WO2012119524A1 - 一种新型重组抗菌多肽药物的制备方法 - Google Patents

一种新型重组抗菌多肽药物的制备方法 Download PDF

Info

Publication number
WO2012119524A1
WO2012119524A1 PCT/CN2012/071825 CN2012071825W WO2012119524A1 WO 2012119524 A1 WO2012119524 A1 WO 2012119524A1 CN 2012071825 W CN2012071825 W CN 2012071825W WO 2012119524 A1 WO2012119524 A1 WO 2012119524A1
Authority
WO
WIPO (PCT)
Prior art keywords
hours
preparation
pbhc
recombinant
medium
Prior art date
Application number
PCT/CN2012/071825
Other languages
English (en)
French (fr)
Inventor
丘小庆
李荣旗
张向利
张小凤
王东芹
Original Assignee
北京科润三联生物技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/001,141 priority Critical patent/US9765378B2/en
Application filed by 北京科润三联生物技术有限责任公司 filed Critical 北京科润三联生物技术有限责任公司
Priority to AP2013007193A priority patent/AP3486A/xx
Priority to EP12754430.2A priority patent/EP2682474B1/en
Priority to BR112013022333A priority patent/BR112013022333A2/pt
Priority to EA201300884A priority patent/EA030794B1/ru
Priority to KR1020137026054A priority patent/KR101566331B1/ko
Priority to AU2012225088A priority patent/AU2012225088B2/en
Priority to JP2013556952A priority patent/JP5916769B2/ja
Priority to CA2828998A priority patent/CA2828998A1/en
Priority to SG2013065370A priority patent/SG193000A1/en
Priority to NZ614593A priority patent/NZ614593B2/en
Publication of WO2012119524A1 publication Critical patent/WO2012119524A1/zh
Priority to ZA2013/06575A priority patent/ZA201306575B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to an antibiotic drug production process, in particular to a preparation method of a novel recombinant antibacterial polypeptide drug. Background technique
  • MDRPA methicillin-resistant Staphylococcus aureus
  • VRE vancomycin-resistant enterococci
  • the antimicrobial polypeptide engineering as colicin its prototype as a monomer (Monomer) conformation work, i.e., a molecule able to form a complete unit of work, while the small peptide antibiotics are multibody ( Polymer)
  • the work of conformation requires dozens of molecules to form a complete work unit
  • the antibacterial engineering polypeptide can work in the blood circulation and in vivo as its prototype colicin, while small peptide antibiotics cannot;
  • the antibacterial engineering polypeptide like its prototype colicin, forms a voltage-dependent ion channel on the target cell membrane, and its killing mechanism and efficiency are much higher than those formed by the small peptide antibiotic on the target cell membrane.
  • test always showed strong bactericidal activity; and in the large animal (dairy cow, dairy goat, etc.) disease model test, both local injection and intravenous injection have good bactericidal effect and therapeutic effect, so the new antibacterial engineering peptide drug does not There is a limitation that the above small molecule polypeptide is difficult to use in vivo.
  • mice sperm abnormality test results were negative, and there was no sperm deformity in mice (Report No. WTPJ20100003 (4)).
  • a recombinant antibacterial peptide drug has a broad-spectrum antibacterial effect, and has a good anti-killing effect on various cow mastitis pathogens in vitro.
  • the peptide (MW 70,000) is 2,100 times more effective against cefotaxime (MW 523) than the cefotaxime (MW 523); it is 5,300 times more effective than oxacillin (MW 423).
  • C Recombinant antibacterial peptide drugs have a similar inhibitory effect on Streptococcus, Escherichia coli, Escherichia coli and other Enterobacteriaceae bacteria, against Streptococcus (S. agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Streptococcus bovis) MIC 5 .
  • Streptococcus S. agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Streptococcus bovis
  • pyogenes was 0.25 ⁇ glrnL, and the MBC 50 was 1.0 g/mL; the MIC 50 for Enterobacteriaceae such as Escherichia coli was 1.0 g/mL, and the MBC 50 was 1.0 g/mL.
  • D Recombinant antibacterial peptide drugs have no significant difference in the inhibitory effect on bacterial sensitive strains and resistant strains, and can effectively kill Staphylococcus, Streptococcus and Escherichia coli with various drug resistance phenotypes.
  • 112 cases were cured and the cure rate was 95%.
  • the drug is an actual non-toxic drug, which will not cause toxicity and adverse effects on animals.
  • the drug belongs to degradable informationin substance, which avoids the production of conventional antibiotics after the treatment of livestock diseases.
  • the drawbacks of drug residues have been tested by the Beijing Dairy Quality Supervision and Inspection Station. There is no antibiotic residue in the milk produced by the cows treated with this drug (Test Report No. A2009-249)
  • the production of the above-mentioned recombinant antibiotic is as disclosed in the inventor's application No. 200910157564.5, entitled "A Novel Antibiotic and Its Nucleotide Sequence, Preparation Method and Application".
  • a more conventional enrichment process is adopted, because there is no high requirement for production efficiency and preparation amount in the experimental stage, but With the clinical value, the animal test and the safety evaluation of these recombinant antibiotics, the medical value of these recombinant antimicrobial peptides is proved, and the preparation process in the above invention application is too expensive, and it is difficult to obtain a large amount of high-purity recombinant protein expression.
  • the present invention provides a method for preparing the above recombinant antimicrobial polypeptide in view of the blank and urgent needs in the above fields.
  • a method for preparing a novel recombinant antibacterial polypeptide drug comprises the following steps:
  • the liquid production medium is formulated as follows: the mass to volume ratio of each component in the final solution is: disodium hydrogen phosphate 0.4% - 0.7%, potassium dihydrogen phosphate 0.1% - 0.6%, ammonium chloride 0.05% - 0.2%, calcium chloride 0.0005% - 0.001%, magnesium sulfate 0.5% - 2.5%, peptone 1% - 3%, yeast powder 0.5% - 1%, glucose 0.1% - 0.5%, sodium chloride 0.2 %--0.8% of the rest is water
  • the formulation of the liquid production medium is as follows: The mass to volume ratio of each component in the final solution is: disodium hydrogen phosphate 0.68%, potassium dihydrogen phosphate 0.3%, ammonium chloride 0.1%, calcium chloride 0.001%, sulfuric acid Magnesium 0.02%, peptone 2.5%, yeast powder 0.75%, glucose 0.2%, sodium chloride 0.6%, and the rest is water.
  • the expanded culture of the strain is divided into three-stage expanded culture, and the parameters of the expanded culture at each level are: 220 rpm, 37 ° C, and 3-8 hours.
  • the inducing expression of the recombinant antibacterial polypeptide means that the bacterial liquid obtained in the step (2) is treated as follows: stirring speed 220 rpm, maximum oxygen permeation, 30 ° C, 2 to 4 hours; 42 ° C, 0.5 hour; 37 ° C , 1 to 2 hours, at 42 ° C, add IPTG at a final concentration of 0.5 mM.
  • composition of the LB medium and the mass-to-volume ratio of each component are 1% of sodium chloride, 1% of peptone, 0.5% of yeast, 0.8 to 1% of agar, and the balance is water.
  • the Escherichia coli refers to a BL-21 engineered strain containing the recombinant plasmid pBHC-SAl, pBHC-SA2, pBHC-SA3, pBHC-SA4, pBHC-SE or pBHC-PA.
  • the present invention provides a method for preparing recombinant antibiotics, which is specifically used for preparing a high-purity recombinant antimicrobial peptide in large quantities.
  • Existing methods are not suitable for large-scale production, Defects such as unsatisfactory purity or yield in the case of large-scale production are problems that must be overcome in the process of introducing the recombinant antibacterial polypeptide obtained by the inventor into clinical application.
  • the invention provides a medium formula which is most suitable for expressing foreign genes in Escherichia coli by selecting and optimizing the combination of the components of the medium, and by selecting the most suitable expansion culture parameters, the whole preparation process is interlocked, taking into consideration
  • the contradiction between the purity and yield of the recombinant antibacterial polypeptide is prepared in the case of scale production. It laid a foundation for the inventors to obtain large-scale and industrialized production of recombinant antibacterial peptides in the early stage.
  • Strip 1 is the control Marker
  • strip 2 is 120 batches
  • strip 3 is 122 batches
  • strip 4 is 126 batches
  • strip 5 is 246 batches
  • strip 6 is 247 batches
  • strip 7 For 248 batches
  • strip 8 is 250 batches
  • strip 9 is 252 batches.
  • the production methods of batches 120, 122, and 126 are the existing methods, and batches of 246, 247, 249, 250, and 252 are produced by the new method of the present invention.
  • Example 1 Preparation process of antibiotics against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa
  • the medium used in the present invention is a medium used in the present invention.
  • the mass-to-volume ratio of each component in the final solution is: disodium hydrogen phosphate 0.4%_0.7%, potassium dihydrogen phosphate 0.1-0.6, ammonium chloride 0.05%-0.2%, calcium chloride 0.0005%-0.001%, sulfuric acid Magnesium 0.5% - 2.5%, peptone 1% - 3%, yeast powder 0.5% - 1%, glucose 0.1% - 0.5%, sodium chloride 0.2% - 0.8% and the rest is water.
  • the medium was added with the corresponding amount of tap water, autoclaved, and sterilized at 121 ° C for 8 min.
  • Liquid A (1L): Boric acid 12.368g (0.2M), NaC12.925g (0.05M)
  • Solution B (4L): Sodium tetraborate 76.27g (0.05M),
  • the recombinant mutant plasmid pBHC-SAl, pBHC-SA2 was prepared by referring to the description of Example 1 in the specification of the application entitled "a novel antibiotic and its nucleotide sequence, preparation method and application” with the application number "200910157564.5".
  • pBHC-SA3 pBHC-SA4 pBHC-SE, pBHC-PA was prepared by referring to the description of Example 1 in the specification of the application entitled "a novel antibiotic and its nucleotide sequence, preparation method and application” with the application number "200910157564.5".
  • the preserved strain was taken out and thawed at 4 ° C, and 1.5 ml was poured into 10 ml of LB medium (containing AMP 5 (Vg/ml), and cultured at 220 rpm, 37 ° C for 5-8 hours.
  • the bacterial solution after resuscitation was diluted 10 4 or 10 5 times, and the diluted bacterial solution was added to the prepared LB solid medium (AMP 5 (Vg/ml) plate and plated.
  • AMP 5 Vg/ml
  • the humidification box 37° C incubate incubator for 10-12 hours, and the surface of the medium grows round single colonies.
  • (3)-stage expansion culture 100 ml of the above-mentioned bacterial liquid was added to a 700 ml production-specific medium for cultivation, and shaking culture was carried out at 220 rpm and 37 ° C for 5-8 hours.
  • Two-stage expansion culture 700 ml of the above-mentioned bacterial liquid is separately added to a 6 ⁇ 700 ml production-specific medium, and shake culture: 220 rpm, 37 ° C for 5-8 hours.
  • Three-stage expansion culture The above 6x700ml bacterial solution is added to a 20L production-specific medium and cultured in a fermenter: stirring speed 220 rpm, maximum oxygen permeation, and incubation at 37 ° C for 3 to 5 hours.
  • the culture solution was 6000 g and centrifuged at 4 ° C for 20 min. The centrifuged pellet was collected and placed in 50 mM borate buffer (pH 9.0) to suspend the bacterial body in borate buffer. Note: 2 mM PMSF was added to the boric acid buffer (Chinese name: phenylmethylsulfonyl fluoride) The serine protease inhibitor, after the suspension of the bacterial body weight, must be carried out at 4 °C.
  • the cells were completely suspended in the pH 9.0 borate buffer, the cells were disrupted by a high-pressure homogenizer at a high pressure of 500 to 600 bar, and the cells were repeatedly broken 7 times, each time between 3 and 5 minutes.
  • the crushed bacterial solution 55000 g, was centrifuged at 4 ° C for 40 min. The supernatant was taken, streptomycin sulfate was added (16 bottles of 1 million units of streptomycin sulfate per 200 ml of liquid), and stirred on a magnetic stirrer for 1 h.
  • the ultra-clean workbench is cleaned with alcohol in advance and sterilized by UV lamp for 30 minutes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

说明书
一种新型重组抗菌多肽药物的制备方法 技术领域
本发明涉及抗生素药物生产工艺,特别是一种新型重组抗菌多肽药物的制备 方法。 背景技术
人们一直致力于开发新型的抗菌素,在细菌胞膜上直接形成离子通道而致细 菌死亡是比较有前途的抗菌素开发方向之一。 自然界中, 为数不少的细菌毒素就 是以这种机制来杀死细菌的, 其模式标本就是大肠杆菌 (Escherichia coli) 分泌 一种毒素蛋白一大肠菌素 (colicin)。 早在 1946 年, 青霉素的发明者 H. Florey (British J. of Experimental Pathology.1946 (27 ) , 378〜390.)等就已对大肠菌素的 抗菌活性以及安全性、 毒理等进行了详尽的评价,他们发现大肠菌素抗菌活性极 强, 提取物被稀释至数百万倍仍有非常有效的抗菌效果。但抗菌谱非常特异, 只 能针对大肠杆菌和亲缘相近的某些革兰氏阴性菌。 1953年 Jacob等发现大肠菌素 la, 在 pH 6-7时杀菌功能强大。 1978年 Finkelstein等发现可形成离子通道的大肠 菌素 K, 可以在人工脂质双分子膜上形成电压依赖性离子通道, 从而在根本上揭 示了这一类细菌毒素的抗菌机制, 即在靶细胞膜上形成致死性离子通道。 1996 年 Qiu和 Finkelstein等揭示了大肠菌素 la在人工脂质双分子膜上形成的离子通 道开放和关闭时的跨膜立体结构,为在分子水平上设计和制备新型的抗菌素奠定 了理论基础。 2001年 Qiu应用大肠菌素融合金黄色葡萄球菌信息素构建和制备 得到抗耐药性金黄色葡萄球菌的抗菌工程多肽药物,体内与体外实验证实该多肽 具有杀菌活性和杀菌选择性, 依据同样方法, Qiu构建了分别针对耐万古霉素肠 球菌和耐青霉素肺炎链球菌的抗菌工程多肽,在体内和体外实验中, 这些多肽对 这些现有抗菌素难以对付的致病菌都表现出了特异、稳定、快速的杀菌效应, 其 药效胜过万古霉素、 苯唑西林、青霉素等现用抗菌素数十倍至上千倍。相应研究 结果以论文形式发表在 Nature Biotechnology ( 21(12):1480-85 , 2003 )、 Antimicrobial Agents and Chemotherapy (49(3):1184-1189, 2005 )等国际学术期刊。 在本项目中,我们提出了利用大肠菌素融合致病菌抗原的抗体模拟物构建抗 菌工程多肽的全新研究思路及技术路线, 并已经成功制备抗菌工程多肽--广谱抗 菌信息菌素药物。 在抗菌多肽药物领域有独特的思路和理论创新, 已申报专利, 同时建立了人工构建小型抗体模拟物方法, 相关研究结果已发表在 Nature biotechnology (25(8):921-929, 2007)。本项目研发的新型高效广谱抗菌信息菌素 药物, 因其杀菌机制特殊, 对耐药菌有良好的杀菌效果, 对多重耐药绿脓杆菌
(MDRPA)、 耐甲氧西林金葡菌(MRSA)、 耐万古霉素肠球菌 (VRE)等耐药菌都 表现出比现有抗生素更强的抗菌效力。该药物的研发和制备, 对于解决日益严重 的因耐药菌株而导致的一系列治疗问题, 保障人民身体健康有重要作用。
本项目所研究的广谱抗菌信息菌素药物与目前国内外研究的小肽类抗生素
(人穿孔素、 家蚕抗菌肽)是完全不同的两类物质。 其区别在于 (1 )该抗菌工 程多肽与其原型大肠菌素一样, 是以单体 (monomer)构象工作的, 即一个分子 就能组成一个完整的工作单位, 而小肽类抗生素是以多体 (polymer) 构象工作 的, 即需要数十个分子才能组成一个完整的工作单位; (2)该抗菌工程多肽与其 原型大肠菌素一样, 可以在血循环和体内工作, 而小肽类抗生素不能; (3 )该抗 菌工程多肽与其原型大肠菌素一样, 在靶细胞膜上形成的是电压依赖性离子通 道,其杀伤机制和效率远远高于小肽类抗生素在靶细胞膜上形成的孔道。根据检 索至 2010年本领域文献, 在进行动物体内实验时, 上述小肽类抗生素几乎都存 在着一个致命的缺陷: 会被动物体内蛋白酶降解。 因此尚没有一个自小肽类抗生 素开发出来的药物前体通过了临床测试。而本项目研发和生产的抗菌工程多肽新 药的原型本身就是共生在动物和人类消化道细菌所产生的、结构和作用机理与上 述小分子多肽完全不同的细菌素,在长达 8年的体内外测试中始终表现出强大的 杀菌活性; 而且在大动物(奶牛、 奶山羊等)疾病模型试验中, 无论是局部注射 和静脉注射均有良好的杀菌效果和治疗作用,因此本抗菌工程多肽新药不存在上 述小分子多肽难以在体内使用的局限。
经过文献查阅发现, 目前国外对大肠菌素、细菌信号传导多肽、抗体改造等 分别进行了相应研究,但尚无任何实验室曾进行过类似本项目研究思路和技术路 线的研究, 也未见任何类似文章发表。 2010年 6月经查询美国国家医学图书馆 (www.ncbi.nlm.nih.gov), 目前已登录的关于大肠菌素 (Colicin) 的文献有 2600 余篇, 关于信息素 (Pheromone) 的文献有 7300余篇, 关于抗体改造( Antibody reconstitution) 的文献有 2100余篇,关于免疫毒素 (Immunotoxin) 的文献有 3800 余篇, 关于抗菌素耐药性 (antibiotic resistance) 的研究文献 94000余篇, 在这些 信息来源中均未见到任何类似本项目的科学构思、 设计理念和研究实践见诸报 导。 在 2010年 6月, 委托教育部查新工作站 (No.l ) 进行的查新表明, 除本项 目组人员的报道外,国内外未见利用大肠菌素结合靶细菌信息素或人工设计的靶 细菌抗体模拟物, 构建针对靶细菌的抗菌工程多肽药物的报道。 国内外未见基于 本项目的靶向工程抗菌多肽构建方法, 生产的抗感染性细菌的人用、兽用药物及 农药的报道。
我们已将此广谱抗菌信息菌素药物按照实际需要, 分别进行动物药物 (治 疗奶牛乳房炎的药物)和人用药物(抗菌素) 的开发。 体内外抗菌测试表明, 该 信息菌素呈现出很强的抗菌作用, 尤其是其体内抗菌效力明显优于体外抗菌效 力。 2010年 5月委托农业部兽药安全监督检验测试中心进行该药物的安全性评 价, 证明其无毒、 无致突变、 无致畸作用。 已经完成的药物安全评估结果如下:
①大、 小鼠急性毒性试验结论为该药物属实际无毒类 (报告编号 WTPJ20100003);
②鼠伤寒沙门氏菌回复突变 (Ames ) 试验结果为阴性, 表明该药物无致突 变性 (报告编号 WTPJ20100003 (2));
③小鼠骨髓细胞微核试验结果为阴性, 无致突变作用 (报告编号 WTPJ20100003 ( 3));
④小鼠精子畸形试验结果为阴性, 无致小鼠精子畸形作用 (报告编号 WTPJ20100003 (4))。
⑤重组抗菌多肽药物对奶牛乳房炎分离病原菌的体外抑杀试验,试验结果证 明:
A 重组抗菌多肽药物具广谱抗菌作用, 在体外对各种奶牛乳房炎病原菌具 有良好的抑杀效应。
B 重组抗菌多肽药物 (发明申请名称: 一种新型抗生素及其核苷酸序列、 制备方法与应用, 申请号 200910157564.5 )对葡萄球菌(金黄色葡萄球菌、 表皮 葡萄球菌、 腐生葡萄球菌、 松鼠葡萄球菌) 的抑杀作用最好, MIC5Q可达 0.125 g/mL, MBC5Q可达 0.25 g/mL。 与对照之头孢噻吩 ( 2 ug/ml) 、 苯唑西林 (4 ug/ml), 青霉素、 氨苄青霉素、 林可霉素、 庆大霉素 (均为 8 ug/ml 以上)有极 显著差异。 按药物分子量进行标化, 多肽(MW 70,000)对所试葡萄球菌的抑杀 作用是头孢噻吩 (MW 523) 作用的 2,100 倍; 是苯唑西林 (MW 423) 作用的 5,300倍。
C 重组抗菌多肽药物对链球菌、 化脓隐秘杆菌、 大肠杆菌等肠杆菌科细菌 的抑杀作用基本相当, 对链球菌(无乳链球菌、 停乳链球菌、 乳房链球菌、 牛链 球菌) 的 MIC5。为 1.0
Figure imgf000005_0001
对化脓隐秘杆菌的 MIC5() 为 0.25 ^glrnL, MBC50为 1.0 g/mL; 对大肠杆菌等肠杆菌科细菌的 MIC50为 1.0 g/mL, MBC50为 1.0 g/mL。
D 重组抗菌多肽药物对细菌敏感株和耐药株的抑杀作用无明显差异, 能高 效抑杀具各种耐药表型的葡萄球菌、 链球菌和大肠杆菌。 在前期的大动物治疗试验 (奶牛乳房炎实验性治疗试验) 中, 治愈 112头, 治愈率达到 95 %。 经过国家兽药安全评价中心检测, 本药物属实际无毒类药物, 不会对动物产生毒性和不良影响, 同时该类药物属可降解信息菌素物质, 避免了 常规抗菌素在畜禽疾病治疗后产生药物残留的弊病,经北京市乳品质量监督检验 站检测, 应用该药物治疗后的奶牛所产牛奶中均无抗生素残留 (检测报告编号 A2009-249
但是上述重组抗菌素的生产, 如发明人前期的申请号为 200910157564.5, 名 称为"一种新型抗生素及其核苷酸序列、制备方法与应用"发明申请说明书实施例 1中公开了该抗菌肽的完整制备工艺, 在获得重组制粒并转化感受态细胞之后的 增菌诱导表达重组蛋白的步骤中, 采用了较常规的增菌工艺, 由于在实验阶段, 对生产效率和制备量没有高要求,但随着这些重组抗生素经临床试验、动物试验 及安全评估,证明这些重组抗菌肽医用价值之后, 采用上述发明申请中的制备工 艺, 成本太高, 且很难获得大量的高纯度重组蛋白表达物, 因此, 如何进行有效 的规模化开发和生产成了上述药物走向实际应用过程中一个必须解决的问题。 发明内容 本发明针对上述领域的空白及急切需求, 提供上述重组抗菌多肽的制备方 法。
一种新型重组抗菌多肽药物的制备方法, 包括如下步骤:
( 1 ) 制备含有重组质粒的大肠杆菌菌种, 冷冻保存,
(2) 采用液体生产培养基对菌种进行扩大培养,
( 3 ) 诱导菌种表达重组抗菌多肽;
其特征在于,所述液体生产培养基的配方如下: 各组分在终溶液中的质量体 积比为:磷酸氢二钠 0.4%— 0.7%,磷酸二氢钾 0.1%-0.6%,氯化铵 0.05%— 0.2%, 氯化钙 0.0005%-0.001%,硫酸镁 0.5%— 2.5%,蛋白胨 1%— 3%,酵母粉 0.5%-1%, 葡萄糖 0.1%_0.5%, 氯化钠 0.2%--0.8%其余为水
所述液体生产培养基的配方如下: 各组分在终溶液中的质量体积比为: 磷酸 氢二钠 0.68%, 磷酸二氢钾 0.3%, 氯化铵 0.1%, 氯化钙 0.001%, 硫酸镁 0.02%, 蛋白胨 2.5%, 酵母粉 0.75%, 葡萄糖 0.2%, 氯化钠 0.6%, 其余为水。
所述对菌种进行扩大培养分为三级扩大培养, 各级扩大培养的参数为: 220rpm、 37 °C、 3-8小时。
所述诱导表达重组抗菌多肽指对步骤 (2) 得到的菌液做如下处理: 搅拌速 度 220 rpm, 最大通氧量, 30 °C, 2〜4小时; 42 °C, 0.5小时; 37 °C, 1〜2小 时, 达到 42 °C时加入终浓度为 0.5mM的 IPTG。
所述步骤 (2) 之前, 菌种进行如下处理:
( 1 ) 菌种 4°C解冻, 在加有终浓度为 5(Vg/ml AMP的 LB液体培养基中, 220rpm、 37 °C培养过夜复苏菌种, 然后涂布于 LB固体培养基上培育单菌落,
(2)挑取单菌落于 1.5mlLB液体培养基中, 220rpm、 37°C培养 5-8小时; 然 后转至 lOOmlLB液体培养基中, 220rpm、 37°C培养 5-8小时;
所述 LB培养基的组分及各组分质量体积比为氯化钠 1%, 蛋白胨 l%g, 酵 母 0.5%, 琼脂 0.8〜1%, 其余为水。
所述大肠杆菌指含有重组质粒 pBHC-SAl、 pBHC-SA2、 pBHC-SA3、 pBHC-SA4、 pBHC-SE或 pBHC-PA的 BL-21工程菌。
基于发明人前期获得的一系列重组抗菌多肽,本发明提供一种制备重组抗菌 素的方法,专门用于大量制备高纯度的重组抗菌肽。现有方法不适宜大规模生产, 在大规模生产情况下纯度或产量不理想等缺陷,是将发明人前期获得的重组抗菌 多肽推向临床应用过程中必须克服的难题。本发明通过对培养基成分的选择和优 化组合,提供了一种最适合大肠杆菌表达外源基因的培养基配方, 通过选择最适 合的扩大培养参数, 使整个制备过程环环相扣, 兼顾大规模生产的情况下制备 重组抗菌多肽的纯度与产量的矛盾。 为发明人前期获得重组抗菌多肽的规模化、 工业化生产奠定了基础。 附图说明
图 1 本发明的方法制备的抗菌肽与 AMP 的对比结果
从左到右: CON: 3小时开始浑浊; AMP :4小时开始浑浊; 实施例 1制备得 到的样品: 194批次蛋白与 198批次蛋白第 27个小时澄清。
图 2 不同批次抗菌工程多肽纯度测试
条带 1为对照 Marker, 条带 2为 120批次, 条带 3为 122批次, 条带 4为 126批次, 条带 5为 246批次, 条带 6为 247批次, 条带 7为 248批次, 条带 8 为 250批次, 条带 9为 252批次。 其中 120, 122, 126 批次的生产方法为现有 方法, 246, 247, 249, 250, 252批次为本发明的新方法生产。
图 3. 不同生产规模下的差率比较
从左到右为: 摇瓶、 42L发酵罐、 200L发酵罐连续生产 10批次的产率。 具体实施方式
以下以一些具体的重组抗菌肽说明本发明的制备工艺,但本发明不限于制备 以下重组抗菌肽。
实施例 1. 抗大肠杆菌、 金黄色葡萄球菌、 表皮葡萄球菌、 绿脓杆菌抗菌肽的制 备工艺
本发明用到的培养基:
( 1 ) LB液体培养基
100ml氯化钠 lg, 蛋白胨 lg, 酵母 0.5g, 将各种试剂称好后 放入 250ml 烧瓶中, 加入 100ml自来水, 使其溶解, 在高压灭菌锅内 120°C 8min 灭菌
(2) LB固体培养基
100ml氯化钠 0.5~1.5g, 蛋白胨 0.5~2g, 酵母 0.3~lg, 琼脂 0.8~3g, LB 固体培养基用于菌种复苏后划平板培养单克隆菌落用。 将各种试剂称好后 放入 250ml烧瓶中,加入 100ml自来水,使其溶解,在高压灭菌锅内 120°C 8min 灭 菌
(3) 生产专用培养基 (700ml 20L 100L 200L)
各成分在终溶液中的质量体积比为: 磷酸氢二钠 0.4%_0.7%, 磷酸二氢钾 0.1 -0.6 ,氯化铵 0.05%— 0.2%,氯化钙 0.0005%-0.001%,硫酸镁 0.5%— 2.5%, 蛋白胨 1%— 3%, 酵母粉 0.5%-1%, 葡萄糖 0.1%— 0.5%, 氯化钠 0.2%— 0.8%其余 为水。
本发明优选配方如表 1 :
Figure imgf000008_0001
培养基加入相应量的自来水后, 高压灭菌, 121 °C 8min 灭菌。
(4)硼酸缓冲液:硼酸 0.04M, NaClO.OlM, 四硼酸钠 0.04M, EDTA 2mM 配制方法: 硼酸缓冲液 5L= A液 1L + B液 4L
A液 (1L): 硼酸 12.368g (0.2M), NaC12.925g (0.05M)
B液 (4L): 四硼酸钠 76.27g (0.05M),
A液 1L + B液 4L混合, 加入 EDTA2.9225g 终浓度为 2mM 步骤 1.制备重组突变质粒
参照申请号为 "200910157564.5",名称为"一种新型抗生素及其核苷酸序列、 制备方法与应用"的发明申请说明书中实施例 1的记载, 制备得到重组突变质粒 pBHC-SAl、 pBHC-SA2、 pBHC-SA3 pBHC-SA4 pBHC-SE、 pBHC-PA。
步骤 2.转化感受态细胞
将 6种重组突变质粒 100 ng 分别与制备的 BL-21工程菌感受态细胞 40 ul 冰孵 5分钟, 热冲击 42 °C, 30秒, 再置入冰中 2分钟, 加入 SOC培养基 160 ul, 220 rpm, 37 °C摇菌 1小时后铺板(LB培养基加 1 %琼脂, 加 50 ug/ml氨苄青 霉素, 37 °C过夜), 挑取单克隆菌落增菌, 获得菌种, 低温保存菌种; 步骤 3.菌种复苏
1.菌种复苏
取出保存菌种 4°C解冻,取 1.5ml倒入 10ml LB培养基中(含 AMP 5(Vg/ml), 220rpm、 37 °C培养 5—8小时。
2.接种单克隆菌
复苏后的菌液稀释 104或 105倍,取 lOul稀释后的菌液加入到制备好的 LB 固 体培养基(AMP 5(Vg/ml)平板上,涂平板。放湿盒中, 37°C恒温培养箱培养 10-12 小时, 培养基表面长出圆形单菌落。
3.挑菌和扩菌
(1)用已灭菌牙签或接菌环从长好的平板上挑选规则圆形, 边缘光滑的单菌 落, 放入 1.5mlLB培养基中, 振荡培养: 220rpm、 37°C培养 5-8小时。
(2) 1.5mlLB菌液翻至 100ml LB培养基中,振荡培养: 220rpm、 37°C培养 5-8 小时。
(3)—级扩大培养: 将上步的 100ml菌液加入到 700ml生产专用培养基中培 养, 振荡培养: 220rpm、 37°C培养 5-8小时。
(4) 二级扩大培养:将上步 700ml菌液分别加入到 6x700ml生产专用培养基 中, 振荡培养: 220rpm、 37°C培养 5-8小时。
( 5 ) 三级扩大培养: 将上步 6x700ml菌液加入到 20L生产专用培养基中, 在发酵罐中培养: 搅拌速度 220rpm、 最大通氧量, 37°C培养 3_5小时。
( 6)工程菌发酵和诱导表达蛋白: 将上步 20L菌液加入到 200L生产专用培 养基中,在发酵罐中培养和诱导表达蛋白:搅拌速度 220 rpm, 最大通氧量, 30 °C, 2〜4小时; 42 °C, 0.5小时; 37 °C, 1〜2小时, 注: 达到 42 °C时加入终浓度为 0.5mM的 IPTG
4、 离心收菌
培养液 6000g, 4°C离心 20min。 收取离心后的沉淀, 放入 50mM的硼酸缓 冲液(pH9.0) 中, 使菌体重悬浮于硼酸缓冲液中, 注: 硼酸缓冲液中加入 2mM 的 PMSF (中文名: 苯甲基磺酰氟丝氨酸蛋白酶抑制剂, 自菌体重悬浮之后的操 作须在 4°C进行。
5、 破碎菌体
待菌体完全悬浮于 PH9.0硼酸缓冲液后, 用高压匀质机 500〜600bar高压破 碎菌体, 反复破碎 7次, 每次破菌间隔 3〜5分钟。
6、 沉淀菌体 DNA
将破碎后的菌液, 55000g, 4°C离心 40min。取上清液, 加入硫酸链霉素(每 200ml液体加入 16瓶 100万单位的硫酸链霉素), 在磁力搅拌器上搅拌 lh。
7、 透析
将上步的菌液 55000g, 4°C离心 20min, 取上清液, 装入透析袋中, 置硼酸 缓冲液中透析 8h~12小时, 每 4h换透析液一次。
8、 蛋白药物纯化和得到抗菌工程多肽药物
将透析后的菌液 55000g, 4°C离心 20min, 取上清液放入烧杯中, 采用离子 交换法纯化蛋白。取上清上样于 CM离子交换柱, 充分冲洗后, 用含 0.3 M NaCl 的 50 mM硼酸缓冲液洗脱即可得到新型抗菌工程多肽。
实施例 2. 多肽药物的抑菌测试
1、在 100ml锥形瓶中装入 10ml BM培养基 (未灭菌),高压蒸汽灭菌锅 121 °C, 8min灭菌。
2、 超净工作台提前用酒精擦干净, 开紫外灯灭菌 30min 。
3、 在每个 100ml锥形瓶中加入 3μ1过夜培养的金黄色葡萄球菌。
4、 在 100ml锥形瓶中分别加入 ΙΟμΙ无菌生理盐水、 Ιμΐ lmg/ml的 AMP、 以及本发明实施例 1的方法制备得到的 0.8mg/ml的 pBHC-SAl多肽样品 125μ1, 作好标记。
5、 放入振动培养箱中, 37°C、 220rmp培养。
6、 在 3h、 6h、 9h、 12h、 24h时观察混浊情况。
空白对照和 AMP在 3h时混浊, 样品在 9h未混浊, 说明制备的样品能够有 效抗金黄色葡萄球菌, 如图 1。 从左到右: CON: 3小时开始浑浊; AMP :4小时 开始浑浊; 实施例 1制备得到的样品: 194批次蛋白与 198批次蛋白至第 27个小 时澄清。 实施例 2 本发明的制备方法与现有方法制备的抗菌肽比较
将本发明实施例 1的方法与原有方法 (200910157564.5中公开的方法) 以 相等的生产规模制备得到的不同批次的抗菌肽 pBHC-SAl 在聚丙烯酰胺凝胶中 电泳、 染色, 以比较产物的纯度, 结果显示, 抗菌工程多肽的分子量在 75000 左右, 实施例 1的方法生产的多肽所在的泳道 5、 6、 7, 8的条带相对单一, 而 泳道 2、 3、 4内含有大量较小分子量的杂带, 即本发明的方法生产的多肽在纯度 上得到了明显的提高。
实施例 3. 生产工艺流程的改进
经过不断的改进和优化生产工艺, 生产规模也在不断地扩大, 由试验性摇瓶 生产 (8.4L), 到 42L发酵罐生产 (25L), 再到现在的 200L发酵罐生产 ( 100L), 且随着生产规模的扩大, 差率并没有受到影响, 见图 3, 为抗菌多肽的规模化、 工业化生产奠定了基础。摇瓶连续生产 10批次、 42L发酵罐连续生产 10批次与 200L发酵罐连续生产 10批次产量和产率的对比情况, 见表 2、 图 3
表 2. 产量和差率
摇瓶 42L发酵罐 200L发酵罐 产量 1893.72 6654.82 31940.00 产率 (mg/L) 22.54 26.61 31.94

Claims

权利要求书
1. 一种新型重组抗菌多肽药物的制备方法, 包括如下步骤:
( 1 ) 制备含有重组质粒的大肠杆菌菌种, 冷冻保存,
(2) 采用液体生产培养基中对菌种进行扩大培养,
( 3 ) 诱导表达重组抗菌多肽, 分离纯化重组抗菌多肽;
其特征在于,所述液体生产培养基的配方如下: 各组分在终溶液中的质量体 积比为:磷酸氢二钠 0.4%— 0.7%, 磷酸二氢钾 0.1%-0.6%,氯化铵 0.05%— 0.2%, 氯化钙 0.0005%-0.001%,硫酸镁 0.5%— 2.5%, 蛋白胨 1%-3%, 酵母粉 0.5%- 1%, 葡萄糖 0.1%_0.5%, 氯化钠 0.2%--0.8%其余为水
2. 根据权利要求 1所述的制备方法, 所述液体生产培养基的配方如下: 各 组分在终溶液中的质量体积比为: 磷酸氢二钠 0.68%, 磷酸二氢钾 0.3%, 氯化 铵 0.1%, 氯化钙 0.001%, 硫酸镁 0.02%, 蛋白胨 2.5%, 酵母粉 0.75%, 葡萄糖 0.2%, 氯化钠 0.6%, 其余为水。
3. 根据权利要求 1所述的制备方法, 所述对菌种进行扩大培养分为三级扩 大培养, 各级扩大培养的参数为: 220rpm、 37 °C、 3-8小时。
4. 根据权利要求 1所述的制备方法, 所述诱导表达重组多肽指对步骤 (2) 得到的菌液 做如下处理:搅拌速度 220 rpm, 最大通氧量, 30 °C 2〜4小时; 42 °C 0.5小时; 37 °C 1〜2小时, 达到 42 °C时加入终浓度为 0.5mM的 IPTG。
5. 根据权利要求 1所述的制备方法, 所述步骤(2)扩大培养前, 对冷冻保 存的菌种进行如下处理:
( 1 ) 菌种 4°C解冻, 在加有终浓度为 5(Vg/ml AMP的 LB液体培养基中, 220rpm、 37 °C培养过夜复苏菌种, 然后涂布于 LB固体培养基上培育单菌落,
(2)挑取单菌落于 1.5mlLB液体培养基中, 220rpm、 37°C培养 5-8小时; 然 后转至 lOOmlLB液体培养基中, 220rpm、 37°C培养 5-8小时;
所述 LB固体培养基的组分及各组分质量体积比为氯化钠 1%,蛋白胨 l%g, 酵母 0.5%, 琼脂 0.8〜1%, 其余为水。
6 . 根据权利要求 1 所述的制备方法, 所述大肠杆菌指含有重组质粒 pBHC-SAl、pBHC-SA2、pBHC-SA3、pBHC-SA4、pBHC-SE或 pBHC-PA的 BL-21 工程菌。
PCT/CN2012/071825 2011-03-04 2012-03-01 一种新型重组抗菌多肽药物的制备方法 WO2012119524A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020137026054A KR101566331B1 (ko) 2011-03-04 2012-03-01 신규 재조합 항균 폴리펩타이드 약물의 제조방법
AP2013007193A AP3486A (en) 2011-03-04 2012-03-01 Preparation method of new recombinant antibacterial polypeptide medicine
EP12754430.2A EP2682474B1 (en) 2011-03-04 2012-03-01 Preparation method of new recombinant antibacterial polypeptide medicine
BR112013022333A BR112013022333A2 (pt) 2011-03-04 2012-03-01 método de preparação de um novo medicamento antibacteriano de polipeptídeo recombinante, e, meio de cultura
EA201300884A EA030794B1 (ru) 2011-03-04 2012-03-01 Жидкая питательная среда и способ крупномасштабного производства антибактериального слитого полипептида колицина и феромона
US14/001,141 US9765378B2 (en) 2011-03-04 2012-03-01 Preparation method of new recombinant antibacterial polypeptide medicine
AU2012225088A AU2012225088B2 (en) 2011-03-04 2012-03-01 Preparation method of new recombinant antibacterial polypeptide medicine
SG2013065370A SG193000A1 (en) 2011-03-04 2012-03-01 Preparation method of new recombinant antibacterial polypeptide medicine
CA2828998A CA2828998A1 (en) 2011-03-04 2012-03-01 Preparation method of new recombinant antibacterial polypeptide medicine
JP2013556952A JP5916769B2 (ja) 2011-03-04 2012-03-01 組み換え型ポリペプチド系新規抗菌薬の製造方法
NZ614593A NZ614593B2 (en) 2011-03-04 2012-03-01 Preparation method of new recombinant antibacterial polypeptide medicine
ZA2013/06575A ZA201306575B (en) 2011-03-04 2013-09-02 Preparation method of new recombinant antibactirial polypeptide medicine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110052238.5A CN102653779B (zh) 2011-03-04 2011-03-04 一种新型重组抗菌多肽药物的制备方法
CN201110052238.5 2011-03-04

Publications (1)

Publication Number Publication Date
WO2012119524A1 true WO2012119524A1 (zh) 2012-09-13

Family

ID=46729509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071825 WO2012119524A1 (zh) 2011-03-04 2012-03-01 一种新型重组抗菌多肽药物的制备方法

Country Status (18)

Country Link
US (1) US9765378B2 (zh)
EP (1) EP2682474B1 (zh)
JP (1) JP5916769B2 (zh)
KR (1) KR101566331B1 (zh)
CN (1) CN102653779B (zh)
AP (1) AP3486A (zh)
AU (1) AU2012225088B2 (zh)
BR (1) BR112013022333A2 (zh)
CA (1) CA2828998A1 (zh)
CL (1) CL2013002534A1 (zh)
CO (1) CO6771436A2 (zh)
EA (1) EA030794B1 (zh)
HK (1) HK1169837A1 (zh)
MY (1) MY169503A (zh)
SG (1) SG193000A1 (zh)
TW (1) TWI541351B (zh)
WO (1) WO2012119524A1 (zh)
ZA (1) ZA201306575B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131724B (zh) * 2011-11-25 2015-02-25 畿晋庆三联(北京)生物技术有限公司 一种高效表达工程菌重组蛋白的方法及应用
CA2907045C (en) * 2013-03-15 2020-12-08 Merial Limited Antimicrobial polyamide compositions and mastitis treatment
CN104328080A (zh) * 2014-08-04 2015-02-04 湖北文理学院 大肠埃希菌atcc25922增殖促进剂及其应用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1712534A (zh) * 2004-06-25 2005-12-28 私立逢甲大学 用以增进重组蛋白质的生产的核酸构建体与表达载体以及用以大量生产重组蛋白质的方法
WO2009126890A2 (en) * 2008-04-10 2009-10-15 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
CN101643501A (zh) * 2008-11-07 2010-02-10 畿晋庆三联(北京)生物技术有限公司 一种新型抗生素及其核苷酸序列、制备方法与应用
CN101914603A (zh) * 2010-07-08 2010-12-15 暨南大学 利用乳糖诱导pMFH载体生产重组蛋白的发酵方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737157B2 (ja) * 1994-07-11 2006-01-18 協和醗酵工業株式会社 光学活性γ−ヒドロキシ−L−グルタミン酸の製造法
RU2095409C1 (ru) * 1995-06-27 1997-11-10 Всероссийский научно-исследовательский институт ветеринарной вирусологии и микробиологии Способ изготовления вакцины против сибирской язвы животных
EP1210132A4 (en) * 1999-07-13 2006-03-29 Deuk Hun Ahn COMPOSITION BASED ON MEDICINAL PLANTS CONTAINED TO BE CONTAINED IN HYGIENIC ARTICLES FOR CHILDREN
RU2203948C2 (ru) * 1999-10-28 2003-05-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Штамм бактерий corynebacterium ammoniagenes - продуцент уридин-5'-монофосфата (варианты), способ получения уридин-5'- монофосфата
CN1164612C (zh) * 2001-09-11 2004-09-01 四川新泰克控股有限责任公司 人工组合的抗菌工程多肽及其制备方法
CN1412312A (zh) * 2002-08-21 2003-04-23 重庆康尔威药业股份有限公司 重组人快速骨骼肌型肌钙蛋白c在大肠杆菌中的表达及其在抗肿瘤治疗中的应用
US8212110B2 (en) * 2003-05-14 2012-07-03 Integrated Plant Genetics, Inc. Use of bacteriophage outer membrane breaching proteins expressed in plants for the control of gram-negative bacteria
MXPA06001722A (es) * 2003-08-14 2006-05-19 Bio Balance Corp Cepas de bacterias, composiciones que las incluyen y el uso de probioticos de las mismas.
AU2006213673A1 (en) * 2005-02-09 2006-08-17 Santen Pharmaceutical Co., Ltd. Formulations for ocular treatment
WO2007136553A2 (en) * 2006-05-18 2007-11-29 Biobalance Llc Bacterial strains, compositions including same and probiotic use thereof
BRPI0722315A2 (pt) * 2007-12-28 2014-06-10 Roquette Freres Método de cultura microbiana em larga escala
CN101503659B (zh) * 2009-03-11 2011-03-23 中国农业大学 一种哈茨木霉菌株及其应用
US20130295171A1 (en) * 2009-07-23 2013-11-07 U.S NUTRACEUTICALS, LLC d/b/a Valensa International Krill oil and reacted astaxanthin composition and associated method
CN101974548A (zh) * 2010-08-20 2011-02-16 中国农业大学 一种表达重组nisin-rbLF-N融合基因的大肠杆菌工程菌
US8563503B2 (en) * 2011-02-07 2013-10-22 Protein Design Lab. Ltd. Antibiotic, its nucleotide sequence, methods of construction and uses thereof
US8609110B2 (en) * 2011-06-21 2013-12-17 University of Pittsburgh—of the Commonwealth System of Higher Education Citrobacter freundii antibacterial agents and their use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1712534A (zh) * 2004-06-25 2005-12-28 私立逢甲大学 用以增进重组蛋白质的生产的核酸构建体与表达载体以及用以大量生产重组蛋白质的方法
WO2009126890A2 (en) * 2008-04-10 2009-10-15 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
CN101643501A (zh) * 2008-11-07 2010-02-10 畿晋庆三联(北京)生物技术有限公司 一种新型抗生素及其核苷酸序列、制备方法与应用
CN101914603A (zh) * 2010-07-08 2010-12-15 暨南大学 利用乳糖诱导pMFH载体生产重组蛋白的发酵方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 49, no. 3, 2005, pages 1184 - 1189
BRITISH J. OF EXPERIMENTAL PATHOLOGY., 1946, pages 378 - 390
NATURE BIOTECHNOLOGY, vol. 21, no. 12, 2003, pages 1480 - 85
NATURE BIOTECHNOLOGY, vol. 25, no. 8, 2007, pages 921 - 929
RUIZ, T. ET AL.: "Cloning of the Pichia anomala SEC61 Gene and Its Expression in a Saccharomyces cerevisiae sec61 Mutant.", CURRENT MICROBIOLOGY., vol. 46, 2003, pages 340 - 344, XP055120046 *
See also references of EP2682474A4

Also Published As

Publication number Publication date
EP2682474A4 (en) 2014-12-10
JP5916769B2 (ja) 2016-05-11
EP2682474A1 (en) 2014-01-08
HK1169837A1 (zh) 2013-02-08
KR20130138822A (ko) 2013-12-19
CN102653779B (zh) 2014-02-19
AU2012225088B2 (en) 2015-04-09
CA2828998A1 (en) 2012-09-13
NZ614593A (en) 2015-07-31
US9765378B2 (en) 2017-09-19
CN102653779A (zh) 2012-09-05
TW201239092A (en) 2012-10-01
JP2014508766A (ja) 2014-04-10
CL2013002534A1 (es) 2014-07-11
EP2682474B1 (en) 2017-05-10
AP2013007193A0 (en) 2013-10-31
EA201300884A8 (ru) 2018-06-29
ZA201306575B (en) 2016-03-30
TWI541351B (zh) 2016-07-11
AP3486A (en) 2015-12-31
MY169503A (en) 2019-04-15
US20160304927A1 (en) 2016-10-20
CO6771436A2 (es) 2013-10-15
EA201300884A1 (ru) 2014-04-30
AU2012225088A1 (en) 2013-09-12
SG193000A1 (en) 2013-10-30
KR101566331B1 (ko) 2015-11-05
EA030794B1 (ru) 2018-09-28
BR112013022333A2 (pt) 2016-12-06

Similar Documents

Publication Publication Date Title
Vandamme et al. A century of bacteriophage research and applications: impacts on biotechnology, health, ecology and the economy!
WO2016110177A1 (zh) 碱性抗菌肽及其靶向设计和应用
TWI541351B (zh) Preparation of Novel Recombinant Antibacterial Peptide Drugs
ES2686341T3 (es) Nuevo método de preparación de antibióticos y sistema de plataforma basado en el mismo
CN103937736A (zh) 鱼鳃细胞系的建立方法
Kamel et al. Essentials of Bacteriology and Immunology
NZ614593B2 (en) Preparation method of new recombinant antibacterial polypeptide medicine
OA16584A (en) Preparation method of new recombinant antibacterial polypeptide medicine.
RU2564120C2 (ru) ШТАММ БАКТЕРИЙ Escherichia coli - ПРОДУЦЕНТ БЕЛКА ТЕПЛОВОГО ШОКА 70 И СПОСОБ ПОЛУЧЕНИЯ ПРЕПАРАТА БЕЛКА ТЕПЛОВОГО ШОКА ЧЕЛОВЕКА
Ainutajriani et al. PRODUCTION OPTIMIZATION, PARTIAL PURIFICATION, AND THROMBOLYTIC ACTIVITY EVALUATION OF PROTEASE OF Bacillus cereus HSFI-10
RU2325168C2 (ru) Средство для подавления продукции энтеротоксинов у стафилококков
Lapteva Development of submerged cultivation method for vaccine Mycoplasma mycoides subsp. mycoides strain
Deimantaviciute Producing intracellular and extracellular lipid vesicles in E. coli for vaccine development
Atanasković et al. GLYCOSIDE HYDROLASES FROM FRESHWATER FISH GILL MICROBIOTA AS BIOFILM INHIBITORS FOR ENHANCED FOOD SAFETY
FERREIRA EVALUATION OF QUATERNARY AMMONIUM SURFACTANTS AS PROPHYLATICS OPTIONS FOR STREPTOCOCCUS AGALACTIAE INFECTIONS
Wang Exploring the role of PilY1 family proteins in natural transformation
Al Madadha Functional Analysis of Fic Domain Bearing Proteins in Klebsiella pneumoniae
Shah et al. Synthetic antimicrobial peptide identified using artificial intelligence inhibit growth of antibiotic resistant Pseudomonas aeruginosa in vitro
KR101830946B1 (ko) 바실러스 리체니포미스 유래 박테리오신을 포함하는 황색포도상구균 rf122에 대한 항균용 조성물
Islam Evaluation of MicrocinE492 gene presence in Klebsiella pneumoniae isolated from clinical samples.
CN117866068A (zh) 一种促进创面愈合的合浦珠母贝半乳糖结合凝集素蛋白pfl-96及其制备方法和应用
Job et al. Horizontal Gene Transfer and Genomic Erosion Shape Functional Differences of the Two-Partner Secretion Toxin Exla in the Genus Pseudomonas
Shuguang et al. Identification of the Pathogen of Wufeng Maryland Tobacco Hollow Stalk
Zweig Role and visualization of the single-stranded and double-stranded DNA in the biofilm of Neisseria gonorrhoeae
UA15314U (en) Nutrient medium for the cultivation of bifidobacteria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754430

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012754430

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012754430

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12013501794

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2013002534

Country of ref document: CL

Ref document number: 13208481

Country of ref document: CO

Ref document number: 201300884

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2013556952

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2828998

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004932

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2012225088

Country of ref document: AU

Date of ref document: 20120301

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137026054

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201310522

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 14001141

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013022333

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013022333

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130830