WO2012116942A1 - Verfahren zur herstellung von aryl- und heteroarylessigsäure-derivaten - Google Patents

Verfahren zur herstellung von aryl- und heteroarylessigsäure-derivaten Download PDF

Info

Publication number
WO2012116942A1
WO2012116942A1 PCT/EP2012/053233 EP2012053233W WO2012116942A1 WO 2012116942 A1 WO2012116942 A1 WO 2012116942A1 EP 2012053233 W EP2012053233 W EP 2012053233W WO 2012116942 A1 WO2012116942 A1 WO 2012116942A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
preparation
iii
compounds
alkyl
Prior art date
Application number
PCT/EP2012/053233
Other languages
English (en)
French (fr)
Inventor
Thomas Himmler
Lukas J. Goossen
Felix Rudolphi
Bingrui Song
Original Assignee
Bayer Cropscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112013022282-4A priority Critical patent/BR112013022282B1/pt
Priority to MX2013009828A priority patent/MX341269B/es
Application filed by Bayer Cropscience Ag filed Critical Bayer Cropscience Ag
Priority to EP12706245.3A priority patent/EP2681185B8/de
Priority to JP2013555836A priority patent/JP6100174B2/ja
Priority to KR1020187032851A priority patent/KR101999939B1/ko
Priority to KR1020137022738A priority patent/KR101927556B1/ko
Priority to DK12706245.3T priority patent/DK2681185T3/en
Priority to CN201280011378.0A priority patent/CN103596918B/zh
Priority to EP18162783.7A priority patent/EP3369723B1/de
Priority to US14/002,691 priority patent/US9096568B2/en
Priority to MX2016005715A priority patent/MX371507B/es
Priority to ES12706245.3T priority patent/ES2690944T3/es
Publication of WO2012116942A1 publication Critical patent/WO2012116942A1/de
Priority to IL227996A priority patent/IL227996A/en
Priority to US14/686,886 priority patent/US9376417B2/en
Priority to IL255391A priority patent/IL255391B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/49Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • C07C205/56Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups bound to carbon atoms of six-membered aromatic rings and carboxyl groups bound to acyclic carbon atoms of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/57Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and carboxyl groups, other than cyano groups, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/52Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/62Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/612Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety
    • C07C69/614Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety of phenylacetic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/612Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety
    • C07C69/616Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/65Halogen-containing esters of unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/738Esters of keto-carboxylic acids or aldehydo-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring

Definitions

  • the invention relates to a process for the preparation of aryl and heteroarylacetic acids and their derivatives by reacting aryl or heteroaryl halides with malonic diesters in the presence of a palladium catalyst, one or more bases and optionally a phase transfer catalyst.
  • This process allows the preparation of a variety of functionalized aryl and heteroarylacetic acids and their derivatives, in particular the preparation of arylacetic acids with sterically demanding substituents.
  • phenylacetic acid derivatives are prepared in multi-step syntheses, which usually have a low group tolerance.
  • the preparation can be carried out, for example, starting from acetophenones by a Willgerodt-Kindler reaction (see, for example, H. E. Zaugg et al., J. Amer. Chem. Soc., 70 (1948) 3224-8).
  • this method produces large quantities of sulfurous waste.
  • strong odor-causing volatile sulfur compounds can occur.
  • arylacetic acids Another method for producing arylacetic acids is based on benzyl bromides or chlorides. It is made from e.g. with sodium cyanide the corresponding nitriles ago, which are then saponified.
  • the required benzyl bromides or chlorides can be obtained, for example, by bromination or chlorination of the corresponding aromatics.
  • the halomethylation of substituted aromatics in many cases leads to isomer mixtures.
  • Another known method is the palladium- or copper-catalyzed coupling reaction of aryl halides with malonic esters or ⁇ -keto esters. followed by thermally induced dealkoxycarbonylation or retro-Claisen condensation.
  • aryl iodides and activated aryl bromides were reacted with diethyl malonate in the presence of a palladium catalyst and 10 equivalents of very expensive cesium carbonate, with reaction times of up to 76 hours being necessary (Chem. Commun. 2001, 2704-2705).
  • A) an inorganic base and a phase transfer catalyst or B) is carried out a mixture of inorganic bases, followed by the coupling reaction in situ followed by a Dealkoxycarbonyl ist.
  • R 1 , R 2 , R 3 , R + and R 5 are each, independently or differently, hydrogen, amino. Cyano, nitro, halogen, for optionally substituted by halogen Ci-Ce-alkyl. Ci-Ce-thioalkyl.
  • radical Ar can also be a heteroaromatic radical such as 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-furyl, 3-furyl, 2-thienyl, or 3-thienyl or the radical Ar can also be 1- or 2-naphthyl, with malonic esters of the formula (II)
  • R 6 and R 7 independently of one another represent optionally substituted C 1 -C 8 -alkyl, phenyl, aryl, or NR 8 R 9 , where R 8 and R 9 independently of one another are identical or different and are optionally substituted by C 1 -C 4 -alkyl C3-alkyl which may be substituted by fluorine or chlorine, phenyl substituted by nitro, cyano or di-Ci-C3-alkylamino, or together with the nitrogen atom to which they are attached, for a saturated or unsaturated, substituted or unsubstituted cycle, in the presence of a palladium catalyst, a phosphine ligand and
  • Ar is preferably 1- or 2-naphthyl, 3-thienyl or the group
  • R 1 , R 2 , R 3 , R 4 and R 5 are each, independently of one another, identical or different and denote hydrogen, amino, cyano, nitro, fluorine, optionally C 1 -C 4 -alkyl substituted by fluorine, C 1 -C 4 -thioalkyl, thiophenyl , C 1 -C 4 -alkoxy, C 6 -C 10 -aryloxy, phenyl, -CO-C 1 -C -aryl, -CO-C 1 -C 3 -alkyl, -COO-C 1 -C 4 -alkyl or -COO-C 6 - C 8 aryl,
  • Hai is preferably chlorine, bromine or iodine
  • R 5 and R 7 are each, independently of one another, identical or different and are C 1 -C 4 -alkyl.
  • Ar is more preferably 1-or 2-naphthyl, 3-thienyl or the group
  • R 1 . R 2 , R 3 , R 4 and R 5 are more preferably the same or different independently
  • Hai is particularly preferably chlorine.
  • Bromine or iodine, R 6 and R 7 more preferably independently represent methyl or ethyl, highlighted for ethyl.
  • Ar is most preferably 1-naphthyl, 2-naphthyl, phenyl, 4-N, N-dimethylaminophenyl.
  • Ar is also very particularly preferably 2,6-dimethylphenyl, 2,4,6-trimethylphenyl, 4-cyanophenyl. 4-cyano-2-methylphenyl, 3-cyanophenyl. 4-ethoxycarbonyphenyl, 4-trifluoromethylphenyl, 4-acetylphenyl, 4-nitrophenyl, 4-benzoylphenyl.
  • the aryl halides of the formula (I) are known in principle or can be prepared by known methods.
  • the compounds of the formula (II) are known in principle or can be prepared by known methods.
  • the bases used in process step A) according to the invention are inorganic bases such as alkali or alkaline earth hydroxides, carbonates, bicarbonates, oxides, phosphates, hydrogenphosphates, fluorides or hydrogen fluorides.
  • alkali and alkaline earth phosphates, carbonates or fluorides are used and most preferably sodium and potassium phosphate are used. Highlighted is potassium phosphate.
  • the bases used in process step B) according to the invention are mixtures of inorganic bases, such as alkali metal or alkaline earth metal hydroxides, carbonates, bicarbonates, oxides, phosphates, hydrogenphosphates, fluorides or hydrogen fluorides, such as, for example. Lithium, sodium, potassium, cesium, magnesium, rubidium, calcium or barium hydroxides, oxides, phosphates, hydrogen phosphates, fluorides. hydrogen fluorides and lithium, sodium, potassium, magnesium, rubidium, calcium or barium carbonates, bicarbonates.
  • mixtures of alkali and alkaline earth phosphates, carbonates or bicarbonates are used, and more preferably, mixtures of sodium and potassium carbonates and bicarbonates are used.
  • the mixtures of the inorganic bases may contain different molar ratios of the individual bases. In general, molar ratios between 0, 1 and 10 are used. Preference is given to working with molar ratios of 0.5 to 5.
  • palladium (II) salts such as palladium chloride, bromide. iodide, acetate, acetylacetonate optionally substituted by further ligands, such as.
  • Pd (0) species such as palladium on activated carbon, Pd (PPli3) 4, bis (dibenzylideneacetone) palladium or tris (dibenzylideneacetone) dipalladium used.
  • the amount of palladium catalyst used in the process according to the invention is 0.001 to 5 mole percent, based on aryl halide. Preferably, 0.005 to 3 mole percent are used; particularly preferred are 0.01 to 1 mole percent.
  • Ligands PR 10 R n R 12 are used as phosphine ligands in the process according to the invention, the radicals R 10 , R 11 and R 12 being hydrogen, linear and branched C 1 -C 8 -alkyl, vinyl, aryl or heteroaryl from the series consisting of pyridine , Pyrimidine, Pyrrole.
  • Ci-Cs-alkyl or Cö-Cio-aryl linear and branched Ci-Cs-alkyloxy or Ci-Cio-aryloxy, halogenated linear and branched Ci -Cs-alkyl or halogenated Ce-Cio-aryl, linear and branched Ci-Cs-alkyl or Ce-Cio-aryloxycarbonyl, linear and branched Ci-Cs-alkylamino, linear and branched Ci-Cs-dialkylamino.
  • phosphine ligands are trialkylphosphines such as triethylphosphine, tri-n-butyl-phosphine, tri-tert-butyl-phosphine, tricyclohexylphosphine, tris (l-adamantyl) phosphine, n-butyl-di (l-adamantyl) phosphine (cataCXium ® A) , Benzyl di (1-adamantyl) phosphine (cataCXium * ABn), 2- (di-tert-butylphosphino) biphenyl (JohnPhos), 2- (di-C) clohexylphosphino) -2 ' - (N, N-dimethylamino) biphenyl (Dave Phos
  • trialkylphosphines such as triethylphosphine, tri-n-butyl-phosphin
  • phosphine 1 to 20 molar equivalents of phosphine are used, based on the amount of palladium used. Preferably, 1 to 4 molar equivalents are used.
  • a phase transfer catalyst from the series of quaternary ammonium salts, quaternary phosphonium salts or crown ethers is used.
  • phase transfer catalysts from the series of quaternary ammonium salts or quaternary phosphonium salts preferably have the formula (V)
  • R 13 , R 14 , R 15 and R 16 are each independently the same or different and are C 1 -C 28 -alkyl, optionally branched C 1 -C -alkyl. Ce-Cio-aryl, or benzyl.
  • A is N or P.
  • the radical X is halogen, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, phosphate or acetate.
  • X is bromine, chlorine, fluorine, hydrogen sulfate, sulfate, phosphate and acetate.
  • phase transfer catalysts include tetrabutylammonium silicide, chloride, bromide, iodide, acetate, tetraethylammonium iodide, benzyltriethylammonium bromide, dodecyltrimethylammonium bromide and methyltridecylammonium chloride (Aliquat 336).
  • phase transfer catalysts from the series of crown ethers have the formula (VI)
  • n is a number between 4 and 8 and the radicals
  • R 17 to R 20 independently of one another are hydrogen, C 1 -C 4 -alkyl or phenyl, where two adjacent radicals R may also together in each case form a cyclic radical such as cyclopentyl, cyclohexyl or 1, 2-phenylene.
  • Typical crown ethers of the formula (VI) which may be mentioned by way of example are:
  • phase transfer catalyst in the process of the invention is between 1 and 100 mole percent, based on aryl halide of the formula (I). Preferably, amounts between 25 and 75 mole percent.
  • the inventive method is carried out at temperatures of 0 ° C to 220 ° C, preferably at 50 ° C to 200 ° C and particularly preferably at 100 ° C to 180 ° C.
  • the process according to the invention can be carried out in the presence of a solvent or using an excess of malonic ester of the formula (II). Preference is given to working in the presence of an excess of malonic ester of the formula (II).
  • the excess of malonic ester of the formula (II) is between 2 and 20 molar equivalents, based on the aryl halide of the formula (I). Preference is given to working with excesses of 3 to 10 molar equivalents.
  • the inventive method is usually carried out at atmospheric pressure, but can also be carried out at reduced or elevated pressure.
  • reaction mixture is preferably worked up by distillation and / or by extraction or chromatographic methods after completion of the reaction.
  • IR (NaCl): 2980 (vs), 2927 (m), 1735 (vs), 1515 (m), 1446 (m), 1367 (m), 1301 (m), 1253 (m), 1152 (m) , 1032 (m), 809 (m).
  • Example 4 4-Methylthiophenylacetic acid ethyl ester Analogously to Example 1, 199 mg of the title compound were obtained from 203 mg [1 mmol] of 4-bromo-thioanisole (95% of theory).
  • Example 2 Analogously to Example 1, the title compound was obtained from 128 mg [1 mmol] of 4-chlorotoluene in a yield of 85% of theory.
  • Example 2 Analogously to Example 1, the title compound was obtained from 218 mg [1 mmol] of 4-iodotoluene in a yield of 91% of theory.
  • Example 8 Ethyl 2-naphthylacetate In analogy to Example 1, 200 mg of the title compound were obtained from 207 mg [1 mmol] of 2-bromonaphthalene (93% of theory).
  • Example 16 Ethyl 4-trifluoromethylphenylacetate Analogously to Example 15, 179 mg [1 mmol] of 4-chloro-benzotrifluoride gave 170 mg of the title compound (73% of theory).
  • Example 20 4-Ethoxycarbonylphenyl-acetic acid ethyl ester Analogously to Example 11, 185 mg [1 mmol] of 4-chloro-benzoic acid ethyl ester gave 208 mg of the title compound (88% of theory).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Aryl- und Heteroarylessigsäuren und ihrer Derivate durch Umsetzung von Aryl- oder Heteroarylhalogeniden mit Malonsäurediestern in Gegenwart eines Palladiumkatalysators, einer oder mehrerer Basen und gegebenenfalls eines Phasentransferkatalysators. Dieses Verfahren ermöglicht die Darstellung einer Vielzahl funktionalisierter Aryl- und Heteroarylessigsäuren und ihrer Derivate, insbesonders auch die Herstellung von Arylessigsäuren mit sterisch anspruchsvollen Substituenten.

Description

Verfahren zur Herstellung von Aryl- und Heteroarylessigsäure-Derivaten
Die Erfindung betrifft ein Verfahren zur Herstellung von Aryl- und Heteroarylessigsäuren und ihrer Derivate durch Umsetzung von Aryl- oder Heteroarylhalogeniden mit Malonsäurediestern in Gegenwart eines Palladiumkatalysators, einer oder mehrerer Basen und gegebenenfalls eines Phasentransferkatalysators. Dieses Verfahren ermöglicht die Darstellung einer Vielzahl funktionalisierter Aryl- und Heteroarylessigsäuren und ihrer Derivate, insbesonders auch die Herstellung von Arylessigsäuren mit sterisch anspruchsvollen Substituenten.
Üblicherweise werden Phenylessigsäure-Derivate in mehrstufigen Synthesen hergestellt, die meist eine geringe Gruppentoleranz aufweisen. Die Herstellung kann beispielsweise ausgehend von Acetophenonen durch eine Willgerodt- Kindler-Reaktion erfolgen (siehe beispielsweise H.E. Zaugg et al , J. Amer. Chem. Soc. 70 (1948) 3224-8). Bei dieser Methode fallen jedoch große Mengen schwefelhaltiger Abfälle an. Außerdem können stark geruchsbelästigende leichtflüchtige Schwefelverbindungen auftreten.
Eine weitere Methode zur Herstellung von Arylessigsäuren geht von Benzylbromiden oder -Chloriden aus. Man stellt daraus z.B. mit Natriumcyanid die entsprechenden Nitrile her, welche anschließend verseift werden. Die benötigten Benzylbromide oder -chloride können beispielsweise durch Brom- oder Chlor- methylierung der entsprechenden Aromaten erhalten werden. Hierbei ist allerdings nachteilig, dass das Auftreten stark kanzerogener Verbindungen wie Bis(chlormethyl)ether oder Bis(brommethyl)ether nicht ausgeschlossen werden kann, so dass technisch ein hoher Sicherheitsaufwand betrieben werden muss. Außerdem führt die Halogenmethylierung von substituierten Aromaten in vielen Fällen zu Isomerenge- mischen.
Die Carbonylierung von Benzylhalogeniden in Gegenwart von Alkoholen liefert ebenfalls Phenyl- essigsäureester. Die bereits genannte begrenzte Verfügbarkeit von Benzylhalogeniden und die Notwendigkeit, toxisches CO-Gas einzusetzen, gegebenenfalls auch unter erhöhtem Dmck, sind weitere Nachteile dieses Verfahrens. Es ist auch bereits bekannt geworden, α-Chlor-acetophenone zu ketalisieren und die Ketale dann einer Um- lagerungsreaktion zu unterwerfen C.Giordano et al. Angew. Chem. 96 (1984) 413-9). Die a-Chlor- acetophenone erhält man entweder durch Chlorierung von Acetophenonen oder direkt durch eine Friedel- Crafts-Acylierung des betreffenden Aromaten mit Chloracetylchlorid. Damit ergibt sich wieder der Nachteil, dass die Friedel-Crafts-Acylierungen an substituierten Aromaten häufig unselektiv verlaufen. Eine weitere bekannte Methode zur Herstellung von Phenylessigsäuren besteht darin, ein entsprechendes Anilin im ersten Schritt zu diazotieren, die erhaltene Diazoniumverbindung im zweiten Schritt mit Vinyliden- chlorid umzusetzen, und die so erhaltene Trichlor- oder Brom-dichlorethylverbindung dann im dritten Schritt mit Wasser oder Alkoholen zur Arylessigsäure bzw. deren Estern umzusetzen (siehe beispielsweise V.M.Naidan und A. V.Dombrovsläi. Zhurnal Obshchei Khimii 34 (1984)1469-73; EP-A-835243). Diese Reaktion liefert in der Regel jedoch nur mit solchen Anilinen gute Ausbeuten, die elektronenziehende Reste am Aromaten tragen und in denen die Aminogruppe nicht sterisch blockiert ist.
Weiterhin bekannt ist die Umsetzung von Brombenzolen mit Chloressigsäurederivaten in Gegenwart von stöchiometrischen Mengen Silber oder Kupfer bei 180 - 200 °C. Nachteilig an diesen Verfahren ist die hohe Temperatur, die eine Anwendung bei temperaturempfindlichen Verbindungen ausschließt, die geringe Ausbeute und die Anwendung stöchiometrischer Mengen teurer und schwer wieder aufzuarbeitender Metalle.
Die Umsetzung von Aryl-Grignardverbindungen mit α-Halogenessigsäure-Derivaten führt ebenfalls zu Phenylessigsäurederivaten. Nachteilig ist allerdings die durch die Verwendimg von schwer zu handhabenden, hochreaktiven Grignardverbindungen äußerst eingeschränkte Toleranz funktioneller Gruppen. Alternativ zu den genannten Verfahren wurden auch Kreuzkupplungen von Arylhalogeniden mit Reformatsky -Reagenzien, Zinn-, Kupfer- und anderen Enolaten oder Ketenacetalen beschrieben (siehe z. B. J. Am. Chem. Soc. 1959, 81, 1627-1630; J. Orgcmomet. Chem. 1979, 177, 273-281; Synth. Comm. 1987, 17, 1389-1402; Bull. Chem. Soc. Jpn. 1985, 58, 3383-3384; J. Org. Chem. 1993, 58, 7606-7607; J. Chem. Soc. Perkin 1 1993, 2433-2440; J. Am. Chem. Soc. 1975, 97, 2507-2517; J. Am. Chem. Soc. 1977, 99, 4833-4835; J. Am. Chem. Soc. 1999, 121, 1473-78; J. Org. Chem. 1991, 56, 261-263, Heterocycles 1993, 36, 2509-2512, Tetrahedron Lett. 1998, 39, 8807-8810). Diese Verfahren sind allerdings in ihrer Anwendbarkeit limitiert. So sind Reformatzky-Reagenzien und Ketenacetale aufwendig in der Darstellung und Handhabung. Die Verwendimg von Zinnverbindungen ist aus toxikologischen Gründen nachteilig und der Einsatz von stöchiometrischen Mengen Kupfer verursacht erhebliche Kosten bei der Entsorgung. Die Verwendung von Enolaten ist in der Regel nur möglich, wenn keine weiteren enolisierbaren Gruppen im Molekül vorhanden sind. Beispielsweise sind Ketone daher als Substrate für derartige Verfahren ausgeschlossen. Einige elektrochemische Prozesse sind ebenfalls bekannt (Synthesis 1990, 369-381 ; J. Org. Chem. 1996, 61, 1748-1755), allerdings sind diese Verfahren aufgrund der aufwendigen Reaktionsführung und der geringen Raum-Zeit- Ausbeuten nachteilig. Ebenfalls bereits bekannt ist eine Methode zur Herstellung von Phenylessigsäure-Derivaten durch eine Palladium-katalysierte Kupplimgsreaktion zwischen Arylboronsäuren und Ethylbromacetat (Chem.Commun. 2001, 660-70; DE-A- 10111262). Dieses Verfahren erfordert jedoch die Herstellung der Boronsäuren, - J> - üblicherweise aus den entsprechenden Aryl- oder Heteroarylhalogeniden. Außerdem konnte dieses Verfahren bisher nicht zur Herstellung von sterisch anspruchsvollen, beispielsweise 2,6-disubstituierten Phenylessig- säure-Derivaten verwendet werden. In Chem. Commun. 2001, 660-70 wird zwar angegeben, dass auch sterisch gehinderte Arylboronsäuren unter den dort beschriebenen Bedingungen gut umgesetzt werden können. Die Beispiele enthalten jedoch nur die 2-Tolylboronsäure als sterisch gehindertes Substrat. Stärker sterisch eingeschränkte Arylboronsäuren wie z.B. 2,6-Dialkylpheny -boronsäuren werden nicht beschrieben.
Eine weitere bekannte Methode besteht in der Palladium- oder Kupfer-katalysierten Kupplungsreaktion von Arylhalogeniden mit Malonestem oder ß-Ketoestem. gefolgt von einer thermisch induzierten Dealkoxy- carbonylierung oder retro-Claisenkondensation. Dabei wurden Aryliodide und aktivierte Arylbromide mit Malonsäurediethylester in Gegenwart eines Palladium-Katalysators und 10 Äquivalenten sehr teuren Caesiumcarbonats umgesetzt, wobei Reaktionszeiten von bis zu 76 Stunden notwendig waren (Chem. Commun. 2001, 2704-2705). Höhere Ausbeuten bei kürzeren Reaktionszeiten sind möglich, erfordern allerdings den Einsatz sehr spezieller, nur aufwendig herzustellender N-heterocyclischen Carbenliganden; zudem wird auch hier das teure Cesiumcarbonat verwendet (Tetrahedron Lett. 2004, 45, 5823-5825). Die Palladium- oder Kupfer-katalysierte Arylierung von Acetessigestern, gefolgt von einer in situ Deacetylierung, hat letztendlich einen nur engen Anwendungsbereich; außerdem ist die Deacetylierung häufig nicht vollständig, woraus unbefriedigende Ausbeuten an Arylessigsäureestern resultieren (Tetrahedron Lett. 2004, 45, 4261 -4264; Tetrahedron Lett. 2007, 48, 3289-3293).
Alle bisher bekannt gewordenen Methoden zur Herstellung von Phenylessigsäure-Derivaten, insbesondere auch sterisch anspruchsvoll substituierten, weisen demnach z.T. erhebliche Mängel und Nachteile auf, die ihre Anwendung erschweren. Da allgemein Phenylessigsäuren, und unter ihnen gerade auch sterisch anspruchsvoll substituierte, wichtige Vorprodukte beispielsweise für Wirkstoffe im Pflanzenschutz sind, besteht Bedarf an einer technisch einfachen und hocheffizienten Methode zur Herstellung solcher Verbindungen.
Überraschenderweise wurde nun ein Verfahren zur Herstellung von Aryl- und Heteroarylessigsäuren und ihrer Derivate aus Aryl- und Heteroarylhalogeniden und Malonestem gefunden, welches dadurch gekennzeichnet ist, dass die Umsetzung in Gegenwart von einem Palladiumkatalysator, einem Phosphin. und
A) einer anorganischen Base und einem Phasentransferkatalysator oder B) einer Mischung anorganischer Basen durchgeführt wird, wobei sich nach der Kupplungsreaktion in situ eine Dealkoxycarbonylierung anschließt.
Die Entdeckimg im Verfahrensscliritt A), dass der Zusatz eines Phasentransferkatalysators die Selektivität der Umsetzung positiv beeinflusst, war nicht vorhersehbar und macht die Entdeckung dieses Verfahrens besonders überraschend. Durch den Einsatz des Phasentransferkatalysators ist es erstmals möglich, Selektivität und Ausbeute signifikant zu Gimsten des gewünschten Produktes zu verschieben. Dies macht das Verfahren deutlich wirtschaftlicher als die nach dem Stand der Technik bekannten Verfahren.
Die Entdeckung im Verfahrensschritt B), dass der Einsatz einer Mischung anorganischer Basen die Umsetzung positiv beeinflusst, war nicht vorhersehbar und macht die Entdeckung dieses Verfahrens besonders überraschend. Durch den Einsatz einer Mischung anorganischer Basen ist es erstmals möglich, die gewünschten Produkte in hoher Selektivität und Ausbeute zu erhalten. Dies macht das Verfahren deutlich wirtschaftlicher als die nach dem Stand der Technik bekannten Verfahren.
Das erfindungsgemäße Verfahren zur Herstellung von Aryl- und Heteroarylcarbonylverbindungen ist dadurch gekennzeichnet, dass man Aryl- oder Heteroarylhalogenide der Formel (I)
Ar— Hai (I) in welcher
Hai für Chlor, Brom Iod steht und
Ar für die Gruppe
Figure imgf000005_0001
steht, wobei
R1, R2, R3, R+ und R5 unabhängig voneinander gleich oder verschieden für Wasserstoff, Amino. Cyano, Nitro, Halogen, für gegebenenfalls durch Halogen substituiertes Ci-Ce-Alkyl. Ci-Ce-Thioalkyl. Thiophenyl, Ci-Ce-Alkoxy, C5-Cio-Aryloxy, Phenyl, -CO-C6-Cio-Aryl, -CO-Ci-C3-Alkyl, -COO-Ci-C5-Alkyl oder -COO-Ce-Cio-Aryl stehen, der Rest Ar kann darüber hinaus auch für einen heteroaromatischen Rest wie 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-Furyl-, 3-Furyl, 2-Thienyl, oder 3-Thienyl stehen oder der Rest Ar kann auch für 1 - oder 2-Naphthyl stehen, mit Malonsäureestern der Formel (II)
Figure imgf000006_0001
in welcher
R6 und R7 unabhänging voneinander für gegebenenfalls substituiertes Ci-Cs-Alkyl, Phenyl, Aryl, oder für NR8R9 steht, wobei R8 und R9 unabhängig voneinander gleich oder verschieden für Ci-C4-Alkyl oder für gegebenenfalls durch Ci-C3-Alkyl, welches durch Fluor oder Chlor substituiert sein kann, durch Nitro, Cyano oder Di-Ci-C3-Alkylamino substituiertes Phenyl stehen, oder gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gesättigten oder ungesättigten, substituierten oder unsubstituierten Cyclus stehen, in Gegenwart eines Palladiumkatalysators, eines Phosphin-Liganden und
A) einer anorganischen Base und eines Phasentransferkatalysators oder
B) einer Mischung anorganischer Basen gegebenenfalls unter Verwendung eines organischen Lösungsmittels zu α-AryImethyl-carbonylverbindungen der Formel (III)
Figure imgf000007_0001
in welcher Ar und die Reste R6 bzw. R7 die oben angegebenen Bedeutungen haben umsetzt.
Dabei werden intermediär 2-Arylmalonsäurediester der Formel (IV) gebildet, aber nicht isoliert. Diese Umsetzung wird demnach durch die folgende Reaktionsgleichung veranschaulicht:
Figure imgf000007_0002
(I) (II) (IV) (III)
PTC=Phasentransferkatalysator
Bevorzugte Substituenten bzw. Bereiche der in der oben und nachstehend erwähnten Fonneln aufgeführten Reste werden im Folgenden erläutert:
Ar steht bevorzugt für 1- oder 2-Naphthyl, 3-Thienyl oder für die Gruppe
Figure imgf000007_0003
wobei
R1, R2, R3, R4 und R5 stehen bevorzugt unabhängig voneinander gleich oder verschieden für Wasserstoff, Amino, Cyano, Nitro, Fluor, für gegebenenfalls durch Fluor substituiertes Ci-C4-Alkyl, C1-C4- Thioalkyl, Thiophenyl, Ci-C4-Alkoxy, C6-Cio-Aryloxy, Phenyl, -CO-Ce-Cg-Aryl -CO-Ci-C3-Alkyl, -COO-Ci-C4-Alkyl oder -COO-C6-C8-Aryl stehen,
Hai steht bevorzugt für Chlor, Brom oder Iod, R5 und R7 stehen bevorzugt unabhängig voneinander gleich oder verschieden für Ci-C4-Alkyl. Ar steht besonders bevorzugt für 1 -oder 2-Naphthyl, 3-Thienyl oder für die Gruppe
Figure imgf000008_0001
wobei R1. R2, R3, R4 und R5 stehen besonders bevorzugt unabhängig voneinander gleich oder verschieden für
Wasserstoff, Amino, Cyano, Nitro, Fluor, Methyl, Methylthio, Ethyl, i-Propyl, n-Propyl, CF3, C2F5, C3F7, Methoxy, Ethoxy, Phenyl, -CO-Phenyl, -CO-Methyl, -CO-Ethyl, -COO-Methyl, -COO- Ethyl oder -COO -Phenyl stehen,
Hai steht besonders bevorzugt für Chlor. Brom oder Iod, R6 und R7 stehen besonders bevorzugt unabhängig voneinander für Methyl oder Ethyl, hervorgehoben für Ethyl.
Ar steht ganz besonders bevorzugt für 1-Naphthyl, 2-Naphthyl, Phenyl, 4-N,N-Dimethylaminophenyl.
4-Methylthiophenyl, 4-Methoxyphenyl. 4-Ethoxyphenyl. 3-Methoxyphenyl, 2-Methoxyphenyl, 2- Methylphenyl, 3-Methylphenyl, 4-Methylphenyl, 4-Fluo henyl, 3-Fluo henyl, 2-ΡΚΐ0φ1ιεην1, 2- Ethylphenyl, 4-Ethoxycarbonylphenyl, 3-Thienyl.
Ar steht auch ganz besonders bevorzugt für 2,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 4- Cyanophenyl. 4-Cyano-2-methylphenyl, 3-Cyanophenyl. 4-Ethoxycarbom lphenyl, 4-Trifluor- methylphenyl, 4-Acetylphenyl, 4-Nitrophenyl, 4-Benzoylphenyl.
Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuter- ungen können untereinander, also auch zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Zwischenprodukte entsprechend.
Die Arylhalogenide der Formel (I) sind prinzipiell bekannt oder können nach bekannten Methoden hergestellt werden. Die Verbindungen der Formel (II) sind prinzipiell bekannt oder können nach bekannten Methoden hergestellt werden.
Als Basen werden im erfindungsgemäßen Verfahrensschritt A) anorganische Basen wie Alkali- oder Erdalkalihydroxide, -carbonate, -bicarbonate, -oxide, -phosphate, -hydrogenphosphate, -fluoride oder -hydrogenfluoride eingesetzt. Vorzugsweise werden Alkali- und Erdalkaliphosphate, -carbonate oder -fluoride verwendet und besonders bevorzugt werden Natrium- und Kaliumphosphat verwendet. Hervorgehoben ist Kaliumphosphat.
Als Basen werden im erfindungsgemäßen Verfahrensschritt B) Gemische anorganischer Basen wie Alkalioder Erdalkalihydroxide, -carbonate, -bicarbonate, -oxide, -phosphate, -hydrogenphosphate, -fluoride oder - hydrogenfluoride eingesetzt, wie z.Bsp. Lithium-, Natrium-, Kalium-, Caesium-, Magnesium-, Rubidium-, Calcium- oder Bariumhydroxide, -oxide, -phosphate, -hydrogenphosphate, -fluoride. -hydrogenfluoride sowie Lithium-, Natrium-, Kalium-, Magnesium-, Rubidium-, Calcium- oder Bariumcarbonate, -bicarbonate. Vorzugsweise werden Gemische von Alkali- und Erdalkaliphosphaten, -carbonaten oder -bicarbonaten verwendet, und besonders bevorzugt werden Gemische von Natrium- und Kaliumcarbonaten und - bicarbonaten verwendet. Hervorgehoben ist das Gemisch aus Kaliumcarbonat und Kaliumbicarbonat. Die Gemische der anorganischen Basen können unterschiedliche Molverhältnisse der einzelnen Basen enthalten. Im Allgemeinen setzt man Molverhältnisse zwischen 0, 1 und 10 ein. Bevorzugt arbeitet man mit Molverhältnissen von 0,5 bis 5.
Im erfindungsgemäßen Verfahren werden 1 bis 10 Äquivalente der jeweiligen Base eingesetzt. Vorzugsweise werden 1,2-5 Äquivalente der Base eingesetzt.
Als Palladium-Katalysatoren werden im erfindungsgemäßen Verfahren Palladium(II)-Salze wie etwa Palladiumchlorid, -bromid. -iodid, -acetat, -acetylacetonat, die wahlweise durch weitere Liganden wie z. B. Alkylnitrile stabilisiert sein können, bzw. Pd(0)-Spezies wie Palladium auf Aktivkohle, Pd(PPli3)4, Bis(dibenzylidenaceton)palladium oder Tris(dibenzylidenaceton)dipalladium eingesetzt. Bevorzugt sind Bis(dibenzylidenaceton)palladium, Tris(dibenzylidenaceton)dipalladium, Palladiumchlorid, Palladiumbromid und Palladiumacetat; hervorgehoben sind Bis(dibenzylidenaceton)palladium und Palladiumacetat.
Die Menge an im erfindungsgemäßen Verfahren eingesetzten Palladium-Katalysator beträgt 0,001 bis 5 Molprozent, bezogen auf eingesetztes Arylhalogenid. Bevorzugt werden 0,005 bis 3 Molprozent eingesetzt; besonders bevorzugt sind 0.01 bis 1 Molprozent. Als Phosphinliganden werden im erfindungsgemäßen Verfahren Liganden PR10RnR12 eingesetzt, wobei die Reste R10, R11 und R12 für Wasserstoff, lineares und verzweigtes Ci-Cs-Alkyl, Vinyl-, Aryl-, oder Heteroaryl aus der Reihe Pyridin. Pyrimidin, Pyrrol. Thiophen oder Furan stehen, die ihrerseits mit weiteren Sub- stituenten aus der Reihe lineares und verzweigtes Ci-Cs-Alkyl oder Cö-Cio-Aryl, lineares und verzweigtes Ci- Cs-Alkyloxy oder Ci-Cio-Aryloxy, halogeniertes lineares und verzweigtes Ci-Cs-Alkyl oder halogeniertes Ce- Cio-Aryl, lineares und verzweigtes Ci-Cs-Alkyl oder Ce-Cio-Aryloxycarbonyl, lineares und verzweigtes Ci- Cs-Alkylamino, lineares und verzweigtes Ci-Cs-Dialkylamino. Ci-Cs-Arylamino, Ci-Cs-Diarylamino, Formyl, Hydroxy. Carboxyl, Cyano, und Halogene wie F, Cl, Br und I substituiert sein können, in situ erzeugt. Bevorzugte Phosphinliganden sind Trialkylphosphine wie Triethylphosphin, Tri-n-butyl-phosphin, Tri-tert- butyl-phosphin, Tricyclohexylphosphin, Tris(l-adamantyl)phosphin, n-Butyl-di(l-adamantyl)-phosphin (cataCXium® A), Benzyl-di(l-adamantyl)-phosphin (cataCXium* ABn), 2-(Di-tert-butylphosphino)biphenyl (JohnPhos), 2-(Di-c} clohexylphosphino)-2'-(N.N-dimethylamino)biphenyl (DavePhos) und 2-(Di-cyclo- hexylphosphino)-2',6'-dimethoxy-l, -biphenyl (SPhos). Besonders bevorzugt ist Tri-tert.butyl-phosphin. Tri-tert.butyl-phosphin kann als freies Phosphin oder in Form des HBF4-Adduktes eingesetzt werden.
Alternativ dazu können auch definierte Palladiumkomplexe eingesetzt werden, die aus den oben genannten Liganden in einem oder mehreren Verfahrensschritten zuvor erzeugt wurden.
Beim erfindungsgemäßen Verfahren werden 1 - 20 Moläquivalente Phosphin bezogen auf die eingesetzte Menge Palladium eingesetzt. Vorzugsweise werden 1 - 4 Moläquivalente eingesetzt. Im erfindungsgemäßen Verfahrensschritt A) wird ein Phasentransferkatalysator aus der Reihe der quaternären Ammoniumsalze, der quaternären Phosphoniumsalze oder der Kronenether eingesetzt.
Die Phasentransferkatalysatoren aus der Reihe der quatemären Ammoniumsalze oder der quaternären Phosphoniumsalze besitzen vorzugsweise die Formel (V)
Figure imgf000010_0001
R15— A-— R 3 w
| ' (V)
Figure imgf000010_0002
Die Reste R13, R14, R15 und R16 stehen unabhängig voneinander gleich oder verschieden für Ci-C28-Alkyl, gegebenenfalls verzweigtes Ci-C28-Alkyl. Ce-Cio-Aryl, oder Benzyl. A steht für N oder P.
Der Rest X steht für Halogen, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Phosphat oder Acetat.
Bevorzugt steht X für Brom, Chlor, Fluor, Hydrogensulfat, Sulfat, Phosphat und Acetat. Als solche Phasentransferkatalysatoren seien beispielhaft Tetrabutylammoniumiluorid, -chlorid, -bromid, -iodid, -acetat, Tetraethylammoniumiodid, Benzyltriethylaimnoniumbromid, Dodecyltrimethyl- ammoniumbromid und Methyl-tridecylammoniumchlorid (Aliquat 336) genannt.
Die Phasentransferkatalysatoren aus der Reihe der Kronenether besitzen die Formel (VI)
Figure imgf000011_0001
in der n für eine Zahl zwischen 4 und 8 steht und die Reste
R17 bis R20 unabhängig voneinander für Wasserstoff, Ci-C4-Alkyl oder Phenyl stehen, wobei zwei benachbarte Reste R auch jeweils gemeinsam einen cyclischen Rest wie Cyclopentyl, Cyclohexyl oder 1 ,2-Phenylen bilden können.
Als typische Kronenether der Formel (VI) seien beispielhaft genannt:
Benzo-15-krone-5, 15-Krone-5, 18-Krone-6, Dibenzo-18-krone-6, Dibenzo-24-krone-8 und Dicyclohexano- 18-krone-6.
Bevorzugt verwendet man 18-Krone-6, Dibenzo-18-krone-6 und Dibenzo-24-krone-8. Besonders bevorzugt ist 18-Krone-6. Die Menge an Phasentransferkatalysator im erfindungsgemäßen Verfahren liegt zwischen 1 und 100 Molprozent, bezogen auf Arylhalogenid der Formel (I). Bevorzugt sind Mengen zwischen 25 und 75 Molprozent.
Das erfindungsgemäße Verfahren wird bei Temperaturen von 0 °C bis 220 °C, vorzugsweise bei 50 °C bis 200 °C und besonders bevorzugt bei 100°C bis 180 °C durchgeführt.
Das erfindungsgemäße Verfahren kann in Gegenwart eines Lösungsmittels oder unter Verwendung eines Überschusses an Malonester der Formel (II) durchgeführt werden. Vorzugsweise wird in Gegenwart eines Überschusses an Malonester der Formel (II) gearbeitet.
Der Überschuß an Malonester der Formel (II) liegt zwischen 2 und 20 Moläquivalenten, bezogen auf das Arylhalogenid der Formel (I). Bevorzugt arbeitet man mit Überschüssen von 3 bis 10 Moläquivalenten.
Das erfindungsgemäße Verfahren wird üblicherweise bei Normaldruck durchgeführt, kann aber auch bei verringertem oder erhöhtem Druck durchgeführt werden.
Zur Isolierung der erfindungsgemäß hergestellten Aryl- und Heteroarylessigsäuren und ihrer Derivate wird das Reaktionsgemisch nach Beendigung der Reaktion vorzugsweise destillativ und/oder durch Extraktion oder chromatographische Methoden aufgearbeitet.
Das erfindungsgemäße Verfahren wird durch die folgenden Beispiele veranschaulicht, ohne auf diese eingeschränkt zu sein.
Herstellungsbeispiele
Beispiel 1 : 4-Methylphenylessigsäureethylester
In einem trockenem Schlenk-Gefäß wurden 171 mg [1 mmol] 4-Bromtoluol, 1056 mg [6,6 mmol] Malonsäurediethylester, 2,88 mg [0,005 mmol] Pd(dba)2, 3,19 mg [0,011 mmol] P(tert-Bu)3 x HBF4, 594 mg [2.8 mmol] getrocknetes K3PO4 und 132 mg [0.5 mmol] 18-Krone-6 vorgelegt. Das Reaktionsgefäß wurde dreimal evakuiert und mit Stickstoff befüllt. Dann wurde bis zum vollständigen Umsatz (8 bis 12 Stunden) bei 160°C gerührt. Nach Abkühlen auf Raumtemperatur wurde das Reaktionsgemisch mit Essigester verdünnt. Die resultierende Lösung wurde nacheinander mit je 20 ml Wasser, gesättigter wssg. NaHCC -Lsg. und gesättigter wssg. NaCl-Lösung gewaschen, über MgSC getrocknet, filtriert und im Vakuum eingeengt. Chromatographische Reinigung über Kieselgel (Hexan/ Essigester) lieferte 4-Methylphenylessigsäureethyl- ester in einer Ausbeute von 88% der Theorie.
Ή-NMR (400 MHz, CDC ): δ = 7.19 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 4.16 (q, J = 8.0 Hz, 2H), 3.58 (s, 2H), 2.34 (s, 3H), 1.26 (t, J = 8.0 Hz, 3H). 13C-NMR (101 MHz, CDCI3): δ = 171.8, 136.6, 131.1, 129.2, 129.1, 60.8, 41.0, 21.0, 14.2. MS (70 eV), m/z (%): 178 (34) [M+], 106 (10), 105 (100). IR (NaCl): = 2980 (vs), 2927 (m), 1735 (vs), 1515 (m), 1446 (m), 1367 (m), 1301 (m), 1253 (m), 1152 (m), 1032 (m), 809 (m).
Beispiel 2: 2-Ethylphenylessigsäureethylester
Analog zu Beispiel 1 wurden aus 185 mg [1 mmol] 2-Ethyl-brombenzol 170 mg der Titelverbindung erhalten (88% der Theorie). Ή-NMR (400 MHz, CDCI3): δ = 7.27-7.16 (m, 4H), 7.56 (t, J = 8.0 Hz, 1H), 7.46 (t, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 4.17 (q, J = 8.0 Hz, 2H), 3.68 (s, 2H), 2.70 (q, J = 8.0 Hz, 2H), 1.29-1.23 (m, 6H). 13C- NMR (101 MHz, CDCI3): δ = 171.6, 142.5, 132.0, 130.3, 128.4. 127.4, 125.9, 60.7, 38.5, 25.7, 14.8, 14.1. MS (70 eV), m/z (%): 193 (4), 192 (24) [M+]. 146 (29), 119 (100). 91 (54), 77 (21). IR (NaCl): v = 2980 (vs), 2935 (m), 1734 (vs), 1615 (m), 1583 (w), 1513 (s), 1246 (s), 1032 (m), 821 (m). Beispiel 3: 3-Methoxyphenylessigsäureethylester
Analog zu Beispiel 1 wurden aus 187 mg [1 mmol] 3-Bromanisol 180 mg der Titelverbindung erhalten (93% der Theorie).
1H-NMR (400 MHz, CDCI3): δ = 7.25 (t, J = 8.0 Hz, 1H), 6.91-6.81 (m, 3H), 4.17 (q, J = 8.0 Hz, 2H), 3,81 (s, 3H), 3.60 (s, 2H), 1.27 (t, J = 8.0 Hz, 3H). "C-NMR (101 MHz, CDCI3): δ = 171.4, 159.6, 135.5, 129.4, 121.5, 1 14.8, 112.5, 60.8, 55.1, 41.4, 14.1. MS (70 eV), m/z (%): 195 (7), 194 (50) [M+], 121 (100), 91 (37), 78 (17), 77 (26). IR (NaCl): ? = 2979 (vs), 1731 (vs), 1601 (s), 1586 (m), 1492 (m), 1368 (m), 1262 (m), 1031 (m), 870 (m), 773 (m).
Beispiel 4: 4-Methylthiophenylessigsäureethylester Analog zu Beispiel 1 wurden aus 203 mg [1 mmol] 4-Brom-thioanisol 199 mg der Titelverbindung erhalten (95% der Theorie).
Ή-NMR (400 MHz, CDC13): δ = 7.25-7.18 (m, 4H), 4.14 (q, J = 8.0 Hz, 2H), 3.56 (s, 2H), 2.46 (s, 3H), 1.24 (t, J = 8.0 Hz, 3H). 13C-NMR (101 MHz, CDC13): δ = 171.5, 137.1, 131.0, 129.7, 126.9, 60.7, 40.8, 16.0, 14.2. MS (70 eV), m/z (%): 211 (16), 210 (100) [M+], 137 (88), 121 (9). IR (KBr): v = 1730 (vs), 1495 (m), 1469 (m), 1366 (m), 1225 (m), 1031 (m), 802 (s).
Beispiel 5: 3-Thienyl-essigsäureethylester
Analog zu Beispiel 1 wurden aus 163 mg [1 mmol] 3-Brom-thiophen 160 mg der Titelverbindung erhalten (94% der Theorie).
Ή-NMR (400 MHz, CDC13): δ = 7.29-7.26 (m, 1H), 7.14 (s, 1H), 7.04 (d, J = 8.0 Hz, 1H), 4.16 (q, J = 8.0 Hz, 2H), 3.64 (s, 2H), 1.26 (t, J = 8.0 Hz, 3H). 13C-NMR (101 MHz, CDCI3): δ = 170.1, 133.7, 128.5, 125.6, 122.7, 60.9. 35.9, 14.1. MS (70 eV), m/z (%): 171 (10), 170 (58) [M+], 98 (22), 97 (100). R (NaCl): v = 2979 (s), 2937 (m), 1733 (vs), 1464 (m), 1369 (m), 1259 (m), 1206 (m). 1 155 (m), 1028 (m).
Beispiel 6: 4-Methylphenylessigsäureethylester
Analog zu Beispiel 1 wurde aus 128 mg [1 mmol] 4-Chlortoluol die Titelverbindung in einer Ausbeute von 85% der Theorie erhalten.
Beispiel 7: 4-Methylphenylessigsäureethylester
Analog zu Beispiel 1 wurde aus 218 mg [1 mmol] 4-Iodtoluol die Titelverbindung in einer Ausbeute von 91% der Theorie erhalten.
Beispiel 8: 2-Naphthylessigsäureethylester Analog zu Beispiel 1 wurden aus 207 mg [1 mmol] 2-Brom-naphthalin 200 mg der Titelverbindung erhalten (93% der Theorie). Ή-NMR (400 MHz, CDC13): δ = 7.87-7.79 (m, 3H), 7.75 (s, 1H), 7.51-7.42 (m, 3H), 4.18 (q, J = 8.0 Hz, 2H), 3.79 (s, 2H), 1.27 (t, J = 8.0 Hz, 3H). 13C-NMR (101 MHz, CDC13): δ = 171.5, 133.4, 132.4, 131.6, 128.1, 127.9, 127.61, 127.58, 127.3, 126.0, 125.7, 60.9, 41.6, 14.2. MS (70 eV), m/z (%): 215 (10), 214 (57) [M+], 141 (100), 115 (31). IR (NaCl): = 2980 (vs). 2936 (m), 1734 (vs), 1601 (m), 1508 (m), 1368 (m), 1258 (m), 1 159 (m). 1031 (s), 859 (m). 818 (m), 802 (m). 759 (m), 742 (m).
Beispiel 9: 4-Methylphenylessigsäureethylester
In einem trockenem Schlenk-Gefäß wurden 171 mg [1 mmol] 4-Bromtoluol, 1056 mg [6,6 mmol] Malonsäurediethylester, 1,12 mg [0.005 mmol] Pd(OAc)2. 3,19 mg [0,011 mmol] P(tert-Bu)3 x HBF4, 594 mg [2,8 mmol] getrocknetes K3PO4 und 132 mg [0,5 mmol] 18-Krone-6 vorgelegt. Das Reaktionsgefäß wurde dreimal evakuiert und mit Stickstoff befüllt. Dann wurde bis zum vollständigen Umsatz (8 bis 12 Stunden) bei 160°C gerührt. Nach Abkühlen auf Raumtemperatur wurde das Reaktionsgemisch mit Essigester verdünnt. Die resultierende Lösung wurde nacheinander mit je 20 ml Wasser, gesättigter wssg. NaHC03-Lsg. und gesättigter wssg. NaCl-Lösung gewaschen, über MgSC getrocknet, filtriert und im Vakuum eingeengt. Chromatographische Reinigung über Kieselgel (Hexan/ Essigester) lieferte 4-Methylphenylessigsäureethyl- ester in einer Ausbeute von 75% der Theorie.
Beispiel 10: 4-Methylphenylessigsäureethylester
In einem trockenem Schlenk-Gefäß wurden 171 mg [1 mmol] 4-Bromtoluol, 1056 mg [6,6 mmol] Malonsäurediethylester, 2,88 mg [0,005 mmol] Pd(dba)2, 2,22 mg [0,01 1 mmol] P(tert-Bu)3, 594 mg [2,8 mmol] getrocknetes K3PO4 und 132 mg [0,5 mmol] 18-Krone-6 vorgelegt. Das Reaktionsgefäß wurde dreimal evakuiert und mit Stickstoff befüllt. Dann wurde bis zum vollständigen Umsatz (8 bis 12 Stunden) bei 160°C gerülirt. Nach Abkühlen auf Raumtemperatur wurde das Reaktionsgemisch mit Essigester verdünnt. Die resultierende Lösung wurde nacheinander mit je 20 ml Wasser, gesättigter wssg. NaHCC -Lsg. und gesättigter wssg. NaCl-Lösung gewaschen, über MgSC getrocknet, filtriert und im Vakuum eingeengt. Chromatographische Reinigung über Kieselgel (Hexan/ Essigester) lieferte 4-Methylphenylessigsäureethyl- ester in einer Ausbeute von 76% der Theorie.
Beispiel 11 : 2,6-Dimethylphenylessigsäureethylester
In einem trockenem Schlenk-Gefäß wurden 185 mg [1 mmol] 2,6-Dimethylbrombenzol, 1056 mg [6,6 mmol] Malonsäurediethylester, 2.88 mg [0,005 mmol] Pd(dba)2, 3,19 mg [0,011 mmol] P(tert-Bu)3 x HBF4, 207 mg [1 ,5 mmol] getrocknetes K2CO3 und 150 mg [1.5 mmol] KHCO3 vorgelegt. Das Reaktionsgefäß wurde dreimal evakuiert und mit Stickstoff befüllt. Dann wurde bis zum vollständigen Umsatz (8 Stunden) bei 160°C gerührt. Nach Abkühlen auf Raumtemperatur wurde das Reaktionsgemisch mit Essigester verdünnt. Die resultierende Lösung wurde nacheinander mit je 20 ml Wasser, gesättigter wssg. NaHCC -Lsg. und gesättigter wässriger NaCl-Lösung gewaschen, über MgSC getrocknet, filtriert und im Vakuum eingeengt. Chromatographische Reinigung über Kieselgel (Hexan/ Essigester) lieferte 2,6-Dimethylphenyl- essigsäureethylester in einer Ausbeute von 81% der Theorie.
Ή-NMR (400 MHz, CDC13): δ = 7.11-7.03 (m, 3H), 4.16 (q, J = 8.0 Hz, 2H), 3.70 (s, 2H), 2.35 (s, 6H), 1.26 (t, J = 8.0 Hz, 3H). 13C-NMR (101 MHz, CDCI3): δ = 171.2. 137.1, 131.7, 128.0, 126.9, 60.6, 35.4, 20.2, 14.1. MS (70 eV), m/z (%): 193 (9), 192 (37) [M+], 1 19 (100), 1 18 (51), 91 (27). IR (NaCl): = 2979 (vs), 1734 (vs), 1589 (m), 1472 (m), 1445 (m), 1327 (m), 1246 (m), 1 152 (s), 1031 (s), 769 (m). Beispiel 12: 2,4,6-Trimethylphenylessigsäureethylester
Analog zu Beispiel 1 1 wurden aus 199 mg [1 mmol] 2,4,6-Trimethylbrombenzol 172 mg der Titelver- bindimg erhalten (83% der Theorie).
Ή-NMR (400 MHz, CDCI3): δ = 6.89 (s, 2H), 4.17 (q, J = 8.0 Hz, 2H), 3.7 (s, 2H), 2.33 (s, 6H), 2.29 (s, 3H), 1.27 (t, J = 8.0 Hz, 3H). 13C-NMR (101 MHz. CDCI3): δ = 171.4. 136.9, 136.3, 128.8. 128.7, 60.6, 35.0. 20.8, 20.1, 14.1. MS (70 eV), m/z (%): 207 (7), 206 (42) [M+], 133 (100), 132 (39), 1 17 (12), 105 (15), 91 (14). IR (NaCl): ?= 2977 (vs), 2919 (vs), 1734 (vs), 1613 (s), 1580 (m), 1485 (m), 1445 (m), 1157 (m), 1030 (s), 850 (s), 783 (m).
Beispiel 13: 4-Cyano-2-methylphenylessigsäureethylester
Analog zu Beispiel 11 wurden aus 196 mg [1 mmol] 4-Brom-3-methyl-benzonitril 190 mg der Titelver- bindung erhalten (93% der Theorie).
Ή-NMR (400 MHz, CDC ): δ = 7.49-7.41 (m, 2H), 7.28 (d, J = 8.0 Hz, 1H), 4.14 (q, J = 8.0 Hz, 2H), 3.65 (s, 2H), 2.33 (s, 3H), 1.23 (t, J = 8.0 Hz, 3H). 13C-NMR (101 MHz, CDCI3): δ = 170.1, 138.3, 133.6, 130.9, 129.8, 118.8, 111.1, 61.2, 39.2, 19.4, 14.1. MS (70 eV), m/z (%): 204 (9), 203 (29) [M+], 157 (19), 131 (40), 130 (100). 129 (20), 104 (16), 103 (37), 102 (12), 77 (23). IR (NaCl): v = 2981 (vs), 2935 (s), 2229 (vs), 1731 (vs), 1607 (m). 1569 (w), 1499 (m), 1367 (s), 1334 (s), 1256 (s), 1234 (s), 1216 (s). 1 174 (s), 1162 (s). 1030 (s), 886 (w), 838 (w), 808 (w), 788 (w). Anal. Calcd. for G2H13NO2: H 6.45, C 70.92, N 6.89; found: H 6.61, C 79.63, N 6.56. Beispiel 14: 4-Benzoylphenylessigsäureethylester
Analog zu Beispiel 11 wurden aus 261 mg [1 mmol] 4-Brom-benzophenon 255 mg der Titelverbindung erhalten (95% der Theorie).
Ή-NMR (400 MHz, CDCI3): δ = 7.77 (t, J = 8.0 Hz, 4H), 7.56 (t, J = 8.0 Hz, 1H), 7.46 (t, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 4.16 (q, J = 8.0 Hz, 2H), 3.68 (s, 2H), 1.25 (t, J = 8.0 Hz, 3H). 13C-NMR (101 MHz, CDCI3): δ = 196.2, 170.8, 138.8, 137.5, 136.3, 132.3, 130.3, 129.9, 129.2, 128.2, 61.1, 41.3, 14.1. MS (70 eV), m/z (%): 269 (25), 268 (99) [M+], 196 (44). 195 (70), 192 (94), 168 (100), 105 (69), 89 (51). 77 (51). IR (KBr): v = 2981 (vs), 2935 (m), 1734 (vs), 1654 (vs), 1607 (s), 1578 (m), 1446 (m), 1277 (m), 1150 (m), 1029 (m), 701 (s). Beispiel 15: 4-Trifluormethylphenylessigsäureethylester
Analog zu Beispiel 11 wurden aus 223 mg [1 mmol] 4-Brom-benzotrifluorid 190 mg der Titelverbindung erhalten (82% der Theorie).
Ή-NMR (400 MHz, CDCI3): δ = 7.59 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 4.17 (q, J = 8.0 Hz, 2H), 3.68 (s, 2H), 1.27 (t, J = 8.0 Hz, 3H). 19F-NMR (376 MHz, CDCI3): δ = 62.6 (s, Ar-F). 13C-NMR (101 MHz, CDCI3) : δ = 170.7, 138.1, 129.6, 129.4 (q, 2JC-F = 32.3 Hz), 125.4 (q, 3JC-F = 4.0 Hz), 124.1 (q, 1J -F = 272.7 Hz), 61.1, 41.0, 14.0. MS (70 eV), m/z (%): 233 (7), 232 (5) [M+], 213 (14), 204 (18), 160 (23), 159 (100). IR (KBr): v = 2983 (vs), 2938 (s). 1735 (vs), 1619 (m), 1586 (w). 1420 (m), 1326 (vs), 1164 (s), 1124 (s), 1067 (s), 1020 (m), 823 (w).
Beispiel 16: 4-Trifluormethylphenylessigsäureethylester Analog zu Beispiel 15 wurden aus 179 mg [1 mmol] 4-Chlor-benzotrifluorid 170 mg der Titelverbindung erhalten (73% der Theorie).
Beispiel 17: 4-Acetylphenylessigsäureethylester
Analog zu Beispiel 11 wurden aus 199 mg [1 mmol] 4-Brom-acetophenon 150 mg der Titelverbindung erhalten (73% der Theorie). Ή-NMR (400 MHz, CDCI3): δ = 7.90 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 4.14 (q, J = 8.0 Hz, 2H), 3.65 (s, 2H). 2.57 (s, 3H), 1.23 (t, J = 8.0 Hz. 3H). 13C-NMR (101 MHz, CDCI3): δ = 197.6, 170.7. 139.4, 135.9, 129.7, 128.5, 61.1, 41.3, 26.6, 14.1. MS (70 eV), m/z (%): 207 (10) [M+], 191 (100), 163 (21), 133 (20) , 118 (10), 105 (35), 89 (21). IR (KBr): v = 1735 (vs), 1683 (s), 1607 (m), 1472 (m), 1368 (m), 1269 (m), 1110 (m), 1031 (m), 957 (w).
Beispiel 18: 4-Acetylphenylessigsäureethylester
Analog zu Beispiel 17 wurden aus 155 mg [1 mmol] 4-Chlor-acetophenon 180 mg der Titelverbindung erhalten (87% der Theorie).
Beispiel 19: 4-Nitrophenylessigsäureethylester
Analog zu Beispiel 11 wurden aus 158 mg [1 mmol] 4-Chlor-nitrobenzol 147 mg der Titelverbindung erhalten (70% der Theorie).
Ή-NMR (400 MHz, CDC13): δ = 8.18 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 4.16 (q, J = 8.0 Hz, 2H), 3.17 (s, 2H). 1.25 (t, J = 8.0 Hz. 3H). 13C-NMR (101 MHz, CDCI3): δ = 170.1, 147.1, 141.4. 130.2, 123.7, 61.4, 41.0, 14.1. MS (70 eV), m/z (%): 210 (29), 209 (20) [M+], 137 (100). 136 (72), 107 (99), 106 (41), 91
(21) , 89 (94), 78 (90). IR (KBr): = 2984 (m), 1734 (vs), 1604 (m), 1521 (s), 1348 (m), 1223 (m), 1174 (m), 1030 (m), 859 (m), 807 (m), 718 (m).
Beispiel 20: 4-Ethoxycarbonylphenyl-essigsäureethylester Analog zu Beispiel 11 wurden aus 185 mg [1 mmol] 4-Chlor-benzoesäureethylester 208 mg der Titelverbindung erhalten (88% der Theorie).
Ή-NMR (400 MHz, CDCI3): δ = 8.01 (d, J = 8.0 Hz. 2H), 7.36 (d, J = 8.0 Hz, 2H), 4.37 (q, J = 8.0 Hz, 2H), 4.16 (q, J = 8.0 Hz, 2H), 3.67 (s, 2H). 1.39 (t, J = 8.0 Hz. 3H), 1.25 (t, J = 8.0 Hz, 3H). 13C-NMR (101 MHz, CDCb): δ = 170.8, 166.3, 139.1, 129.7, 129.2, 61.0, 60.9, 41.3, 14.3, 14.1. MS (70 eV), m/z (%): 237 (15), 236 (5) [M+], 208 (11), 191 (39), 180 (13), 163 (100), 149 (18), 136 (25), 135 (47), 119 (13), 1 18 (18), 107 (40), 91 (24), 90 (28), 89 (35), 77 (13). IR (NaCl): = 2983 (vs), 2938 (m), 1735 (vs), 1718 (vs), 1612 (m), 1368 (m), 1277 (s), 1106 (m), 1032 (s).

Claims

Patentansprüche
1. Verfahren zur Herstellung von Verbindungen der Formel (III)
Figure imgf000019_0001
in welcher
Ar für die Gruppe
Figure imgf000019_0002
K steht, wobei
R1, R2, R\ R4 und R5 unabhängig voneinander gleich oder verschieden für Wasserstoff, Amino, Cyano, Nitro, Halogen, für gegebenenfalls durch Halogen substituiertes Ci-Ce-Alkyl, Ci-Ce-Thioalkyl, Thiophenyl, Ci-Ce-Alkoxy, Cö-Cio-Aryloxy, Phenyl, -CO-Ce-Cio-Aryl, - CO-Ci-C3-Alkyl, -COO-Ci-C6-Alkyl oder -COO-C6-Cio-Aryl stehen, der Rest Ar kann darüber hinaus auch für einen heteroaromatischen Rest stehen oder der Rest Ar kann auch für 1- oder 2-Naphthyl stehen, und
R6 und R7 unabhänging voneinander für gegebenenfalls substituiertes Ci-Cs-Alkyl, Phenyl, Aryl, oder für NR8R9 stehen, wobei R8 und R9 unabhängig voneinander gleich oder verschieden für Ci-Ct-Alkyl oder für gegebenenfalls durch Ci-Ci-Alkyl, welches durch Fluor oder Chlor substituiert sein kann, durch Nitro, Cyano oder Di-Ci-C3-Alkylamino substituiertes Phenyl stehen, oder gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gesättigten oder ungesättigten, substituierten oder unsubstituierten Cyclus stehen, dadurch gekennzeichnet, dass man Aryl- oder Heteroarylhalogenide der Fonnel (I)
Ar— Hai (I) in welcher
Hai für Chlor, Brom oder Iod steht und
Ar die oben angegebenen Bedeutungen hat, mit Malonsäureestem der Formel (II)
Figure imgf000020_0001
in welcher
R6 und R7 die oben angegebenen Bedeutungen haben in Gegenwart eines Palladiumkatalysators, eines Phosphin-Liganden und
A) einer anorganischen Base und eines Phasentransferkatalysators oder
B) einer Mischung anorganischer Basen, wobei Caesiumcarbonat und Caesiumbicarbonat nicht zum Einsatz kommen, gegebenenfalls unter Verwendung eines organischen Lösungsmittels umsetzt. 2. Verfahren zur Herstellung von Verbindimgen der Formel (III) gemäß Anspruch 1. wobei Ar für 1 - oder 2-Naphthyl, 3 -Thienyl oder für die Gruppe
Figure imgf000021_0001
wobei
R1, R2, R3, R4 und R5 unabhängig voneinander gleich oder verschieden für Wasserstoff, Amino, Cyano, Nitro, Fluor, für gegebenenfalls durch Fluor substituiertes Ci-C4-Alkyl, C1-C4- Thioalkyl, Thiophenyl. Ci-C4-Alkoxy, C6-Cio-Aryloxy, Phenyl, -CO-C6-C8-Aryl, -CO-C1-C3- Alkyl, -COO-Ci-C4-Alkyl oder -COO-Ce-Cs-Aryl stehen.
Hai für Chlor, Brom oder Iod steht,
R6 und R7 unabhängig voneinander gleich oder verschieden für Ci-C4-Alkyl stehen.
Verfahren zur Herstellung von Verbindungen der Fonnel (III) gemäß Anspruch 1, wobei
Ar für 1-oder 2-Naphthyl, 3-Thienyl oder für die Gruppe
Figure imgf000021_0002
wobei
R1, R2, R3, R4 und R5 unabhängig voneinander gleich oder verschieden für Wasserstoff, Amino, Cyano, Nitro, Fluor. Methyl, Methylthio, Ethyl, i-Propyl, n-Propyl, CF3, C2F5, C3F7 Methoxy, Ethoxy, Phenyl, -CO-Phenyl, -CO-Methyl, -CO-Ethyl. -COO-Methyl, -COO-
Ethyl oder -COO-Phenyl stehen,
Hai für Chlor, Brom oder Iod steht,
R6 und R7 unabhängig voneinander für Methyl oder Ethyl stehen. 4. Verfahren zur Herstellimg von Verbindungen der Formel (III) gemäß Anspruch 1, wobei Ar für 1-Naphthyl, 2-Naphthyl, Phenyl, 4-N.N-Dimethylaminophenyl, 4- Methylthiophenyl, 4-Methoxyphenyl, 4-Ethoxyphenyl, 3-Methoxyphenyl, 2-Methox}phenyl, 2-Methylphenyl, 3-Methylphenyl, 4-Methylphenyl, 4-Fluorphenyl, 3-Fluo henyl, 2- Fluoφhenyl, 2-Ethylphenyl, 4-Ethoxycarbonylphenyl, 3-Thienyl steht.
Verfahren zur Herstellung von Verbindungen der Formel (III) gemäß Anspruch 1. wobei
Ar für 2,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 4-Cyanophenyl, 4-Cyano-2- methylphenyl, 3-Cyanophenyl, 4-Ethoxycarbonylphenyl, 4-Trifluormethylphenyl, 4-Acetyl- phenyl, 4-Nitrophenyl, 4-Benzoylphenyl steht.
Verfahren zur Herstellung von Verbindungen der Formel (III) gemäß Anspruch 1 , wobei R6 und R7 für Ethyl stehen.
Verfahren zur Herstellung von Verbindungen der Formel (III) gemäß Anspruch 1 dadurch gekennzeichnet, dass als Palladiumkatalysatoren Bis(dibenzylidenaceton)palladium. Tris(di- benzylidenaceton)dipalladium oder Palladiumacetat eingesetzt werden.
Verfahren zur Herstellung von Verbindungen der Formel (III) gemäß Anspruch 1 dadurch gekennzeichnet, dass als Phosphin-Ligand Tri-tert-butyl-phosphin, Tricyclohexylphosphin, Tris(l-adamantyl)phosphin, n-Butyl-di(l -adamantyl)-phosphin (cataCXium® A), Benzyl-di(l- adamantyl)-phosphin (cataCXium* ABn), 2-(Di-tert-butylphosphino)biphenyl (JohnPhos) oder 2-(Di-cyclohexylphosphino)-2 ' -(Ν,Ν-dimethylamino) eingesetzt werden.
Verfahren zur Herstellung von Verbindungen der Formel (III) gemäß Anspruch 1 dadurch gekennzeichnet, dass als Phosphin-Ligand Tri-tert.butyl-phosphin eingesetzt wird.
Verfahren zur Herstellung von Verbindungen der Formel (III) gemäß Anspruch 1 dadurch gekennzeichnet, dass im Verfahrensschritt A) als Base Kaliumphosphat eingesetzt wird.
11. Verfahren zur Herstellung von Verbindungen der Formel (III) gemäß Anspruch 1 dadurch gekennzeichnet, dass im Verfahrensschritt B) als Basen Gemische aus Kaliumcarbonat und Kaliumbicarbonat eingesetzt werden. Verfahren zur Herstellung von Verbindungen der Formel (III) gemäß Anspruch 1, dadurch gekennzeichnet, dass als Phasentransferkatalysatoren quatemären Ammoniumsalze oder Phosphoniumsalze der Formel (V )
Figure imgf000023_0001
in welcher
R13, R14, R15 und R16 unabhängig voneinander gleich oder verschieden für G-C28-Alkyl, gegebenenfalls verzweigtes Ci-C28-Alkyl, Ce-Cio-Aryl, oder Benzyl stehen,
A für N oder P steht und
X für Halogen, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Phosphat oder Acetat steht eingesetzt werden.
Verfahren zur Herstellung von Verbindungen der Formel (III) gemäß Anspruch 1. dadurch gekennzeichnet, dass als Phasentransferkatalysatoren Kronenether der Formel (VI)
Figure imgf000023_0002
in der n für eine Zahl zwischen 4 und 8 steht und die Reste R17 bis R20 unabhängig voneinander für Wasserstoff, Ci-C4-Alkyl oder Phenyl stehen, wobei zwei benachbarte Reste R auch jeweils gemeinsam einen cyclischen Rest wie Cyclopentyl, Cyclohexyl oder 1,2-Phenylen bilden können. eingesetzt werden.
14. Verfahren zur Herstellung von Verbindungen der Formel (III) gemäß Anspruch 1, dadurch gekennzeichnet, dass als Phasentransferkatalysator 18-Krone-6 eingesetzt wird.
15. Verfahren zur Herstellung von Verbindungen der Formel (III) gemäß Anspruch 1, dadurch gekennzeichnet, dass Malonester der Formel (II) als Lösungsmittel im Überschuss verwendet wird.
16. Verfahren zur Herstellimg von Verbindungen der Formel (III) gemäß Anspruch 1, dadurch gekennzeichnet, dass bei Temperaturen von 100 bis 180 °C gearbeitet wird.
PCT/EP2012/053233 2011-03-02 2012-02-27 Verfahren zur herstellung von aryl- und heteroarylessigsäure-derivaten WO2012116942A1 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
EP18162783.7A EP3369723B1 (de) 2011-03-02 2012-02-27 Verfahren zur herstellung von aryl- und heteroarylessigsäure-derivaten
CN201280011378.0A CN103596918B (zh) 2011-03-02 2012-02-27 制备芳基-和杂芳基乙酸衍生物的方法
EP12706245.3A EP2681185B8 (de) 2011-03-02 2012-02-27 Verfahren zur herstellung von aryl- und heteroarylessigsäure-derivaten
MX2013009828A MX341269B (es) 2011-03-02 2012-02-27 Proceso para preparar derivados de acido arilacetico y heteroarilacetico.
KR1020187032851A KR101999939B1 (ko) 2011-03-02 2012-02-27 아릴- 및 헤테로아릴아세트산 유도체의 제조 방법
KR1020137022738A KR101927556B1 (ko) 2011-03-02 2012-02-27 아릴- 및 헤테로아릴아세트산 유도체의 제조 방법
US14/002,691 US9096568B2 (en) 2011-03-02 2012-02-27 Process for preparing aryl- and heteroarylacetic acid derivatives
BR112013022282-4A BR112013022282B1 (pt) 2011-03-02 2012-02-27 Processo para a preparação de derivados de ácidos aril- e heteroaril acético
JP2013555836A JP6100174B2 (ja) 2011-03-02 2012-02-27 アリール酢酸誘導体及びヘテロアリール酢酸誘導体を調製する方法
DK12706245.3T DK2681185T3 (en) 2011-03-02 2012-02-27 PROCEDURE FOR THE PREPARATION OF ARYL AND HETEROARY ACID ACID DERIVATIVES
MX2016005715A MX371507B (es) 2011-03-02 2012-02-27 Proceso para preparar derivados de acido arilacetico y heteroarilacetico.
ES12706245.3T ES2690944T3 (es) 2011-03-02 2012-02-27 Procedimiento para preparar derivados de ácido arilacético y heteroarilacético
IL227996A IL227996A (en) 2011-03-02 2013-08-18 A process for making aryl and heteroaryl acetic acid history
US14/686,886 US9376417B2 (en) 2011-03-02 2015-04-15 Process for preparing aryl- and heteroarylacetic acid derivatives
IL255391A IL255391B (en) 2011-03-02 2017-11-02 A process for the preparation of aryl and heteroaryl acetic acid derivatives

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161448379P 2011-03-02 2011-03-02
EP11156559 2011-03-02
EP11156559.4 2011-03-02
US61/448,379 2011-03-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/002,691 A-371-Of-International US9096568B2 (en) 2011-03-02 2012-02-27 Process for preparing aryl- and heteroarylacetic acid derivatives
US14/686,886 Continuation US9376417B2 (en) 2011-03-02 2015-04-15 Process for preparing aryl- and heteroarylacetic acid derivatives

Publications (1)

Publication Number Publication Date
WO2012116942A1 true WO2012116942A1 (de) 2012-09-07

Family

ID=43770656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/053233 WO2012116942A1 (de) 2011-03-02 2012-02-27 Verfahren zur herstellung von aryl- und heteroarylessigsäure-derivaten

Country Status (12)

Country Link
US (2) US9096568B2 (de)
EP (2) EP3369723B1 (de)
JP (1) JP6100174B2 (de)
KR (2) KR101927556B1 (de)
CN (1) CN103596918B (de)
BR (1) BR112013022282B1 (de)
DK (2) DK2681185T3 (de)
ES (1) ES2690944T3 (de)
IL (2) IL227996A (de)
MX (1) MX341269B (de)
TW (1) TWI555730B (de)
WO (1) WO2012116942A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4286051A2 (de) * 2015-10-29 2023-12-06 The Trustees of Princeton University Ein verfahren zur kreuzkupplung unter verwendung eines übergangsmetallkomplexes, der einen pad3-liganden enthält
CN112239384B (zh) * 2020-08-07 2023-05-12 浙江理工大学 一种硫酯化合物的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0835243A1 (de) 1995-06-30 1998-04-15 Bayer Ag Dialkyl-halogenphenylsubstituierte ketoenole zur verwendung als herbizide und pestizide
DE10111262A1 (de) 2001-03-09 2002-09-12 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von Vinyl- Aryl- und Heteroarylessigsäuren und ihrer Devivate
WO2009121919A1 (en) * 2008-04-02 2009-10-08 Boehringer Ingelheim International Gmbh 1-heterocyclyl-1,5-dihydro-pyrazolo[3,4-d] pyrimidin-4-one derivatives and their use as pde9a modulators

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9904933D0 (en) * 1999-03-04 1999-04-28 Glaxo Group Ltd Compounds
DE19938736A1 (de) * 1999-08-16 2001-02-22 Bayer Ag Verfahren zur Herstellung von [Bis-(trifluormethyl)-phenyl]-essigsäuren und deren Alkylestern sowie [Bis-(trifluormethyl)-phenyl]-malonsäure-dialkylester
JP4279561B2 (ja) * 2001-05-23 2009-06-17 メルク フロスト カナダ リミテツド プロスタグランジンD2受容体拮抗薬としてのジヒドロピロロ[1,2−a]インドールおよびテトラヒドロピリド[1,2−a]−インドール誘導体
ES2384312T3 (es) 2005-03-28 2012-07-03 Toyama Chemical Co., Ltd. Alquil-3-[2-(benzol[b]tiofen-5-il)-etoxi]-propanoatos como intermedios en la producción de derivados de acetidin-3-ol
AU2006316644B2 (en) * 2005-11-18 2011-11-10 Merck Sharp & Dohme Corp. Spirohydantoin tricyclic CGRP receptor antagonists
US20110039893A1 (en) * 2006-10-11 2011-02-17 Takeda Pharmaceutical Company Limited Gsk-3beta inhibitor
DE202007001123U1 (de) * 2007-01-25 2007-06-06 KRÜGER, Günter Anlage zum Trocknen von organischen Massen
IN2012DN06383A (de) * 2010-01-19 2015-10-02 Bayer Ip Gmbh

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0835243A1 (de) 1995-06-30 1998-04-15 Bayer Ag Dialkyl-halogenphenylsubstituierte ketoenole zur verwendung als herbizide und pestizide
DE10111262A1 (de) 2001-03-09 2002-09-12 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von Vinyl- Aryl- und Heteroarylessigsäuren und ihrer Devivate
WO2009121919A1 (en) * 2008-04-02 2009-10-08 Boehringer Ingelheim International Gmbh 1-heterocyclyl-1,5-dihydro-pyrazolo[3,4-d] pyrimidin-4-one derivatives and their use as pde9a modulators

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
BULL. CHEM. SOC. JPN., vol. 58, 1985, pages 3383 - 3384
C.GIORDANO ET AL., ANGEW. CHEM., vol. 96, 1984, pages 413 - 9
CHEM. COMMUN., 2001, pages 2704 - 2705
CHEM. COMMUN., 2001, pages 660 - 70
CHEM.COMMUN., 2001, pages 660 - 70
F.A. CAREY; R.J. SUNDBERG: "Organische Chemie Ein weiterführendes Lehrbuch", 1995, VCH VERLAGSGESELLSCHAFT MBH, ISBN: 3-527-29217-9, pages: 876 - 877, XP002671765 *
H.E. ZAUGG ET AL., J. AMER. CHEM. SOC., vol. 70, 1948, pages 3224 - 8
HETEROCYCLES, vol. 36, 1993, pages 2509 - 2512
J. AM. CHEM. SOC., vol. 121, 1999, pages 1473 - 78
J. AM. CHEM. SOC., vol. 81, 1959, pages 1627 - 1630
J. AM. CHEM. SOC., vol. 97, 1975, pages 2507 - 2517
J. AM. CHEM. SOC., vol. 99, 1977, pages 4833 - 4835
J. CHEM. SOC. PERKIN, vol. 1, 1993, pages 2433 - 2440
J. ORG. CHEM., vol. 56, 1991, pages 261 - 263
J. ORG. CHEM., vol. 58, 1993, pages 7606 - 7607
J. ORG. CHEM., vol. 61, 1996, pages 1748 - 1755
J. ORGANOMET. CHEM., vol. 177, 1979, pages 273 - 281
SYNTH. COMM., vol. 17, 1987, pages 1389 - 1402
SYNTHESIS, 1990, pages 369 - 381
TETRAHEDRON LETT., vol. 39, 1998, pages 8807 - 8810
TETRAHEDRON LETT., vol. 45, 2004, pages 4261 - 4264
TETRAHEDRON LETT., vol. 45, 2004, pages 5823 - 5825
TETRAHEDRON LETT., vol. 48, 2007, pages 3289 - 3293
V.M.NAIDAN; A.VDOMBROVSKII, ZHURNAL OBSHCHEI KHIMII, vol. 34, 1984, pages 1469 - 73
YOSHINORI KONDO ET AL.: "Palladium catalyzed arylation of malonate accompanying in situ dealkoxycarbonylation", CHEMICAL COMMUNICATIONS, 2001, pages 2704 - 2705, XP002630825, ISSN: 1359-7345 *

Also Published As

Publication number Publication date
BR112013022282B1 (pt) 2019-03-26
IL255391B (en) 2019-09-26
KR101999939B1 (ko) 2019-07-15
IL227996A0 (en) 2013-09-30
CN103596918B (zh) 2015-09-16
US9096568B2 (en) 2015-08-04
IL255391A0 (en) 2017-12-31
TWI555730B (zh) 2016-11-01
CN103596918A (zh) 2014-02-19
EP3369723B1 (de) 2020-10-14
IL227996A (en) 2017-11-30
DK2681185T3 (en) 2018-10-29
DK3369723T3 (da) 2021-01-11
EP3369723A1 (de) 2018-09-05
JP6100174B2 (ja) 2017-03-22
MX341269B (es) 2016-08-09
BR112013022282A2 (pt) 2017-03-01
US9376417B2 (en) 2016-06-28
ES2690944T3 (es) 2018-11-23
EP2681185A1 (de) 2014-01-08
EP2681185B1 (de) 2018-07-11
KR20180126084A (ko) 2018-11-26
MX2013009828A (es) 2013-10-03
EP2681185B8 (de) 2018-08-29
KR101927556B1 (ko) 2018-12-10
KR20140006010A (ko) 2014-01-15
US20140155632A1 (en) 2014-06-05
US20150315171A1 (en) 2015-11-05
TW201245142A (en) 2012-11-16
JP2014514253A (ja) 2014-06-19

Similar Documents

Publication Publication Date Title
EP1713755B1 (de) Verfahren zur herstellung von 2,5-dimethylphenylessigsäure
CH619439A5 (de)
EP2681185B1 (de) Verfahren zur herstellung von aryl- und heteroarylessigsäure-derivaten
EP2526081B1 (de) Verfahren zur herstellung von aryl- und heteroarylessigsäure-derivaten
EP0006205B1 (de) Verfahren zur Herstellung von Chloro-styryl-cyclopropan-carbonsäure-derivaten
EP0001980B1 (de) Verfahren zur Herstellung von Halogenvinyl-gamma-butyrolactonen, sowie Zwischenprodukte und ihre Herstellung
DE2437882B2 (de) Verfahren zur herstellung von estern des 3-phenoxybenzylalkohols
DE2605398C3 (de) Verfahren zur Herstellung von ß -Dihalogenäthenylcyclopropancarbonsäure-Derivaten
WO2002072524A2 (de) Verfahren zur herstellung von vinyl-, aryl- und heteroarylessigsäuren und ihrer derivate
WO2017121699A1 (de) Verfahren zur herstellung von substituierten 2-aryl-ethanolen
DE10208955A1 (de) Verfahren zur Herstellung von 2-Halogenalkylnicotinsäuren
Das et al. A simple and efficient protocol for chlorination of Baylis-Hillman adducts using PPh3/CCl4
EP0018533B1 (de) Substituierte Pentan-(oder Penten-)-carbonsäuren und ihre Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von 3-(Aryl-vinyl)-2,2-dimethyl-cyclopropan-1-carbonsäureestern
DE19754322B4 (de) Verfahren zur Herstellung von Salzen cyclischer Amidine
DE3046059C2 (de) 4-Halogen-5,5-dialkoxypentansäureester, Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von 2,2-Dialkyl-3-formylcyclopropancarbonsäureestern
EP1494987A1 (de) Verfahren zur herstellung von 2,4,5-trimethylphenylessigsäure
DE2710151A1 (de) Verfahren zur herstellung von dihalogenvinyl-gamma-butyrolactonen
EP3368510A1 (de) Verfahren zur herstellung von 2-alkyl-4-trifluormethyl-3-alkylsulfonylbenzoesäuren
EP0050777A2 (de) Verfahren zur Herstellung von chlorfluoralkyl-substituierten Cyclopropancarbonsäuren und deren Derivaten und Zwischenprodukte dafür
DE4036515A1 (de) Verfahren zur herstellung von 1,1-difluoralkansulfenylchloriden

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12706245

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012706245

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/009828

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20137022738

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013555836

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14002691

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013022282

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013022282

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130830