図18は、交流電圧印加時間と水晶振動子の共振周波数の関係を示すグラフである。図18に示す結果から、大腸菌を含む試料溶液を添加した検出実験では、共振周波数が大きく減少することが分かった。共振周波数の減少は水晶振動子表面の質量の増加を意味しており、大腸菌に誘電泳動力が作用し過酸化ポリピロール層の鋳型に取り込まれることで水晶振動子表面の質量が増加したものと考えられる。一方、形状の異なる緑膿菌やアシネトバクターに対してはブランクと同様にほとんど変化が見られなかった。よって、鋳型の形状とは異なる緑膿菌やアシネトバクターは大腸菌ほど容易に過酸化ポリピロール層に取り込まれていないと考えられ、センサーは細菌の種類を高精度に認識していると判断できる。
 [実施例4]
 <センサーの作製>
 緑膿菌を用いて、実施例1と同様に金電極の粗面化工程を行ない、さらに上述の重合工程、溶菌工程、過酸化工程を行なった。
 <微生物の検出>
 (検出実験)
 上述のようにして作製した、緑膿菌鋳型を有する過酸化ポリピロール層が表面に形成された水晶振動子をセルの底部に備えたQCMセンサーを用いて微生物の検出を行なった。測定サンプルとしては、緑膿菌・大腸菌・アシネトバクター・セラチア菌の各溶液を混合した溶液(a)と、大腸菌・アシネトバクター・セラチア菌の各溶液を混合した溶液(b)の2種類を用いた。
 (結果)
 図19は、交流電圧印加時間と水晶振動子の共振周波数の関係を示すグラフである。図19に示す結果から、緑膿菌を含む試料溶液を添加した検出実験では、共振周波数が大きく減少することが分かった。共振周波数の減少は水晶振動子表面の質量の増加を意味しており、緑膿菌に誘電泳動力が作用し過酸化ポリピロール層の鋳型に取り込まれることで水晶振動子表面の質量が増加したものと考えられる。一方、形状の異なる大腸菌やアシネトバクターやセラチア菌に対してはブランク(c)と同様にほとんど変化が見られなかった。よって、鋳型の形状とは異なる大腸菌やアシネトバクターやセラチア菌は緑膿菌ほど容易に過酸化ポリピロール層に取り込まれていないと考えられ、センサーは細菌の種類を高精度に認識していると判断できる。
 [実施例5]
 <センサーの作製>
 緑膿菌、大腸菌、アシネトバクター、及びセラチア菌の全てを含む修飾溶液を用いて、実施例1と同様に金電極の粗面化工程を行ない、さらに上述の重合工程、溶菌工程、過酸化工程を行なった。
 <微生物の検出>
 (検出実験)
 上述のようにして作製した、4種類の微生物を含む鋳型を有する過酸化ポリピロール層が表面に形成された水晶振動子をセルの底部に備えたQCMセンサーを用いて微生物の検出を行なった。測定サンプルとしては、緑膿菌、大腸菌、アシネトバクター、セラチア菌をそれぞれを含む4種類の溶液を用いた。
 (結果)
 図20~図23は、交流電圧印加時間と水晶振動子の共振周波数の関係を示すグラフである。図20~図23は、緑膿菌、大腸菌、アシネトバクター、セラチア菌をそれぞれを含む試料溶液を添加した検出実験における結果を示し、いずれの試料溶液を添加した場合であっても共振周波数が大きく減少することが分かった。これより、複数種の微生物の鋳型を有するセンサーによって、複数種の微生物が検出されていると判断できる。
 11 検出用電極、12 溶液、13 微生物、14 ポリマー層、15 鋳型、16 対電極(第1対電極)、17 検出部、21 コントローラ、22 発振回路、23 対電極(第2対電極)、24 水晶片、27 セル、29 交流電源、30 参照電極、31 試料溶液、32 水晶振動子、33 QCMセンサー。

Claims (14)

  1.  検出用電極と、前記検出用電極上に配置され、検出対象の微生物の立体構造に相補的な三次元構造の鋳型を備えたポリマー層とを有する検出部を備え、
     前記鋳型への前記微生物の捕捉状態に基づいて前記微生物を検出するセンサーであって、
     前記ポリマー層は、検出対象とする微生物の存在下でモノマーを重合して前記微生物を取り込んだ状態の前記ポリマー層を前記検出用電極上に形成する重合工程、前記ポリマー層に取り込まれた微生物を部分的に破壊する破壊工程、および前記ポリマー層を過酸化処理して前記ポリマー層から前記微生物を放出する過酸化工程を有する製造方法により形成される、センサー。
  2.  対電極をさらに備え、
     前記検出部と前記対電極とを試料溶液に接触させた状態で、前記検出部の検出用電極と前記対電極間に交流電圧を印加し、誘電泳動により前記試料溶液中の微生物を前記検出部の方向に導く、請求項1に記載のセンサー。
  3.  前記検出部の前記検出用電極を一方の電極とする水晶振動子をさらに備え、
     前記水晶振動子の共振周波数の変化から前記ポリマー層の質量の変化を測定して前記微生物の捕捉状態を検出する、請求項1または2に記載のセンサー。
  4.  前記モノマーが、ピロール、アニリン、チオフェンおよびそれらの誘導体からなる群から選択される、請求項1~3のいずれかに記載のセンサー。
  5.  前記モノマーが、ピロールまたはその誘導体からなる、請求項4に記載のセンサー。
  6.  前記検出用電極の前記ポリマー層の形成面が粗面である、請求項1~5のいずれかに記載のセンサー。
  7.  前記微生物は、全体または表面の電荷が負電荷過剰の状態にある、請求項1~6のいずれかに記載のセンサー。
  8.  前記微生物は細菌であり、前記破壊工程において溶菌処理を行なう請求項1~7のいずれかに記載のセンサー。
  9.  前記細菌は、緑膿菌、アシネトバクターまたは大腸菌である、請求項8に記載のセンサー。
  10.  検出用電極と、前記検出用電極上に配置され、微生物の立体構造に相補的な三次元構造の鋳型を備えたポリマー層とを有する検出部を備えた微生物を検出するセンサーの製造方法であって、
     検出対象とする微生物の存在下でモノマーを重合して前記微生物を取り込んだ状態の前記ポリマー層を前記検出用電極上に形成する重合工程、
     前記ポリマー層に取り込まれた微生物を部分的に破壊する破壊工程、および
     前記ポリマー層を過酸化処理して前記ポリマー層から前記微生物を放出する工程、を有する製造方法。
  11.  前記センサーは対電極をさらに備え、
     前記重合工程は、前記モノマーの溶液の接触下にある前記検出用電極と前記対電極との間に電圧を印加して、前記モノマーを電解重合する、請求項10に記載の製造方法。
  12.  前記過酸化工程は、中性からアルカリ性の範囲内の溶液の接触下にある前記検出用電極と前記対電極との間に電圧を印加して、前記ポリマー層を過酸化処理する、請求項10または11に記載の製造方法。
  13.  前記検出用電極の前記ポリマー層の形成面に粗面化処理を行なう粗面化工程を有する、請求項10~12のいずれかに記載の製造方法。
  14.  微生物の立体構造に相補的な三次元構造の鋳型を備えたポリマー層であって、
     前記ポリマー層は、前記微生物の存在下でモノマーを重合して前記ポリマー層を形成する重合工程、前記ポリマー層に取り込まれた微生物を部分的に破壊する破壊工程、および前記ポリマー層から前記微生物を放出する過酸化工程を有する製造方法により製造される、ポリマー層。
PCT/JP2012/055611 2011-03-08 2012-03-06 微生物検出用センサーおよびその製造方法 WO2012121229A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/003,613 US9206461B2 (en) 2011-03-08 2012-03-06 Microorganism detection sensor and method of manufacturing the same
EP12754214.0A EP2684946B1 (en) 2011-03-08 2012-03-06 Microorganism detection sensor and process for manufacturing same
CN201280011897.7A CN103459583B (zh) 2011-03-08 2012-03-06 传感器、传感器的制造方法及聚合物层
JP2013503547A JP6014582B2 (ja) 2011-03-08 2012-03-06 微生物検出用センサーの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-050416 2011-03-08
JP2011050416 2011-03-08

Publications (1)

Publication Number Publication Date
WO2012121229A1 true WO2012121229A1 (ja) 2012-09-13

Family

ID=46798187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055611 WO2012121229A1 (ja) 2011-03-08 2012-03-06 微生物検出用センサーおよびその製造方法

Country Status (5)

Country Link
US (1) US9206461B2 (ja)
EP (1) EP2684946B1 (ja)
JP (1) JP6014582B2 (ja)
CN (1) CN103459583B (ja)
WO (1) WO2012121229A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454331A (zh) * 2013-09-06 2013-12-18 南京理工大学 过氧化pedot/go修饰电极及其对农药吡虫啉的电化学检测方法
WO2014156584A1 (ja) * 2013-03-28 2014-10-02 シャープ株式会社 微生物検出用センサー、その製造方法、およびポリマー層
JP2015042958A (ja) * 2013-08-26 2015-03-05 公立大学法人大阪府立大学 被検出微生物を検出する検出方法
WO2015166977A1 (ja) * 2014-05-02 2015-11-05 公立大学法人大阪府立大学 がん細胞検出用高分子膜及びその製造方法、並びにそれを用いたがん細胞検出装置
JP2017187463A (ja) * 2016-04-05 2017-10-12 シャープ株式会社 センサ装置、検出方法、及びセンサユニット
WO2017175879A1 (ja) * 2016-04-05 2017-10-12 シャープ株式会社 センサ装置、検出方法、及びセンサユニット
US9890991B2 (en) 2013-03-14 2018-02-13 Whirlpool Corporation Domestic appliance including piezoelectric components
JP2020091218A (ja) * 2018-12-06 2020-06-11 東ソー株式会社 機能性物質固定化粒子の保持方法
KR20200074785A (ko) * 2018-12-17 2020-06-25 한국과학기술연구원 수직 나노갭 전극을 이용한 유전영동 방법에 의한 고효율 바이오연료 생산 균주의 선별방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089597A (zh) * 2013-12-19 2022-02-25 Illumina公司 包括纳米图案化表面的基底及其制备方法
CN104928348A (zh) * 2015-06-29 2015-09-23 苏州东辰林达检测技术有限公司 肉制品中沙门氏菌的检测方法
JP6171124B2 (ja) * 2015-10-07 2017-08-02 株式会社Afiテクノロジー 検査装置、検査システム、及び検査方法
CN106645348B (zh) * 2016-12-23 2019-03-05 南开大学 一种高稳定微生物电化学传感器的制备方法
CN108241056A (zh) * 2016-12-23 2018-07-03 财团法人金属工业研究发展中心 生物检测装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524417A (ja) * 2000-02-11 2003-08-19 バイオメリュー・インコーポレイテッド バルク液から微生物を表面培養するための装置および方法
JP2009058232A (ja) * 2007-08-29 2009-03-19 Atect Corp 分子鋳型を有するポリマーを備えたセンサー

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2161653C2 (ru) * 1998-08-24 2001-01-10 ФАРМАКОВСКИЙ Дмитрий Александрович Способ количественного электрохимического анализа биомолекул
US20040126814A1 (en) * 2000-08-21 2004-07-01 Singh Waheguru Pal Sensor having molecularly imprinted polymers
US6582971B1 (en) * 2000-08-21 2003-06-24 Lynntech, Inc. Imprinting large molecular weight compounds in polymer composites
US20090012446A1 (en) * 2007-07-03 2009-01-08 Xinyan Cui Devices, systems and methods for release of chemical agents
US20120258444A1 (en) * 2010-11-18 2012-10-11 Therrien Joel M Acoustic wave (aw) sensing devices using live cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524417A (ja) * 2000-02-11 2003-08-19 バイオメリュー・インコーポレイテッド バルク液から微生物を表面培養するための装置および方法
JP2009058232A (ja) * 2007-08-29 2009-03-19 Atect Corp 分子鋳型を有するポリマーを備えたセンサー

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HIROMI MIZOBATA ET AL.: "Bunshi Igata Kasanka Polypyrrole-maku o Mochiita QCM Kenshutsuki no Kaihatsu", FLOW INJECTION BUNSEKI KOENKAI KOEN YOSHISHU, vol. 48TH, 2009, pages 45 - 46, XP008170729 *
HIROMI MIZOBATA ET AL.: "Bunshi Igata Kasanka Polypyrrole-maku o Riyo shita ATP no Kenshutsu", ABSTRACTS OF THE SYMPOSIUM OF THE JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, vol. 71ST, May 2010 (2010-05-01), pages 57, XP008170731 *
HIROMI MIZOBATA ET AL.: "Bunshi Igata Kasanka Polypyrrole-maku o Riyo shita Rinsanki Gan'yu Busshitsu no Kenshutsu", THE JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY NENKAI KOEN YOSHISHU, vol. 59TH, September 2010 (2010-09-01), pages 358, XP008170730 *
TAKEDA S. ET AL.: "A Highly Sensitive Amperometric Adenosine Triphosphate Sensor Based on Molecularly Imprinted Overoxidized Polypyrrole.", J. FLOW INJECTION ANAL., vol. 25, no. 1, 2008, pages 77 - 79, XP055124178 *
YU NAKADOI ET AL.: "Bunshi Igata Kasaka Polypyrrole-maku o Mochiita Virus Sensor no Kaihatsu", EXTENDED ABSTRACTS, JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, vol. 58, 9 March 2011 (2011-03-09), pages 12 - 407, XP008170719 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9890991B2 (en) 2013-03-14 2018-02-13 Whirlpool Corporation Domestic appliance including piezoelectric components
WO2014156584A1 (ja) * 2013-03-28 2014-10-02 シャープ株式会社 微生物検出用センサー、その製造方法、およびポリマー層
EP2980204A1 (en) * 2013-03-28 2016-02-03 Sharp Kabushiki Kaisha Microorganism detection sensor, method for manufacturing same, and polymer layer
EP2980204A4 (en) * 2013-03-28 2016-10-19 Sharp Kk MICROORGANISM DETECTION SENSOR, METHOD FOR MANUFACTURING THE SAME, AND POLYMER LAYER
JP6077106B2 (ja) * 2013-03-28 2017-02-08 シャープ株式会社 微生物検出用センサー、その製造方法、およびポリマー層
JP2015042958A (ja) * 2013-08-26 2015-03-05 公立大学法人大阪府立大学 被検出微生物を検出する検出方法
CN103454331A (zh) * 2013-09-06 2013-12-18 南京理工大学 过氧化pedot/go修饰电极及其对农药吡虫啉的电化学检测方法
WO2015166977A1 (ja) * 2014-05-02 2015-11-05 公立大学法人大阪府立大学 がん細胞検出用高分子膜及びその製造方法、並びにそれを用いたがん細胞検出装置
JPWO2015166977A1 (ja) * 2014-05-02 2017-04-20 公立大学法人大阪府立大学 がん細胞検出用高分子膜及びその製造方法、並びにそれを用いたがん細胞検出装置
JP2017187463A (ja) * 2016-04-05 2017-10-12 シャープ株式会社 センサ装置、検出方法、及びセンサユニット
WO2017175879A1 (ja) * 2016-04-05 2017-10-12 シャープ株式会社 センサ装置、検出方法、及びセンサユニット
US10690611B2 (en) 2016-04-05 2020-06-23 Sharp Kabushiki Kaisha Sensor device, detection method, and sensor unit
JP2020091218A (ja) * 2018-12-06 2020-06-11 東ソー株式会社 機能性物質固定化粒子の保持方法
KR20200074785A (ko) * 2018-12-17 2020-06-25 한국과학기술연구원 수직 나노갭 전극을 이용한 유전영동 방법에 의한 고효율 바이오연료 생산 균주의 선별방법
KR102134394B1 (ko) 2018-12-17 2020-07-16 한국과학기술연구원 수직 나노갭 전극을 이용한 유전영동 방법에 의한 고효율 바이오연료 생산 균주의 선별방법
US11285492B2 (en) 2018-12-17 2022-03-29 Korea Institute Of Science And Technology Screening method for high-efficiency biofuel-producing strains by dielectrophoretic method using vertical nano-gap electrodes

Also Published As

Publication number Publication date
EP2684946B1 (en) 2018-11-21
JP6014582B2 (ja) 2016-10-25
CN103459583A (zh) 2013-12-18
JPWO2012121229A1 (ja) 2014-07-17
CN103459583B (zh) 2015-11-25
EP2684946A4 (en) 2015-01-07
US9206461B2 (en) 2015-12-08
EP2684946A1 (en) 2014-01-15
US20130337498A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP6014582B2 (ja) 微生物検出用センサーの製造方法
Gutman et al. Bacterial attachment and viscoelasticity: physicochemical and motility effects analyzed using quartz crystal microbalance with dissipation (QCM-D)
Olsson et al. Novel analysis of bacterium− substratum bond maturation measured using a quartz crystal microbalance
Gall et al. The effect of electric fields on bacterial attachment to conductive surfaces
Zhang et al. Online monitoring of bacterial growth with an electrical sensor
JP6077106B2 (ja) 微生物検出用センサー、その製造方法、およびポリマー層
Zhong et al. Nafion coated stainless steel for anti-biofilm application
KR20100130218A (ko) 예정된 세균 숙주 균주를 감염시킬 수 있는 박테리오파지를 탐지 및/정량화시키는 방법 및 시스템, 상기 박테리오파지 탐지 그리고 상기 방법을 실행하기 위한 마이크로전자공학 센서 장치
EP2705355A2 (en) Device and method for identifying microbes and counting microbes and determining antimicrobial sensitivity
Wang et al. Ti nano electrode fabrication for electrochemical denitrification using Box–Behnken design
Oulahal‐Lagsir et al. Ultrasonic methodology coupled to ATP bioluminescence for the non‐invasive detection of fouling in food processing equipment—validation and application to a dairy factory
US20130183459A1 (en) Device and method for identifying microbes and counting microbes and determining antimicrobial sensitivity
Sha et al. Multilayer films of carbon nanotubes and redox polymer on screen-printed carbon electrodes for electrocatalysis of ascorbic acid
WO2019028162A1 (en) DETERMINING THE VIABILITY OF BACTERIA BY MEASURING THE TRANSIENT PRODUCTION OF BIOGENIC AMINES
Mondal et al. Detection of total bacterial load in water samples using a disposable impedimetric sensor
Schmitz et al. Nanotopographical coatings induce an early phenotype-specific response of primary material-resident M1 and M2 macrophages
Chen et al. Immobilized reporter phage on electrospun polymer fibers for improved capture and detection of Escherichia coli O157: H7
JP2009058232A (ja) 分子鋳型を有するポリマーを備えたセンサー
Maliszewska et al. Biofouling removal from membranes using nonthermal plasma
CN1715899A (zh) 一种新型余氯检测电极的制备方法
Lin et al. Electrochemical Removal of Bacteria from Zinc Oxide Nanopillars Synthesized on Stainless Steel
WO2015166977A1 (ja) がん細胞検出用高分子膜及びその製造方法、並びにそれを用いたがん細胞検出装置
JP4856961B2 (ja) 微生物を用いる金属類の除去・回収方法、除去・回収装置および除去・回収剤
JP6406875B2 (ja) 抗菌性検査方法
Maas et al. Evaluating Nonlinear Impedance Excitation as Detection Method for Biosensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503547

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14003613

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012754214

Country of ref document: EP