WO2012120666A1 - Nmpの蒸留装置 - Google Patents

Nmpの蒸留装置 Download PDF

Info

Publication number
WO2012120666A1
WO2012120666A1 PCT/JP2011/055531 JP2011055531W WO2012120666A1 WO 2012120666 A1 WO2012120666 A1 WO 2012120666A1 JP 2011055531 W JP2011055531 W JP 2011055531W WO 2012120666 A1 WO2012120666 A1 WO 2012120666A1
Authority
WO
WIPO (PCT)
Prior art keywords
nmp
distillation column
distillation
liquid
raw material
Prior art date
Application number
PCT/JP2011/055531
Other languages
English (en)
French (fr)
Inventor
宮田堅洋
川田智之
田村貴弘
Original Assignee
三菱化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学エンジニアリング株式会社 filed Critical 三菱化学エンジニアリング株式会社
Priority to PCT/JP2011/055531 priority Critical patent/WO2012120666A1/ja
Priority to JP2011051636A priority patent/JP5776231B2/ja
Priority to CN201180065374.6A priority patent/CN103328443B/zh
Priority to TW100108291A priority patent/TWI477487B/zh
Publication of WO2012120666A1 publication Critical patent/WO2012120666A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/2672-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atom

Definitions

  • the present invention relates to an NMP distillation apparatus, and more specifically, to recycle used NMP (N-methyl-2-pyrrolidone) recovered from an electrode manufacturing process of a lithium ion secondary battery. It is related with the distillation apparatus of NMP which can be refine
  • NMP N-methyl-2-pyrrolidone
  • an electrode material comprising an active material such as a lithium compound, a binder such as polyvinylidene fluoride, and N-methyl-2-pyrrolidone (hereinafter abbreviated as “NMP”) as a solvent.
  • NMP N-methyl-2-pyrrolidone
  • a metal foil substrate is coated and baked to produce an electrode.
  • NMP generated as a gas in the firing process is recovered by an adsorption method using activated carbon or zeolite or a water absorption method, and is prepared in advance to an aqueous solution having a concentration of 80 wt% or less in advance for transportation safety. In order to purify it into a pure product, it is transported in large quantities over long distances by tank trucks to chemical factories. In the chemical factory, the recovered NMP is purified to a purity of 99.9 wt% or more by a known distillation method as in the first production.
  • NMP distillation purification requires a highly skilled technique, and there is a situation that it is difficult to get familiar with in places other than chemical factories. That is, NMP recovered from the battery manufacturing process contains light boiling components having a boiling point in the middle of each boiling point of water and NMP and high boiling components derived from NMP. In addition, there is a problem that steady operation is difficult because the amount of water (NMP concentration) in NMP fluctuates due to seasonal fluctuations and fluctuations in the manufacturing process, and the processing amount also fluctuates.
  • the present invention has been made in view of the above circumstances, and an object thereof is a distillation apparatus for regenerating used NMP recovered from an electrode manufacturing process or the like of a lithium ion secondary battery. It is an object of the present invention to provide an NMP distillation apparatus that can easily and safely purify NMP regardless of fluctuations in water content and processing amount, and is suitable for on-site automatic operation.
  • a side-cut type single-column distillation column is adopted to reduce the number of auxiliary devices such as a reboiler for cooking, a condenser for cooling, a pump, and other instruments.
  • auxiliary devices such as a reboiler for cooking, a condenser for cooling, a pump, and other instruments.
  • water containing light boiling components is removed from the raw material NMP to separate high-concentration NMP, and further, high-boiling components are removed from high-concentration NMP at the lower portion of the distillation column.
  • the high-purity NMP was taken out from the middle part of the distillation column. Then, by setting the recovery rate to about 85%, high purity NMP having a purity of 99.9 wt% or more can be purified.
  • an automatic processing function when starting a continuous processing operation, a depressurization operation for adjusting the distillation column to a steady state, a start-up function for starting a continuous processing operation by sequentially performing a circulating operation, and a continuous processing operation
  • a depressurization operation for adjusting the distillation column to a steady state a start-up function for starting a continuous processing operation by sequentially performing a circulating operation
  • a continuous processing operation By adding an operation mode switching function that switches to circulation operation again according to the liquid level of the raw material tank and product tank, it can be operated easily and safely in response to fluctuations in the processing amount and the moisture content in the raw material. I made it.
  • the gist of the present invention is an NMP distillation apparatus for purifying used NMP containing light boiling components and high boiling components as impurities, a raw material tank for storing used NMP as a liquid to be treated, A distillation column for purifying high-purity NMP by distilling the liquid to be treated supplied from the raw material tank; and a product tank for storing the high-purity NMP obtained in the distillation column, the distillation column having a concentration of 99 wt%
  • the top of the tower that separates the high-concentration NMP and the light-boiling component-containing water, and the reflux liquid is further distilled to separate the high-purity NMP having a concentration of 99.9 wt% or more and the high-concentration NMP containing the high-boiling component
  • This is a side-cut type distillation column that consists of the lower part of the column and is configured so that a high-purity NMP can be taken out as a side-cut liquid from the middle stage part.
  • the liquid to be treated in the raw material tank is supplied to the distillation column, and the distillation column is adjusted to a steady state by performing a circulation operation for returning the distillate and the side cut liquid of the distillation column to the raw material tank.
  • Start-up function that starts processing operation
  • operation mode switching function that switches to circulation operation again when the liquid level of the raw material tank drops to a predetermined height or the liquid level of the product tank rises to a predetermined height in continuous processing operation
  • high-concentration NMP is separated by removing light-boiling component-containing water at the top of the distillation column, and high-purity NMP is separated and purified by removing high-boiling components at the bottom of the distillation column.
  • high-purity NMP is extracted from the middle part of the distillation column by a side cut method, and as an automatic processing function, a start-up function for starting a continuous processing operation by sequentially performing a decompression operation and a circulation operation in the distillation column, and a continuous processing operation
  • the operation mode switching function for switching to the circulation operation is provided, so that NMP can be purified easily and safely on-site by automatic operation without requiring highly skilled techniques.
  • NMP N-methyl-2-pyrrolidone and an aqueous solution containing this as a main component.
  • raw material NMP which is a liquid to be treated
  • light boiling components such as formic acid having a boiling point in the middle of each boiling point of water and NMP
  • examples include NMP-derived high boiling components such as ⁇ -butyl lactone (GBL) and n-methylsuccinimide.
  • the distillation apparatus of the present invention is a one-column apparatus capable of automatically operating to purify a raw material NMP containing light boiling components and high boiling components as impurities.
  • a side cut liquid from a raw material tank 41 for storing NMP
  • a side-cut type distillation column 1 for purifying high-purity NMP by distilling a liquid to be treated supplied from the raw material tank, and a middle part of the distillation column.
  • the first check drum 31 and the second check drum 32 that once collect the collected high-purity NMP and collect a sample for analysis, and the product tank 42 that stores the high-purity NMP collected on these check drums as a product.
  • a waste liquid tank 43 for storing high-concentration NMP (waste liquid) containing a high-boiling component recovered from the bottom of the distillation column 1.
  • the raw material tank 41 is a container for storing, for example, a raw material NMP having a concentration of 95 wt% or less, usually 70 to 90 wt%, which is discharged from an electrode manufacturing process of a lithium ion secondary battery. Provided to perform processing.
  • the raw material tank 41 is connected with a flow path 90 for supplying the raw material NMP to the distillation column 1 as a liquid to be treated as well as a flow path for feeding the raw material NMP to the raw material tank from an electrode manufacturing process or the like.
  • Reference numeral 61 in the figure indicates a raw material supply pump, and reference numeral 74 indicates a flow rate adjusting valve.
  • the distillation column 1 is a side-cut type distillation column that distills and purifies the supplied raw material NMP, and separates the top of the column into high-concentration NMP having a concentration of 99.9 wt% or more and light-boiling component-containing water, and By further distilling the reflux liquid of the distillation column, it is composed of a lower part of the tower that is separated into a high-purity NMP having a concentration of 99.9 wt% or more and a high-concentration NMP containing a high-boiling component. High purity NMP can be taken out.
  • the distillation column 1 is a conventionally known distillation column, that is, a gas-liquid contact tray (shelf) such as a packed column in which an irregular or ordered packing is loaded in an empty column or a perforated plate tray is provided in the empty column. Consists of a number of shelf towers.
  • the distillation column 1 is configured such that the raw material NMP to be treated is supplied to the upper middle part of the column through the flow path 90.
  • a cooking mechanism including a reboiler 67 is attached to the bottom of the distillation column 1 in order to heat and evaporate the raw material NMP.
  • Such a cooking mechanism is a mechanism that cooks the raw material NMP at the bottom of the distillation column 1.
  • the reboiler 67 heats and evaporates the raw material NMP by heat exchange with a heat medium such as water vapor, and the raw material NMP is extracted from the bottom of the tower.
  • the recycler 67 is composed of a column bottom liquid circulation passage 91 for returning the NMP vaporized by the reboiler to the column bottom and a waste liquid extraction pump 65.
  • a multi-tube heat exchanger in which a large number of flow paths are constituted by a plurality of heat transfer tubes can be used. Further, on the upstream side of the reboiler 67 in the flow channel 91, a part of the bottom liquid circulating in the bottom of the distillation tower 1, that is, the high concentration NMP concentrated in the distillation tower 1 is used as a waste liquid to the waste liquid tank 43. A supply flow path 96 is branched. The high concentration NMP is discharged from the bottom of the column for the purpose of preventing the concentration of peroxide.
  • a condenser 30 for condensing the separated water vapor is provided at the top of the distillation column 1.
  • the condenser 30 normally liquefies such condensable vapor by allowing the refrigerant to flow through a plurality of heat transfer tubes or heat transfer plates constituting a large number of flow paths and passing the condensable vapor (distilled and separated vapor). Multi-tube, spiral, plate, and double-tube condensers are used.
  • a flow path 92 is provided at the bottom of the condenser 30 to discharge condensed water containing a light boiling component of impurities out of the system as a distillate.
  • the flow path 92 is a flow path for sending condensed water containing a light boiling component to the drainage tank 2.
  • the drain tank 2 is provided with a channel 93, a pump 66 and a channel 94 for returning the distillate once stored in the distillation column 1 to the upper stage of the distillation column 1.
  • the flow path 94 is branched and provided with a flow path 100 for returning the distillate stored in the drain tank 2 to the raw material tank 41 during the circulation operation described later. Further, the flow path 100 is provided with a flow path 101 for discharging a part of the distillate stored in the drain tank 2 out of the system.
  • the flow path 80 mentioned later is connected to the tower top in order to depressurize the inside of the distillation tower 1 and to supply an inert gas.
  • the bottom liquid circulation channel is a part of the high-concentration NMP circulating through the bottom of the distillation tower 1, that is, the bottom liquid containing high boiling point components of impurities.
  • the waste liquid cooler 35 for cooling the extracted high concentration NMP the flow path 97 for sending the cooled high concentration NMP to the waste liquid tank 43, and the waste liquid tank 43.
  • symbol 78 shows the flow volume adjustment valve which controls the flow volume of bottoms
  • symbol 64 shows the pump for waste liquid discharge
  • a condenser 68 for condensing the separated high-purity NMP is attached to the middle stage of the distillation column 1. As such a condenser, the same one as that at the top of the distillation column 1 is used.
  • the condenser 68 is connected to a flow path 95 for extracting condensed high-purity NMP as a side cut liquid.
  • the flow path 95 is connected to the first check drum 31 and the second check drum 32.
  • Reference numeral 77 denotes a flow rate adjusting valve 77 for controlling the flow rate of the side cut liquid.
  • the first check drum 31 and the second check drum 32 are provided for analyzing the purity of the high purity NMP obtained from the middle part of the distillation column 1 and determining whether or not the product is a product.
  • the first check drum 31 and the second check drum 32 are configured to alternately receive high-purity NMP by a switching valve interposed in the flow path 95 between them.
  • a channel 82 described later is connected to the top of the distillation column 1 in order to decompress the inside of the distillation column and supply an inert gas to the distillation column.
  • the first check drum 31 and the second check drum 32 are connected to flow paths 83 and 84, which will be described later, in order to depressurize the container and supply an inert gas.
  • a flow path 86 is connected to the first check drum 31 and a flow path 87 is connected to the second check drum 32.
  • 87 is connected to the product tank 42 via a product extraction pump 62 and a flow path 88.
  • on-off valves are attached to the flow paths 86 and 87, respectively, so that the high purity NMP is switched and sent from the first check drum 31 and the second check drum 32 to the product tank 42.
  • the flow path 99 is branched and provided.
  • the product tank 42 is a container for storing high-purity NMP, and is supplied with high-purity NMP, for example, through a product supply pump 63 and a flow path 89 as needed in the battery manufacturing process.
  • a distillation operation is performed under reduced pressure conditions. Therefore, a vacuum line for evacuating the inside of the system is provided, and oxygen pressure is prevented and the pressure in the system is reduced. In order to adjust, an inert gas line for supplying nitrogen gas is provided in the system.
  • a flow path 80 extended from a nitrogen gas supply facility and having a pressure control valve 71 interposed is connected to the top of the distillation column 1. Further, the flow path 80 is connected to a flow path 82 in which a pressure regulating valve 72 is provided on the downstream side, and the flow paths 83 and 84 are branched from the flow path 82 and the first check drum 31 and Connected to the second check drum 32. Further, the tip of the flow path 82 is connected to a vacuum pump 34 for evacuating the system.
  • the channel 85 is a channel for exhausting the vacuum pump 34.
  • a flow path 81 for supplying nitrogen to the first check drum 31 and the second check drum 32 is branched from the pressure supply valve 71 in the flow path 80 for supplying nitrogen. .
  • a pressure adjustment valve 73 is interposed in the flow path 81, and the tip thereof is connected to the upstream side of the pressure adjustment valve 72 of the flow path 82.
  • thermometer 51 is attached to the packed bed in the middle part of the distillation column 1 in order to control the distillation operation in the distillation column 1 and to exhibit the automatic processing function described later. Based on the processing conditions set in advance and the detection signals from the temperature and liquid level detection devices, the operation of the cooking mechanism, the opening and closing of each channel, the switching, the flow rate It is configured to control adjustments.
  • the distillation apparatus switches from a continuous processing operation to a circulation operation as an automatic processing function by the above control device, a start-up function for starting a continuous processing operation after adjusting the pressure reduction operation and the circulation operation in order and adjusting to a steady state. It is configured to exhibit an operation mode switching function and an automatic stop function.
  • the automatic processing function will be described together with the operation method of the distillation apparatus of the present invention and the purification method of NMP.
  • the pressure of the distillation column 1 is set to 100 torr by controlling the pressure regulating valves 71 and 72, and the first The pressure of the check drum 31 and the second check drum 32 is set to 100 torr or less under the control of the pressure adjustment valve 73.
  • steam is supplied to the reboiler 67 of the distillation column 1 and the cooking mechanism is operated to start heating.
  • the steam flow rate is gradually increased to the design flow rate over about 40 minutes.
  • the temperature change is not so large in the bottom packed bed and the top packed bed of the distillation column 1, and if the temperature of the tower bottom or tower top is detected to control the cooking mechanism, the followability is bad, The water concentration in the middle stage liquid cannot be kept constant.
  • the temperature of the middle packed bed in the distillation column 1 with temperature change is detected by the thermometer 51, and the steam flow rate of the reboiler 67 is cascade controlled, so that the temperature of the middle packed bed is, for example, 130-
  • the moisture concentration in the side cut liquid taken out from the middle stage can be kept constant at 140 ° C.
  • the raw material NMP is continuously supplied, and a circulation operation for returning the distillate at the top of the distillation column 1 and the side cut liquid at the middle stage of the distillation column 1 to the raw material tank 41 is performed. And finely adjust the set value of the automatic operation data set in advance. Thereby, the inside of a system can be adjusted to the optimal operating condition.
  • the light-boiling component-containing water discharged from the top of the distillation column 1 and stored in the drainage intermediate tank 2 uses a pump 66 and adjusts the opening degree of the flow rate control valve 75, 94 to the top of the column. Thereafter, in order to stabilize the inside of the system, the distillate at the top of the tower stored in the drainage intermediate tank 2 is adjusted to the opening degree of the flow control valve 79 and returned to the raw material tank 41 through the flow path 100, whereby the distillation tower The amount of reflux to the top of 1 is adjusted.
  • the flow rate adjusting valve 78 is ratio-controlled based on the supply flow rate to the distillation column 1 and about 10 wt% of the supply flow rate is withdrawn as waste liquid through the flow path 96 in order to suppress peroxide concentration.
  • the liquid level in the tower bottom is controlled by detecting the liquid level of the tower bottom liquid with the liquid level gauge 52 and adjusting the amount of extraction.
  • the operating conditions are adjusted to the optimum conditions by circulating operation. Then, the destination of the side cut liquid from the middle stage of the distillation column 1 is switched from the raw material tank 41 to, for example, the first check drum 31, and the continuous processing operation is started.
  • the distillation apparatus of the present invention as an automatic processing function, a circulation operation is performed in advance in the distillation column 1, the raw material NMP (liquid to be treated) in the raw material tank 41 is supplied to the distillation column 1, and the column of the distillation column 1 is used.
  • the distillation column is adjusted to a steady state, and then a start-up function for starting a continuous processing operation is provided.
  • the inside of the system can be adjusted to a steady state that is completely adapted to the composition of the supplied raw material NMP, and can be smoothly shifted to a continuous processing operation.
  • the high-purity NMP taken out as a side cut liquid from the middle stage of the distillation column 1 is stored alternately with respect to the first check drum 31 and the second check drum 32.
  • the first check drum 31 and the second check drum 32 are switched by attaching a switching valve (not shown) interposed in the flow path 95 between these check drums to each of the check drums 31 and 32. It is automatically performed by controlling based on a liquid level gauge (not shown).
  • the second check is performed on the liquid supply of the high-purity NMP from the flow path 95.
  • the opening / closing valve (not shown) of the flow path 86 is opened, the product extraction pump 62 is activated, and the minimum flow operation is performed to make the NMP concentration in the first check drum 31 uniform.
  • the purity of the high-purity NMP (product) of the first check drum 31 is analyzed, and the purity conforms to an intended standard. Transports high purity NMP to the product tank 42 via the flow path 88.
  • the purity analysis of high-purity NMP is performed using gas chromatography by collecting a part of the high-purity NMP from each of the check drums 31 and 32 through a sampling channel (not shown).
  • the NMP purity can be calculated backward from the moisture concentration using a Karl Fischer moisture concentration meter, a near-infrared absorbance trace moisture concentration meter, a refractive index concentration meter, or the like.
  • the NMP of each check drum 31 and 32 is returned to the raw material tank 41 through the flow path 99.
  • the waste liquid stored in the waste liquid tank 43 (high-concentration-containing high-concentration NMP) is appropriately discharged to a drum can or lorry vehicle outside the system via the waste liquid discharge pump 64 and the flow path 98.
  • the circulation operation is performed again.
  • the operation mode switching function to switch to is provided.
  • the liquid level height (lower limit height) of the raw material tank 41 is preset to a height corresponding to, for example, 20 wt% of the internal volume of the tank, and the liquid level height (upper limit height) of the product tank 42 is The height corresponding to, for example, an equivalent amount of 90 wt% of the internal volume of the tank is set in advance.
  • the operation mode switching function described above may be configured to switch the operation by detecting the liquid levels of the first check drum 31 and the second check drum 32. That is, in a preferred embodiment, the operation mode switching function is performed when the liquid level of the raw material tank 41 is lowered to a predetermined height as described above in the continuous processing operation, or when the liquid level of the product tank 42 is raised to a predetermined height, or When the liquid level of the first check drum 31 or the second check drum 32 rises to a predetermined height, the operation is switched to the circulation operation again.
  • each operation condition of the distillation column 1 can be automatically adjusted as described above. Then, it is determined whether or not the liquid levels of the raw material tank 41, the product tank 42, the first check drum 31 and the second check drum 32 are within an allowable range. Transition to driving.
  • the operation mode switching function can cope with fluctuations in the processing amount of the raw material NMP and the amount of water in the raw material NMP, so that high-purity NMP can be purified safely and stably.
  • the flow rate adjusting valves 70 and 72 are closed, the flow rate adjusting valves 71 and 73 are fully opened, and nitrogen is introduced into the system.
  • the pressure in the system is initially set to a pressure slightly higher than atmospheric pressure (for example, 500 to 600 mmH 2 O) by the pressure adjusting mechanism, and then lowered to substantially atmospheric pressure.
  • an automatic processing function operation of a reboiler in the distillation column 1
  • supply of a liquid to be processed from a raw material tank, and distillation from the distillation column are performed by an operation stop operation or an emergency stop operation.
  • An automatic stop function is provided to stop the extraction of the liquid, the side cut liquid, and the bottoms, and to supply an inert gas to the distillation column 1 to equalize the pressure in these columns.
  • the composition in the column of the distillation column 1 can be maintained in the state when the operation is stopped, and when the operation is performed again, The composition is not disturbed and can be started more smoothly.
  • the raw material tank 41, the product tank 42, the waste liquid tank 43, and the equipment accompanying these can be used except the distillation tower 1 and its attached equipment.
  • acid resistance is provided to the flow path for supplying the raw material NMP discharged from the electrode manufacturing process to the raw material tank 41 or the flow path 90 for supplying the raw material NMP from the raw material tank 41 to the distillation column 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Pyrrole Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 リチウムイオン二次電池の電極製造工程などから回収される使用済みのNMPを再生する蒸留装置であって、簡単かつ安全に精製でき、オンサイトでの自動運転に適したNMPの蒸留装置を提供する。 NMPの蒸留装置は、原料タンク41、蒸留塔1及び製品タンク42を備えており、蒸留塔1は、高濃度NMPと軽沸成分含有の水とに分離する塔頂部、および、当該蒸留塔の還流液を更に蒸留して高純度NMPと高沸成分含有の高濃度NMPとに分離する塔低部からなり、かつ、中段部からサイドカット液として高純度NMPを取出可能に構成されたサイドカット方式の蒸留塔であり、更に、自動処理機能として、蒸留塔1において減圧運転、循環運転を行って定常状態に調整して連続処理運転を開始するスタートアップ機能と、連続処理運転において原料タンク41又は製品タンク42の液面に応じて、再び循環運転に切り替える運転モード切替機能を備えている。

Description

NMPの蒸留装置
 本発明は、NMPの蒸留装置に関するものであり、詳しくは、リチウムイオン二次電池の電極製造工程などから回収される使用済みのNMP(N-メチル-2-ピロリドン)をリサイクルするためにオンサイトで精製可能なNMPの蒸留装置に関するものである。
 リチウムイオン二次電池の製造においては、リチウム化合物などの活物質、ポリフッ化ビニリデン等のバインダー及び溶媒としてのN-メチル-2-ピロリドン(以下、「NMP」と略記する。)から成る電極材料を金属箔の基材にコーティングし、これを焼成して電極を作成する。焼成工程においてガスとして発生するNMPは、活性炭やゼオライトを利用した吸着法あるいは水吸収法により回収され、輸送時の安全上の問題から予め濃度80wt%以下の水溶液に調製された後、再度、高純度製品に精製するために化学工場へタンクローリー等で大量に長距離輸送される。なお、化学工場においては、最初の製造時と同様に、回収されたNMPを公知の蒸留法によって純度99.9wt%以上に精製している。
特開平6-279401号公報 特開平6-263725号公報 特開平8-27105号公報
 ところで、NMPのリサイクルは、上記の様に、輸送コストと共に化学工場での処理コスト(NMPのタンクへの積み降ろし、濃度調節のための前処理等)を必要とするため、上記の電池の製造などにおいては、今後、電気自動車(EV)の普及に伴いその製造工程におけるNMPの使用量が大幅に増えることと併せ、コスト負担軽減の観点から、オンサイトでの精製が望まれる。しかしながら、NMPの蒸留精製は、高度に熟練した技術が要求されるため、化学工場以外の場所では馴染み難いと言う実情がある。すなわち、電池の製造工程から回収されるNMPには、水およびNMPの各沸点の中間に沸点がある軽沸成分やNMP由来の高沸成分が含まれているため、2段階の精密な蒸留操作が必要であり、しかも、季節変動や製造プロセスの変動によりNMP中の水分量(NMP濃度)が変動し、処理量も変動するため、定常運転が難しいと言う問題がある。
 本発明は、上記の実情に鑑みてなされたものであり、その目的は、リチウムイオン二次電池の電極製造工程などから回収される使用済みのNMPを再生するための蒸留装置であって、原料中の水分濃度や処理量の変動に拘わらず、簡単かつ安全にNMPを精製でき、オンサイトでの自動運転に適したNMPの蒸留装置を提供することにある。
 本発明では、設備のコンパクト化を図るため、サイドカット方式の1塔式蒸留塔を採用して、炊き上げ用のリボイラー、冷却用コンデンサー、ポンプ、その他計器類などの付帯装置の数を削減すると共に、蒸留塔の塔頂部において原料NMPから軽沸成分含有の水を除去して高濃度NMPを分離し、更に蒸留塔の塔低部において高濃度NMPから高沸成分を除去して高純度NMPを精製し、当該高純度NMPを蒸留塔の中段部より取り出すようにした。そして、回収率を85%程度とすることで、純度99.9wt%以上の高純度NMPを精製できるようにした。しかも、自動処理機能として、連続処理運転を開始する際、蒸留塔を定常状態に調整するための減圧運転、循環運転を順次に行って連続処理運転を開始するスタートアップ機能と、連続処理運転の際、原料タンク及び製品タンクの液面に応じて再び循環運転に切り替える運転モード切替機能とを付加することにより、処理量や原料中の水分量の変動に対応して、簡単かつ安全に稼働できるようにした。
 すなわち、本発明の要旨は、軽沸成分および高沸成分を不純物として含有する使用済みのNMPを精製するNMPの蒸留装置であって、被処理液として使用済みのNMPを貯蔵する原料タンクと、当該原料タンクから供給された被処理液を蒸留して高純度NMPを精製する蒸留塔と、当該蒸留塔で得られた高純度NMPを貯蔵する製品タンクとを備え、蒸留塔が、濃度99wt%以上の高濃度NMPと軽沸成分含有の水とに分離する塔頂部、および、還流液を更に蒸留して濃度99.9wt%以上の高純度NMPと高沸成分含有の高濃度NMPとに分離する塔低部からなり、かつ、中段部からサイドカット液として高純度NMPを取出可能に構成されたサイドカット方式の蒸留塔であり、自動処理機能として、予め、蒸留塔において減圧運転を行った後、原料タンクの被処理液を蒸留塔へ供給し且つ蒸留塔の留出液およびサイドカット液を原料タンクへ戻す循環運転を行って蒸留塔を定常状態に調整し、次いで、連続処理運転を開始するスタートアップ機能と、連続処理運転において原料タンクの液面が所定高さまで低下した場合または製品タンクの液面が所定高さまで上昇した場合、再び循環運転に切り替える運転モード切替機能とを備えていることを特徴とするNMPの蒸留装置に存する。
 本発明によれば、蒸留塔の塔頂部において軽沸成分含有の水を除去して高濃度NMPを分離し、更に蒸留塔の塔低部において高沸成分を除去して高純度NMPを分離精製し、蒸留塔の中段部からサイドカット方式により高純度NMPを取り出すと共に、自動処理機能として、蒸留塔において減圧運転、循環運転を順次に行って連続処理運転を開始するスタートアップ機能と、連続処理運転の際に循環運転に切り替える運転モード切替機能とを備えているため、高度な熟練技術を必要とすることなく、自動運転により、簡単かつ安全にオンサイトでNMPを精製できる。
本発明に係るNMPの蒸留装置の主要部の構成例を示すフロー図である。
 本発明に係るNMPの蒸留装置(以下、「蒸留装置」と言う。)の一実施形態を説明する。本発明において、「NMP」とは、N-メチル-2-ピロリドン及びこれを主成分とする水溶液を言う。また、被処理液である使用済みのNMP(以下、「原料NMP」と言う。)に含まれる不純物としては、水およびNMPの各沸点の中間に沸点がある蟻酸などの軽沸成分、ならびに、γ-ブチルラクトン(GBL)、n-メチルスクシンイミド等のNMP由来の高沸成分が挙げられる。
 本発明の蒸留装置は、軽沸成分および高沸成分を不純物として含有する原料NMPを精製する自動運転可能な1塔式の装置であり、図1に示す様に、概略、被処理液として原料NMPを貯蔵する原料タンク41と、当該原料タンクから供給された被処理液を蒸留して高純度NMPを精製するサイドカット方式の蒸留塔1と、当該蒸留塔の中段部からサイドカット液として得られた高純度NMPを一旦回収し且つ分析用の試料を採取する第1のチェックドラム31及び第2のチェックドラム32と、これらチェックドラムに回収された高純度NMPを製品として貯蔵する製品タンク42と、蒸留塔1の塔底部から回収された高沸成分含有の高濃度NMP(廃液)を貯蔵する廃液タンク43とを備えている。
 原料タンク41は、例えばリチウムイオン二次電池の電極製造工程から排出される例えば濃度95wt%以下、通常は濃度70~90wt%程度の原料NMPを貯蔵する容器であり、連続して効率的に蒸留処理を行うために設けられる。原料タンク41には、電極製造工程などから原料NMPを当該原料タンクへ送り込む流路と共に、原料NMPを被処理液として蒸留塔1へ供給する原料供給用の流路90が接続される。図中の符号61は原料供給ポンプを示し、符号74は流量調整弁を示す。
 蒸留塔1は、供給された原料NMPを蒸留精製するサイドカット方式の蒸留塔であり、濃度99.9wt%以上の高濃度NMPと軽沸成分含有の水とに分離する塔頂部、および、当該蒸留塔の還流液を更に蒸留することにより、濃度99.9wt%以上の高純度NMPと高沸成分含有の高濃度NMPとに分離する塔低部からなり、そして、中段部からサイドカット液として高純度NMPを取出可能に構成される。蒸留塔1は、従来周知の蒸留塔、すなわち、不規則または規則充填物が空塔内に装填された充填塔、多孔板トレイ等の気液接触用のトレイ(棚段)が空塔内に多数設置された棚段塔などによって構成される。
 蒸留塔1は、処理すべき原料NMPが上記の流路90を通じて塔中段上部に供給される様になされている。そして、蒸留塔1の塔底部には、原料NMPを加熱蒸発させるため、リボイラー67を含む炊上げ機構が付設される。斯かる炊上げ機構は、蒸留塔1の塔底部の原料NMPを炊き上げる機構であり、原料NMPを水蒸気などの熱媒体との熱交換により加熱蒸発させるリボイラー67と、塔底部から原料NMPを抜き出してリボイラー67に供給し且つ当該リボイラーで蒸気化されたNMPを再び塔底部に戻す塔底液循環用の流路91及び廃液抜出しポンプ65とから成る。
 リボイラー67としては、複数の伝熱管によって多数の流路が構成された多管式熱交換器などが使用できる。そして、流路91のリボイラー67よりも上流側には、蒸留塔1の塔底部を循環する塔底液の一部、すなわち、蒸留塔1で濃縮された高濃度NMPを廃液として廃液タンク43へ供給する流路96が分岐して設けられる。上記の高濃度NMPは、過酸化物の濃縮を防止する目的で塔底部から排出される。
 また、蒸留塔1の塔頂部には、分離された水蒸気を凝縮する凝縮器30が設けられる。凝縮器30としては、通常、多数の流路を構成する複数の伝熱管または伝熱板に冷媒が流れ且つ凝縮性蒸気(蒸留分離された蒸気)を通すことにより斯かる凝縮性蒸気を液化する多管式、スパイラル式、プレート式、二重管式などの凝縮器が使用される。凝縮器30の底部には、不純物の軽沸成分を含有する凝縮水を留出液として系外に排出する流路92が設けられる。流路92は、軽沸成分を含有する凝縮水を排水タンク2へ送る流路である。
 排水タンク2には、一旦貯留した蒸留塔1の留出液を蒸留塔1の上段へ戻すための流路93、ポンプ66及び流路94が設けられる。そして、流路94には、後述する循環運転の際に、排水タンク2に貯留した留出液を原料タンク41へ戻すための流路100が分岐して設けられる。更に、上記の流路100には、排水タンク2に貯留した留出液の一部を系外に排出するための流路101が分岐して設けられる。なお、塔頂には、蒸留塔1の塔内を減圧し、また、不活性ガスを供給するため、後述する流路80が接続される。
 上記の炊上げ機構の塔底液循環用の流路には、蒸留塔1の塔底部を循環する高濃度NMPの一部、すなわち、不純物の高沸成分を含んだ塔底液を缶出液として抜き出すための流路96が分岐して設けられる。そして、流路96の下流側には、抜き出された高濃度NMPを冷却するための廃液クーラー35と、冷却された高濃度NMPを廃液タンク43に送液する流路97と、廃液タンク43に一旦貯蔵された廃液である高濃度NMPを適宜系外に取り出すための流路98が設けられる。なお、符号78は缶出液の流量を制御する流量調整弁を示し、符号64は廃液排出用のポンプを示す。
 また、蒸留塔1の中段部には、分離された高純度NMPを凝縮する凝縮器68が付設される。斯かる凝縮器としては、前述の蒸留塔1の塔頂部におけるのと同様のものが使用される。上記の凝縮器68には、凝縮した高純度NMPをサイドカット液として取り出す流路95が接続され、流路95は、第1のチェックドラム31及び第2のチェックドラム32に接続される。符号77は、サイドカット液の流量を制御する流量調整弁77を示す。上記の第1のチェックドラム31及び第2のチェックドラム32は、蒸留塔1の中段部から得られた高純度NMPの純度を分析し、製品としての可否を判別するために設けられる。図示しないが、第1のチェックドラム31と第2のチェックドラム32は、これらの間で上記の流路95に介装された切替弁により、交互に高純度NMPを受け入れる様になされている。
 なお、蒸留塔1の塔頂には、当該蒸留塔の塔内を減圧し、また、当該蒸留塔へ不活性ガスを供給するため、後述する流路82が接続されている。更に、第1のチェックドラム31及び第2のチェックドラム32には、容器内を減圧し、また、不活性ガスを供給するため、後述する流路83,84が接続されている。
 また、精製された高純度NMPを取り出すため、上記の第1のチェックドラム31には流路86が接続され、第2のチェックドラム32には流路87接続されており、これら流路86,87は、製品抜出しポンプ62及び流路88を介して製品タンク42に接続される。図示しないが、流路86と流路87には、各々、開閉弁が付設されており、第1のチェックドラム31及び第2のチェックドラム32から製品タンク42へ高純度NMPを切り替えて送り出す様になされている。更に、流路88には、後述する循環運転の際に、蒸留塔1の中段部から取り出した第1のチェックドラム31及び第2のチェックドラム32内の高純度NMPを原料タンク41へ戻すための流路99が分岐して設けられる。製品タンク42は、高純度NMPを貯留する容器であり、必要に応じて高純度NMPを例えば電池の製造工程に製品供給ポンプ63及び流路89を通じて供給される様になされている。
 本発明の蒸留装置においては、通常の蒸留と同様に、減圧条件下で蒸留操作を行うため、系内を真空引きする減圧ラインが付設され、また、酸素の混入を防ぐと共に系内の圧力を調整するため、系内に窒素ガスを供給する不活性ガスラインが付設される。
 具体的には、蒸留塔1の塔頂には、窒素ガス供給設備から伸長され且つ圧力調整弁71が介装された流路80が接続される。また、流路80には、圧力調整弁72が下流側に介装された流路82が接続され、前述の流路83,84が、流路82から分岐されて第1のチェックドラム31及び第2のチェックドラム32に接続される。更に、流路82の先端は、系内を真空引きするための真空ポンプ34に繋ぎ込まれる。流路85は、真空ポンプ34の排気用の流路である。また、窒素供給用の流路80の圧力調整弁71よりも上流側には、第1のチェックドラム31および第2のチェックドラム32へ窒素を供給するための流路81が分岐して設けられる。流路81には、圧力調整弁73が介装され、その先端は、上記の流路82の圧力調整弁72よりも上流側に繋ぎ込まれる。
 本発明の蒸留装置においては、蒸留塔1における蒸留操作を制御し、後述する自動処理機能を発揮させるため、例えば、蒸留塔1の中段部の充填層には温度計51が付設される。そして、蒸留プログラムが搭載された制御装置により、予め設定された処理条件および上記の温度や液面の検出機器からの検出信号に基づき、炊上げ機構の作動、各流路の開閉、切替、流量調整などを制御する様に構成される。
 本発明の蒸留装置は、上記の制御装置による自動処理機能として、減圧運転、循環運転を順次に行って定常状態に調整した後に連続処理運転を開始するスタートアップ機能、連続処理運転から循環運転に切り替える運転モード切替機能、および、自動停止機能を発揮する様に構成される。以下、本発明の蒸留装置の運転方法ならびにNMPの精製方法と共に、上記の自動処理機能について説明する。
 [減圧運転]
 制御盤からの運転開始操作により、先ず、減圧運転として、真空ポンプ34を稼働させ、流路80,82,83,84を通じて蒸留塔1、第1のチェックドラム31及び第2のチェックドラム32を所定圧力まで減圧する。その際、系内を例えば100torr以下まで一旦真空引きした後、窒素ガス供給設備から流路80及び流路81を通じて蒸留塔1、第1のチェックドラム31及び第2のチェックドラム32へ微量の窒素ガスを供給し、これら機器内の圧力を一定圧力に保持する。
 上記の減圧運転では、各機器内の温度上昇によって副生物が発生するのを防止するため、例えば、蒸留塔1の圧力は、圧力調整弁71,72の制御により100torrに設定し、第1のチェックドラム31及び第2のチェックドラム32の圧力は、圧力調整弁73の制御により100torr以下に設定する。
 [循環運転]
 減圧運転の後は、直ちに蒸留処理は行わずに、蒸留塔1に予め収容したメイキャップ液を使用して全還流運転を行い、系内を安定化させる。これにより、蒸留塔1を定常状態に調整し、次の連続処理運転へ円滑に移行することが出来る。なお、還流比を調整し、回収率を85%程度に設定することにより、純度99.9wt%以上の高純度NMPを得ることができる。
 具体的には、先ず、蒸留塔1のリボイラー67にスチームを供給し、炊上げ機構を稼働させて加熱を開始する。スチーム流量は、例えば40分程度かけて設計流量まで徐々に増やす。その際、蒸留塔1の塔底部充填層および塔頂部充填層においては温度変化がさほど大きくなく、塔底部や塔頂部の温度を検出して炊上げ機構を制御しようとすると、追従性が悪く、中段部の液中の水分濃度を一定に保つことができない。
 そこで、循環運転では、温度変化のある蒸留塔1の中段部充填層の温度を温度計51で検出し、リボイラー67のスチーム流量をカスケード制御することにより、中段部充填層の温度を例えば130~140℃に維持し、中段部から取り出すサイドカット液中の水分濃度を一定にすることができる。これにより、蒸留塔1への原料NMPの供給量の変動および原料NMPの濃度の変動、換言すれば、水分量の変動に対応させて最適な加熱を行うことが出来る。その結果、原料NMPの組成の顕著な変化にも対応でき、また、塔底部のNMP中の水分濃度および塔頂部の水中のNMP濃度を共に低下させ、分離効率を向上させることができる。すなわち、本発明においては、循環運転(全還流運転)により定常状態とする際、蒸留塔1においては、回収部の温度がNMPの沸点に相当する温度となる様に、リボイラーのスチーム流量を制御可能に構成される。
 引き続いて、蒸留塔1を稼働させた状態において、原料NMPを連続供給し、蒸留塔1の塔頂部の留出液および蒸留塔1の中段部のサイドカット液を原料タンク41へ戻す循環操作を行い、予め設定された自動運転データの設定値の微調整を行う。これにより、系内を最適な運転条件に調整することが出来る。
 具体的には、先ず、原料NMPの連続供給を開始する。原料NMPの供給では、蒸留塔1への急激な供給により運転が乱れない様に、流量調整弁74の開度を徐々に上げ、例えば90分かけて設計流量にする。一方、蒸留塔1において連続留出を開始する。その際、流量調整弁75の開度を約15分かけて徐々に所定流量にすることにより、還流比の急激な変化による塔内の乱れを抑制する。蒸留塔1の還流比は還流分配機構の操作により調整する。詳しくは、蒸留塔1の塔頂部から排出されて排水中間タンク2に貯留された軽沸成分含有の水は、ポンプ66を使用し且つ流量調節弁75の開度を調節することにより、流路94を通じて塔頂部へ全還流する。その後、系内を安定させるため、排水中間タンク2に貯留された塔頂部の留出液は、流量調節弁79の開度を調節し、流路100を通じて原料タンク41へ戻すことにより、蒸留塔1の塔頂部への還流量を調節する。
 次いで、蒸留塔1の中段部においてサイドカット液の連続抜出しを開始し、第1のチェックドラム31及び第2のチェックドラム32にサイドカット液を受け入れる。その際、流量調整弁77の開度を約15分かけて徐々に所定流量まで調節することにより、還流比の急激な変化による塔内の乱れを抑制する。そして、蒸留塔1の中段部からのサイドカット液は、原料中のNMP濃度を一定にし、系内の濃度分布を一定に保つため、第1のチェックドラム31及び第2のチェックドラム32から流路86,87及び流路99を通じて原料タンク41へ戻す。また、蒸留塔1の塔底部において缶出を開始する。その際、蒸留塔1への供給流量に基づいて流量調整弁78を比率制御し、流路96を通じて缶出液として供給流量の10wt%程度を過酸化物の濃縮を抑制するために廃液として抜き出す。また、その際、液面計52で塔底液の液面を検出し、抜出量を調整することにより、塔底部における液面制御を行う。
 上記の様に、循環運転により運転条件を最適な条件に調整する。そして、蒸留塔1の中段部からのサイドカット液の送液先を原料タンク41から例えば第1のチェックドラム31に切り替え、連続処理運転を開始する。
 すなわち、本発明の蒸留装置においては、自動処理機能として、予め、蒸留塔1において循環運転を行い、原料タンク41の原料NMP(被処理液)を蒸留塔1へ供給し且つ蒸留塔1の塔頂部の留出液および中段部のサイドカット液を原料タンク41へ戻すことにより、蒸留塔を定常状態に調整し、次いで、連続処理運転を開始するスタートアップ機能を備えている。斯かる機能により、供給される原料NMPの組成に完全に適応した定常状態に系内を調整でき、円滑に連続処理運転に移行できる。
 [連続処理運転]
 連続処理運転においては、蒸留塔1の塔頂部の留出液(軽沸成分含有の水)は流路92及び排水中間タンク2を通じて系外に排出し、蒸留塔1の中段部のサイドカット液(高純度NMP)は流路95を通じて第1のチェックドラム31及び第2のチェックドラム32に一旦貯蔵し、蒸留塔1の塔低部の缶出液(高沸成分含有の高濃度NMP)は流路96、廃液クーラー35、流路97を介して廃液タンク43に貯蔵する。
 蒸留塔1の中段部からサイドカット液として取り出される高純度NMPは、第1のチェックドラム31と第2のチェックドラム32に対して交互に切り替えて貯蔵される。その際の第1のチェックドラム31と第2のチェックドラム32の切替えは、これらチェックドラム間の流路95に介装された切替弁(図示省略)を各チェックドラム31,32に付設された液面計(図示省略)に基いて制御することにより自動で行う。
 例えば、第1のチェックドラム31に一定量(例えば容器の内容積の80wt%相当量)の高純度NMPが貯液された際、流路95からの高純度NMPの送液を第2のチェックドラム32に切り替えると共に、流路86の開閉弁(図示省略)を開き、製品抜出しポンプ62を起動してミニマムフロー運転を行い、第1のチェックドラム31内のNMPの濃度を均一にする。そして、次の第2のチェックドラム32が満液になる前に、第1のチェックドラム31の高純度NMP(製品)の純度を分析し、純度が所期の規格に適合している場合には流路88を介して製品タンク42へ高純度NMPを移送する。また、第2のチェックドラム32に貯液した場合も同様に、一定量の高純度NMPが貯液された際、流路95において切替操作を行うと共に、流路87の開閉弁(図示省略)を開き、製品抜出しポンプ62によりミニマムフロー運転を行ってNMP濃度を均一化し、そして、次の第1のチェックドラム31が満液になる前に高純度NMP(製品)の純度を分析し、純度が所期の規格に適合している場合には製品タンク42へ高純度NMPを移送する。
 なお、高純度NMPの純度分析は、各チェックドラム31及び32から試料採取流路(図示省略)を通じて高純度NMPの一部を採取し、ガスクロマトグラフィーを使用して行う。簡易的には、カールフィッシャー水分濃度計又は近赤外吸光度式微量水分濃度計、屈折率式濃度計等を使用し、水分濃度からNMP純度を逆算することも出来る。また、純度が所定の規格に達していない場合には、流路99を通じて各チェックドラム31及び32のNMPを原料タンク41へ戻す。他方、廃液タンク43に貯蔵された廃液(高沸成分含有の高濃度NMP)は、適宜、廃液排出ポンプ64及び流路98を介して系外のドラム缶またはローリー車へ排出される。
 [運転切替]
 また、連続処理運転においては、電極の製造プロセスの変動により処理量や原料NMP中の水分量が変動し、原料タンク41の原料NMPの貯蔵量や、製品タンク42の製品量(高純度NMPの貯蔵量)が変化する場合がある。そこで、連続処理運転において原料タンク41の原料NMPの貯蔵量が減少した場合、または、製品タンク42の高純度NMPの貯蔵量が増加した場合には、運転を停止せずに、待機運転として、再び前述の循環運転へ移行させる。
 すなわち、本発明の蒸留装置においては、自動処理機能として、連続処理運転において原料タンク41の液面が所定高さまで低下した場合または製品タンク42の液面が所定高さまで上昇した場合、再び循環運転に切り替える運転モード切替機能を備えている。原料タンク41の液面高さ(下限高さ)は、当該タンクの内容積の例えば20wt%相当量に対応する高さに予め設定され、製品タンク42の液面高さ(上限高さ)は、当該タンクの内容積の例えば90wt%相当量に対応する高さに予め設定される。
 更に、上記の運転モード切替機能は、第1のチェックドラム31及び第2のチェックドラム32の液面を検出して運転を切り替える様になされていてもよい。すなわち、好ましい態様において、運転モード切替機能は、連続処理運転において上記の様に原料タンク41の液面が所定高さまで低下した場合、製品タンク42の液面が所定高さまで上昇した場合、または、第1のチェックドラム31若しくは第2のチェックドラム32の液面が所定高さまで上昇した場合、再び循環運転に切り替える様になされている。
 上記の様に連続処理運転中に循環運転へ移行した後は、前述した様に、蒸留塔1の各運転条件を自動で調整できる。そして、原料タンク41、製品タンク42、第1のチェックドラム31及び第2のチェックドラム32の液面が許容範囲にあるか否かを判別し、許容範囲にある場合には、再び自動連続処理運転に移行する。本発明においては、運転モード切替機能により、原料NMPの処理量や原料NMP中の水分量の変動に対応でき、安全に且つ安定して高純度のNMPを精製することが出来る。
 [運転停止]
 上記の様な連続処理運転において、制御盤からの運転停止操作を行った場合、または、異常発生の検出によりインターロックが作動した場合(緊急停止の場合)には、予め設定されたプログラムに基づき、以下の手順に従って装置が自動停止する。すなわち、装置の運転停止では、先ず、蒸留塔1の炊上げ機構のリボイラー67へのスチームの供給を停止し、これにより、蒸留塔1において、留出液、サイドカット液および缶出液の抜出しを停止させる。次いで、原料供給ポンプ61、製品抜出しポンプ62及び真空ポンプ34を含む全てのポンプを停止させた後、真空ブレイクを行う。すなわち、系内を窒素により略大気圧まで昇圧する。具体的には、流量調整弁70,72を閉止し、流量調整弁71,73を全開として系内に窒素を導入する。なお、その際、系内の圧力は、圧力調整機構により最初は大気圧よりも若干高い圧力(例えば500~600mmHO)に設定した後、略大気圧まで下げる。
 すなわち、本発明の蒸留装置においては、自動処理機能として、運転停止操作または緊急停止操作により、蒸留塔1におけるリボイラーの稼働、原料タンクからの被処理液の供給、ならびに、蒸留塔からの留出液・サイドカット液・缶出液の抜出しを停止し、蒸留塔1に不活性ガスを供給してこれらの塔内圧力を均等にする自動停止機能を備えている。本発明においては、上記の様な自動停止機能を備えていることにより、蒸留塔1の塔内組成を運転停止時の状態に保持することが出来、再度、運転を行う際、各塔内の組成が乱れず、一層円滑に起動が可能である。
 上記の様に、本発明の蒸留装置においては、蒸留塔1の塔頂部において軽沸成分が含まれる水を除去して高濃度NMPを精製し、蒸留塔1の塔低部において高沸成分を除去し、更に蒸留塔1の中段部より高純度NMPを取り出すと共に、自動処理機能として、蒸留塔1において減圧運転、循環運転を順次に行って定常状態に調整した後に連続処理運転を開始するスタートアップ機能、ならびに、連続処理運転の際に原料タンク41及び製品タンク42の各液面を検出し、原料NMPの供給量や原料NMP中の水分量の変動に対応して循環運転に切り替える運転モード切替機能を備えているため、高度な熟練技術を必要とすることなく、自動運転により、簡単かつ安全にオンサイトでNMPを精製することが出来る。
 なお、本発明の蒸留装置においては、蒸留塔1及びその付属機器を除き、原料タンク41、製品タンク42、廃液タンク43及びこれらに付随する機器類は、従来使用されていたものを使用できる。また、本発明においては、例えば電極製造工程から排出される原料NMPを原料タンク41に供給する流路、または、原料タンク41から蒸留塔1に原料NMPを供給する流路90に対し、耐酸性を有するセラミック膜のユニットを配置し、セラミック膜によって原料NMPを脱水処理することにより、蒸留塔1における負荷を低減することができる。すなわち、セラミック膜で原料NMPの水分を予め除去した場合には、炊き上げ及び留出液の冷却に必要なエネルギーコストを大幅に削減でき、しかも、一層高純度のNMPを精製することができる。
  1 :蒸留塔
  2 :排水中間タンク
  30:凝縮器
  31:第1のチェックドラム
  32:第2のチェックドラム
  34:真空ポンプ
  35:廃液クーラー
  41:原料タンク
  42:製品タンク
  43:廃液タンク
  51:温度計
  52:液面計
  53:温度計
  61:原料供給ポンプ
  62:製品抜出しポンプ
  63:製品供給ポンプ
  64:廃液排出ポンプ
  65:廃液抜出しポンプ
  66:排水抜出しポンプ
  67:リボイラー
  68:凝縮器
  71~73:圧力調整弁
  74~79:流量調整弁
  80~101:流路

Claims (6)

  1.  軽沸成分および高沸成分を不純物として含有する使用済みのNMPを精製するNMPの蒸留装置であって、被処理液として使用済みのNMPを貯蔵する原料タンクと、当該原料タンクから供給された被処理液を蒸留して高純度NMPを精製する蒸留塔と、当該蒸留塔で得られた高純度NMPを貯蔵する製品タンクとを備え、蒸留塔が、濃度99wt%以上の高濃度NMPと軽沸成分含有の水とに分離する塔頂部、および、還流液を更に蒸留して濃度99.9wt%以上の高純度NMPと高沸成分含有の高濃度NMPとに分離する塔低部からなり、かつ、中段部からサイドカット液として高純度NMPを取出可能に構成されたサイドカット方式の蒸留塔であり、自動処理機能として、予め、蒸留塔において減圧運転を行った後、原料タンクの被処理液を蒸留塔へ供給し且つ蒸留塔の留出液およびサイドカット液を原料タンクへ戻す循環運転を行って蒸留塔を定常状態に調整し、次いで、連続処理運転を開始するスタートアップ機能と、連続処理運転において原料タンクの液面が所定高さまで低下した場合または製品タンクの液面が所定高さまで上昇した場合、再び循環運転に切り替える運転モード切替機能とを備えていることを特徴とするNMPの蒸留装置。
  2.  蒸留塔の中段部からサイドカット液として得られた高純度NMPを回収するチェックドラムを備え、運転モード切替機能は、連続処理運転において原料タンクの液面が所定高さまで低下した場合、製品タンクの液面が所定高さまで上昇した場合、または、チェックドラムの液面が所定高さまで上昇した場合、再び循環運転に切り替える様になされている請求項1に記載の蒸留装置。
  3.  蒸留塔は、原料タンクからの被処理液の供給量に応じてリボイラーのスチーム流量を制御可能に構成されている請求項1又は2に記載の蒸留装置。
  4.  蒸留塔は、回収部の温度がNMPの沸点に相当する温度となる様に、リボイラーのスチーム流量を制御可能に構成されている請求項1~3の何れかに記載の蒸留装置。
  5.  自動処理機能として、運転停止操作または緊急停止操作により、蒸留塔におけるリボイラーの稼働、原料タンクからの被処理液の供給、ならびに、蒸留塔からの留出液・サイドカット液・缶出液の抜出しを停止し、蒸留塔に不活性ガスを供給してこれらの塔内圧力を均等にする自動停止機能を備えている請求項1~4の何れかに記載の蒸留装置。
  6.  自動停止機能においては、蒸留塔の塔内圧力を均等にする際、低圧側の蒸留塔の塔内圧力を高圧側に揃えた後、両方の蒸留塔の塔内圧力を常圧まで昇圧する様になされている請求項5に記載の蒸留装置。
PCT/JP2011/055531 2011-03-09 2011-03-09 Nmpの蒸留装置 WO2012120666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/055531 WO2012120666A1 (ja) 2011-03-09 2011-03-09 Nmpの蒸留装置
JP2011051636A JP5776231B2 (ja) 2011-03-09 2011-03-09 Nmpの蒸留装置
CN201180065374.6A CN103328443B (zh) 2011-03-09 2011-03-09 Nmp的蒸馏装置
TW100108291A TWI477487B (zh) 2011-03-09 2011-03-11 N-methylpyrrolidone (NMP) distillation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/055531 WO2012120666A1 (ja) 2011-03-09 2011-03-09 Nmpの蒸留装置

Publications (1)

Publication Number Publication Date
WO2012120666A1 true WO2012120666A1 (ja) 2012-09-13

Family

ID=46797667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055531 WO2012120666A1 (ja) 2011-03-09 2011-03-09 Nmpの蒸留装置

Country Status (4)

Country Link
JP (1) JP5776231B2 (ja)
CN (1) CN103328443B (ja)
TW (1) TWI477487B (ja)
WO (1) WO2012120666A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188369A (ja) * 2011-03-09 2012-10-04 Mitsubishi Chemical Engineering Corp Nmpの蒸留装置
CN107674012A (zh) * 2017-10-18 2018-02-09 四川西丹孚能源科技有限公司 一种nmp脱水膜浸透气化提纯装置
WO2018179239A1 (ja) 2017-03-30 2018-10-04 三菱ケミカルエンジニアリング株式会社 Nmpの蒸留装置
CN113117364A (zh) * 2021-05-25 2021-07-16 杭州广泰环保技术有限公司 一种nmp回收的耦合精馏系统及其精馏控制工艺
CN113562923A (zh) * 2021-08-27 2021-10-29 浙江新创兴科技有限公司 一种废水提取电子级nmp溶剂的工艺
CN117357919A (zh) * 2023-09-27 2024-01-09 广东欧赛莱科技有限公司 Nmp精馏提纯系统及nmp精馏提纯工艺

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2583834T3 (es) * 2012-11-22 2016-09-22 Basf Se Método para la purificación de N-alquil-pirrolidonas
TWI584861B (zh) * 2015-06-03 2017-06-01 Nat Univ Tsing Hua Reduce the energy consumption of the distillation extraction method
CN107400076A (zh) * 2016-05-19 2017-11-28 张建岗 一种锂离子电池涂敷工序nmp回收精蒸提纯装置
CN110885305A (zh) * 2019-09-25 2020-03-17 镇江新纳环保材料有限公司 一种nmp侧线采出方法
CN113877230A (zh) * 2021-11-01 2022-01-04 杭州国泰环保科技股份有限公司 一种nmp废液回收设备及其回收工艺
CN114949903B (zh) * 2022-06-14 2023-06-16 山东明化新材料有限公司 一种并联式聚芳硫醚类树脂生产溶剂及催化剂分离回收系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109167A (ja) * 1994-10-11 1996-04-30 Mitsubishi Chem Corp N−メチル−2−ピロリドンの精製方法
JP2003135902A (ja) * 2001-11-01 2003-05-13 Sumitomo Chem Co Ltd 蒸留塔および蒸留塔のスタートアップ方法
JP2003181201A (ja) * 2001-12-17 2003-07-02 Miura Co Ltd 蒸留装置の運転方法
JP2003534322A (ja) * 2000-05-26 2003-11-18 ビーエーエスエフ アクチェンゲゼルシャフト 純粋なn−ビニルピロリドンの取得方法
JP2010501124A (ja) * 2007-09-05 2010-01-14 コレックス コーポレーション フォトレジストストリッパー廃液の再生方法及び再生装置
WO2011030728A1 (ja) * 2009-09-14 2011-03-17 三菱化学エンジニアリング株式会社 Nmpの蒸留装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501902A (en) * 1982-12-21 1985-02-26 Phillips Petroleum Company N-Methyl pyrrolidone-2 purification
JPS61218563A (ja) * 1985-03-22 1986-09-29 Asahi Chem Ind Co Ltd アミド型溶剤の分離方法
US4837338A (en) * 1986-06-16 1989-06-06 Exxon Research And Engineering Company Removal of impurities from n-methyl-pyrrolidone using highly pure water washed activated alumina
US6051720A (en) * 1999-06-11 2000-04-18 Phillips Petroleum Company Removal of contaminants from N-methyl-2-pyrrolidone
JP2001002638A (ja) * 1999-06-18 2001-01-09 Tonen Chem Corp 高純度ピロリドン類の製造方法
JP3435598B2 (ja) * 1999-10-22 2003-08-11 株式会社日本触媒 N−ビニル−2−ピロリドンの回収方法
JP2001302626A (ja) * 2000-04-21 2001-10-31 Tonen Chem Corp 高純度ピロリドン類の製造方法
CN1111522C (zh) * 2000-09-06 2003-06-18 北京迈胜普技术有限公司 锂电池工业废气处理中n-甲基吡咯烷酮的回收工艺
US6726811B2 (en) * 2001-03-27 2004-04-27 Nippon Shokubai Co., Ltd. Method of purifying N-(2-hydroxyethy)-2-pyrrolidone
JP2003020370A (ja) * 2001-07-05 2003-01-24 Chubu Electric Power Co Inc 易分解性架橋ポリオレフィン成形品およびその分解処理方法
US7476775B2 (en) * 2004-03-03 2009-01-13 Chevron Phillips Chemical Company Lp Method and system for separating an oligomerization reactor effluent
GB0412875D0 (en) * 2004-06-09 2004-07-14 Davy Process Techn Ltd Process
JP2007099690A (ja) * 2005-10-05 2007-04-19 Sumitomo Chemical Co Ltd N−メチル−2−ピロリドンの精製方法。
JP5243900B2 (ja) * 2008-09-19 2013-07-24 株式会社大気社 溶剤回収設備
CN101457414A (zh) * 2008-10-28 2009-06-17 烟台氨纶股份有限公司 在对位芳纶生产过程中回收溶剂nmp的方法
CN101391975B (zh) * 2008-11-03 2010-12-08 厦门大学 N-乙烯基吡咯烷酮的分离提纯方法
CN201466101U (zh) * 2009-07-07 2010-05-12 天津力神电池股份有限公司 锂离子电池涂敷工序nmp回收装置
CN101851188A (zh) * 2010-05-14 2010-10-06 南京师范大学 侧线精馏和萃取精馏集成提取α-吡咯烷酮与N-乙烯基吡咯烷酮的方法及其设备
JP5776231B2 (ja) * 2011-03-09 2015-09-09 三菱化学エンジニアリング株式会社 Nmpの蒸留装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109167A (ja) * 1994-10-11 1996-04-30 Mitsubishi Chem Corp N−メチル−2−ピロリドンの精製方法
JP2003534322A (ja) * 2000-05-26 2003-11-18 ビーエーエスエフ アクチェンゲゼルシャフト 純粋なn−ビニルピロリドンの取得方法
JP2003135902A (ja) * 2001-11-01 2003-05-13 Sumitomo Chem Co Ltd 蒸留塔および蒸留塔のスタートアップ方法
JP2003181201A (ja) * 2001-12-17 2003-07-02 Miura Co Ltd 蒸留装置の運転方法
JP2010501124A (ja) * 2007-09-05 2010-01-14 コレックス コーポレーション フォトレジストストリッパー廃液の再生方法及び再生装置
WO2011030728A1 (ja) * 2009-09-14 2011-03-17 三菱化学エンジニアリング株式会社 Nmpの蒸留装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188369A (ja) * 2011-03-09 2012-10-04 Mitsubishi Chemical Engineering Corp Nmpの蒸留装置
WO2018179239A1 (ja) 2017-03-30 2018-10-04 三菱ケミカルエンジニアリング株式会社 Nmpの蒸留装置
JPWO2018179239A1 (ja) * 2017-03-30 2020-01-30 三菱ケミカルエンジニアリング株式会社 Nmpの蒸留装置
EP3604280A4 (en) * 2017-03-30 2020-02-12 Mitsubishi Chemical Engineering Corporation NMP DISTILLATION DEVICE
US20200155961A1 (en) * 2017-03-30 2020-05-21 Mitsubishi Chemical Engineering Corporation Distillation apparatus for nmp
US11007454B2 (en) 2017-03-30 2021-05-18 Mitsubishi Chemical Engineering Corporation Distillation apparatus for NMP
CN107674012A (zh) * 2017-10-18 2018-02-09 四川西丹孚能源科技有限公司 一种nmp脱水膜浸透气化提纯装置
CN113117364A (zh) * 2021-05-25 2021-07-16 杭州广泰环保技术有限公司 一种nmp回收的耦合精馏系统及其精馏控制工艺
CN113562923A (zh) * 2021-08-27 2021-10-29 浙江新创兴科技有限公司 一种废水提取电子级nmp溶剂的工艺
CN117357919A (zh) * 2023-09-27 2024-01-09 广东欧赛莱科技有限公司 Nmp精馏提纯系统及nmp精馏提纯工艺
CN117357919B (zh) * 2023-09-27 2024-05-03 广东欧赛莱科技有限公司 Nmp精馏提纯系统及nmp精馏提纯工艺

Also Published As

Publication number Publication date
CN103328443A (zh) 2013-09-25
CN103328443B (zh) 2016-08-10
TW201237032A (en) 2012-09-16
JP2012188369A (ja) 2012-10-04
JP5776231B2 (ja) 2015-09-09
TWI477487B (zh) 2015-03-21

Similar Documents

Publication Publication Date Title
JP5776231B2 (ja) Nmpの蒸留装置
JP5471221B2 (ja) Nmpの蒸留装置
CN103249705B (zh) 乙酸的制造方法
WO2018179239A1 (ja) Nmpの蒸留装置
TW201726594A (zh) 乙酸之製造方法及製造裝置
WO2013190732A1 (ja) アンモニア精製システム
JP2023086951A (ja) N-メチル-2-ピロリドンの精製方法及び精製システム
CN104326485A (zh) 一种氨精制处理工艺
WO2013190731A1 (ja) アンモニア精製システム
CN115321486B (zh) 电子级别三氟化氯纯化方法
CN110785397B (zh) 乙酸的制备方法
US11485698B2 (en) Method for producing acetic acid
KR960003148B1 (ko) 유기 용제 함유가스의 처리 방법
JPH07270067A (ja) 希ガスの精製方法
KR20240012461A (ko) 회수된 nmp를 정제하기 위한 설비 및 방법
JP2019166477A (ja) 水分含有有機溶剤から水分を除去する除去システムおよび除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 15.11.2013)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 11860123

Country of ref document: EP

Kind code of ref document: A1