CN1715899A - 一种新型余氯检测电极的制备方法 - Google Patents

一种新型余氯检测电极的制备方法 Download PDF

Info

Publication number
CN1715899A
CN1715899A CN 200410069537 CN200410069537A CN1715899A CN 1715899 A CN1715899 A CN 1715899A CN 200410069537 CN200410069537 CN 200410069537 CN 200410069537 A CN200410069537 A CN 200410069537A CN 1715899 A CN1715899 A CN 1715899A
Authority
CN
China
Prior art keywords
electrode
basal
preparation
perchloric acid
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200410069537
Other languages
English (en)
Inventor
邓群山
郭琦龙
辜志俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN 200410069537 priority Critical patent/CN1715899A/zh
Publication of CN1715899A publication Critical patent/CN1715899A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

一种新型余氯检测电极的制备方法,基底电极可选用玻碳电极、金电极、铂电极或石墨电极,对电极为铂丝,饱和甘汞电极或银/氯化银电极为参比电极,室温下,将经表面预处理的基底电极浸入含1~5mM氯金酸的高氯酸溶液中,高氯酸的浓度为0.1M,采用三步阶跃电位法得到稳定的金纳米粒子修饰电极。所得的金纳米粒子在基底电极表面排列紧密、有序,粒子直径在50~150nm。该修饰电极对余氯的电化学还原反应有很好的催化性能,另外,该修饰电极对于二氧化氯、溶解氧的电还原反应也有很好的催化性能。

Description

一种新型余氯检测电极的制备方法
技术领域
本发明涉及一种电极,具体地说涉及一种在基底电极表面修饰金纳米粒子的制备方法。
背景技术
使用氯制剂(氯胺,氯气,次氯酸盐等)对饮用水和工业冷却水消毒杀菌是目前国内外广泛应用的公认技术。对于饮用水主要是为了杀灭传染病菌,以保障人民健康;对于冷却水主要是杀灭微生物菌类,以保证热交换系统的良好工作状态。余氯是指氯制剂加入到被处理水并与其中的还原性物质作用后剩余的总氯量(活性氯、OCl-和有机氯,氯显正价)。氯制剂的杀菌消毒效力只取决于此余氯浓度。城市卫生防疫部门为了严格监控水质,对城市的一切水源,包括自来水、污水处理站、医院排水等均要求进行适时余氯浓度监测。因此,余氯的即时在线测定十分必要。而对监测仪器也提出了更高要求,不仅性能可靠,还要向自动、在线、连续、小型、便携式方向发展。
余氯测定的传统方法有:滴定法(如亚砷酸滴定法等)、分光光度法(如DPD分光光度法等),它们都属于实验室方法,准确性好但费时费力,不适于适时在线检测。采用余氯试纸检测具有操作简便,适时在线的特点,但准确性较差。
基于电化学原理的余氯传感器是比较理想的测定技术,能实现准确、在线、连续、自动检测。目前,已有商品上市,如美国Capital、德国Prominent等。该余氯传感器探头一般包括渗透膜和贵金属电极的组合体系。贵金属为金或铂。
现基于纳米粒子的独特的电子、催化特性,选用纳米金粒子修饰电极来提高测量余氯的响应信号和稳定性。
发明内容
本发明的目的是提供一种金纳米粒子在基底电极表面的制备方法,得到的金纳米粒子修饰电极对余氯电还原反应有很好的催化性能。
本发明的目的是这样实现的:室温条件下,将经表面处理(抛光、清洗、磷酸中阳极化、冲洗)的基底电极浸入到含有氯金酸的高氯酸溶液中,采用三步阶跃电位法,得到表面沉积有金纳米粒子的修饰电极。所得的金纳米粒子在基底电极表面排列紧密、有序,粒子直径在50~150nm。
基底电极可以为玻碳电极、金电极、铂电极或石墨电极。参比电极可以为饱和甘汞电极或银/氯化银电极。
本发明制备过程如下:
1.基底电极预处理:每次实验前,基底电极依次用6#金相砂纸、3μm、0.5μm、0.05μm氧化铝粉末抛光,然后分别用无水乙醇、去离子水超声清洗。然后,将电极浸入0.1M磷酸溶液中在-0.2~1.2V之间循环伏安扫描至曲线稳定。电极用水冲洗。
2.经抛光、清洗、活化的基底电极浸入到含1~5mM氯金酸的高氯酸溶液中,高氯酸的浓度为0.1~0.5M。采用三步阶跃电位法:极化电位一为-0.1~0.1V,极化时间为10~20s;极化电位二为-0.4~-0.2V,极化时间为30~60s;极化电位三为-0.1~0.1V,极化时间为30~60s。极化结束后,将电极取出,用水冲洗,红外灯烘干,即得到稳定的金纳米粒子修饰电极。
使用该修饰电极为工作电极伏安法进行余氯检测发现,相对于使用金或铂电极,余氯电还原反应的峰电位正移,同时峰电流增大,说明该修饰电极对余氯电还原反应有催化作用。实验验证,该修饰电极测试余氯在0.01~2ppm浓度范围内响应电流与余氯浓度有良好线性关系,测试结果相对误差在5%以内。另外,该修饰电极对于二氧化氯、溶解氧的电还原反应也有很好的催化性能。
具体实施方式
本发明提供的实施例如下:
实施例1:将新处理的基底电极(该电极经抛光、清洗、活化(0.1Ml磷酸中阳极氧化,电位+1.2V))浸入到含有1mM氯金酸的高氯酸溶液中,高氯酸的浓度为0.1M,采用三步阶跃电位法极化处理:一,0V,10s;二,-0.3V,60s;三,0V,30s。取出电极,用水冲洗,红外灯烘干,即得到沉积有金纳米粒子的修饰电极。
实施例2:将新处理的基底电极(条件同实施例1)浸入到含有2mM氯金酸的高氯酸溶液中,高氯酸的浓度为0.1M,采用三步阶跃电位法极化处理:一,0V,10s;二,-0.3V,30s;三,0V,60s。取出电极,用水冲洗,红外灯烘干,即得到沉积有金纳米粒子的修饰电极。
实施例3:将新处理的基底电极(条件同实施例1)浸入到含有5mM氯金酸的高氯酸溶液中,高氯酸的浓度为0.1M,采用三步阶跃电位法极化处理:一,0.1V,10s;二,-0.2V,30s;三,0.1V,30s。取出电极,用水冲洗,红外灯烘干,即得到沉积有金纳米粒子的修饰电极。

Claims (2)

1、一种新型余氯检测电极的制备方法,其主要步骤为:
(1)、基底电极预处理:基底电极依次用6#金相砂纸、3μm、0.5μm、0.05μm氧化铝粉末抛光,然后分别用无水乙醇、去离子水超声清洗,将电极浸入0.1M磷酸溶液中在-0.2~1.2V之间循环伏安扫描至曲线稳定,电极用水冲洗。
(2)、将基底电极浸入到含1~5mM氯金酸的高氯酸溶液中,高氯酸的浓度为0.1~0.5M;采用三步阶跃电位法:极化电位一为-0.1~0.1V,极化时间为10~20s;极化电位二为-0.4~-0.2V,极化时间为30~60s;极化电位三为-0.1~0.1V,极化时间为30~60s;极化结束后,将电极取出,用水冲洗,烘干。
2、如权利要求1所述的制备方法,其特征在于:该基底电极为玻碳电极、金电极、铂电极或石墨电极。
CN 200410069537 2004-07-02 2004-07-02 一种新型余氯检测电极的制备方法 Pending CN1715899A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410069537 CN1715899A (zh) 2004-07-02 2004-07-02 一种新型余氯检测电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410069537 CN1715899A (zh) 2004-07-02 2004-07-02 一种新型余氯检测电极的制备方法

Publications (1)

Publication Number Publication Date
CN1715899A true CN1715899A (zh) 2006-01-04

Family

ID=35821912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410069537 Pending CN1715899A (zh) 2004-07-02 2004-07-02 一种新型余氯检测电极的制备方法

Country Status (1)

Country Link
CN (1) CN1715899A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101966594A (zh) * 2010-10-18 2011-02-09 上海市七宝中学 电沉积金纳米粒子及其制备方法、应用
CN101377473B (zh) * 2007-08-31 2012-04-25 中国科学院过程工程研究所 一种快速的定量电分析方法
CN1928542B (zh) * 2006-09-18 2012-05-23 厦门大学 纳米金电极用于体外检测表阿霉素浓度的电化学方法
WO2020181069A1 (en) * 2019-03-05 2020-09-10 Abb Schweiz Ag Chlorine species sensing using pseudo-graphite
IT201900003447A1 (it) * 2019-03-11 2020-09-11 Tecnosens S R L Nuovi sensori stampati su carta nanostrutturati.
US11327046B2 (en) 2019-03-05 2022-05-10 Abb Schweiz Ag PH sensing using pseudo-graphite
US11415540B2 (en) 2019-03-05 2022-08-16 Abb Schweiz Ag Technologies using nitrogen-functionalized pseudo-graphite
US11415539B2 (en) 2019-03-05 2022-08-16 Abb Schweiz Ag Chemical oxygen demand sensing using pseudo-graphite
US11680923B2 (en) 2019-03-05 2023-06-20 Abb Schweiz Ag Technologies using surface-modified pseudo-graphite

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1928542B (zh) * 2006-09-18 2012-05-23 厦门大学 纳米金电极用于体外检测表阿霉素浓度的电化学方法
CN101377473B (zh) * 2007-08-31 2012-04-25 中国科学院过程工程研究所 一种快速的定量电分析方法
CN101966594A (zh) * 2010-10-18 2011-02-09 上海市七宝中学 电沉积金纳米粒子及其制备方法、应用
WO2020181069A1 (en) * 2019-03-05 2020-09-10 Abb Schweiz Ag Chlorine species sensing using pseudo-graphite
US11327046B2 (en) 2019-03-05 2022-05-10 Abb Schweiz Ag PH sensing using pseudo-graphite
US11415540B2 (en) 2019-03-05 2022-08-16 Abb Schweiz Ag Technologies using nitrogen-functionalized pseudo-graphite
US11415539B2 (en) 2019-03-05 2022-08-16 Abb Schweiz Ag Chemical oxygen demand sensing using pseudo-graphite
US11585776B2 (en) * 2019-03-05 2023-02-21 Abb Schweiz Ag Chlorine species sensing using pseudo-graphite
US11680923B2 (en) 2019-03-05 2023-06-20 Abb Schweiz Ag Technologies using surface-modified pseudo-graphite
IT201900003447A1 (it) * 2019-03-11 2020-09-11 Tecnosens S R L Nuovi sensori stampati su carta nanostrutturati.
WO2020182830A1 (en) * 2019-03-11 2020-09-17 Tecnosens Srl Nanostructured sensor printed on paper

Similar Documents

Publication Publication Date Title
Chen et al. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell
Liu et al. Development and characterization of an amperometric sensor for triclosan detection based on electropolymerized molecularly imprinted polymer
Sahni et al. Quantification of hydroxyl radicals produced in aqueous phase pulsed electrical discharge reactors
Senthilkumar et al. Free chlorine detection based on EC’mechanism at an electroactive polymelamine-modified electrode
Canizares et al. Effect of the current intensity in the electrochemical oxidation of aqueous phenol wastes at an activated carbon and steel anode
Wang et al. A high-sensitive and durable electrochemical sensor based on Geobacter-dominated biofilms for heavy metal toxicity detection
Jin et al. Indirect electrochemical Cr (III) oxidation in KOH solutions at an Au electrode: the role of oxygen reduction reaction
CN1715899A (zh) 一种新型余氯检测电极的制备方法
Cetó et al. Electrochemical detection of N‐nitrosodimethylamine using a molecular imprinted polymer
Palmisano et al. Photo-degradation of amoxicillin, streptomycin, erythromycin and ciprofloxacin by UV and UV/TiO2 processes. Evaluation of toxicity changes using a respirometric biosensor
Lucas et al. Solar photochemical treatment of winery wastewater in a CPC reactor
Davis et al. Arrays of microelectrodes: technologies for environmental investigations
KR101077919B1 (ko) 카드형 멀티측정기
Wu et al. A novel electrochemical sensor based on autotropic and heterotrophic nitrifying biofilm for trichloroacetic acid toxicity monitoring
CN102392069B (zh) 基于功能化纳米金电极的快速检测菌落总数的方法
CN103940861A (zh) 一种采用核酸适配体可见光电极检测内分泌干扰物的方法
Campbell et al. Evaluation of N-methylpyrrolidone and its oxidative products toxicity utilizing the microtox assay
He et al. Electrochemical determination of vitamin C on glassy carbon electrode modified by carboxyl multi-walled carbon nanotubes
Granero et al. An amperometric biosensor for trans‐resveratrol determination in aqueous solutions by means of carbon paste electrodes modified with peroxidase basic isoenzymes from Brassica napus
Baranowska et al. Differential pulse voltammetry in analysis of disinfectants—2-mercaptobenzothiazole, 4-chloro-3-methylphenol, triclosan, chloramine-T
Guwy et al. A technique for monitoring hydrogen peroxide concentration off-line and on-line
KR20040009344A (ko) 전기화학식 잔류염소센서 및 이를 이용한 측정장치
Dave et al. Contribution of Cyclic Voltammetry and Electrochemical Impedance Spectroscopy in Deciphering the Electron Transport System in Biofilm
Darwish et al. Fast and Reliable Determination of Organic Compounds in Washing Water Samples Using Electrochemical-based Measurements of Chemical Oxygen Demand
CN102539510A (zh) 用钛酸镍镧/铁酸钴修饰玻碳电极测定过氧化氢的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication