WO2017175879A1 - センサ装置、検出方法、及びセンサユニット - Google Patents

センサ装置、検出方法、及びセンサユニット Download PDF

Info

Publication number
WO2017175879A1
WO2017175879A1 PCT/JP2017/020313 JP2017020313W WO2017175879A1 WO 2017175879 A1 WO2017175879 A1 WO 2017175879A1 JP 2017020313 W JP2017020313 W JP 2017020313W WO 2017175879 A1 WO2017175879 A1 WO 2017175879A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor device
inspected
electrode pair
oscillation
sensor
Prior art date
Application number
PCT/JP2017/020313
Other languages
English (en)
French (fr)
Other versions
WO2017175879A8 (ja
Inventor
晶 齊藤
佐藤 大紀
満仲 健
飯塚 邦彦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016130940A external-priority patent/JP6676486B2/ja
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/090,817 priority Critical patent/US10690611B2/en
Publication of WO2017175879A1 publication Critical patent/WO2017175879A1/ja
Publication of WO2017175879A8 publication Critical patent/WO2017175879A8/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a sensor device, a detection method, and a sensor unit, and more particularly to a sensor device, a sensor device, a detection method, and a sensor unit that detect a test object existing in a liquid and its state.
  • Non-Patent Documents 1 and 2 Human body diagnostic equipment used in homes and simple diagnostic laboratories is required to be low in cost, downsized, shorten inspection time, and easy to operate.
  • a diagnostic device that satisfies such a requirement, there is a sensor device formed in a semiconductor integrated circuit (for example, Non-Patent Documents 1 and 2).
  • FIG. 20 shows a conventional sensor device disclosed in Non-Patent Documents 1 and 2.
  • the sensor device 10 is formed in a semiconductor integrated circuit, and includes an oscillation unit 11 and an oscillation frequency detection unit 12.
  • the oscillation unit 11 includes a resistor R1 and a resonator 13.
  • the resonator 13 includes cross-coupled transistors M1 and M2, inductors L1 and L2, two sensing electrodes 14 in contact with the device under test 20, and a capacitor C3.
  • the resonance frequency of the resonator 13 is 6 to 30 GHz.
  • FIG. 21 shows a perspective view of the two sensing electrodes 14.
  • FIG. 22 is a cross-sectional view of the plate electrodes 141 and 142 and the peripheral members taken along line AA in FIG. As shown in FIG. 21, each sensing electrode 14 includes two plate electrodes 141 and 142 each having a rectangular shape.
  • the plate electrodes 141 and 142 are formed in the uppermost metal wiring layer of the semiconductor integrated circuit as shown in FIG.
  • An interlayer insulating film 16 is disposed between the metal wiring layers of the semiconductor integrated circuit.
  • FIG. 22 for convenience, only the uppermost metal wiring layer and the interlayer insulating film 16 thereunder are shown.
  • the surface of the interlayer insulating film 16 is covered with the surface protective film 15, but the surface protective film 15 is opened in the region where the two plate-like electrodes 141 and 142 are disposed. For this reason, the exposed upper surfaces of the plate electrodes 141 and 142 are in direct contact with the device under test 20.
  • the operation of the sensor device 10 will be described.
  • the dielectric constant of the device under test 20 near the sensing electrode 14 changes, the parasitic capacitance value to the sensing electrode 14 changes and the resonance frequency of the resonator 13 changes.
  • a change in the oscillation frequency of the oscillation unit 11 accompanying a change in the resonance frequency is detected using the oscillation frequency detection unit 12.
  • the sensor device 10 can detect a change in the dielectric constant generated in the device under test 20 in the vicinity of the sensing electrode 14 as a change in the oscillation frequency of the oscillation unit 11.
  • a change in the dielectric constant generated in the inspection object 20 in the vicinity of the sensing electrode 14 is caused by a change in the oscillation frequency of the oscillation unit 11 due to a change in the parasitic capacitance value to the sensing electrode 14.
  • the sensor surface has a sensitivity distribution that maximizes the sensitivity to the inspection object 20 in the vicinity of the sensing electrode 14.
  • the inspection is often performed in a liquid. Therefore, if the semiconductor integrated circuit in which the sensor device of FIG. 20 is formed is used alone and sensing is performed by bringing a liquid containing the inspection object into contact with each other, the target inspection object is positioned at an appropriate position on the sensor surface. Since no means for selectively arranging is provided, the detection sensitivity for the target object to be inspected is not good. Further, there is a problem that the detection sensitivity depends on the distribution of the target object to be inspected in the liquid.
  • Non-Patent Documents 1 and 2 in order to place an object to be inspected in the vicinity of the sensing electrode, a photo resist SU-8 and a silicone rubber PDMS (polydimethylsiloxane) are used.
  • the formed microchannel is integrated with the semiconductor integrated circuit in which the sensor device is formed. Thereby, the flow of the liquid is controlled to solve the above problem.
  • an object of the present invention is to provide a sensor device, a detection method, and a sensor unit that can easily improve detection sensitivity of a target object to be inspected dispersed in a liquid. Is to provide.
  • a sensor device includes an oscillating unit that is formed in a semiconductor integrated circuit and whose oscillation frequency changes in accordance with the physical properties of an object to be inspected.
  • An oscillation frequency detection unit for detection and one or more electrode pairs for moving a specific object to be inspected dispersed in the liquid to an arbitrary position are provided.
  • (A) in a figure is a figure which shows the state before applying an alternating voltage signal to an electrode pair
  • (b) is a figure which shows the state after applying an alternating voltage signal to an electrode pair.
  • (A) in a figure is a figure which shows the state before applying an alternating voltage signal to an electrode pair
  • (b) is a figure which shows the state after applying an alternating voltage signal to an electrode pair.
  • (A) in a figure is a figure which shows the state before applying an alternating voltage signal to an electrode pair
  • (b) is a figure which shows the state after applying an alternating voltage signal to an electrode pair.
  • FIG. 11 is a cross-sectional view taken along line A-A ′ in FIG.
  • FIG. 11 is a cross-sectional view taken along line A-A ′ in FIG.
  • FIG. 11 is a cross-sectional view taken along line A-A ′ in FIG.
  • FIG. 11 is a figure which shows the oscillation frequency of the oscillation part which an oscillation frequency detection part detects.
  • FIG. 22 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 1 is a block diagram showing a configuration of the sensor device 30. As shown in FIG. 1, the sensor device 30 includes an oscillation unit 31 and an oscillation frequency detection unit 32.
  • the oscillation unit 31 is an LC oscillation circuit including a resonator 33, a differential circuit 34, and a sensing electrode 35, and is formed as a part of a semiconductor integrated circuit on a semiconductor integrated circuit substrate (not shown).
  • the oscillation frequency of the oscillating unit 31 changes according to the physical properties of the object 20 to be inspected.
  • the sensor device 30 will be described by taking as an example a case where the oscillation frequency changes in accordance with the complex dielectric constant of the object 20 to be inspected.
  • This sensor device 30 uses a living cell or tissue having water as a main component as a main object 20 to be inspected. Since the change in the complex dielectric constant of water is large at a frequency of 30 to 200 GHz and the change in the frequency characteristic of the dielectric constant can be detected with high sensitivity, the oscillation frequency of the oscillating unit 31 is preferably 30 to 200 GHz.
  • the resonator 33 has capacitors C0, C11, C12 and an inductor L0.
  • the inductor L0 and the capacitor C0 are connected in parallel.
  • One end of the capacitor C11 is connected to one of a set of plate-like electrodes constituting the sensing electrode 35, and one end of the capacitor C12 is connected to the other of the set of plate-like electrodes constituting the sensing electrode 35. Yes.
  • a device under test 20 is in contact with the other end of each of the capacitors C11 and C12. Thereby, the capacitors C11 and C12 are connected in series with the device under test 20.
  • Capacitors C11 and C12 are formed of a protective film on the surface of a semiconductor integrated circuit substrate (not shown).
  • the resonator 33 functions as a sensor unit that detects the complex dielectric constant by changing the resonance frequency according to the complex dielectric constant of the device under test 20.
  • the capacitor C0 may be formed by a wiring (not shown) or a parasitic capacitance of the differential circuit 6.
  • the oscillation frequency detection unit 32 is a part that detects the oscillation frequency of the oscillation unit 31, and a known frequency detection circuit can be used.
  • the oscillation frequency detector 32 may be formed in a semiconductor integrated circuit or may be formed outside the semiconductor integrated circuit.
  • the differential circuit 34 is a circuit including a differential transistor pair, and is appropriately formed by a known differential circuit such as a differential circuit including a plurality of transistors cross-coupled to each other.
  • the sensor device 30 includes a moving means for the object to be inspected 20.
  • the sensor device 30 includes an electrode pair as a moving means of the device under test 20. This will be described later.
  • FIG. 2 is a circuit diagram showing an equivalent circuit of the resonator 33.
  • C2 and G2 are capacitance and conductance included in the device under test 20, respectively, and the resonator 33 is represented by an equivalent circuit shown in FIG.
  • the capacitors C11 and C12 are grouped together as a capacitor C1 in order to simplify the calculation.
  • the oscillation frequency fres of the oscillating unit 31 can be expressed as the following equation (2).
  • fres is a function of both the real part and the imaginary part of the complex permittivity.
  • the complex permittivity of the device under test 20 connected in series between the two electrodes constituting the sensing electrode 35 included in the resonator 33 through the capacitor C 11 and the capacitor C 12 is detected as the resonance frequency of the resonator 33.
  • the oscillation frequency detector 12 detects the oscillation frequency of the oscillator 31 as the resonance frequency of the resonator 33. That is, in the sensor device 30, the oscillation frequency detection unit 12 detects the complex dielectric constant of the device under test 20 as the oscillation frequency of the oscillation unit 31.
  • the resonance frequency of the resonator 33 changes.
  • the oscillation frequency detection unit 32 detects a change in the oscillation frequency of the oscillation unit 31 accompanying a change in the resonance frequency. Therefore, in the sensor device 30, the oscillation frequency detection unit 12 detects a change in the complex dielectric constant of the device under test 20 as a change in the oscillation frequency of the oscillation unit 31.
  • FIG. 3 is a schematic diagram showing a semiconductor integrated circuit 40 in which a sensor device 30 having an electrode pair 36 is formed as a moving means for an object to be inspected.
  • the sensor device 30 of FIG. 1 is formed in the semiconductor integrated circuit 40. 3, the capacitors C0, C11, C12, the oscillation frequency detection unit 32, and the differential circuit 34 in FIG. 1 are collectively illustrated as a circuit group 37.
  • An electrode pair 36 is formed by one or more pairs of electrodes in the vicinity of the sensing electrode 35 by a metal layer of a semiconductor integrated circuit constituting the sensor device 30.
  • An AC or DC voltage signal can be applied to the electrode pair 36 from the outside of the sensor device 30, and an object to be inspected in the vicinity of the electrode pair 36 is moved using an electric field generated by the voltage signal. Can do.
  • the object to be inspected can be moved to an arbitrary position using the dielectrophoretic force or the electrophoretic force generated by applying a voltage signal to the electrode pair 36.
  • the detection sensitivity of the sensor device 30 with respect to the device under test can be improved. If this sensor device 30 is used, it is possible to easily realize improvement in detection sensitivity with respect to a target object to be inspected dispersed in the liquid only by using the electrode pair 36.
  • the electrode pair 36 is constituted by a metal layer close to the surface layer of the semiconductor integrated circuit, particularly by a top metal layer.
  • the electric field in the vicinity of the electrode pair 36 it is preferable to increase the electric field in the vicinity of the electrode pair 36.
  • the electric field strength generated by the voltage signal applied to the electrode pair 36 is increased in the vicinity of the surface of the sensor device 30, thereby obtaining an effect of increasing the dielectrophoretic force on the object to be inspected.
  • the sensing electrode 35 is composed of a metal layer close to the surface layer of the semiconductor integrated circuit, particularly a top metal layer.
  • the electric field strength generated by the sensing electrode 35 is increased in the vicinity of the surface of the sensor device 30, so that an effect of improving the sensitivity of the sensor device 30 with respect to the complex dielectric constant can be obtained. Further, since the electrode pair 36 and the sensing electrode 35 are formed integrally with the semiconductor integrated circuit 40, the sensor device 30 can be reduced in size.
  • the oscillation frequency detector 12 of the sensor device 30 calculates the complex dielectric constant of the device under test connected in series between the two electrodes constituting the sensing electrode 35 included in the resonator 33 in FIG. 1 through the capacitor C11 and the capacitor C12. It is detected as the resonance frequency of the resonator 33. This is equivalent to detecting the complex dielectric constant of the object to be inspected in the vicinity of the sensing electrode 35 in FIG.
  • the influence on the detection frequency is largely due to the presence of an object to be inspected that exists in the intermediate region (intermediate position) of the two plate electrodes constituting the sensing electrode 35. Therefore, the position where the effective value of the electric field strength generated by the voltage signal applied to the electrode pair 36 is the strongest, that is, the intermediate region of the electrode pair 36 overlaps the intermediate region of the two plate electrodes constituting the sensing electrode 35. It shall be designed as appropriate. Thereby, the object to be inspected can be moved to an intermediate region between the two plate-like electrodes constituting the sensing electrode 35.
  • Embodiment 1 (Configuration of sensor device)
  • the configuration of the sensor device according to the present embodiment is the same as the configuration of the sensor device 30 shown in FIG.
  • FIG. 4A is a diagram illustrating a state before an AC voltage signal is applied to the electrode pair 36
  • FIG. 4B is a diagram illustrating a state after the AC voltage signal is applied to the electrode pair 36. .
  • the surface of the sensor device 30 is brought into contact with a liquid (not shown here) containing one type of inspected object 21 that is a dielectric particle including cells.
  • a liquid (not shown here) containing one type of inspected object 21 that is a dielectric particle including cells.
  • any kind of liquid can be selected.
  • the test object 21 is a cell
  • phosphate buffered saline (PBS) is generally used as the liquid in order to maintain the pH or osmotic pressure around the cell at an appropriate value.
  • an AC voltage signal having an angular frequency ⁇ is applied to the electrode pair 36.
  • Equation (3) Re in [( ⁇ p * - ⁇ m *) / ( ⁇ p * + 2 ⁇ m *)] if positive is, force directed in a direction of the strong electric field strength to the device under test 21 (positive dielectrophoretic forces ) Works.
  • the formula (3) in the Re [( ⁇ p * - ⁇ m *) / ( ⁇ p * + 2 ⁇ m *)] if is negative, a force repelling against the force directed electric field strength to the strong direction (negative dielectrophoretic Force) works.
  • the angular frequency ⁇ of the AC voltage signal is selected so that a direction in which the electric field strength is strong with respect to the object to be inspected 21, that is, a force toward the intermediate region of the electrode pair 36 that provides the AC voltage signal.
  • the AC voltage signal is not limited to a sine wave and may be a periodic function.
  • the inspected object 21 is collected in the intermediate region of the electrode pair 36 by the positive dielectrophoretic force.
  • This intermediate region is designed to overlap with the intermediate region of the two plate electrodes constituting the sensing electrode 35. Therefore, in this state, when the oscillation frequency detector 12 detects the oscillation frequency of the oscillator 31, the oscillation frequency due to the complex dielectric constant of the device under test 21 and the oscillation frequency associated with the change in the complex dielectric constant of the device under test 21. Can be detected with high sensitivity.
  • FIG. 5A is a diagram showing a state before an AC voltage signal is applied to the electrode pair 36
  • FIG. 5B is a diagram showing a state after an AC voltage signal is applied to the electrode pair 36.
  • the surface of the sensor device 30 is brought into contact with a liquid (not shown here) containing two or more types of test objects that are dielectric particles including cells.
  • a liquid not shown here
  • two types of test objects a target test object 22 and a non-target test object 23 are dispersed. Note that there may be a plurality of types of the inspected objects 23 that are not targeted.
  • an AC voltage signal having an angular frequency ⁇ is applied to the electrode pair 36.
  • the angular frequency ⁇ of the AC voltage signal is such that a positive dielectrophoretic force acts on the target object 22 and a negative dielectrophoretic force acts on the non-target object 23.
  • the target object 22 to be inspected gathers in the intermediate region of the electrode pair 36, that is, the intermediate region of the sensing electrode 35, and The object 23 to be inspected moves away from the sensing electrode 35.
  • the oscillation frequency detection unit 12 detects the oscillation frequency of the oscillation unit 31, so that the target object 22 to be inspected can be obtained even in the liquid in which the object 23 other than the target object 22 is mixed. It becomes possible to selectively detect the oscillation frequency due to the complex permittivity and the change in the oscillation frequency accompanying the change in the complex permittivity of the device under test 22.
  • blood is a liquid in which a plurality of types of blood cells including red blood cells are dispersed in plasma.
  • angular frequency ⁇ of the AC voltage signal in accordance with the dielectric properties of the target blood cell in the blood, and testing the blood using the sensor device 30 according to the present embodiment, Without performing a component separation process such as centrifugation, it is possible to measure the dielectric characteristics of a target blood cell with only the sensor device 30 according to the present embodiment.
  • FIG. 6 is a schematic diagram showing the semiconductor integrated circuit 40 in which the sensor unit 50 is formed.
  • a sensor unit 50 is formed in the semiconductor integrated circuit 40, and the sensor unit 50 includes a plurality of sensor devices 30A, 30B,.
  • Each of the sensor devices 30A, 30B,... Has the same configuration as that of the sensor device 30 shown in FIG.
  • Each of the sensor devices 30A, 30B,... May have the electrode pairs 36A, 36B,.
  • FIG. 7A is a diagram showing a state before an AC voltage signal is applied to the electrode pairs 36A, 36B,...
  • FIG. 7B is an AC voltage applied to the electrode pairs 36A, 36B,. It is a figure which shows the state after applying a signal.
  • an AC voltage signal having an angular frequency ⁇ is applied to each electrode pair 36A, 36B,.
  • the angular frequency ⁇ of the AC voltage signal is selected so that a positive dielectrophoretic force acts on the inspection object 24.
  • the device under test 24 is in the middle region of each electrode pair 36A, 36B,..., That is, each sensor device 30A, 30B,. Are gathered in the middle region of the sensing electrode 35.
  • the inspected object 24 contained in the liquid has a concentration distribution on the surface of the sensor devices 30A, 30B,..., And is intermediate between the sensing electrodes 35 of the sensor devices 30A, 30B,.
  • the number of test objects 24 collected in the region is affected by the concentration of the test objects 24 in the vicinity of the electrode pairs 36A, 36B,.
  • the oscillation frequency detection unit 12 of each of the sensor devices 30A, 30B,... Detects the oscillation frequency of the oscillation unit 31 and compares them with each other, thereby comparing each sensor device 30A, It is possible to reduce the influence of the concentration distribution of the inspection object 24 on the surface of 30B,... On the detection sensitivity of each sensor device 30A, 30B,.
  • the oscillation frequency detector 12 of each sensor device 30A, 30B,... Is in a state where only the target object to be inspected is concentrated in the intermediate region of the sensing electrode 35 of each sensor device 30A, 30B,.
  • the oscillation frequency of the oscillator 31 can be detected.
  • FIG. 8A is a diagram showing a state before an AC voltage signal is applied to the electrode pairs 36A, 36B,...
  • FIG. 8B is an AC voltage applied to the electrode pairs 36A, 36B,. It is a figure which shows the state after applying a signal.
  • a liquid containing two or more types of test objects that are dielectric particles including cells on the surface of each sensor device 30A, 30B,.
  • two types of test objects, a target test object 24 and a target test object 25, are dispersed in the liquid.
  • the target object to be inspected may be three or more types.
  • an AC voltage signal having an angular frequency ⁇ is applied to each electrode pair 36A, 36B,.
  • the angular frequency ⁇ of the AC voltage signal is selected so that a positive dielectrophoretic force acts on the target inspection object 24, and for the electrode pair 36B, the target and The angular frequency ⁇ of the AC voltage signal is selected so that a positive dielectrophoretic force acts on the object 25 to be inspected.
  • the device under test 24 gathers in the vicinity of the sensing electrode 35 of the sensor device 30A, and the device under test 25 is the sensing electrode of the sensor device 30B. Gather around 35.
  • the oscillation frequency detection unit 12 of each of the sensor devices 30A, 30B,... Detects the oscillation frequency of the oscillation unit 31, so that even in a liquid in which a plurality of target test objects are mixed, It is possible to simultaneously detect the oscillation frequency due to the complex dielectric constant of the object to be inspected 24 and the object to be inspected 25 and the change in the oscillation frequency accompanying the change in the complex dielectric constant of the object to be inspected 21.
  • blood is a liquid in which a plurality of types of blood cells including red blood cells are dispersed in plasma.
  • angular frequency ⁇ of the AC voltage signal in accordance with the dielectric characteristics of a plurality of types of blood cells targeted in blood, and testing the blood using the sensor unit 50 according to the present embodiment.
  • Embodiment 5 (Configuration of sensor device)
  • the configuration of the sensor device according to the present embodiment is the same as the configuration of the sensor device 30 shown in FIG.
  • a DC voltage signal is applied to the electrode pair 36 to induce an object to be inspected having a charge bias. Therefore, unlike the first to fourth embodiments in which the object to be inspected is moved by using the dielectrophoretic force, in this embodiment, the object to be inspected is not an intermediate region of the electrode pair 36 but the DC voltage signal of the electrode pair. It moves in the direction toward the electrode to which is applied or in the direction of repulsion.
  • the electrode to which the DC voltage signal is applied may be one or both of the electrode pair 36.
  • the electrode pair 36 may be arranged at the same position as in the first to fourth embodiments, but the electrode to which the DC voltage signal is applied is the sensing electrode 35 in the electrode pair 36. It is preferable to be at an intermediate position between the two plate-shaped electrodes to be formed. In order to move a larger number of objects to be inspected, it is preferable that the electrode area is wide so that a large amount of charge is applied to the electrode to which the DC voltage signal is applied in the electrode pair 36.
  • FIG. 9A is a diagram showing a state before a DC voltage signal is applied to the electrode pair 36
  • FIG. 9B is a diagram showing a state after a DC voltage signal is applied to the electrode pair 36.
  • the surface of the sensor device is contacted with a liquid (not shown here) containing one type of inspected object 27, which is a charged particle including ions, molecules, DNA, and the like.
  • the liquid may include an object to be inspected that is not targeted as in the second embodiment.
  • a DC voltage signal is applied to the electrode pair 36.
  • the device under test 27 is attracted to the electrode to which the DC voltage signal is applied.
  • the negatively charged object to be inspected is attracted to the electrode to which the positive DC voltage signal is applied.
  • the negatively charged object to be inspected is applied with the negative DC voltage signal. It may be attracted to the electrode.
  • the inspected object 26 gathers in the vicinity of the sensing electrode 35.
  • the oscillation frequency detection unit 12 detects the oscillation frequency of the oscillation unit 31 so that the oscillation frequency by the device under test 26 can be selectively measured.
  • FIG. 10A is a schematic view showing a semiconductor integrated circuit 40 in which a sensor device 30 having an electrode pair 36 is formed as a moving means of the object to be inspected, and FIG. It is AA 'arrow sectional drawing, (c) is an AA' arrow sectional drawing in (a) when not having a well structure.
  • the configuration of the sensor device according to the present embodiment is the same as the configuration of the sensor device 30 shown in FIG.
  • the sensor device 30 has a well structure 116 made of dimethylpolysiloxane (PDMS) on a pair of electrodes 36 with a protective film 115 interposed therebetween.
  • PDMS dimethylpolysiloxane
  • the well structure 116 has a hole 117 for receiving one cell 202.
  • the sensor device 30 can detect the presence or absence of protein in the test object by performing the same process as the method described in the first to third embodiments.
  • a plurality of cells 202 may be trapped between the electrode pairs 36 as shown in FIG.
  • only one cell 202 is captured by introducing the well structure 116 as in the sensor device 30 according to the present embodiment, it is possible to make the examination quantitative.
  • the water 201 is made to contact on the protective film 115.
  • FIG. In order to adjust electrophoresis, ions or the like are injected into the water 201 as necessary. Further, if necessary, containers and flow paths are formed of dimethylpolysiloxane (PDMS), resin, silicon dioxide (SiO 2 ), etc., in order to prevent water spillage and drying.
  • PDMS dimethylpolysiloxane
  • SiO 2 silicon dioxide
  • the antibody 203 which is the first biological material is injected into the water 201.
  • the antibody 203 is adsorbed to the cell 202 and immobilized on the sensor surface between the electrode pair 36. This is the same as the antibody 203 being immobilized on the sensor surface between the sensing electrodes 35.
  • FIG. 12 is a cross-sectional view taken along line AA ′ in FIG. 10A
  • FIG. 13 is a diagram illustrating the oscillation frequency of the oscillation unit 31 detected by the oscillation frequency detection unit 32.
  • 14A is a cross-sectional view taken along the line AA ′ in FIG. 10A
  • FIG. 14B shows the oscillation frequency of the oscillation unit 31 detected by the oscillation frequency detection unit 32.
  • the dielectric property is measured in a state where the antibody 203 is immobilized on the sensor surface by the method described above.
  • the oscillation frequency detector 32 detects the oscillation frequency f1 of the oscillator 31 in the state shown in FIG. 12A (FIG. 13A).
  • the test object 204 containing the protein 207 is injected into the water 201 in contact with the sensor device 30, and the dielectric properties are measured. Then, the oscillation frequency detector 32 detects the oscillation frequency f2 of the oscillator 31 in the state shown in FIG.
  • the sensor device 30 when there is no antibody 203 and the target protein of the antigen / antibody reaction in the subject 204 (that is, the protein 207 is the antibody 203 and the antigen / antibody).
  • the sensor device 30 remains in the state shown in FIG. 12A, and the oscillation frequency f2 of the oscillating unit 31 remains f1 (FIG. 13 (( b)).
  • the sensor device 30 is in a state as shown in FIGS. 12 (a) to 14 (a). become. Thereby, the dielectric constant of the water 201 changes.
  • the oscillation frequency fres changes from the above equation (2). That is, if the antibody 203 and the protein 205 that is the third biological material to be subjected to the antigen / antibody reaction are present in the subject 204, f2 ⁇ f1 is satisfied ((b) in FIG. 14).
  • effect The user can determine whether or not the protein 205 is present in the test object 204 by comparing the oscillation frequency f1 of the oscillator before injection of the test object 204 with the oscillation frequency 2 after injection. Become.
  • the antibody 203 is an anti-ovalbumin antibody
  • the antibody 203 is not limited to the anti-ovalbumin antibody, and may be an antibody that captures other proteins such as whey or casein.
  • the antibody 203 is an anti-A antibody, it is possible to detect whether or not the A antigen present on the surface of red blood cells in the A-type and AB-type blood is present in the subject 204.
  • the antibody 203 is not limited to the anti-A antibody, and may be an anti-B antibody.
  • the water 201 is not limited to water, and may be other liquids such as phosphate buffered saline (PBS) as long as the antibody / antigen reaction between the antibody 203 and the protein 205 is not inhibited. Good.
  • PBS phosphate buffered saline
  • FIGS. 15 and 16 are cross-sectional views taken along line AA ′ in FIG. 10A, and FIG. 16 is a diagram showing the oscillation frequency of the oscillation unit 31 detected by the oscillation frequency detection unit 32.
  • the same treatment as in the first or second embodiment is performed by using mast cells as the second biological material cells 202, and as shown in FIG. Is selectively immobilized on the sensor surface.
  • the region where the dielectric constant due to the antibody-antigen reaction changes is on the order of several tens of nm, which is the same as the size of the antibody 203 or the protein 205.
  • the region where the dielectric constant changes due to the antibody-antigen reaction spreads dramatically on the order of several ⁇ m, which is the same as the size of the cell 202, so that detection by the sensor device 30 is easy. That is, the sensing sensitivity of the protein 205 by the sensor device 30 is greatly improved.
  • the cells 202 are not limited to mast cells. If the antibody 203 adsorbed on the cell 202 undergoes an antibody-antigen reaction, the entire cell 202 is activated to change its refractive index and dielectric constant, or release histamine. There may be.
  • FIG. 17 is a schematic diagram showing the semiconductor integrated circuit 40 in which the sensor unit 50 is formed.
  • the configuration of the sensor unit according to this embodiment is the same as the configuration of the sensor unit 50 shown in FIG.
  • each of the electrode pairs 36A, 36B,... Can be connected to AC power sources having frequencies f11 and f12 independently of each other.
  • a well structure similar to that of the sixth embodiment may be formed on each oscillation unit.
  • the well structure is not clearly shown in order to avoid complication of the drawing.
  • the AC power supply sets the frequency f11 to a frequency that works in the direction in which the dielectrophoretic force captures the cells, and sets the frequency f12 to a frequency that works in the way that the dielectrophoretic force releases the cells.
  • the oscillation frequencies f1A, f1B,... Of all the oscillation units are measured.
  • the electrode pair 36A is connected to an AC power source having a frequency f11 until a capture determination is made. The same is performed for the other oscillating units, and all the oscillating units capture the cells 202 and confirm that the antibody 203 is immobilized.
  • the process of maintaining the connection of the AC power source with the frequency f11 to the electrode pair 36A or disconnecting from the AC power source is performed for each oscillating unit.
  • the concentration of the protein 205 can be discretely quantified in units of the number of antibodies 203 added to the cells 202. By performing this process after confirming the immobilization of the antibody 203, the reliability of examination quantification is improved.
  • the present invention is not limited to all oscillation units, and it may be shifted to protein testing after confirming that the antibody 203 is immobilized in a predetermined number or more of oscillation units. In this case, the protein test is performed only in the oscillation part in which the antibody 203 is confirmed to be immobilized.
  • the oscillation frequencies of the oscillation unit before and after electrophoresis are compared.
  • one oscillation unit is used as a reference. For example, only the electrode pair 36B is not connected to the AC power source or connected to the AC power source having the frequency f12. Thereby, the cell 202 added with the antibody 203 is not captured by the oscillation unit of the sensor device 30B.
  • the reference is not limited to one oscillation unit, and a plurality of oscillation units may be used as a reference in order to increase accuracy.
  • FIGS. 18 and 19 are schematic views showing a semiconductor integrated circuit 40 in which the sensor unit 50 is formed.
  • the configuration of the sensor unit according to this embodiment is the same as the configuration of the sensor unit 50 shown in FIG.
  • each of the electrode pairs 36A, 36B,... Can be connected to AC power sources having frequencies f11 and f12 independently of each other.
  • the electrode pair 36A is connected to an AC power source having a frequency f11.
  • the electrode pairs other than the electrode pair 36A are not connected to the AC power source or are connected to the AC power source having the frequency f12. In this state, cells are captured only by the electrode pair 36A, and cells are not captured by the other electrode pairs.
  • the cell 202A to which the antibody 203A is added is introduced into the water 201 in contact with the protective film 115.
  • the connection of the AC power source with the frequency f11 to the electrode pair 36A is continued until it is confirmed that the cell 202A is captured by the electrode pair 36A by the method described in the sixth embodiment.
  • the electrode pair 36A is disconnected from the AC power source, and the cell 202A to which the antibody 203A has been added is removed from the water 201 that is in contact with the protective film 115.
  • an AC power source having a frequency f11 is connected to the electrode pair 36B, and the cell 202B to which the antibody 203B has been added is introduced into the water 201 in contact with the protective film 115.
  • the connection of the AC power source having the frequency f11 to the electrode pair 36B is continued until it is confirmed that the cell 202B is captured by the electrode pair 36B by the method described in the sixth embodiment.
  • the antibody 203A is an anti-A antibody and the antibody 203B is an anti-B antibody.
  • the blood type ABO determination can be performed by one sensor unit 50.
  • Embodiment 12 In a sensor unit having a plurality of sensor devices, only the electrode pair of the oscillating unit in one sensor device is always connected to an AC power source having a frequency f12. While maintaining this state, the processing of Embodiments 6 to 11 may be performed by another oscillation unit.
  • the sensor device 30 includes an oscillating unit 31 that is formed in the semiconductor integrated circuit 40 and has an oscillating frequency that changes in accordance with the physical properties of an object to be inspected. 32 and one or more electrode pairs 36 for moving a specific object to be inspected dispersed in the liquid to an arbitrary position.
  • the object to be inspected can be moved to an arbitrary position using the dielectrophoretic force or the electrophoretic force generated by applying a voltage signal to the electrode pair 36.
  • the detection sensitivity of the sensor device 30 with respect to the device under test can be improved.
  • the sensor device 30 when the sensor device 30 according to one embodiment of the present invention is used, it is possible to easily improve the detection sensitivity of the target object to be inspected dispersed in the liquid only by using the electrode pair 36.
  • the oscillating unit 31 includes a sensing electrode 35 including a pair of electrodes, and the electrode pair 36 is the specific object to be inspected. It is preferable that the arbitrary position to move is an intermediate position of the one set of electrodes.
  • the influence of the oscillation frequency detection unit 12 on the detection frequency is largely due to the presence of an object to be inspected that is present at an intermediate position between a pair of electrodes constituting the sensing electrode 35. Therefore, according to the above configuration, the oscillation frequency of the oscillating unit 31 can be detected with high sensitivity by moving the device under test to the intermediate position of the pair of electrodes that constitute the sensing electrode 35.
  • the electrode pair 36 and the sensing electrode 35 are preferably formed in a top metal layer of the semiconductor integrated circuit 40.
  • the sensor device 30 can be reduced in size because the electrode pair 36 and the sensing electrode 35 are integrally formed in the semiconductor integrated circuit 40.
  • the electric field strength generated by the voltage signal applied to the electrode pair 36 is increased in the vicinity of the surface of the sensor device 30, thereby increasing the dielectrophoretic force or the electrophoretic force on the object to be inspected. Is obtained.
  • the electric field strength generated by the sensing electrode 35 is increased in the vicinity of the surface of the sensor device 30, an effect of improving the sensitivity of the sensor device 30 to the physical properties of the object to be inspected can be obtained.
  • the sensor device 30 according to aspect 4 of the present invention is the sensor device 30 according to any one of the aspects 1 to 3, wherein the electrode pair 36 is applied with a voltage signal corresponding to the specific object to be inspected. The inspection object is moved to the arbitrary position.
  • a specific object to be inspected can be selectively moved.
  • the sensor device 30 according to the fifth aspect of the present invention is the sensor device 30 according to the fourth aspect, wherein the electrode pair 36 is applied with voltage signals corresponding to the plurality of objects to be inspected dispersed in the liquid, whereby the plurality of objects to be inspected.
  • the specific inspection object of the body is moved to the arbitrary position, and the remaining inspection objects are moved away from the arbitrary position.
  • the sensor device 30 according to the sixth aspect of the present invention is the well structure 116 according to any one of the first to fifth aspects, wherein the well structure 116 has a region in which the biological material (cell 202) contained in the test subject enters on the electrode pair 36. Is formed.
  • the biological material is physically adsorbed to the well structure 116 and captured.
  • the state continues.
  • the well structure 116 it is possible to capture only one biological substance, so that the examination can have quantitativeness.
  • the sensor device 30 according to any one of the above aspects 1 to 6 is used for the antibody antigen reaction of the first biological material (antibody 203) dispersed in the liquid.
  • 3 is a detection method for detecting a biological material (protein 205), wherein the oscillating unit 31 includes a sensing electrode 35 composed of a pair of electrodes, and the second biological material adsorbed by the first biological material.
  • the biological material (cell 202) is captured by the electrode pair 36, and the sensing electrode 35 is used to detect the presence or absence of the third biological material.
  • the second biological material is captured at a desired position using dielectrophoresis, and the first biological material is adsorbed to the second biological material, so that the desired position on the sensor surface is obtained. It is possible to selectively immobilize the first biological material. Thereby, the sensing sensitivity of the third biological material can be effectively increased by selectively fixing the first biological material only at a position where the sensing sensitivity of the sensor device 30 is high.
  • the second biological material is a biological material activated by an antigen-antibody reaction.
  • the region where the dielectric constant changes due to the antibody-antigen reaction is dramatically expanded, detection by the sensor device 30 is facilitated. That is, the sensing sensitivity of the third biological material in the sensor device 30 is greatly improved.
  • the sensor unit 50 according to the ninth aspect of the present invention includes a plurality of the sensor devices 30 according to the first to sixth aspects.
  • the sensing method according to the tenth aspect of the present invention is a sensing method using the sensor device 30 according to any one of the first to sixth aspects, and is dispersed in the liquid by applying a voltage signal to the electrode pair.
  • a moving step of moving the specific object to be inspected to an arbitrary position and a detecting step of detecting the oscillation frequency of the oscillating unit 31 by the oscillation frequency detecting unit 32 after the moving step are included.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

センサ装置(30)は、半導体集積回路(40)に形成され、接触する被検査体の物性に応じて発振周波数が変化する発振部と、発振周波数を検出する発振周波数検出部と、液中に分散した特定の被検査体を任意の位置に移動させるための1対以上の電極対(36)とを備える。

Description

センサ装置、検出方法、及びセンサユニット
 本発明は、センサ装置、検出方法、及びセンサユニットに関し、より詳細には、液体中に存在する被検査体及びその状態を検出するセンサ装置、センサ装置、検出方法、及びセンサユニットに関する。
 各家庭及び簡易診断所等で利用される人体の診断機器には、低価格化、小型化、検査時間の短縮化、及び操作の簡便性等が要求される。このような要求を満たす診断機器として、半導体集積回路に形成されたセンサ装置が挙げられる(例えば、非特許文献1及び2)。
 非特許文献1及び2に開示されている従来のセンサ装置を図20に示す。図20に示すように、センサ装置10は、半導体集積回路に形成されており、発振部11と、発振周波数検出部12とを備えている。発振部11は、抵抗R1と、共振器13とで構成されている。共振器13は、クロスカップルされたトランジスタM1,M2、インダクタL1,L2、被検査体20と接触させる2つのセンシング電極14、及びキャパシタC3から構成されている。共振器13の共振周波数は6~30GHzである。
 2つのセンシング電極14の斜視図を図21に示す。また、図21のA-A線における板状電極141,142と周辺部材との矢視断面図を図22に示す。図21に示すように、各センシング電極14は、それぞれが長方形をなす2つの板状電極141,142で構成されている。
 この板状電極141,142は、図22に示すように、半導体集積回路の最上位メタル配線層に形成されている。また、半導体集積回路の各メタル配線層の間には層間絶縁膜16が配置されている。図22では、便宜上、最上位のメタル配線層と、その下層の層間絶縁膜16とのみを示している。層間絶縁膜16の表面は、表面保護膜15で覆われているが、2つの板状電極141,142が配置された領域では表面保護膜15が開口している。このため、板状電極141,142の露出した上面は、被検査体20に直接接触する。
 次に、センサ装置10の動作を説明する。センシング電極14の近傍にある被検査体20の誘電率が変化した場合、センシング電極14への寄生容量値が変化し、共振器13の共振周波数が変化する。共振周波数の変化に伴う発振部11の発振周波数の変化を、発振周波数検出部12を用いて検出する。以上の動作により、センサ装置10は、センシング電極14の近傍にある被検査体20に生じた誘電率の変化を、発振部11の発振周波数の変化として検出することができる。
Jun-Chau Chien, Mekhail Anwar, Erh-Chia Yeh, Luke P. Lee, Ali M. Niknejad, "6.5/11/17.5/30-GHz high throughput interferometer-based reactance sensors using injection-locked oscillators and ping-pong nested chopping", VLSI Circuits Digest of Technical Papers, 2014 Symposium on, 1-2 Jun-Chau Chien, Mekhail Anwar, Erh-Chia Yeh, Luke P. Lee, Ali M. Niknejad, "A 6.5/17.5-GHz dual-channel interferometer-based capacitive Sensor in 65-nm CMOS for high-speed flow cytometry", Microwave Symposium (IMS), 2014IEEE MTT-S International, 1-4 Yuhki Yanase, Takaaki Hiragun, Tetsuji Yanase, Tomoko Kawaguchi, Kaori Ishii, Michihiro Hide, "Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging", Biosensors and Bioelectronics 32 (2012) 62-68
 図20に示したセンサ装置10は、センシング電極14の近傍にある被検査体20に生じた誘電率の変化を、センシング電極14への寄生容量値の変化に伴う発振部11の発振周波数の変化として検出し、被検査体20を検出するため、センサ表面において、センシング電極14の近傍で被検査体20に対する感度が最大となるような感度分布を有することが分かっている。
 被検査体として細胞をはじめとする誘電体粒子を検査する場合には、液体中で検査が行われることが多い。そこで、図20のセンサ装置が形成された半導体集積回路を単体で使用し、被検査体を含む液体を接触させてセンシングを行おうとすると、標的とする被検査体をセンサ表面上の適切な位置に選択的に配置する手段が備えられていないため、標的とする被検査体に対する検出感度が良くない。また、標的とする被検査体の液体中での分布によって検出感度が左右されるという課題がある。
 非特許文献1及び2に開示されているセンサ装置では、被検査体をセンシング電極近傍に配置するために、フォトレジストであるSU-8及びシリコーンゴムの1種であるPDMS(ポリジメチルシロキサン)によって形成されたマイクロ流路を、センサ装置が形成された半導体集積回路と統合している。これにより、液体の流れを制御して上記の課題の解消を図っている。
 しかしながら、マイクロ流路を半導体集積回路と統合するにあたっては、半導体プロセスとは別の工程が必要となり一連の製造プロセスが複雑化すること、及び液体の駆動力となるポンプ(例えば、シリンジポンプ)を外部に設ける必要があり、統合した装置が大型化すること、といった課題がある。
 そこで、本発明は上記の課題に鑑みてなされたものであり、その目的は、液体中に分散する標的の被検査体に対する検出感度の向上を容易に実現できるセンサ装置、検出方法、及びセンサユニットを提供することにある。
 上記の課題を解決するために、本発明の一態様に係るセンサ装置は、半導体集積回路に形成され、接触する被検査体の物性に応じて発振周波数が変化する発振部と、前記発振周波数を検出する発振周波数検出部と、液中に分散した特定の被検査体を任意の位置に移動させるための1対以上の電極対とを備える。
 本発明の一態様によれば、液体中に分散する標的の被検査体に対する検出感度の向上を容易に実現できる。
本発明の一実施形態に係るセンサ装置の構成を示すブロック図である。 本発明の一実施形態に係る共振器の等価回路を示す回路図である。 被検査体の移動手段として電極対を備えた本発明の一実施形態に係るセンサ装置が形成された半導体集積回路を示す概略図である。 図中の(a)は、電極対に交流電圧信号を印加する前の状態を示す図であり、(b)は、電極対に交流電圧信号を印加した後の状態を示す図である。 図中の(a)は、電極対に交流電圧信号を印加する前の状態を示す図であり、(b)は、電極対に交流電圧信号を印加した後の状態を示す図である。 本発明の一実施形態に係るセンサユニットが形成された半導体集積回路を示す概略図である。 図中の(a)は、電極対に交流電圧信号を印加する前の状態を示す図であり、(b)は、電極対に交流電圧信号を印加した後の状態を示す図である。 図中の(a)は、電極対に交流電圧信号を印加する前の状態を示す図であり、(b)は、電極対に交流電圧信号を印加した後の状態を示す図である。 図中の(a)は、電極対に直流電圧信号を印加する前の状態を示す図であり、(b)は、電極対に直流電圧信号を印加した後の状態を示す図である。 図中の(a)は、被検査体の移動手段として電極対を備えたセンサ装置が形成された半導体集積回路を示す概略図であり、(b)は、(a)におけるA-A’線矢視断面図であり、(c)は、ウェル構造を有しない場合の(a)におけるA-A’線矢視断面図である。 図10の(a)におけるA-A’線矢視断面図である。 図10の(a)におけるA-A’線矢視断面図である。 発振周波数検出部が検出する発振部の発振周波数を示す図である。 図中の(a)は、図10の(a)におけるA-A’線矢視断面図であり、(b)は、発振周波数検出部が検出する発振部の発振周波数を示す図である。 図10の(a)におけるA-A’線矢視断面図である。 発振周波数検出部が検出する発振部の発振周波数を示す図である。 センサユニットが形成された半導体集積回路を示す概略図である。 センサユニットが形成された半導体集積回路を示す概略図である。 センサユニットが形成された半導体集積回路を示す概略図である。 従来のセンサ装置の構成を示すブロック図である。 2つのセンシング電極の斜視図である。 図21のA-A線における板状電極と周辺部材との矢視断面図である。
 以下、本発明の実施形態について、詳細に説明する。ただし、以下の実施形態に記載されている構成は、特に特定的な記載がない限り、本発明の範囲を当該構成のみに限定する趣旨ではなく、単なる説明例に過ぎない。なお、以下で説明する図面においては、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
 〔基本となるセンサ装置の説明〕
 後述する実施形態において共通して用いるセンサ装置の構成及び動作について以下に説明する。本センサ装置は、半導体集積回路の表面に被検査体を接触させて、被検査体が持つ誘電率又は透磁率、或いは被検査体の性質が変化したときに変化する誘電率又は透磁率等の物性を検知するセンサ装置である。
 (センサ装置の構成)
 図1は、本センサ装置30の構成を示すブロック図である。図1に示すように、センサ装置30は、発振部31と、発振周波数検出部32とを備える。
 発振部31は、共振器33、差動回路34及びセンシング電極35を備えたLC発振回路であり、図示しない半導体集積回路基板上に半導体集積回路の一部として形成されている。発振部31は、接触する被検査体20の物性に応じて発振周波数が変化する。以下では、接触する被検査体20の複素誘電率に応じて発振周波数が変化する場合を例に挙げて、本センサ装置30について説明する。
 本センサ装置30は、水を主成分に持つ生体細胞又は組織を主な被検査体20としている。周波数30~200GHzでは、水の複素誘電率の変化が大きく、誘電率の周波数特性の変化を高感度で検出できるため、発振部31の発振周波数は、30~200GHzであることが好ましい。
 共振器33は、キャパシタC0,C11,C12及びインダクタL0を有している。インダクタL0及びキャパシタC0は、並列に接続されている。キャパシタC11の一端は、センシング電極35を構成する1組の板状電極の一方に接続されており、キャパシタC12の一端は、センシング電極35を構成する1組の板状電極の他方に接続されている。キャパシタC11,C12のそれぞれの他端には、被検査体20が接触している。これにより、キャパシタC11,C12は、被検査体20と直列に接続される。キャパシタC11,C12は、図示しない半導体集積回路基板の表面上の保護膜によって構成されている。
 また、共振器33は、被検査体20の複素誘電率に応じて共振周波数が変化し、複素誘電率を検出するセンサ部として機能する。キャパシタC0は、図示しない配線又は差動回路6の寄生容量によって形成されてもよい。
 発振周波数検出部32は、発振部31の発振周波数を検出する部分であり、公知の周波数検出回路を利用することができる。発振周波数検出部32は、半導体集積回路に形成されてもよいし、半導体集積回路外に形成されてもよい。
 差動回路34は、差動トランジスタ対を含む回路であり、例えば、互いにクロスカップルされた複数のトランジスタからなる差動回路のような公知の差動回路によって適宜形成されている。
 ここで、本センサ装置30は、被検査体20の移動手段を備えている。具体的には、本センサ装置30は、被検査体20の移動手段として電極対を備えている。これについては、後述する。
 (発振部の発振周波数)
 次に、被検査体20の複素誘電率と発振部の発振周波数との関係について説明する。図2は、共振器33の等価回路を示す回路図である。
 被検査体20が空気の場合に検出される容量をCairとし、被検査体20の比複素誘電率ε=εr-jεiとすると、以下の式(1)が得られる。
Figure JPOXMLDOC01-appb-M000001
 ここで、C2及びG2(=1/R2(抵抗))は、それぞれ被検査体20が含むキャパシタンス及びコンダクタンスであり、共振器33は、図2に示す等価回路で表される。
 図2において、計算の簡易化のため、キャパシタC11,C12は、キャパシタC1として1つにまとめている。共鳴条件を考慮することにより、発振部31の発振周波数fresは、以下の式(2)のように表すことができる。
Figure JPOXMLDOC01-appb-M000002
 よって、fresは、複素誘電率の実部及び虚部双方の関数であることが分かる。
 (センサ装置の動作)
 次に、センサ装置30の動作を説明する。
 センサ装置30では、共振器33に含まれるセンシング電極35を構成する2枚の電極間にキャパシタC11及びキャパシタC12を通して直列接続された被検査体20の複素誘電率を共振器33の共振周波数として検出する。発振周波数検出部12は、共振器33の共振周波数として発振部31の発振周波数を検出する。すなわち、センサ装置30では、発振周波数検出部12が、被検査体20の複素誘電率を発振部31の発振周波数として検出する。
 ここで、被検査体20の複素誘電率が変化した場合、共振器33の共振周波数が変化する。発振周波数検出部32は、共振周波数の変化に伴う発振部31の発振周波数の変化を検出する。そこで、センサ装置30では、発振周波数検出部12が、被検査体20の複素誘電率の変化を発振部31の発振周波数の変化として検出する。
 (被検査体の移動手段)
 以下に、本センサ装置30が備える被検査体の移動手段を説明する。図3は、被検査体の移動手段として電極対36を備えたセンサ装置30が形成された半導体集積回路40を示す概略図である。
 図3に示すように、半導体集積回路40に図1のセンサ装置30が形成されている。図3では、図1におけるキャパシタC0,C11,C12、発振周波数検出部32及び差動回路34をまとめて回路群37として図示している。
 センサ装置30を構成する半導体集積回路のメタル層により、センシング電極35近傍に1対以上の電極によって電極対36が形成されている。この電極対36には、センサ装置30の外部から交流又は直流の電圧信号を印加することが可能であり、当該電圧信号によって発生する電界を用いて電極対36近傍の被検査体を移動させることができる。
 このように、電極対36に電圧信号を印加することによって発生する誘電泳動力もしくは電気泳動力を利用して被検査体を任意の位置に移動させることができる。例えば、電極対36に電圧信号を印加し、発振部31のセンシング電極35近傍に被検査体を移動させることにより、センサ装置30の被検査体に対する検出感度を向上させることができる。本センサ装置30を用いれば、電極対36を用いるのみで、液体中に分散する標的の被検査体に対する検出感度の向上を容易に実現することができる。
 印加電圧実効値の大きさに対する、被検査体を移動させる力の効率を向上するためには、電極対36を、半導体集積回路の表層に近いメタル層によって構成すること、特にトップメタル層によって構成することで電極対36近傍の電場を強くすることが好ましい。これにより、電極対36に印加する電圧信号によって発生する電界強度がセンサ装置30の表面近傍で強くなることによって、被検査体に対する誘電泳動力が大きくなる効果が得られる。また、被検査体の複素誘電率に対する感度を向上させるためには、センシング電極35を半導体集積回路の表層に近いメタル層によって構成すること、特にトップメタル層によって構成することが好ましい。これにより、センシング電極35によって発生する電界強度がセンサ装置30の表面近傍で強くなることによって、センサ装置30の被検査体の複素誘電率に対する感度が向上する効果が得られる。また、電極対36及びセンシング電極35が半導体集積回路40に一体的に形成されていることにより、センサ装置30の小型化を図ることができる。
 センサ装置30の発振周波数検出部12は、図1における共振器33に含まれるセンシング電極35を構成する2枚の電極間にキャパシタC11及びキャパシタC12を通して直列接続された被検査体の複素誘電率を共振器33の共振周波数として検出する。これは、図3において、センシング電極35近傍に存在する被検査体の複素誘電率を検出することと等しい。
 検出周波数への影響は、センシング電極35を構成する2枚の板状電極の中間領域(中間位置)に存在する被検査体の存在によるものが大きい。そこで、電極対36に印加した電圧信号によって発生する電界強度の実効値が最も強くなる位置、すなわち電極対36の中間領域が、センシング電極35を構成する2枚の板状電極の中間領域と重なるように適宜設計するものとする。これにより、被検査体を、センシング電極35を構成する2枚の板状電極の中間領域に移動させることができる。
 〔実施形態1〕
 (センサ装置の構成)
 本実施形態に係るセンサ装置の構成は、図3に示したセンサ装置30の構成と同様である。
 (動作・効果)
 1種類の被検査体が分散した液中において、本実施形態に係るセンサ装置30を使用する例を、図4を用いて説明する。図4の(a)は、電極対36に交流電圧信号を印加する前の状態を示す図であり、(b)は、電極対36に交流電圧信号を印加した後の状態を示す図である。
 まず、図4の(a)に示すように、センサ装置30の表面に、細胞をはじめとする誘電体粒子である1種類の被検査体21を含んだ液体(ここでは図示しない)を接触させる。ここで、液体の種類としては任意の選択が可能である。例えば、被検査体21が細胞であれば、細胞周辺のpH又は浸透圧を適切な値に保つために、液体としてリン酸緩衝生理食塩水(PBS)が一般的に用いられる。
 次に、電極対36に角周波数ωを持つ交流電圧信号を印加する。角周波数ωの正弦波電圧信号によって、液体中の被検査体21に及ぼされる誘電泳動力<FDEP>は、液体の複素誘電率εm=εm-jσm/ω、被検査体の複素誘電率εp=εp-jσp/ω、被検査体の半径r、正弦波電圧によって発生する電界強度の実効値ERMSとすると、以下の式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 式(3)中のRe[(εp-εm)/(εp+2εm)]が正であれば、被検査体21に対して電界強度の強い方向へ向かう力(正の誘電泳動力)が働く。一方、式(3)中のRe[(εp-εm)/(εp+2εm)]が負であれば、電界強度の強い方向へ向かう力に対して反発する力(負の誘電泳動力)が働く。
 本実施形態では、被検査体21に対して電界強度の強い方向、すなわち交流電圧信号を与える電極対36の中間領域に向かう力が働くように、交流電圧信号の角周波数ωを選択する。交流電圧信号は、正弦波に限らず周期的な関数であればよい。
 電極対36に対して印加する交流電圧信号の周波数f(=ω/2π)は、細胞のような被検査体であれば数kHz~数百MHzが選択されることが多い。この周波数は、本実施形態における発振周波数検出部12が検出する発振周波数(30~200GHz)とは離れたものであるため、交流電圧信号を電極対36に印加しながら検査を行っても、発振周波数検出部12による検出を阻害するものではない。
 図4の(b)に示すように、正の誘電泳動力により、被検査体21は、電極対36の中間領域に集められる。この中間領域は、センシング電極35を構成する2枚の板状電極の中間領域と重なるように設計されている。そのため、この状態で発振周波数検出部12が発振部31の発振周波数を検出することにより、被検査体21の複素誘電率による発振周波数、ならびに被検査体21の複素誘電率の変化に伴う発振周波数の変化を感度良く検出することが可能となる。
 例えば、正常に機能している細胞とがん細胞とでは、誘電特性が異なるということが知られている。がん化していると疑われる細胞及び正常であることが保証されている細胞のそれぞれについて培養を行い、それぞれの培養細胞を含む液体培地について、本実施形態に係るセンサ装置30を用いて検査を行う。センサ装置30を用いて、両細胞による発振部31の発振周波数を取得し、両細胞による発振周波数を比較することによって、がん化していると疑われる細胞ががん化しているのか、正常であるのかの判定を行うことが可能となる。
 〔実施形態2〕
 (センサ装置の構成)
 本実施形態に係るセンサ装置の構成は、図3に示したセンサ装置30の構成と同様である。
 (動作・効果)
 2種類以上の誘電体粒子が分散した液中において、本実施形態に係るセンサ装置30を使用する例を、図5を用いて説明する。図5の(a)は、電極対36に交流電圧信号を印加する前の状態を示す図であり、(b)は、電極対36に交流電圧信号を印加した後の状態を示す図である。
 まず、図5の(a)に示すように、センサ装置30の表面に、細胞をはじめとする誘電体粒子である2種類以上の被検査体を含んだ液体(ここでは図示しない)を接触させる。本図では、液体には、標的とする被検査体22と、標的としない被検査体23との2種類の被検査体が分散している。なお、標的としない被検査体23は複数種類であっても構わない。
 次に、電極対36に角周波数ωを持つ交流電圧信号を印加する。本実施形態では、標的とする被検査体22に対して正の誘電泳動力が働き、標的としない被検査体23に対して負の誘電泳動力が働くように、交流電圧信号の角周波数ωを選択する。
 図4の(b)に示すように、この交流電圧信号によって生じた誘電泳動力によって、標的とする被検査体22は電極対36の中間領域、すなわちセンシング電極35の中間領域に集まり、標的としない被検査体23はセンシング電極35から遠ざかる。この状態で発振周波数検出部12が発振部31の発振周波数を検出することにより、標的とする被検査体22以外の被検査体23が混在した液体中においても、標的とする被検査体22の複素誘電率による発振周波数、ならびに被検査体22の複素誘電率の変化に伴う発振周波数の変化を選択的に検出することが可能となる。
 例えば、血液は、赤血球をはじめ複数種類の血球細胞が血漿内に分散した液体である。交流電圧信号の角周波数ωを、血液中の標的とする血球細胞の誘電特性に合わせて適切に設定のうえ、血液について本実施形態に係るセンサ装置30を用いて検査を行うことにより、血液の遠心分離等の成分分離処理を行うことなく、本実施形態に係るセンサ装置30のみで標的とする血球細胞に対する誘電特性の測定が可能となる。
 〔実施形態3〕
 (センサユニットの構成)
 本実施形態に係るセンサユニットの構成について、図6を用いて説明する。図6は、センサユニット50が形成された半導体集積回路40を示す概略図である。
 図6に示すように、半導体集積回路40にセンサユニット50が形成されており、センサユニット50は、複数のセンサ装置30A,30B,・・・からなる。各センサ装置30A,30B,・・・は、図3に示したセンサ装置30の構成と同様である。各センサ装置30A,30B,・・・は、電極対36A,36B,・・・を互いに独立して有していてもよいし、互いに共通で有していてもよい。
 (動作・効果)
 1種類の被検査体が分散した液中において、本実施形態に係るセンサユニット50を使用する例を、図7を用いて説明する。図7の(a)は、電極対36A,36B,・・・に交流電圧信号を印加する前の状態を示す図であり、(b)は、電極対36A,36B,・・・に交流電圧信号を印加した後の状態を示す図である。
 まず、図7の(a)に示すように、各センサ装置30A,30B,・・・の表面に、細胞をはじめとする誘電体粒子である1種類の被検査体24を含んだ液体(ここでは図示しない)を接触させる。なお、液体中には、実施形態2のように標的としない被検査体も含まれていても構わない。
 次に、各電極対36A,36B,・・・に角周波数ωを持つ交流電圧信号を印加する。本実施形態では、被検査体24に対して正の誘電泳動力が働くように、交流電圧信号の角周波数ωを選択する。
 図7の(b)に示すように、この交流電圧信号によって生じた誘電泳動力によって、被検査体24は各電極対36A,36B,・・・の中間領域、すなわち各センサ装置30A,30B,・・・のセンシング電極35の中間領域に集まる。液体に含まれる被検査体24は、センサ装置30A,30B,・・・の表面上で濃度分布を持ち、正の誘電泳動力によって各センサ装置30A,30B,・・・のセンシング電極35の中間領域に集められる被検査体24の数は、電極対36A,36B,・・・近傍の被検査体24の濃度に影響される。
 そこで、本実施形態に係るセンサユニット50では、各センサ装置30A,30B,・・・の発振周波数検出部12が発振部31の発振周波数を検出し、互いに比較することにより、各センサ装置30A,30B,・・・の表面上における被検査体24の濃度分布が各センサ装置30A,30B,・・・の検出感度に及ぼす影響を軽減することが可能となる。
 なお、液体中に標的としない被検査体も含む場合は、実施形態2と同じ操作を行えばよい。これにより、標的とする被検査体のみが各センサ装置30A,30B,・・・のセンシング電極35の中間領域に集中した状態で各センサ装置30A,30B,・・・の発振周波数検出部12が発振部31の発振周波数を検出することができる。
 〔実施形態4〕
 (センサユニットの構成)
 本実施形態に係るセンサユニットの構成は、図6に示したセンサユニット50の構成と同様である。ただし、各センサ装置30A,30B,・・・は、電極対36A,36B,・・・を互いに独立して有している。
 (動作・効果)
 2種類以上の被検査体が分散した液中において、本実施形態に係るセンサユニット50を使用する例を、図8を用いて説明する。図8の(a)は、電極対36A,36B,・・・に交流電圧信号を印加する前の状態を示す図であり、(b)は、電極対36A,36B,・・・に交流電圧信号を印加した後の状態を示す図である。
 まず、図8の(a)に示すように、各センサ装置30A,30B,・・・の表面に、細胞をはじめとする誘電体粒子である2種類以上の被検査体を含んだ液体(ここでは図示しない)を接触させる。本図では、液体には、標的とする被検査体24と、標的とする被検査体25との2種類の被検査体が分散している。なお、標的とする被検査体は、3種類以上であっても構わない。
 次に、各電極対36A,36B,・・・に角周波数ωを持つ交流電圧信号を印加する。本実施形態では、電極対36Aについては、標的とする被検査体24に対して正の誘電泳動力が働くように、交流電圧信号の角周波数ωを選択し、電極対36Bについては、標的とする被検査体25に対して正の誘電泳動力が働くように、交流電圧信号の角周波数ωを選択する。
 図8の(b)に示すように、この交流電圧信号によって生じた誘電泳動力によって、被検査体24はセンサ装置30Aのセンシング電極35近傍に集まり、被検査体25はセンサ装置30Bのセンシング電極35近傍に集まる。この状態で各センサ装置30A,30B,・・・の発振周波数検出部12が発振部31の発振周波数を検出することにより、標的とする被検査体が複数種類混在した液体中においても、標的とする被検査体24及び被検査体25の複素誘電率による発振周波数、ならびに被検査体21の複素誘電率の変化に伴う発振周波数の変化の選択的な検出を同時に行うことが可能となる。
 例えば、血液は、赤血球をはじめ複数種類の血球細胞が血漿内に分散した液体である。交流電圧信号の角周波数ωを、血液中の標的とする複数種類の血球細胞の誘電特性に合わせて適切に設定のうえ、血液について本実施形態に係るセンサユニット50を用いて検査を行うことにより、血液の遠心分離等の成分分離処理を行うことなく、本実施形態に係るセンサユニット50のみで標的とする各血球細胞に対する誘電特性の同時測定が可能となる。
 なお、以上では、説明を簡潔にするために、複数のセンサ装置30A,30B,・・・のうちセンサ装置30A及びセンサ装置30Bが行う動作のみ述べたが、他のセンサ装置についてもセンサ装置30A,30Bと同様の動作を行わせてもよい。
 〔実施形態5〕
 (センサ装置の構成)
 本実施形態に係るセンサ装置の構成は、図3に示したセンサ装置30の構成と同様である。ただし、本実施形態では、電極対36に直流電圧信号を印加することにより、電荷の偏りを持つ被検査体を誘導する。そのため、誘電泳動力を用いて被検査体を移動させていた実施形態1~4とは異なり、本実施形態では、被検査体は電極対36の中間領域ではなく、電極対のうち直流電圧信号を印加した電極に向かう方向、もしくは反発する方向へ移動する。なお、直流電圧信号を印加する電極は、電極対36のうち一方であってもよいし、双方であってもよい。
 よって、本実施形態に係るセンサ装置30では、電極対36を実施形態1~4と同様の位置に配置してもよいが、電極対36のうち直流電圧信号を印加する電極はセンシング電極35を構成する2枚の板状電極の中間位置にある方が好ましい。また、より多くの被検査体を移動させるためには、電極対36のうち直流電圧信号を印加する電極に多くの電荷が与えられるように、電極面積が広い方が好ましい。
 なお、実施形態3及び4と同様に、本実施形態に係るセンサ装置30を複数備えたセンサユニットを構成してもよい。
 (動作・効果)
 1種類の被検査体が分散した液中において、本実施形態に係るセンサ装置30を使用する例を、図9を用いて説明する。図9の(a)は、電極対36に直流電圧信号を印加する前の状態を示す図であり、(b)は、電極対36に直流電圧信号を印加した後の状態を示す図である。
 図9の(a)に示すように、センサ装置の表面に、イオン、分子、DNA等をはじめとする荷電粒子である1種類の被検査体27を含んだ液体(ここでは図示しない)を接触させる。なお、液体中には、実施形態2のように標的としない被検査体も含まれていても構わない。
 次に、電極対36に直流電圧信号を印加する。図9の(b)に示すように、電極対36のうち一方又は双方に直流電圧信号を印加することにより、被検査体27が直流電圧信号を印加した電極に引き寄せられる。本図においては、負に帯電した被検査体が、正の直流電圧信号が印加された電極に引き寄せられているが、その逆に正に帯電した被検査体を、負の直流電圧信号を印加した電極に引き寄せてもよい。
 これにより、被検査体26はセンシング電極35近傍に集まる。この状態で発振周波数検出部12が発振部31の発振周波数を検出することにより、被検査体26による発振周波数を選択的に測定することが可能となる。
 〔実施形態6〕
 (センサ装置の構成)
 本実施形態に係るセンサ装置の構成について、図10を用いて説明する。図10の(a)は、被検査体の移動手段として電極対36を備えたセンサ装置30が形成された半導体集積回路40を示す概略図であり、(b)は、(a)におけるA-A’線矢視断面図であり、(c)は、ウェル構造を有しない場合の(a)におけるA-A’線矢視断面図である。
 まず、図10の(a)に示すように、本実施形態に係るセンサ装置の構成は、図3に示したセンサ装置30の構成と同様である。ただし、本実施形態では、センサ装置30は、図10の(b)に示すように、1対の電極対36上に、保護膜115を介して、ジメチルポリシロキサン(PDMS)によるウェル構造116を有している。ウェル構造116は、細胞202が1個入る穴117を有する。
 このセンサ装置30では、実施形態1~3で説明した方法と同様の処理を行うことにより、被検査体におけるタンパク質の有無が検出できる。
 (効果)
 図10の(c)に示す状態で細胞202を捕捉した状態を維持するためには、電極対36に交流電界を印加し続ける必要がある。しかし、図10の(b)に示す状態になると、ウェル構造116と細胞202との相互作用によって、細胞202を捕捉後に電極対36に印加した交流電界を停止しても、ウェル構造116に細胞202が物理吸着して捕捉状態が継続される。
 また、ウェル構造116を有さないセンサ装置において誘電泳動を実施すると、図10の(c)に示すように、電極対36間に複数の細胞202が捕捉される可能性がある。しかし、本実施形態に係るセンサ装置30のように、ウェル構造116を導入することにより、1個の細胞202のみが捕捉されるので、検査に定量性を持たせることが可能となる。
 〔実施形態7〕
 (センサ装置の構成)
 本実施形態に係るセンサ装置の構成は、図3に示したセンサ装置30の構成と同様である。図11に、図10の(a)におけるA-A’線矢視断面図を示す。
 図11の(a)に示すように、センサ装置30では、保護膜115上に水201を接触させている。水201には、電気泳動を調整するために、必要に応じてイオン等を注入する。また、必要に応じて、水のこぼれ及び乾燥を防ぐために、ジメチルポリシロキサン(PDMS)、樹脂及び二酸化珪素(SiO)等で、容器及び流路を形成する。
 (動作)
 図11の(a)に示すように、水201に第2の生体物質である細胞202を注入する。次に、誘電泳動用の電極対36に細胞202が電極対36間に捕捉されるような電圧及び周波数の交流電圧を印加する。さらに、必要に応じて、水201中の導電率σをイオン注入等で調整する。具体的には、上述した式(3)から、誘電泳動力FDEPが捕捉方向になるように、電圧、周波数及び導電率σを設定する。これにより、細胞202は、図11の(b)に示すように、電極対36間に捕捉される。
 次に、水201に第1の生体物質である抗体203を注入する。これにより、抗体203は、細胞202に吸着され、電極対36の間のセンサ表面に固定化されることになる。これは、抗体203が、センシング電極35の間のセンサ表面に固定化されることと同一である。
 (タンパク質検査)
 本実施形態に係るセンサ装置30を用いたタンパク質検査について、図12~図14を用いて説明する。図12は、図10の(a)におけるA-A’線矢視断面図であり、図13は、発振周波数検出部32が検出する発振部31の発振周波数を示す図である。また、図14の(a)は、図10の(a)におけるA-A’線矢視断面図であり、(b)は、発振周波数検出部32が検出する発振部31の発振周波数を示す図である。
 図12の(a)に示すように、上述した方法で抗体203をセンサ表面上に固定化した状態で誘電特性の測定を行う。発振周波数検出部32は、図12の(a)に示す状態の発振部31の発振周波数f1を検出する(図13の(a))。
 次に、図12の(b)に示すように、センサ装置30に接触している水201に、タンパク質207を含む被検査体204を注入して、誘電特性の測定を行う。そして、発振周波数検出部32は、図12の(b)に示す状態の発振部31の発振周波数f2を検出する。
 ここで、図12の(b)に示すように、被検査体204中に、抗体203と抗原・抗体反応の対象となるタンパク質が存在しない場合(すなわち、タンパク質207が、抗体203と抗原・抗体反応の対象となるたんぱく質ではない場合)には、センサ装置30は、図12の(a)に示す状態のままとなり、発振部31の発振周波数f2は、f1のままとなる(図13の(b))。
 一方、被検査体204中に抗体203の標的となる第3の生体物質であるタンパク質205が存在すると、センサ装置30は、図12の(a)から図14の(a)に示すような状態になる。これにより、水201の誘電率が変化する。
 このように比複素誘電率ε=εr-jεiが変化すると、上述した式(2)より、発振周波数fresが変化する。つまり、被検査体204中に、抗体203と抗原・抗体反応の対象となる第3の生体物質であるタンパク質205が存在すると、f2≠f1となる(図14の(b))。
 保護膜115に接触した水201に被検査体204を注入する前の発振部31の発振周波数f1と、注入後の発振部31の発振周波数f2とを発振周波数検出部32で検出すると、f2≠f1であれば、被検査体204中に第3の生体物質であるタンパク質205が存在し、f2=f1であれば、被検査体204中に第3の生体物質であるタンパク質205が存在しないと判定できる。
 (効果)
 ユーザは、被検査体204を注入前の発振器の発振周波数f1と、注入後の発振周波数2を比較することにより、被検査体204中にタンパク質205が有るか無いかを判定することが可能となる。
 誘電泳動を用いて細胞202を所望の位置に捕捉して、抗体203を細胞202に吸着させることにより、センサ表面上の所望の位置に抗体203を選択的に固定化することが可能となる。これにより、センサ装置30のセンシング感度が高い位置のみに抗体203を選択的に固定化することでタンパク質205のセンシング感度を実効的に上げることが可能となる。
 (限定解除)
 本実施形態に係るセンサ装置30を用いれば、例えば、抗体203が抗オボアルブミン抗体である場合には、被検査体204に卵白を構成する主要なタンパク質であるオボアルブミンの有無を判定する食品アレルゲン検査が可能となる。なお、抗体203は、抗オボアルブミン抗体に限定されるものではなく、ホエー又はカゼイン等のその他のタンパク質を捕捉する抗体であってもよい。
 さらに、抗体203が抗A抗体であれば、A型及びAB型の血液中の赤血球表面に存在するA抗原が被検査体204中に存在するか否かを検出可能となる。なお、抗体203は、抗A抗体に限定されるものではなく、抗B抗体であってもよい。
 また、水201は、水に限定されるものではなく、抗体203とタンパク質205との抗体・抗原反応を阻害しなければ、リン酸緩衝生理食塩水(PBS)等の他の液体であってもよい。
 〔実施形態8〕
 (センサ装置の構成)
 本実施形態に係るセンサ装置の構成は、図3に示したセンサ装置30の構成と同様である。
 (動作)
 本実施形態では、第1の生体部物質である抗体203が吸着した第2の生体物質である細胞202を事前に用意し、水201に注入すれば、誘電泳動処理のみで、図12の(a)に示したように、抗体203が吸着した細胞202をセンサ表面に選択的に固定化することが可能となる。
 次に、実施形態1と同様に、保護膜115に接触した水201に被検査体204を注入する前の発振部31の発振周波数f1と、注入した後の発振周波数f2を発振周波数検出部32で検出する。f2≠f1であれば、被検査体204中に第3の生体物質であるタンパク質205が存在し、f2=f1であれば、被検査体204中に第3の生体物質であるタンパク質205が存在しないと判定できる。
 (効果)
 抗体203が吸着した細胞202を事前に用意することにより、誘電泳動処理のみで実施形態1と同様の構成を実現することが可能となる。つまり、実施形態1と同様の効果が誘電泳動処理のみで得られる。
 〔実施形態9〕
 (センサ装置の構成)
 本実施形態に係るセンサ装置の構成は、図3に示したセンサ装置30の構成と同様である。
 (動作)
 本実施形態に係るセンサ装置30を用いたタンパク質検査について、図15及び図16を用いて説明する。図15は、図10の(a)におけるA-A’線矢視断面図であり、図16は、発振周波数検出部32が検出する発振部31の発振周波数を示す図である。
 本実施形態では、第2の生体物質である細胞202として肥満細胞を用いて実施形態1又は2と同様の処理を行い、図15の(a)に示すように、抗体203が吸着した細胞202をセンサ表面に選択的に固定化した状態にする。
 次に、実施形態1と同様に、保護膜115に接触した水201に被検査体204を注入する前の発振部31の発振周波数f1と、注入後の発振周波数f2とを発振周波数検出部32で検出する(図16)。f2≠f1であれば、被検査体204中に第3の生体物質タンパク質205が存在し、f2=f1であれば、被検査体204中に第3の生体物質タンパク質205が存在しないと判定できる。
 (効果)
 上述の非特許文献3によると、肥満細胞に吸着した抗体203がタンパク質205と抗体・抗原反応を起こすと、肥満細胞は活性化し、細胞全体の屈折率分布及び誘電率分布が変わる。さらに、肥満細胞が活性化すると、図15の(b)に示すように、ヒスタミン206を放出する。
 実施形態1又は2の場合、抗体・抗原反応による誘電率が変化する領域は、抗体203又はタンパク質205のサイズと同じ10数nmのオーダーとなる。一方、本実施形態においては、抗体・抗原反応によって誘電率が変化する領域は、細胞202のサイズと同じ数μmのオーダーと劇的に広がるので、センサ装置30による検出が容易になる。つまり、センサ装置30によるタンパク質205のセンシング感度が大幅に改善されることになる。
 (限定解除)
 細胞202は、肥満細胞に限定されない。細胞202に吸着した抗体203が抗体・抗原反応をすることで、細胞202全体が活性化して屈折率及び誘電率が変わる、もしくはヒスタミンを放出するのであれば、好塩基球等の他の細胞であってもよい。
 〔実施形態10〕
 (センサ装置の構成)
 本実施形態に係るセンサユニットの構成について、図17を用いて説明する。図17は、センサユニット50が形成された半導体集積回路40を示す概略図である。
 図17に示すように、本実施形態に係るセンサユニットの構成は、図6に示したセンサユニット50の構成と同様である。ただし、各電極対36A,36B,・・・は、互いに独立して周波数f11,f12の交流電源と接続可能となっている。
 なお、実施形態6と同様のウェル構造が、各発振部上に形成されている構成であってもよい。特に、各発振部に1個だけ細胞を捕捉する場合には、ウェル構造を有する方が望ましい。なお、図17では、図が煩雑になるのを避けるため、ウェル構造を明示していない。
 (動作)
 交流電源は、周波数f11を誘電泳動力が細胞を捕捉する方向に働く周波数に設定し、周波数f12を誘電泳動力が細胞をリリースする方法に働く周波数を設定する。
 まず、全電極対36A,36B,・・・について、交流電源に接続しない、又は周波数f12の交流電源に接続する。これによって、誘電泳動力が働かない、又は細胞をリリースする方向に働くことになる。この状態では、全発振部に細胞が捕捉されることはない。この状態で、全発振部で、発振周波数f0A、f0B、・・・を計測する。
 次に、全電極対36A,36B,・・・に周波数f11の交流電源に接続する。これによって、誘電泳動力は細胞を捕捉する方向に働くことになる。この状態で、保護膜115に接触した水201に抗体203が付加された細胞202を導入して、実施形態1又は2と同様の誘電泳動処理を実施する。
 続いて、全発振部の発振周波数f1A,f1B,・・・を計測する。その結果、例えば、センサ装置30Aの発振部について、f0A=f1Aであれば、当該発振部に細胞202が捕捉されておらず、f0A≠f1Aであれば、当該発振部に細胞202が捕捉されていると判定を行う。捕捉の判定が出るまで、電極対36Aに周波数f11の交流電源に接続する。他の発振部についても同様のことを実施し、全発振部が細胞202を捕捉し、抗体203が固定化されていることを確認する。
 全発振部において、抗体203が固定化されていることのを確認したら、電極対36Aへの周波数f11の交流電源の接続を維持するか、当該交流電源から切り離すという処理を発振部ごとに行う。
 抗体203の固定化後に、実施形態5と同様に、保護膜115に接触した水201に被検査体204を注入する前のセンサ装置30Aの発振部の発振周波数f1Aと、注入後の発振周波数f2Aとを発振周波数検出部32で検出する。f2A≠f1Aであれば、被検査体204中にタンパク質205が存在し、f2A=f1Aであれば、被検査体204中にタンパク質205が存在しないと判定を行う。他の発振部についても同様の処理を実施する。
 (効果)
 実施形態6と同様に、タンパク質205の濃度を、細胞202に付加する抗体203の個数単位で離散的に定量化することが可能となる。この処理を抗体203の固定化確認後に行うことにより、検査の定量化の信頼性が向上する。
 (限定解除)
 以上では、全発振部に、抗体203が固定化されていることを確認してから、タンパク質検査に移行した。しかし、全発振部に限定されるのではなく、所定の数以上の発振部において抗体203が固定化されていることを確認したら、タンパク質検査に移行してもよい。この場合には、抗体203が固定化されていることが確認された発振部でのみタンパク質検査を実施する。
 また、以上では、電気泳動前後での発振部の発振周波数を比較したが、発振部1個をリファレンスとする方法もある。例えば、電極対36Bのみ、交流電源に接続しない、又は周波数f12の交流電源に接続する。これにより、センサ装置30Bの発振部には抗体203を付加した細胞202は捕捉されない。
 この状態で、電極対36B以外の全電極対を周波数f11の交流電源に接続し、保護膜115に接触した水201に抗体203が付加された細胞202を導入する。センサ装置30Aの発振部31Aと、センサ装置30Bの発振部31Bとの発振周波数f1A,f1Bを測定し、f1A=f1Bならば、センサ装置30Aの発振部に細胞202が捕捉されておらず、f1A≠f1Bならば、センサ装置30Aの発振部に細胞202が捕捉されていると判断できる。これをセンサ装置30Bの発振部以外の発振部全部、又は所定の数以上の発振部について行うことにより、抗体203を固定化する方法を採用してもよい。
 また、リファレンスは発振部1個に限定されるものではなく、精度を上げるために複数個の発振部をリファレンスとしてもよい。
 〔実施形態11〕
 (センサ装置の構成)
 本実施形態に係るセンサユニットの構成について、図18及び図19を用いて説明する。図18及び図19は、センサユニット50が形成された半導体集積回路40を示す概略図である。
 図18及び図19に示すように、本実施形態に係るセンサユニットの構成は、図6に示したセンサユニット50の構成と同様である。ただし、各電極対36A,36B,・・・は、互いに独立して周波数f11,f12の交流電源と接続可能となっている。
 なお、実施形態6と同様のウェル構造が、各発振部上に形成されている構成であってもよい。特に、各発振部に1個だけ細胞を捕捉する場合には、ウェル構造を有する方が望ましい。なお、図18及び図19では、図が煩雑になるのを避けるため、ウェル構造を明示していない。
 (動作)
 まず、図18に示すように、電極対36Aを、周波数f11の交流電源に接続する。電極対36A以外の電極対は、交流電源に接続しない、又は周波数f12の交流電源に接続する。この状態では、電極対36Aにのみ細胞が捕捉され、それ以外の電極対では細胞は捕捉されない。
 この状態で、保護膜115に接触した水201に抗体203Aが付加された細胞202Aを導入する。実施形態6で説明した方法により、電極対36Aに細胞202Aが捕捉されていることを確認するまで、電極対36Aへの周波数f11の交流電源の接続を継続する。
 電極対36Aに細胞202Aが捕捉されていることを確認したら、電極対36Aを交流電源から切り離し、保護膜115に接触した水201から抗体203Aが付加された細胞202Aを取り除く。
 次に、図19に示すように、電極対36Bに周波数f11の交流電源を接続し、保護膜115に接触した水201に抗体203Bが付加された細胞202Bを導入する。実施形態6で説明した方法により、電極対36Bに細胞202Bが捕捉されていることを確認するまで、電極対36Bへの周波数f11の交流電源の接続を継続する。
 以上の処理を繰り返すことにより、複数種類の抗体203A,203B,・・・を各発振部に固定化することが可能となる。
 この状態で、実施形態6と同様に、保護膜115に接触した水201に被検査体204を注入する前の各発振部31の発振周波数f1と、注入後の発振周波数f2とを発振周波数検出部32で検出する。センサ装置30Aの発振部について、f2A≠f1Aであれば、被検査体204中に、抗体203Aの対象タンパク質205Aが存在し、f2A=f1Aであれば、被検査体204中に、抗体203Aの対象タンパク質205Aが存在しないと判定できる。
 さらに、センサ装置30Bの発振部31Bについて、f2B≠f1Bであれば、被検査体204中に、抗体203Bの対象タンパク質205Bが存在し、f2B=f1Bであれば、被検査体204中に、抗体203Bの対象タンパク質205Bが存在しないと判定できる。
 (効果)
 このようにして、同一の被検査体204で、複数の抗体203A,203B,・・・を用いたタンパク質検査が可能となる。例えば、抗体203Aが抗カゼイン抗体であり、抗体203Bが抗ホエー抗体であるとする。この場合には、被検査体204における、牛乳に含まれるタンパク質であるカゼイン及びホエーそれぞれの有無を、1個のセンサユニット50で検出可能となる。
 また、例えば、抗体203Aが抗A抗体であり、抗体203Bが抗B抗体であるとする。この場合には、被検査体204におけるA抗原とB抗原との有無が検出できるので、例えば血液型のABO判定が1個のセンサユニット50で行うことが可能となる。
 〔実施形態12〕
 複数のセンサ装置を有するセンサユニットにおいて、1個のセンサ装置における発振部の電極対のみ、常に周波数f12の交流電源に接続する。この状態を維持して、他の発振部にて実施形態6~11の処理を行ってもよい。
 (効果)
 1個のセンサ装置における発振部の電極対は、常に周波数f12の交流電源に接続されるので細胞が捕捉されない。したがって、常に水201のみを測定した状態になり、周波数測定の基準値として当該発振部を利用することが可能となり、測定精度の改善が可能となる。
 〔まとめ〕
 本発明の態様1に係るセンサ装置30は、半導体集積回路40に形成され、接触する被検査体の物性に応じて発振周波数が変化する発振部31と、前記発振周波数を検出する発振周波数検出部32と、液中に分散した特定の被検査体を任意の位置に移動させるための1対以上の電極対36とを備える。
 上記の構成によれば、電極対36に電圧信号を印加することによって発生する誘電泳動力又は電気泳動力を利用して被検査体を任意の位置に移動させることができる。例えば、電極対36に電圧信号を印加し、発振部31のセンシング電極35近傍に被検査体を移動させることにより、センサ装置30の被検査体に対する検出感度を向上させることができる。
 このように、本発明の一態様に係るセンサ装置30を用いれば、電極対36を用いるのみで、液体中に分散する標的の被検査体に対する検出感度の向上を容易に実現することができる。
 本発明の態様2に係るセンサ装置30は、前記態様1において、前記発振部31は、1組の電極から構成されたセンシング電極35を備えており、前記電極対36が前記特定の被検査体を移動させる任意の位置は、前記1組の電極の中間位置であることが好ましい。
 発振周波数検出部12による検出周波数への影響は、センシング電極35を構成する1組の電極の中間位置に存在する被検査体の存在によるものが大きい。そこで、上記の構成によれば、センシング電極35を構成する1組の電極の中間位置に被検査体を移動させることにより、発振部31の発振周波数を感度よく検出することができる。
 本発明の態様3に係るセンサ装置30は、前記態様2において、前記電極対36と前記センシング電極35とは、前記半導体集積回路40のトップメタル層に形成されていることが好ましい。
 上記の構成によれば、電極対36及びセンシング電極35が半導体集積回路40に一体的に形成されていることにより、センサ装置30の小型化を図ることができる。
 また、上記の構成によれば、電極対36に印加する電圧信号によって発生する電界強度がセンサ装置30の表面近傍で強くなることによって、被検査体に対する誘電泳動力又は電気泳動力が大きくなる効果が得られる。また、センシング電極35によって発生する電界強度がセンサ装置30の表面近傍で強くなることによって、センサ装置30の被検査体の物性に対する感度が向上する効果が得られる。
 本発明の態様4に係るセンサ装置30は、前記態様1~3のいずれかにおいて、前記電極対36は、前記特定の被検査体に応じた電圧信号が印加されることにより、当該特定の被検査体を前記任意の位置に移動させる。
 上記の構成によれば、特定の被検査体を選択的に移動させることができる。
 本発明の態様5に係るセンサ装置30は、前記態様4において、前記電極対36は、液中に分散した複数の被検査体に応じた電圧信号が印加されることにより、前記複数の被検査体のうちの前記特定の被検査体を前記任意の位置に移動させると共に、残りの被検査体を前記任意の位置から遠ざける。
 上記の構成によれば、液中に複数種類の被検査体が分散している場合においても、特定の被検査体のみについて検出を行うことが可能となる。
 本発明の態様6に係るセンサ装置30は、前記態様1~5のいずれかにおいて、前記電極対36上に、前記被検査体に含まれる生体物質(細胞202)が入る領域を有するウェル構造116が形成されている。
 上記の構成によれば、ウェル構造116と生体物質との相互作用によって、生体物質を捕捉後に電極対36に印加した交流電界を停止しても、ウェル構造116に生体物質が物理吸着して捕捉状態が継続される。また、ウェル構造116を導入することにより、1個の生体物質のみを捕捉することも可能となるので、検査に定量性を持たせることが可能となる。
 本発明の態様7に係る検出方法は、前記態様1~6のいずれかにおけるセンサ装置30を用いて、液中に分散した第1の生体物質(抗体203)の抗体抗原反応の対象となる第3の生体物質(タンパク質205)を検出する検出方法であって、前記発振部31は、1組の電極から構成されたセンシング電極35を備えており、前記第1の生体物質が吸着した第2の生体物質(細胞202)を前記電極対36が捕捉する工程と、前記第3の生体物質の有無を前記センシング電極35で検出する工程とを含む。
 上記の方法によれば、誘電泳動を用いて第2の生体物質を所望の位置に捕捉して、第1の生体物質を第2の生体物質に吸着させることにより、センサ表面上の所望の位置に第1の生体物質を選択的に固定化することが可能となる。これにより、センサ装置30のセンシング感度が高い位置のみに第1の生体物質を選択的に固定化することで第3の生体物質のセンシング感度を実効的に上げることが可能となる。
 本発明の態様8に係る検出方法は、前記態様7において、前記第2の生体物質は、抗原抗体反応で活性化する生体物質である。
 上記の方法によれば、抗体・抗原反応によって誘電率が変化する領域が劇的に広がるので、センサ装置30による検出が容易になる。つまり、センサ装置30に第3の生体物質のセンシング感度が大幅に改善されることになる。
 本発明の態様9に係るセンサユニット50は、前記態様1~6のいずれかのセンサ装置30を複数備えている。
 上記の構成によれば、複数種類の被検査体について同時に検出を行うことが可能となる。
 本発明に態様10に係るセンシング方法は、前記態様1~6のいずれかのセンサ装置30を用いたセンシング方法であって、前記電極対36に電圧信号を印加することにより、液中に分散した前記特定の被検査体を任意の位置に移動させる移動ステップと、前記移動ステップ後に、前記発振周波数検出部32が前記発振部31の前記発振周波数を検出する検出ステップとを含む。
 上記の方法によれば、本発明の一態様に係るセンサ装置30と同様の効果を奏することができる。
30,30A,30B センサ装置
12,32 発振周波数検出部
20~27 被検査体
31 発振部
33 共振器
34 差動回路
35 センシング電極
36,36A,36B 電極対
37 回路群
40 半導体集積回路
50 センサユニット

Claims (8)

  1.  半導体集積回路に形成され、接触する被検査体の物性に応じて発振周波数が変化する発振部と、
     前記発振周波数を検出する発振周波数検出部と、
     液中に分散した特定の被検査体を任意の位置に移動させるための1対以上の電極対とを備えることを特徴とするセンサ装置。
  2.  前記発振部は、1組の電極から構成されたセンシング電極を備えており、
     前記電極対が前記特定の被検査体を移動させる前記任意の位置は、前記1組の電極の中間位置であることを特徴とする請求項1に記載のセンサ装置。
  3.  前記電極対と前記センシング電極とは、前記半導体集積回路のトップメタル層に形成されていることを特徴とする請求項2に記載のセンサ装置。
  4.  前記電極対は、液中に分散した複数の被検査体に応じた電圧信号が印加されることにより、前記複数の被検査体のうちの前記特定の被検査体を前記任意の位置に移動させると共に、残りの被検査体を前記任意の位置から遠ざけることを特徴とする請求項3に記載のセンサ装置。
  5.  前記電極対上に、前記被検査体に含まれる生体物質が入る領域を有するウェル構造が形成されていることを特徴とする請求項1~4のいずれか1項に記載のセンサ装置。
  6.  請求項1~5のいずれか1項に記載のセンサ装置を用いて、液中に分散した第1の生体物質の抗体抗原反応の対象となる第3の生体物質を検出する検出方法であって、
     前記発振部は、1組の電極から構成されたセンシング電極を備えており、
     前記第1の生体物質が吸着した第2の生体物質を前記電極対が捕捉する工程と、
     前記第3の生体物質の有無を前記センシング電極によって検出する工程とを含むことを特徴とする検出方法。
  7.  前記第2の生体物質は、抗原抗体反応で活性化する生体物質であることを特徴とする請求項6に記載の検出方法。
  8.  請求項1~5のいずれか1項に記載のセンサ装置を複数備えていることを特徴とするセンサユニット。
PCT/JP2017/020313 2016-04-05 2017-05-31 センサ装置、検出方法、及びセンサユニット WO2017175879A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/090,817 US10690611B2 (en) 2016-04-05 2017-05-31 Sensor device, detection method, and sensor unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016076058 2016-04-05
JP2016-076058 2016-04-05
JP2016130940A JP6676486B2 (ja) 2016-04-05 2016-06-30 検出方法
JP2016-130940 2016-06-30

Publications (2)

Publication Number Publication Date
WO2017175879A1 true WO2017175879A1 (ja) 2017-10-12
WO2017175879A8 WO2017175879A8 (ja) 2018-01-11

Family

ID=60001135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020313 WO2017175879A1 (ja) 2016-04-05 2017-05-31 センサ装置、検出方法、及びセンサユニット

Country Status (1)

Country Link
WO (1) WO2017175879A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165906A (ja) * 1999-09-30 2001-06-22 Wako Pure Chem Ind Ltd 誘電泳動力を用いた物質の分離方法
JP2003511668A (ja) * 1999-10-01 2003-03-25 ソフィオン・バイオサイエンス・アクティーゼルスカブ イオンチャネルの電気生理的性質を測定及び/または監視するための基体及び方法
JP2011075539A (ja) * 2009-09-07 2011-04-14 Ngk Insulators Ltd 目的物質の検出方法及び誘導泳動センサ
WO2012121229A1 (ja) * 2011-03-08 2012-09-13 公立大学法人大阪府立大学 微生物検出用センサーおよびその製造方法
JP2013238463A (ja) * 2012-05-15 2013-11-28 Hyogo Prefecture 誘電泳動を利用する細胞識別方法
US20140077799A1 (en) * 2012-09-14 2014-03-20 California Institute Of Technology Integrated magnetic spectrometer for multiplexed biosensing
US20150109004A1 (en) * 2012-03-02 2015-04-23 Parelectrics Ug (Haftungsbeschränkt) Non-invasive measurement of dielectric properties of a substance
JP2015083987A (ja) * 2008-04-15 2015-04-30 パナソニックヘルスケアホールディングス株式会社 微粒子測定装置および微粒子測定方法
JP2016020815A (ja) * 2014-07-11 2016-02-04 シャープ株式会社 センサic
WO2017010177A1 (ja) * 2015-07-13 2017-01-19 シャープ株式会社 センサ装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165906A (ja) * 1999-09-30 2001-06-22 Wako Pure Chem Ind Ltd 誘電泳動力を用いた物質の分離方法
JP2003511668A (ja) * 1999-10-01 2003-03-25 ソフィオン・バイオサイエンス・アクティーゼルスカブ イオンチャネルの電気生理的性質を測定及び/または監視するための基体及び方法
JP2015083987A (ja) * 2008-04-15 2015-04-30 パナソニックヘルスケアホールディングス株式会社 微粒子測定装置および微粒子測定方法
JP2011075539A (ja) * 2009-09-07 2011-04-14 Ngk Insulators Ltd 目的物質の検出方法及び誘導泳動センサ
WO2012121229A1 (ja) * 2011-03-08 2012-09-13 公立大学法人大阪府立大学 微生物検出用センサーおよびその製造方法
US20150109004A1 (en) * 2012-03-02 2015-04-23 Parelectrics Ug (Haftungsbeschränkt) Non-invasive measurement of dielectric properties of a substance
JP2013238463A (ja) * 2012-05-15 2013-11-28 Hyogo Prefecture 誘電泳動を利用する細胞識別方法
US20140077799A1 (en) * 2012-09-14 2014-03-20 California Institute Of Technology Integrated magnetic spectrometer for multiplexed biosensing
JP2016020815A (ja) * 2014-07-11 2016-02-04 シャープ株式会社 センサic
WO2017010177A1 (ja) * 2015-07-13 2017-01-19 シャープ株式会社 センサ装置

Also Published As

Publication number Publication date
WO2017175879A8 (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
Rashed et al. Rapid detection of SARS-CoV-2 antibodies using electrochemical impedance-based detector
US20190346358A1 (en) Active micro sieve and methods for biological applications
Valero et al. A unified approach to dielectric single cell analysis: Impedance and dielectrophoretic force spectroscopy
Ferrier et al. A microwave interferometric system for simultaneous actuation and detection of single biological cells
WO2014036915A1 (en) Dielectrophoresis based apparatuses and methods for the manipulation of particles in liquids
JP6676486B2 (ja) 検出方法
US20140061049A1 (en) Microfluidics with wirelessly powered electronic circuits
US9110010B2 (en) Electrical detection using confined fluids
US20210114025A1 (en) Biosensor method and system
JP2018505423A (ja) デバイ長変調
Lin et al. PicoMolar level detection of protein biomarkers based on electronic sizing of bead aggregates: theoretical and experimental considerations
Caselli et al. Modeling, simulation, and performance evaluation of a novel microfluidic impedance cytometer for morphology-based cell discrimination
Marcali et al. Impedimetric detection and lumped element modelling of a hemagglutination assay in microdroplets
JP2011075539A (ja) 目的物質の検出方法及び誘導泳動センサ
Gupta et al. Acoustophoretic separation of infected erythrocytes from blood plasma in a microfluidic platform using biofunctionalized, matched‐impedance layers
Guo et al. Disposable microfluidic channel with dielectric layer on PCB for AC sensing of biological cells
WO2017175879A1 (ja) センサ装置、検出方法、及びセンサユニット
Abeyrathne et al. GFAP antibody detection using interdigital coplanar waveguide immunosensor
US8293089B1 (en) Portable dual field gradient force multichannel flow cytometer device with a dual wavelength low noise detection scheme
KR101646182B1 (ko) 바이오 센서
JPWO2019017094A1 (ja) センサおよびセンサアレイ
KR20090062591A (ko) 유전영동 임피던스를 이용한 센싱장치 및 센싱방법
EP3911950B1 (en) Apparatus for the quantification of biological components dispersed in a fluid
Mansor et al. A Novel Integrated Dual Microneedle-Microfluidic Impedance Flow Cytometry for Cells Detection in Suspensions.
JP6736001B2 (ja) センサic

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779256

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779256

Country of ref document: EP

Kind code of ref document: A1