WO2012114839A1 - ガス燃料供給装置、高圧ガス噴射ディーゼル機関及び高圧ガス噴射ディーゼル機関の液化ガス燃料供給方法 - Google Patents
ガス燃料供給装置、高圧ガス噴射ディーゼル機関及び高圧ガス噴射ディーゼル機関の液化ガス燃料供給方法 Download PDFInfo
- Publication number
- WO2012114839A1 WO2012114839A1 PCT/JP2012/052294 JP2012052294W WO2012114839A1 WO 2012114839 A1 WO2012114839 A1 WO 2012114839A1 JP 2012052294 W JP2012052294 W JP 2012052294W WO 2012114839 A1 WO2012114839 A1 WO 2012114839A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- gas
- hydraulic
- gas fuel
- fuel supply
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B43/00—Engines characterised by operating on gaseous fuels; Plants including such engines
- F02B43/10—Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B43/00—Engines characterised by operating on gaseous fuels; Plants including such engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/06—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
- F02D19/08—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
- F02D19/10—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/06—Apparatus for de-liquefying, e.g. by heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Definitions
- the present invention relates to a gas fuel supply device such as a natural gas, which is applied to, for example, a ship main engine or a generator drive engine, a high pressure gas injection diesel engine, and a liquefied gas fuel supply method for a high pressure gas injection diesel engine.
- a gas fuel supply device such as a natural gas
- a ship main engine or a generator drive engine a high pressure gas injection diesel engine
- a high pressure gas injection diesel engine liquefied gas fuel supply method for a high pressure gas injection diesel engine.
- SSD-GI High-pressure gas injection type low-speed two-cycle diesel engines
- the geared speed reduction mechanism is a speed reduction mechanism that combines a plurality of gears having different numbers of teeth
- the pulley speed reduction mechanism has a structure that rotates large and small wheels connected by a V-belt.
- the pressure of the liquefied gas taken out from the storage tank is increased by a pump in a liquid state to increase the pressure. Things have been done.
- the first problem relates to a mechanical speed reduction mechanism necessary for driving the electric motor of the reciprocating pump.
- the geared type speed reduction mechanism is expected to damage the gear tooth surface and tooth root due to torque fluctuation from the reciprocating pump side. Consideration should be given to couplings such as elastic joints and inertia wheels for buffering.
- the pulley type speed reduction mechanism has the advantage that the torque fluctuation peculiar to the piston pump can be mitigated by the slip of the belt, but the belt is a consumable that needs to be replaced in a short period. This method is not suitable for continuous use.
- the pulley type deceleration mechanism is concerned about the occurrence of sparks at the exposed high-speed contact portion, installation in a gas hazardous area is not preferable for safety.
- the second problem relates to the electric motor that drives the reciprocating pump. More specifically, when the electric motor is decelerated to the cycle speed of the reciprocating pump by the reduction mechanism, a frequency control mechanism (inverter) is required regardless of which of the above-described geared method and pulley method.
- a frequency control mechanism inverter
- the frequency control mechanism of an electric motor has difficulty in accuracy at low frequencies, it is disadvantageous when the control range is wide and high-precision control is required even in a considerably low speed rotation region.
- the present invention has been made in order to solve the above-described problems.
- the object of the present invention is to provide a high-pressure fuel gas (for example, natural gas) in a combustion chamber, such as a high-pressure gas injection type low-speed two-cycle diesel engine.
- a liquefied gas (for example, LNG) of fuel is increased in pressure using a reciprocating pump that can be easily placed in a gas hazardous area
- An apparatus, a high pressure gas injection diesel engine provided with the gas fuel supply device, and a liquefied gas fuel supply method for the high pressure gas injection diesel engine is provided.
- a gas fuel supply apparatus is a gas fuel supply apparatus having a high pressure mode for supplying a liquefied gas at a high pressure to inject fuel gas into a combustion chamber of a high pressure gas injection diesel engine, and is driven by a hydraulic motor.
- a reciprocating pump that boosts and discharges the introduced liquefied gas to a desired pressure
- a hydraulic pump unit that supplies hydraulic pressure for driving to the hydraulic motor from a variable displacement hydraulic pump driven by an electric motor
- a heating device that heats and vaporizes the liquefied gas supplied from the reciprocating pump to vaporize
- a control unit that adjusts the rotational speed of the hydraulic motor to keep the gas fuel outlet pressure of the heating device constant
- an engine inlet gas pressure reducing valve that adjusts the pressure of the gas fuel injected into the room.
- the reciprocating pump that boosts and discharges the liquefied gas introduced by driving by a hydraulic motor to a desired pressure, and the variable displacement hydraulic pump that is driven by an electric motor are used.
- a hydraulic pump unit that supplies hydraulic pressure for driving to the hydraulic motor, a heating device that heats and vaporizes the liquefied gas after pressure increase supplied from the reciprocating pump, and the heating by adjusting the rotation speed of the hydraulic motor A control unit that keeps the gas fuel outlet pressure of the apparatus constant, and an engine inlet gas pressure reducing valve that adjusts the pressure of the gas fuel injected into the combustion chamber, so that the rotational speed of the hydraulic motor that drives the reciprocating pump Is performed by displacement control (oil amount control) of the hydraulic pump, and mechanical speed reduction mechanism and motor rotation speed control are not required.
- the reciprocating pump driven by the hydraulic motor and the hydraulic pump unit that supplies hydraulic pressure to the hydraulic motor can be connected separately by hydraulic piping, they can be placed separately from each other.
- a reciprocating pump without a gas is easy
- the control unit adjusts the rotational speed of the hydraulic motor by variable displacement control of the hydraulic pump to keep the gas fuel outlet pressure constant.
- the rotational speed of the hydraulic motor can be controlled with high accuracy over a wide range from the low rotational speed region to the high rotational speed region. Accordingly, it is possible to control the flow rate of the liquefied gas supplied from the reciprocating pump to the heating device with high accuracy.
- the gas fuel outlet pressure which is the pressure of the gas fuel that is vaporized and flows out from the heating device, is also controlled with high accuracy. Is possible.
- the gas fuel supply apparatus is provided with a recirculation line including a flow rate adjusting valve that branches the liquefied gas boosted by the reciprocating pump from the upstream side of the heating apparatus and flows it to the suction drum.
- the recirculation flow rate introduced into the recirculation line is adjusted by the flow rate adjusting valve that operates based on the control signal of the control unit.
- a gas fuel supply apparatus branches from a hydraulic pressure supply line connecting between the hydraulic pump unit and the hydraulic motor and is connected to a low pressure line, from the hydraulic pressure supply line to the low pressure line. It has a vacuum prevention line provided with a check valve that prevents the hydraulic flow in the direction of travel. Thereby, it is possible to prevent the hydraulic motor from being evacuated by sucking up the hydraulic oil from the low-pressure line during an emergency stop of the hydraulic system.
- a gas fuel supply apparatus includes a plurality of gas fuel supply systems including the reciprocating pump, the hydraulic pump unit, and the heating unit, and the hydraulic system of each gas fuel supply system includes They are connected to each other. Thereby, the redundancy of a hydraulic system can be improved.
- the engine inlet gas pressure reducing valve injects the gas fuel into a combustion chamber of the high pressure gas injection diesel engine (hereinafter referred to as “high pressure mode”).
- high pressure mode high pressure gas injection diesel engine
- low-pressure mode low-pressure supply
- the engine in a low-pressure mode for example, in a power generation engine that covers ship power, a low-pressure and small amount of fuel gas can be supplied.
- the high-pressure gas injection diesel engine according to the present invention is operated using a gas obtained by vaporizing a liquefied gas as a fuel, and includes the gas fuel supply device according to any one of claims 1 to 6.
- the high pressure gas injection diesel engine which concerns on this invention, it operates by using the gas obtained by vaporizing liquefied gas as a fuel,
- the gas fuel supply apparatus described in any one of Claim 1 to 6 is provided. Therefore, since the rotational speed of the hydraulic motor that drives the reciprocating pump is controlled by the capacity control of the hydraulic pump, it is not necessary to control the speed of the speed reduction mechanism and the motor, and the reciprocating pump can be easily installed in the gas danger area. Become.
- a liquefied gas fuel supply method is a liquefied gas fuel supply method for supplying liquefied gas at a high pressure to inject gas fuel into a combustion chamber of a high-pressure gas injection diesel engine, wherein the variable capacity is driven by an electric motor.
- a reciprocating pump driven by a hydraulic motor that is operated by receiving hydraulic pressure supplied from a mold hydraulic pump is supplied from the reciprocating pump with a gas fuel boosting step of introducing a liquefied gas to boost the pressure to a desired discharge pressure
- a gas fuel pressure injected into the combustion chamber is adjusted by operating an engine inlet gas pressure reducing valve provided in the vicinity.
- a hydraulic motor-driven reciprocating pump operated by receiving hydraulic pressure supplied from a variable displacement hydraulic pump driven by an electric motor is liquefied.
- a gas fuel pressurizing step for introducing gas and increasing the pressure to a desired discharge pressure; and a heating and vaporizing step for heating the liquefied gas supplied from the reciprocating pump to generate gas fuel, and the hydraulic motor.
- the gas fuel pressure injected to the combustion chamber is controlled by operating an engine inlet gas pressure reducing valve provided near the inlet of the combustion chamber while maintaining the gas fuel outlet pressure of the heating device constant by adjusting the rotation speed of the heating device. Since the adjustment is performed, it is not necessary to control the rotational speed of the speed reduction mechanism or the electric motor, and the reciprocating pump can be easily installed in the gas danger area.
- the hydraulic motor-driven reciprocating type Since the pressure of the fuel liquefied gas is increased using the pump, the reciprocating pump can be easily disposed in the gas danger area. Further, since there is no pulley type or geared type reduction mechanism, maintenance work for belt replacement and gear surface wear is not required. Furthermore, since it is a device that does not require motor speed control, the speed of the hydraulic motor that drives the reciprocating pump can be controlled with high accuracy over a wide range from the low speed range to the high speed range. Highly accurate flow rate control is possible.
- FIG. 1 is a system diagram showing an embodiment of a gas fuel supply apparatus according to the present invention. It is explanatory drawing of "function 1" which shows the pump load and recirculation control valve (RCV) opening degree of a reciprocating pump on a vertical axis
- function 1 shows the pump load and recirculation control valve (RCV) opening degree of a reciprocating pump on a vertical axis
- function 2 shows the swash plate angle of a hydraulic pump on a vertical axis
- the gas fuel supply device 10 of the embodiment shown in FIG. 1 is a device having a high pressure mode that injects and supplies fuel gas obtained by vaporizing liquefied gas into the combustion chamber of a high pressure gas injection diesel engine.
- An example of the high-pressure gas injection diesel engine of the present embodiment is a high-pressure gas injection type low-speed two-cycle diesel engine (hereinafter referred to as “SSD-GI”).
- the liquefied gas is liquefied natural gas (hereinafter referred to as “LNG”)
- the natural gas vaporized by LNG is the fuel gas.
- the apparatus of the embodiment is, for example, liquefied petroleum gas (LPG). It can also be applied to an engine using liquefied gas as a fuel.
- the gas fuel supply device 10 includes an LNG fuel system that injects and supplies natural gas that has been vaporized after the LNG has been boosted by the reciprocating pump 20 into a combustion chamber of a high-pressure gas injection engine, and a hydraulic pressure that drives the reciprocating pump 20.
- a hydraulic system that supplies hydraulic pressure to the motor 50 and a control unit 80 that controls the hydraulic motor 50 and the like are provided.
- two sets of the LNG fuel system and the hydraulic system are provided, but the present invention is not limited to this.
- the LNG fuel system includes a reciprocating pump 20 driven by a hydraulic motor 50.
- the reciprocating pump 20 is a pump that introduces LNG in a substantially atmospheric pressure state, raises the pressure to a desired pressure, and discharges the pressure.
- the LNG introduction pipe 21 connected to the suction side of the reciprocating pump 20 is connected to an LNG tank or the like (not shown).
- the LNG supply pipe 22 connected to the discharge side of the reciprocating pump 20 includes a heating device 30 and an engine inlet gas pressure reducing valve (hereinafter referred to as “gas pressure reducing valve”) 40 arranged in order from the pump side.
- gas pressure reducing valve engine inlet gas pressure reducing valve
- the heating device 30 is a device that heats and vaporizes the pressurized LNG supplied from the reciprocating pump 20. That is, the high-pressure LNG that has flowed into the heating device 30 is heated in the device, and flows out as natural gas vaporized from the LNG.
- a pressure sensor 31 is provided in the vicinity of the outlet of the heating device 30, and the natural gas outlet pressure PV detected by the pressure sensor 31 is input to the control unit 80 as a gas fuel outlet pressure.
- the controller 80 adjusts the rotational speed of the hydraulic motor 50 described later in order to keep the natural gas outlet pressure PV at a predetermined constant pressure value.
- the natural gas supplied from the heating device 30 is adjusted to a desired pressure by the gas pressure reducing valve 40 and then injected into the high-pressure combustion chamber. That is, the natural gas injection (supply) pressure adjusted by the gas pressure reducing valve 40 is compressed by the piston and injected into the combustion chamber in a high-pressure state, so it is necessary to set the pressure higher than the pressure in the combustion chamber.
- a high pressure mode Such an operation mode in which natural gas is injected into the combustion chamber at a high pressure.
- the injection pressure of natural gas in the high pressure mode is approximately 150 to 300 bar.
- the gas pressure reducing valve 40 has a “low pressure mode” that supplies natural gas of gas fuel as fuel for a gas spark type Otto cycle engine.
- This “low pressure mode” is used, for example, when gas fuel is supplied to a power generation engine or the like that covers inboard power, and has a lower pressure than the “high pressure mode”.
- the LNG supply pipe 22 includes a recirculation line 23 that branches from the upstream side of the heating device 30.
- the recirculation line 23 is a piping system that branches the LNG boosted by the reciprocating pump 20 from the upstream side of the heating device 30 and flows it to the suction drum 24.
- a circulation control valve 25 is provided.
- the LNG flowing through the recirculation line 23 by adjusting the opening of the flow rate adjustment valve 25. It becomes possible to respond by controlling the recirculation flow rate. More specifically, as shown in the explanatory diagram of FIG. 2, for example, in the low speed region where the pump load is small, the opening of the recirculation control valve 25 is increased to ensure the recirculation flow rate, that is, the operating point where the pump load is small.
- the total flow rate of LNG flowing through the reciprocating pump 20 is secured by increasing the recirculation flow rate, and is maintained in the rotation speed region where the hydraulic motor 50 can be controlled.
- the recirculation flow rate for bypassing the heating device 30 is increased by increasing the opening degree of the recirculation control valve 25 and the supply amount to the heating device 30 may be limited.
- the explanatory diagram of FIG. 2 corresponds to “function 1” of FIG.
- the suction drum 24 is an LNG container that collects the LNG branched and introduced from the LNG supply pipe 22 and returns it to the recirculation suction unit of the reciprocating pump 20.
- the recirculation flow rate of LNG introduced into the recirculation line 23 is adjusted by the recirculation control valve 25 that operates based on the control signal of the operating point OP output from the control unit 80.
- the control signal for this operating point OP is, for example, an opening degree that determines the operating point output by the control unit 80 based on the set point SP given by the engine speed and the natural gas outlet pressure PV detected by the pressure sensor 31. Signal.
- the set point SP in this case, a variable value that provides a pressure value with high controllability of the gas pressure reducing valve 40, such as the engine speed described above, may be adopted, or the set point SP may be a fixed value. It is good.
- the hydraulic system includes a variable displacement hydraulic pump 51 driven by an electric motor (not shown), and a hydraulic motor 50 that drives the reciprocating pump 20 from the hydraulic pump 51 via a hydraulic oil supply pipe (hydraulic supply line) 52.
- a hydraulic pump unit 53 for supplying hydraulic pressure thereto.
- the illustrated hydraulic pump unit 53 includes two hydraulic pumps 51 that are electrically driven at a constant speed.
- the hydraulic pump unit 53 boosts the hydraulic oil sucked from the main oil reservoir tank 54 and supplies it to the hydraulic motor 50.
- the hydraulic pump 51 used here is a variable displacement type such as a swash plate pump, for example, and is a pump capable of adjusting the hydraulic oil supply amount by adjusting the swash plate angle or the like even when rotating at a constant speed.
- the hydraulic pump 51 of the hydraulic pump unit 53 is not limited to two.
- FIG. 3 is an example of control when two hydraulic pumps 51 are used together as a swash plate, and corresponds to “function 2” in FIG.
- the swash plate angles are similarly set for the two hydraulic pumps 51 according to changes in the pump load.
- the two hydraulic pumps 51 used together are an example of operation control in which each of them shares 50% of the required hydraulic pressure.
- the second control example one is controlled to a swash plate angle indicated by a solid line, and the other is controlled to a swash plate angle indicated by a broken line.
- the two hydraulic pumps 51 are set to different swash plate angles, one of which supplies a large amount of hydraulic pressure, and the other performs operation control to compensate for the shortage.
- the hydraulic oil that has driven the hydraulic motor 50 is returned to the auxiliary oil reservoir tank 56 through the hydraulic oil return pipe 55.
- the auxiliary oil reservoir tank 56 shown in the figure has a separate structure from the main oil reservoir tank 54, and the oil reservoir tanks 54, 56 are connected by a hydraulic oil coupling pipe 57.
- the oil transfer pump 58 provided in the hydraulic oil connection pipe 57 is operated and returned to the main oil reservoir tank 54.
- the hydraulic oil to be returned to the main oil reservoir tank 54 is cooled by passing through an oil cooler 59 provided in the hydraulic oil connecting pipe 57 to prevent a temperature rise.
- the main oil reservoir tank 54 is cooled by circulating internal hydraulic oil as necessary so that gravity can not be returned from the auxiliary oil reservoir tank 56 or when it is integrated with the auxiliary oil reservoir tank 56.
- a circulating flow path 60 is provided. Since the circulation channel 60 is provided with the oil circulation pump 61 and the oil cooler 62, the oil temperature does not rise through the oil cooler 61 by internally circulating the hydraulic oil in the main oil reservoir tank 54. Can be cooled.
- the hydraulic system shown in FIG. 1 is provided with a vacuum prevention line 63 for protecting hydraulic equipment.
- the vacuum prevention line 63 is a pipe branched from the hydraulic oil supply pipe 52 connecting the hydraulic pump unit 53 and the hydraulic motor 50 and connected to the sub oil reservoir tank 56 of the low pressure line.
- a check valve 64 is provided at an appropriate position of the vacuum prevention line 63 to block the hydraulic flow in the direction from the hydraulic oil supply pipe 52 to the auxiliary oil reservoir tank 56.
- a hydraulic oil recirculation line 66 having an emergency recirculation valve 65 is provided near the outlet of the hydraulic pump 51.
- the emergency recirculation valve 65 is opened when the hydraulic oil supply pipe 52 becomes a high pressure equal to or higher than a predetermined value, and returns the hydraulic oil to the normal oil reservoir tank 54, and the hydraulic pump 51 and its downstream piping and hydraulic equipment. Is to protect.
- a plurality of gas fuel supply systems each including a reciprocating pump 20, a hydraulic pump unit 53, and a heating unit 30 are provided, and the hydraulic systems of the respective gas fuel supply systems are connected to each other.
- the hydraulic oil supply pipes 52 are connected by the communication supply pipe 67
- the mutual 57 are connected by the communication return pipe 68.
- the communication supply pipe 67 is provided with an on-off valve 69
- the communication return pipe 68 is provided with an on-off valve 70.
- Reference numeral 71 in the figure denotes a pump that circulates hydraulic oil.
- the gas fuel supply apparatus 10 of the present embodiment includes the reciprocating pump 20 that boosts and discharges the LNG driven and introduced by the hydraulic motor 50 to a desired pressure, and the variable displacement type that is driven by the electric motor.
- the hydraulic pump unit 53 that supplies hydraulic pressure for driving from the hydraulic pump 51 to the hydraulic motor 50, the heating device 30 that heats and vaporizes the LNG after boosting that is supplied from the reciprocating pump 20, and the rotation of the hydraulic motor 50
- a reciprocating pump is provided with a control unit 80 that keeps the natural gas outlet pressure PV of the heating device 30 constant by adjusting the speed, and a gas pressure reducing valve 40 that adjusts the pressure of the natural gas injected into the combustion chamber.
- the rotational speed of the hydraulic motor 50 that drives the motor 20 can be implemented by capacity control (oil amount control) of the hydraulic pump 51.
- the control unit 80 described above adjusts the rotational speed of the hydraulic motor 50 by variable displacement control of the hydraulic pump 51, and performs control to keep the natural gas outlet pressure PV constant. For this reason, the rotational speed of the hydraulic motor 50 can be controlled with high accuracy over a wide range from the low rotational speed region to the high rotational speed region. Therefore, since the LNG supplied from the reciprocating pump 20 to the heating device 30 can be controlled with high accuracy, the pressure of the natural gas that evaporates and flows out from the heating device 30, that is, the natural gas fuel outlet pressure PV. Can be controlled with high accuracy.
- the rotational speed of the hydraulic motor 50 since the rotational speed of the hydraulic motor 50, the flow rate of the reciprocating pump 20, and the natural gas outlet pressure PV have a correlation with each other, instead of the control for keeping the natural gas outlet pressure PV constant, the hydraulic pressure is changed.
- the rotational speed of the motor 50 may be controlled.
- the LNG fuel supply method for supplying LNG fuel to the SSD-GI using the gas fuel supply device 10 described above has a high pressure mode for injecting and supplying natural gas into the combustion chamber.
- the reciprocating pump 20 driven by a hydraulic motor 50 driven by the hydraulic pressure supplied from a variable displacement hydraulic pump 51 driven by an electric motor introduces LNG and performs a desired discharge.
- the rotation speed of the hydraulic motor 50 is adjusted, in other words, the amount of LNG supplied from the reciprocating pump 20 to the heating device 30 is adjusted, and the natural gas flowing out from the heating device 30 is adjusted.
- the gas pressure reducing valve 40 provided in the vicinity of the inlet of the combustion chamber is operated to adjust the natural gas pressure injected into the combustion chamber during normal operation.
- the interior of a ship is divided into a gas danger zone and a gas safety zone by a bulkhead, and a hydraulic pump 51 driven by an electric motor can be installed on the gas safety zone side. Therefore, the electric motor for driving the hydraulic pump 51 can be used at a constant speed with a normal non-explosion-proof specification, and the degree of freedom of equipment selection can be increased.
- the hydraulic motor 50 installed on the gas danger zone side is not subject to installation restrictions because it does not use electricity.
- the reciprocating pump 20 driven by the hydraulic motor 50 and the hydraulic pump unit 53 that supplies hydraulic pressure to the hydraulic motor 50 can be separated from each other by being connected by the hydraulic oil supply pipe 52. Therefore, the reciprocating pump 20 without an electric device or a speed reduction mechanism can be easily installed in the gas hazardous area.
- the high-pressure gas injection diesel engine that includes the gas fuel supply device 10 described above and uses a gas obtained by vaporizing a liquefied gas such as LNG as a fuel does not require a speed reduction mechanism or a motor speed control, and Easy installation of reciprocating pumps in hazardous gas areas.
- a hydraulic motor drive is performed in a high-pressure gas injection diesel engine that operates by supplying a fuel gas such as natural gas at a high pressure into the combustion chamber, for example, SSD-GI.
- the reciprocating pump 20 is used to increase the pressure of the fuel liquefied gas, so that the reciprocating pump 20 can be easily disposed in the gas danger zone.
- there is no mechanical speed reduction mechanism such as a pulley system or a geared system, maintenance work for belt replacement and gear surface wear is not required.
- the rotation speed of the electric motor is not required, so the rotation speed of the hydraulic motor 50 that drives the reciprocating pump 20 ranges from a low rotation speed region to a high rotation speed region. High-precision control over a wide range becomes possible, and high-precision flow rate control over a wide range becomes possible.
- this invention is not limited to embodiment mentioned above, For example, it can apply to generator drive engines, such as a LNG floating body and a land LNG base, besides the main machine for ship propulsion, and does not deviate from the summary. It can be appropriately changed within the range.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
しかし、天然ガスを燃料とするSSD-GIの場合には、実績のある油焚のディーゼル機関とは異なり、燃焼室内に天然ガスを高圧(約150~300barまで)で供給する高圧噴射技術が成熟しておらず、未だLNG燃料供給に関して確立された技術は見当たらない。
一方、LNG船でBOGの再液化システムが実現された昨今では、BOGを燃料とせずに液化保存することが可能になっている。このため、BOGの有効利用の観点から従来のLNG船ではBOGを燃料とする方法に努力が払われてきたが、LNGを主機関の主燃料とすることにこの点での障害はなくなってきている。また、LNG船以外の船舶でLNGを燃料とする場合には、加圧方式のLNGタンクを用いることによりBOG処理が不要である。
さて、天然ガスを高圧噴射して燃料供給する方法としては、LNGを高圧化してから加熱・気化させることが考えられる。このようなLNGの高圧化は、往復ポンプを使用した昇圧が一般的である。この往復ポンプは、サイクル速度が300rpm程度であるから、一般的な電動機速度の回転速度である1800~3600rpmと比較すればかなり低速となる。このため、往復ポンプを電動機により駆動する場合には、往復ポンプのサイクル速度まで減速する機構が必要となる。
なお、液化ガスの再ガス化プラントにおいては、たとえば下記の特許文献1に開示されているように、貯蔵タンク内から取り出した液化ガスの圧力を、液体の状態でポンプにより昇圧させて高圧化することが行われている。
具体的に説明すると、ギアード方式の減速機構は、往復ポンプ側からのトルク変動による歯車歯面や歯元へのダメージが予想されるため、長時間連続運転に対する耐久性を考慮すると、トルク変動を緩衝するための弾性継手や慣性ホイールなど、カップリングに考慮が必要になる。
一方、プーリー方式の減速機構は、ピストンポンプ特有のトルク変動をベルトのスリップにより緩和できるという利点を有しているものの、ベルトは短期間での交換を必要とする消耗品であるから、長期間の連続使用に不向きな方式である。また、プーリー方式の減速機構は、露出する高速接触部で火花の発生が懸念されるため、ガス危険区域への設置は安全上好ましくない。
具体的に説明すると、電動機は、減速機構により往復ポンプのサイクル速度まで減速する場合、上述したギアード方式及びプーリー方式のいずれの方式を採用しても周波数制御機構(インバータ)が必要となる。しかし、電動機の周波数制御機構は低周波数での精度に難があるため、制御範囲が広く、かなりの低速回転領域でも高精度の制御を必要とする場合には不利である。
本発明は、上記の課題を解決するためになされたもので、その目的とするところは、たとえば高圧ガス噴射型低速2サイクルディーゼル機関のように、燃焼室内に燃料ガス(たとえば天然ガス)を高圧で供給するような高圧ガス噴射ディーゼル機関に適用される高圧噴射技術において、ガス危険区域へ容易に配置可能な往復式ポンプを用いて燃料の液化ガス(たとえばLNG)が高圧化されるガス燃料供給装置、このガス燃料供給装置を備えた高圧ガス噴射ディーゼル機関、及び高圧ガス噴射ディーゼル機関の液化ガス燃料供給方法を提供することにある。
本発明に係るガス燃料供給装置は、高圧ガス噴射ディーゼル機関の燃焼室内へ燃料ガスを噴射するために液化ガスを高圧で供給する高圧モードを備えたガス燃料供給装置であって、油圧モータにより駆動されて導入した液化ガスを所望の圧力まで昇圧して吐出する往復式ポンプと、電動機により駆動される可変容量型の油圧ポンプから前記油圧モータに駆動用の油圧を供給する油圧ポンプユニットと、前記往復式ポンプから供給される昇圧後の液化ガスを加熱して気化させる加熱装置と、前記油圧モータの回転速度を調整して前記加熱装置のガス燃料出口圧力を一定に保つ制御部と、前記燃焼室内へ噴射するガス燃料圧力を調整するエンジン入口ガス減圧弁と、を備えている。
また、油圧モータで駆動する往復式ポンプと、油圧モータに油圧を供給する油圧ポンプユニットとの間は、互いを油圧配管により接続して別置きすることが可能であるから、電気機器や減速機構のない往復式ポンプは、ガス危険区域内への設置が容易になる。
また、プーリー方式やギアード方式の減速機構がないため、ベルト交換やギア面摩耗に対するメンテナンス作業が不要となる。
さらに、電動機の回転数制御が不要な装置となるため、往復式ポンプを駆動する油圧モータの回転数は、低回転数領域から高回転数領域まで広範囲にわたる高精度の制御が可能になり、広範囲にわたる高精度の流量制御が可能になる。
図1に示す実施形態のガス燃料供給装置10は、高圧ガス噴射ディーゼル機関の燃焼室内へ液化ガスを気化させた燃料ガスを噴射して供給する高圧モードを備えた装置である。本実施形態の高圧ガス噴射ディーゼル機関としては、たとえば高圧ガス噴射型低速2サイクルディーゼル機関(以下、「SSD-GI」という。)がある。
なお、以下の説明においては、液化ガスを液化天然ガス(以下、「LNG」という。)とし、LNGが気化した天然ガスを燃料ガスとするが、実施形態の装置は、たとえば液化石油ガス(LPG)等の液化ガスを燃料とする機関にも適用可能である。
往復式ポンプ20の吐出側に接続されたLNG供給配管22は、ポンプ側から順に配置された加熱装置30及びエンジン入口ガス減圧弁(以下、「ガス減圧弁」という。)40を備えている。
加熱装置30の出口近傍には圧力センサ31が設けられており、この圧力センサ31で検出した天然ガス出口圧力PVが、ガス燃料出口圧力として制御部80に入力される。
制御部80は、天然ガス出口圧力PVを予め定めた一定の圧力値に保つため、後述する油圧モータ50の回転速度を調整する。
具体的に説明すると、たとえば図2に示す説明図のように、ポンプ負荷の小さい低速領域では再循環制御弁25の開度を増して再循環流量を確保し、すなわち、ポンプ負荷の小さい運転点OPでは再循環流量を増すことにより往復動ポンプ20を流れるLNGの総流量を確保し、油圧モータ50の制御が可能な回転数領域に維持する。また、危急でLNG量を絞る場合は、再循環制御弁25の開度を増して加熱装置30をバイパスする再循環流量を増加させ、加熱装置30への供給量を制限すればよい。なお、図2の説明図は、図1の「機能1」に相当する。
なお、この場合の設定点SPは、上述した機関回転数のように、ガス減圧弁40の制御性が高い圧力値となる変動値を採用してもよいし、あるいは、設定点SPを固定値としてもよい。
図示の油圧ポンプユニット53は、一定速の電動駆動とした2台の油圧ポンプ51を備えており、主油溜タンク54から吸入した油圧油を昇圧して油圧モータ50に供給する。ここで使用する油圧ポンプ51は、たとえば斜板ポンプのような可変容量型とされ、一定速で回転しても斜板角度の調整等により、油圧油供給量を調整できるポンプである。
なお、油圧ポンプユニット53の油圧ポンプ51は、2台に限定されることはない。
第1の制御例は、往復式ポンプ20のポンプ負荷を横軸とした場合、図中に実線で示すように、ポンプ負荷の変化に応じて2台の油圧ポンプ51について斜板角度を同様に制御している。すなわち、2台併用する油圧ポンプ51は、それぞれが必要な油圧量の50%を分担している運転制御例である。
第2の制御例では、一方が実線表示の斜板角度に制御され、他方が破線表示の斜板角度に制御されている。この場合、2台の油圧ポンプ51が異なる斜板角度に設定され、いずれか一方が油圧量の多くを供給し、他方が不足分を補うような運転制御となる。
副油溜タンク56内の油圧油は、重力により戻すことができない場合、油圧油連結管57に設けた油移送ポンプ58を運転して主油溜タンク54に戻される。このとき、主油溜タンク54に戻す油圧油は、油圧油連結管57に設けた油冷却器59を通すことにより冷却されて温度上昇が防止される。
真空防止ライン63の適所には、油圧油供給配管52から副油溜タンク56に向かう方向の油圧流れを阻止する逆止弁64が設けられている。
このようにして、連絡供給配管67及び連絡戻し配管68により油圧の相互利用を可能にしたので、万が一いずれか一方の油圧系が破損した場合でも、他方の油圧系から供給される油圧を使用して運転可能になるなど、油圧系統の冗長性が向上する。
このように、油圧モータ50の回転速度、往復式ポンプ20の流量及び天然ガス出口圧力PVは、互いに相関関係を有しているので、天然ガス出口圧力PVを一定に保つ制御に代えて、油圧モータ50の回転速度を制御対象としてもよい。
この高圧モードは、電動機により駆動される可変容量型の油圧ポンプ51から供給される油圧を受けて運転される油圧モータ50を駆動源とする往復式ポンプ20が、LNGを導入して所望の吐出圧力まで昇圧させるガス燃料昇圧工程と、加熱装置30が往復式ポンプ20から供給される昇圧後のLNGを加熱して天然ガスを生成する加熱気化工程と、を備えている。
このようなLNG燃料供給方法を採用することにより、往復式ポンプ20の運転には、機械的な減速機構や電動機の回転数制御が不要となり、しかも、往復式ポンプのガス危険区域内設置が容易になる。これは、油圧モータ50の回転速度が、油圧ポンプ51から供給される油量によって調整可能となるためである。
すなわち、油圧モータ50で駆動する往復式ポンプ20と、油圧モータ50に油圧を供給する油圧ポンプユニット53との間は、互いを油圧油供給配管52により接続して別置きすることが可能であるから、電気機器や減速機構のない往復式ポンプ20は、ガス危険区域内への設置が容易になる。
なお、本発明は上述した実施形態に限定されることはなく、たとえば船舶の推進用主機以外にもLNG浮体や陸上LNG基地等の発電機駆動用機関に適用可能であり、その要旨を逸脱しない範囲内において適宜変更することができる。
20 往復式ポンプ
23 再循環ライン
24 吸入ドラム
25 再循環制御弁(流量調整弁)
30 加熱装置
40 エンジン入口ガス減圧弁(ガス減圧弁)
50 油圧モータ
51 油圧ポンプ
53 油圧ポンプユニット
63 真空防止ライン
64 逆止弁
67 連絡供給配管
68 連絡戻し配管
80 制御部
Claims (8)
- 高圧ガス噴射ディーゼル機関の燃焼室内へ燃料ガスを噴射するために液化ガスを高圧で供給するガス燃料供給装置であって、
油圧モータにより駆動されて導入した液化ガスを所望の圧力まで昇圧して吐出する往復式ポンプと、
電動機により駆動される可変容量型の油圧ポンプから前記油圧モータに駆動用の油圧を供給する油圧ポンプユニットと、
前記往復式ポンプから供給される昇圧後の液化ガスを加熱して気化させる加熱装置と、
前記油圧モータの回転速度を調整して前記加熱装置のガス燃料出口圧力を一定に保つ制御部と、
前記燃焼室内へ噴射するガス燃料圧力を調整するエンジン入口ガス減圧弁と、
を備えたガス燃料供給装置。 - 前記制御部は、前記油圧ポンプの可変容量制御により前記油圧モータの回転速度を調整して前記ガス燃料出口圧力を一定に保つ請求項1に記載のガス燃料供給装置。
- 前記往復式ポンプで昇圧された液化ガスを前記加熱装置の上流側から分岐させて吸入ドラムに流す流量調整弁を備えた再循環ラインを設け、前記再循環ラインに導入される再循環流量が、前記制御部の制御信号に基づいて動作する前記流量調整弁により調整される請求項1または2に記載のガス燃料供給装置。
- 前記油圧ポンプユニットと前記油圧モータとの間を接続する油圧供給ラインから分岐して低圧ラインに接続され、前記油圧供給ラインから前記低圧ラインに向かう方向の油圧流れを阻止する逆止弁を設けた真空防止ラインを備えている請求項1から3のいずれか1項に記載のガス燃料供給装置。
- 前記往復式ポンプ、前記油圧ポンプユニット及び前記加熱ユニットを具備してなる複数のガス燃料供給系統を備え、各ガス燃料供給系統の油圧系統が相互利用可能に接続されている請求項1から4のいずれか1項に記載のガス燃料供給装置。
- 前記エンジン入口ガス減圧弁は、前記高圧ガス噴射ディーゼル機関の燃焼室内へ前記ガス燃料を噴射する高圧モードと、前記ガス燃料をガススパーク式オットーサイクルエンジンの燃料として供給する低圧モードとを備えている請求項1から5のいずれか1項に記載のガス燃料供給装置。
- 液化ガスを気化させて得られるガスを燃料として運転され、請求項1から6のいずれか1項に記載されたガス燃料供給装置を備えている高圧ガス噴射ディーゼル機関。
- 高圧ガス噴射ディーゼル機関の燃焼室内へガス燃料を噴射するために液化ガスを高圧で供給する液化ガス燃料供給方法であって、
電動機により駆動される可変容量型油圧ポンプから供給される油圧を受けて運転される油圧モータ駆動の往復式ポンプが、液化ガスを導入して所望の吐出圧力まで昇圧させるガス燃料昇圧工程と、
前記往復式ポンプから供給される昇圧後の液化ガスを加熱してガス燃料を生成する加熱気化工程と、を備え、
前記油圧モータの回転速度を調整して前記加熱装置のガス燃料出口圧力を一定に保ちながら、前記燃焼室の入口近傍に設けたエンジン入口ガス減圧弁を操作して、前記燃焼室へ噴射するガス燃料圧力の調整が行われる高圧ガス噴射ディーゼル機関の液化ガス燃料供給方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12749524.0A EP2679795B1 (en) | 2011-02-25 | 2012-02-01 | Gas fuel supply device, high-pressure gas injection diesel engine, and liquefied gas fuel supply method for high-pressure gas injection diesel engine |
KR1020137021796A KR101494119B1 (ko) | 2011-02-25 | 2012-02-01 | 가스 연료 공급 장치, 고압 가스 분사 디젤 기관 및 고압 가스 분사 디젤 기관의 액화 가스 연료 공급 방법 |
CN201280009648.4A CN103380286B (zh) | 2011-02-25 | 2012-02-01 | 气体燃料供给装置、高压气体喷射式柴油机及高压气体喷射式柴油机的液化气体燃料供给方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011040586A JP6012140B2 (ja) | 2011-02-25 | 2011-02-25 | ガス燃料供給装置、高圧ガス噴射ディーゼル機関及び高圧ガス噴射ディーゼル機関の液化ガス燃料供給方法 |
JP2011-040586 | 2011-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012114839A1 true WO2012114839A1 (ja) | 2012-08-30 |
Family
ID=46720627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/052294 WO2012114839A1 (ja) | 2011-02-25 | 2012-02-01 | ガス燃料供給装置、高圧ガス噴射ディーゼル機関及び高圧ガス噴射ディーゼル機関の液化ガス燃料供給方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2679795B1 (ja) |
JP (1) | JP6012140B2 (ja) |
KR (1) | KR101494119B1 (ja) |
CN (1) | CN103380286B (ja) |
WO (1) | WO2012114839A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114233527A (zh) * | 2021-11-25 | 2022-03-25 | 潍柴动力股份有限公司 | 减压器压力调节装置、预燃室供气系统和供气方法 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9751606B2 (en) | 2013-09-17 | 2017-09-05 | Daewoo Shipbuilding & Marine Engineerig Co., Ltd. | Apparatus and method for transferring inflammable material on marine structure |
US9151248B2 (en) | 2013-09-17 | 2015-10-06 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Apparatus and method for transferring inflammable material on marine structure |
US9683518B2 (en) | 2013-09-17 | 2017-06-20 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Fuel gas supply apparatus |
JP5746301B2 (ja) | 2013-10-11 | 2015-07-08 | 三井造船株式会社 | 液化ガス運搬船用燃料ガス供給システム |
JP2017502208A (ja) * | 2013-11-07 | 2017-01-19 | デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド | 船舶用エンジンに燃料を供給する装置及び方法 |
JP5519857B1 (ja) | 2013-12-26 | 2014-06-11 | 三井造船株式会社 | 低温液化ガスの吸入・吐出用弁体、往復式ポンプ、及び燃料ガス供給装置 |
JP5848375B2 (ja) * | 2014-01-30 | 2016-01-27 | 三井造船株式会社 | 燃料ガス供給装置 |
JP6228060B2 (ja) * | 2014-03-31 | 2017-11-08 | 三井造船株式会社 | 燃料ガス供給装置 |
JP6457760B2 (ja) * | 2014-08-08 | 2019-01-23 | 川崎重工業株式会社 | 船舶 |
JP6401544B2 (ja) * | 2014-08-08 | 2018-10-10 | 川崎重工業株式会社 | ガス供給システム及びそれを備える船舶 |
JP5778849B1 (ja) | 2014-12-22 | 2015-09-16 | 三井造船株式会社 | 動力装置 |
EP3252289A4 (en) * | 2015-01-30 | 2019-01-09 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | SYSTEM AND METHOD FOR CONTROLLING SHORTER ENGINE FUEL SUPPLY |
WO2016148319A1 (en) * | 2015-03-16 | 2016-09-22 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | System for supplying fuel to engine of ship |
WO2016148320A1 (en) * | 2015-03-16 | 2016-09-22 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | System for supplying fuel to engine of ship |
WO2016148318A1 (en) * | 2015-03-16 | 2016-09-22 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | System for supplying fuel to engine of ship |
JP6541059B2 (ja) * | 2015-04-10 | 2019-07-10 | 三井E&S造船株式会社 | 液化ガス運搬船用燃料ガス供給システム |
CN105179933B (zh) * | 2015-08-17 | 2017-04-12 | 沈阳航空航天大学 | 以lng为燃料的通用飞机动力系统及其燃料供应方法 |
JP6620327B2 (ja) * | 2015-09-03 | 2019-12-18 | 株式会社三井E&Sマシナリー | 液化ガス昇圧装置、液化ガスの昇圧方法および燃料供給装置 |
JP6239027B2 (ja) * | 2016-04-25 | 2017-11-29 | 三井造船株式会社 | 液化ガス運搬船用燃料ガス供給システム |
DK179056B1 (en) * | 2016-05-26 | 2017-09-25 | Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland | Fuel supply system for a large two-stroke compression-ignited high-pressure gas injection internal combustion engine |
JP6901919B2 (ja) * | 2017-07-05 | 2021-07-14 | 川崎重工業株式会社 | 船舶 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0609473A1 (en) * | 1991-06-24 | 1994-08-10 | Air Products And Chemicals, Inc. | Method and apparatus for delivering a continuous quantity of gas over a wide range of flowrates |
JP2005504927A (ja) * | 2001-10-05 | 2005-02-17 | ウエストポート リサーチ インコーポレイテッド | 貯蔵タンクから低温流体を供給するための高圧ポンプ・システム |
JP2006283736A (ja) * | 2005-04-05 | 2006-10-19 | Tokyo Gas Co Ltd | 自己駆動型液化ガス用ポンプ |
JP2009204026A (ja) | 2008-02-26 | 2009-09-10 | Mitsubishi Heavy Ind Ltd | 液化ガス貯蔵設備およびこれを用いた船舶あるいは海洋構造物 |
JP2010174748A (ja) * | 2009-01-29 | 2010-08-12 | Mitsubishi Heavy Ind Ltd | 燃料ハンドリング装置及び方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5399103A (en) * | 1977-02-08 | 1978-08-30 | Toshiba Corp | Boiler feed water pump controller |
NO812328L (no) * | 1981-07-08 | 1983-01-10 | Moss Rosenberg Verft As | Fremgangsmaate ved utnyttelse av avkok fra kryogene vaesker som brennstoff i en tostoffs-dieselmotor, og system for utnyttelse av fremgangsmaaten |
US5411374A (en) * | 1993-03-30 | 1995-05-02 | Process Systems International, Inc. | Cryogenic fluid pump system and method of pumping cryogenic fluid |
US6349543B1 (en) * | 1998-06-30 | 2002-02-26 | Robert Moshe Lisniansky | Regenerative adaptive fluid motor control |
JP2001027204A (ja) * | 1999-07-12 | 2001-01-30 | Nippon Sharyo Seizo Kaisha Ltd | 油圧装置 |
US6640556B2 (en) * | 2001-09-19 | 2003-11-04 | Westport Research Inc. | Method and apparatus for pumping a cryogenic fluid from a storage tank |
JP2004270727A (ja) * | 2003-03-05 | 2004-09-30 | Komatsu Ltd | 油圧システム |
JP2005009432A (ja) * | 2003-06-20 | 2005-01-13 | Nissan Diesel Motor Co Ltd | 筒内噴射式ガス燃料エンジンの燃料加圧装置 |
EP2160539B1 (en) * | 2007-03-02 | 2017-05-03 | Enersea Transport LLC | Apparatus and method for flowing compressed fluids into and out of containment |
JP2009133352A (ja) | 2007-11-29 | 2009-06-18 | Nissan Diesel Motor Co Ltd | 天然ガス供給装置 |
CN201354692Y (zh) * | 2008-12-18 | 2009-12-02 | 东风汽车公司 | 带液体增压的车载液化天然气发动机供气装置 |
CN101791946A (zh) * | 2010-01-14 | 2010-08-04 | 张家港富瑞特种装备股份有限公司 | 液化天然气车的供气系统 |
-
2011
- 2011-02-25 JP JP2011040586A patent/JP6012140B2/ja active Active
-
2012
- 2012-02-01 KR KR1020137021796A patent/KR101494119B1/ko active IP Right Grant
- 2012-02-01 EP EP12749524.0A patent/EP2679795B1/en active Active
- 2012-02-01 WO PCT/JP2012/052294 patent/WO2012114839A1/ja active Application Filing
- 2012-02-01 CN CN201280009648.4A patent/CN103380286B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0609473A1 (en) * | 1991-06-24 | 1994-08-10 | Air Products And Chemicals, Inc. | Method and apparatus for delivering a continuous quantity of gas over a wide range of flowrates |
JP2005504927A (ja) * | 2001-10-05 | 2005-02-17 | ウエストポート リサーチ インコーポレイテッド | 貯蔵タンクから低温流体を供給するための高圧ポンプ・システム |
JP2006283736A (ja) * | 2005-04-05 | 2006-10-19 | Tokyo Gas Co Ltd | 自己駆動型液化ガス用ポンプ |
JP2009204026A (ja) | 2008-02-26 | 2009-09-10 | Mitsubishi Heavy Ind Ltd | 液化ガス貯蔵設備およびこれを用いた船舶あるいは海洋構造物 |
JP2010174748A (ja) * | 2009-01-29 | 2010-08-12 | Mitsubishi Heavy Ind Ltd | 燃料ハンドリング装置及び方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114233527A (zh) * | 2021-11-25 | 2022-03-25 | 潍柴动力股份有限公司 | 减压器压力调节装置、预燃室供气系统和供气方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2679795A4 (en) | 2014-08-06 |
EP2679795B1 (en) | 2017-08-16 |
CN103380286B (zh) | 2016-05-04 |
CN103380286A (zh) | 2013-10-30 |
EP2679795A1 (en) | 2014-01-01 |
JP2012177333A (ja) | 2012-09-13 |
KR20130124549A (ko) | 2013-11-14 |
JP6012140B2 (ja) | 2016-10-25 |
KR101494119B1 (ko) | 2015-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6012140B2 (ja) | ガス燃料供給装置、高圧ガス噴射ディーゼル機関及び高圧ガス噴射ディーゼル機関の液化ガス燃料供給方法 | |
JP5808128B2 (ja) | ガス焚きエンジン | |
US9212601B2 (en) | Device and vehicle or production machine | |
RU2562684C2 (ru) | Двигатель внутреннего сгорания с турбонагнетателем, приводная система и способ работы двигателя внутреннего сгорания с турбонагнетателем (варианты) | |
KR101232393B1 (ko) | 터빈 발전기의 제어 방법 및 장치 | |
JP2015068338A (ja) | 二元燃料供給システムを有するターボ過給式大型低速2ストローク内燃機関 | |
JP5232766B2 (ja) | 船舶の機関制御システム | |
JP5908056B2 (ja) | ガス焚きエンジン | |
KR100598699B1 (ko) | Lng 운반선용 동력추진시스템 | |
JP6038225B2 (ja) | ガス焚きエンジン | |
JP6364691B2 (ja) | 内燃機関の過給機余剰動力回収装置 | |
WO2013118308A1 (en) | Turbocharger excess power recovery device for internal combustion engine | |
US11952941B2 (en) | Compressed air energy storage power generation device | |
KR101363014B1 (ko) | 내연기관 구동식 유압기계 및 이를 위한 공기과급기 | |
US20230175234A1 (en) | Distributed pump architecture for multifunctional machines | |
JPH04124428A (ja) | ターボコンパウンドエンジン | |
JP2015121230A (ja) | 内燃機関の負荷変動時の過給補助装置 | |
JP2013160150A (ja) | 内燃機関の負荷変動時の過給補助装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280009648.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12749524 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137021796 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012749524 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012749524 Country of ref document: EP |