WO2012111533A1 - 有機トランジスタ用化合物 - Google Patents

有機トランジスタ用化合物 Download PDF

Info

Publication number
WO2012111533A1
WO2012111533A1 PCT/JP2012/053027 JP2012053027W WO2012111533A1 WO 2012111533 A1 WO2012111533 A1 WO 2012111533A1 JP 2012053027 W JP2012053027 W JP 2012053027W WO 2012111533 A1 WO2012111533 A1 WO 2012111533A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound
atom
optionally substituted
Prior art date
Application number
PCT/JP2012/053027
Other languages
English (en)
French (fr)
Inventor
康生 宮田
Mitsuhiro MATSUMOTO (松本 光弘)
Original Assignee
住友化学株式会社
松本 尚子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 松本 尚子 filed Critical 住友化学株式会社
Publication of WO2012111533A1 publication Critical patent/WO2012111533A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to a compound, a method for producing the compound, a thin film containing the compound, an organic transistor containing the thin film, and the like.
  • organic transistors have been used as elements such as electronic paper and large-screen flat panel displays.
  • Such an organic transistor is composed of members such as an organic semiconductor active layer, a substrate, an insulating layer, and an electrode.
  • Japanese Patent Application Laid-Open No. 2006-114581 discloses a thin film obtained by vacuum deposition of pentacene.
  • An organic transistor including an organic semiconductor active layer is described. Under such circumstances, a novel compound capable of providing a thin film of an organic semiconductor active layer is desired.
  • the present invention provides a novel compound that can provide a thin film of an organic semiconductor active layer.
  • Formula (1) (In the formula, X, Y, W and Z each independently represent a sulfur atom, an oxygen atom or a selenium atom. N represents 0 or 1.
  • P 1 , P 2 , Q 1 and Q 2 are each independently represented by the formula (2) (In the formula, R represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted silyl group.) Represents an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group.
  • at least one group of P 1 , P 2 , Q 1 and Q 2 is a group represented by the formula (2).
  • a compound represented by ⁇ 2> The group represented by formula (2) is represented by formula (3).
  • R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 16 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the compound as described in ⁇ 1> which is group represented by these.
  • ⁇ 3> The compound according to ⁇ 1> or ⁇ 2>, wherein X, Y, W and Z are all sulfur atoms.
  • P 1 and P 2 are the same group represented by the formula (2), and Q 1 and Q 2 are the same and are an aromatic hydrocarbon group or an aromatic heterocyclic group ⁇ 1> to ⁇ 3>
  • the compound according to any one of ⁇ 5> The compound according to any one of ⁇ 1> to ⁇ 4>, wherein n is 0.
  • Q 1 and Q 2 are the same and are a thieno [3,2-b] thiophen-2-yl group.
  • a metal compound containing Q (where Q represents an aromatic hydrocarbon group or an aromatic heterocyclic group) and formula (1a)
  • Q represents an aromatic hydrocarbon group or an aromatic heterocyclic group
  • formula (1a) In the formula, X, Y, W and Z each independently represent a sulfur atom, an oxygen atom or a selenium atom.
  • R represents a hydrogen atom, an optionally substituted alkyl group, or an optionally substituted aryl.
  • a process comprising reacting the compound represented by formula (1b): (In the formula, n, W, X, Y, Z, R and Q have the same meaning as described above.) The manufacturing method of the compound represented by these. ⁇ 8> The above formula (1a) A compound represented by ⁇ 9> The compound according to ⁇ 8>, wherein W, X, Y and Z in formula (1a) are all sulfur atoms. ⁇ 10> The compound according to ⁇ 8> or ⁇ 9>, wherein n in the formula (1a) is 0.
  • a halogenating agent containing X 1 as a halogen atom In the formula, n, R, W, X, Y and Z represent the same meaning as described above.
  • X 1 each independently represents a halogen atom.
  • R represents an optionally substituted silyl group.
  • N represents 0 or 1.
  • a compound represented by ⁇ 15> The compound according to ⁇ 14>, wherein W, X, Y and Z in formula (1c) are all sulfur atoms.
  • ⁇ 16> The compound according to ⁇ 14> or ⁇ 15>, wherein n in the formula (1c) is 0.
  • the formula (1d) In the presence of a transition metal compound, copper halide and an organic base, the formula (1d) (In the formula, X, Y, W and Z each independently represent a sulfur atom, an oxygen atom or a selenium atom.
  • N represents 0 or 1.
  • X 2 each independently represents a halogen atom.
  • a compound represented by formula (5) (In the formula, R represents an optionally substituted silyl group.)
  • a process comprising reacting the compound represented by formula (1c): (In the formula, n, W, X, Y, Z, and R represent the same meaning as described above.) The manufacturing method of the compound represented by these.
  • Formula (1d) (Wherein, X, Y, W and Z are each independently, .X 2 .n is representative of a 0 or 1 indicating a sulfur atom, an oxygen atom or a selenium atom, represents a iodine atom.)
  • a compound represented by ⁇ 19> Formula (1) (In the formula, X, Y, W and Z each independently represent a sulfur atom, an oxygen atom or a selenium atom. N represents 0 or 1.
  • P 1 , P 2 , Q 1 and Q 2 each represent Independently, formula (2) Represents an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group.
  • At least one group of P 1 , P 2 , Q 1 and Q 2 is a group represented by the formula (2).
  • a method for producing a thin film comprising a step of applying the composition according to ⁇ 19> onto a substrate and a step of drying the coating film applied onto the substrate.
  • ⁇ 21> A thin film containing the compound represented by the formula (1) according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 22> A thin film comprising the compound represented by formula (1) according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 24> An organic transistor containing the thin film according to ⁇ 21> or ⁇ 22>.
  • FIG. 1 is a cross-sectional view illustrating one embodiment of an organic transistor according to the present invention.
  • FIG. 2 is a cross-sectional view illustrating one embodiment of the organic transistor according to the present invention.
  • 11 and 21 are substrates
  • 12 and 25 are gate electrodes
  • 13 and 24 are gate insulating films
  • 14 and 22 are source electrodes
  • 15 and 23 are drain electrodes.
  • Reference numerals 16 and 26 denote organic semiconductor active layers.
  • the present invention relates to formula (1) It is a compound (compound (1)) represented by these.
  • X, Y, W and Z in the compound (1) each independently represent a sulfur atom, an oxygen atom or a selenium atom, and preferably all are sulfur atoms.
  • n represents 0 or 1.
  • the compound (1) has the following formula
  • P 1 , P 2 , Q 1 And Q 2 Are each independently the formula (2) Represents an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group.
  • P 1 , P 2 , Q 1 And Q 2 At least one group of is a group represented by the formula (2).
  • Preferred P 1 , P 2 , Q 1 And Q 2 As a combination of P, 1 And P 2 Are the same groups represented by the formula (2), and Q 1 And Q 2 Are the same, an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group, or Q 1 And Q 2 Are the same groups represented by the formula (2), and P 1 And P 2 Are the same and optionally substituted aromatic hydrocarbon groups or optionally substituted aromatic heterocyclic groups.
  • R contained in the formula (2) represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or an optionally substituted silyl group, and preferably substituted.
  • Examples of the alkyl group in R include linear, branched, or cyclic alkyl groups having 1 to 30 carbon atoms.
  • Specific examples include a methyl group, an ethyl group, an n-propyl group, n -Butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n -Tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group, n-henicosyl group, n-docosyl group, n-tricosyl group, n -Straight chain acetol having 1 to 30 carbon atoms such as tetra
  • the alkyl group represented by R is preferably a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl group, neopentyl group, cyclopentyl group. , N-hexyl group, 2-ethylhexyl group, cyclohexyl group, n-heptyl group, n-octyl group, cyclooctyl group, n-nonyl group, n-decyl group, 2-hexyldecyl group and the like. It is an alkyl group.
  • Examples of the aryl group represented by R include an aryl group having 6 to 30 carbon atoms, and preferably an aryl group having 6 to 12 carbon atoms such as a phenyl group and a naphthyl group.
  • the alkyl group and aryl group represented by R may have one or more substituents, and examples of the substituents include P described later. 1 , P 2 , Q 1 Or Q 2 It is the same as the example of the substituent which the aromatic hydrocarbon group and aromatic heterocyclic group represented by this may have.
  • R is an optionally substituted silyl group
  • examples of the group represented by the formula (2) include the formula (3) (Wherein R 1 , R 2 And R 3 Each independently represents an alkyl group having 1 to 16 carbon atoms or an aryl group having 6 to 12 carbon atoms. ) The group represented by these can be mentioned.
  • the optionally substituted silyl group (Wherein R 1 , R 2 And R 3 Represents the same meaning as described above. ) It is preferable that it is group represented by these.
  • examples of the alkyl group and the aryl group include the same alkyl groups having 1 to 16 carbon atoms and aryl groups having 6 to 12 carbon atoms exemplified as R.
  • Preferred groups represented by formula (3) include R 1 , R 2 And R 3 Are the same, methyl group, ethyl group or isopropyl group (i-C 3 H 7
  • the group represented by Formula (3) which is-) can be mentioned.
  • P 1 , P 2 , Q 1 And Q 2 The aromatic hydrocarbon group means a group in which one hydrogen atom contained in the aromatic hydrocarbon compound is a bond, and the aromatic hydrocarbon compound has a ring structure formed from carbon atoms.
  • aromatic hydrocarbon compound examples include monocyclic aromatic hydrocarbon compounds such as benzene, bicyclic aromatic hydrocarbon compounds such as naphthalene, and tricyclic aromatic hydrocarbon compounds such as anthracene and fluorene. And aryl having 6 to 20 carbon atoms such as P 1 , P 2 , Q 1 And Q 2
  • the aromatic heterocyclic group means a group in which one hydrogen atom contained in the aromatic heterocyclic compound becomes a bond, and the aromatic heterocyclic compound means a nitrogen atom, oxygen atom, sulfur atom, selenium.
  • aromatic heterocyclic compound examples include a monocyclic aromatic heterocyclic compound having one ring structure, a bicyclic aromatic heterocyclic compound having two ring structures, and a three ring having three ring structures. And aromatic heterocyclic compounds of the formula.
  • aromatic heterocyclic compound examples include monocyclic aromatic heterocyclic compounds such as furan, thiophene, selenophene, pyrrole, oxazole, thiazole, pyridine, pyrazine, pyrimidine, and pyridazine, such as thieno [3,2 -B] Bicyclic aromatic heterocyclic compounds such as thiophene, furo [3,2-b] furan, thieno [3,2-b] furan, benzo [b] thiophene, benzo [b] furan, Dithieno [3,2-b: 2 ′, 3′-d] thiophene, benzo [1,2-b: 4,5-b ′] dithiophene, benzo [1,
  • the aromatic hydrocarbon group and aromatic heterocyclic group represented by may have one or more substituents.
  • substituents include a fluorine atom, an alkyl group that may have a fluorine atom, an alkoxy group that may have a fluorine atom, an alkylthio group that may have a fluorine atom, and a fluorine atom.
  • Examples of the alkyl group which may have a fluorine atom include the alkyl groups having 1 to 30 carbon atoms exemplified above or those in which a hydrogen atom of the alkyl group is substituted with fluorine. An alkyl group having 1 to 4 carbon atoms is preferable.
  • Examples of the alkoxy group which may have a fluorine atom include linear, branched or cyclic alkoxy groups having 1 to 30 carbon atoms, such as a methoxy group, an ethoxy group, and an n-propoxy group.
  • a (poly) alkyleneoxyalkyloxy group having 2 to 30 carbon atoms, And the group etc. by which the hydrogen atom of the alkoxy group illustrated above was substituted by the fluorine atom can be mentioned.
  • Preferred alkoxy groups include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, t-butoxy group, n-pentyloxy group, cyclopentyloxy group, and n-hexyloxy.
  • Oxy group cyclopentyloxy group, n-hexyloxy group, 2-ethylhexyloxy group, cyclohexyloxy group, n-heptyloxy group, n-octyloxy group, cyclooctyloxy group, nonyloxy group, decyloxy group, 2-hexyldecyl Oxy group, 3,7-dimethyloctyloxy group, n-undecyloxy group, n-dodecyloxy group, n-tridecyloxy group, n-tetradecyloxy group, n-pentadecyloxy group, n-hexadecyl Oxy group, methoxymethoxy group, methoxyethoxy group, metho Shi methoxymethoxy group, an alkoxy group having 1 to 16 carbon atoms in the methoxyethoxyethoxy group.
  • alkylthio group which may have a fluorine atom
  • alkylthio group which may have a fluorine atom
  • examples of the alkylthio group which may have a fluorine atom include a linear, branched or cyclic alkylthio group having 1 to 30 carbon atoms, such as a methylthio group, an ethylthio group and an n-propylthio group.
  • Preferred alkylthio groups include, for example, ethylthio group, n-propylthio group, isopropylthio group, n-butylthio group, isobutylthio group, s-butylthio group, t-butylthio group, n-pentylthio group, n-hexylthio group, 2 -Ethylhexylthio group, cyclohexylthio group, n-heptylthio group, cycloheptylthio group, n-octylthio group, cyclooctylthio group, n-nonylthio group, n-decylthio group, 2-hexyldecylthio group, n-undecylthio group N-dodecylthio group, n-tridecylthio group, n-tetradecy
  • aryl group which may have a fluorine atom examples include the aryl groups having 1 to 30 carbon atoms exemplified above, or those in which a hydrogen atom contained in the aryl group is substituted with a fluorine atom.
  • aryl groups having 1 to 30 carbon atoms exemplified above or those in which a hydrogen atom contained in the aryl group is substituted with a fluorine atom.
  • they are a phenyl group or a naphthyl group.
  • heteroaryl group which may have a fluorine atom
  • monocyclic aromatic heterocyclic groups such as thienyl group, furyl group, thiazolyl group, for example, thieno [3,2-b] thienyl group
  • bicyclic aromatic heterocyclic groups such as furo [3,2-b] furyl group, thieno [3,2-b] furyl group, benzo [b] thienyl group, benzo [b] furyl group, etc.
  • monocyclic aromatic heterocyclic groups such as thienyl group and furyl group
  • bicyclic aromatic groups such as thieno [3,2-b] thienyl group, benzo [b] thienyl group and benzo [b] furyl group.
  • Group heterocyclic groups and those in which the hydrogen atoms contained in the heteroaryl groups exemplified above are substituted with fluorine atoms.
  • Examples of the compound (1) include the compounds described in Tables 1 to 22 below.
  • P 1 And P 2 Are the same and are groups represented by the formula (2)
  • Q 1 And Q 2 Are the same optionally substituted aromatic hydrocarbon group or optionally substituted aromatic heterocyclic group (hereinafter, sometimes referred to as Q as a representative), that is, the formula (1b) (In the formula, n, W, X, Y, Z, R and Q have the same meaning as described above.)
  • Q optionally substituted aromatic heterocyclic group
  • the compound (1) of the present invention include P 1 And P 2 Are the same aromatic hydrocarbon group which may be substituted or aromatic heterocyclic group which may be substituted (hereinafter, may be referred to as P representatively), Q 1 And Q 2 Are the same and are groups represented by the formula (2), that is, the formula (1b ′) (In the formula, n, W, X, Y, Z, R and P represent the same meaning as described above.)
  • P representatively Q 1 And Q 2
  • Q 1 And Q 2 are the same and are groups represented by the formula (2), that is, the formula (1b ′) (In the formula, n, W, X, Y, Z, R and P represent the same meaning as described above.)
  • the compound represented by these is preferable.
  • the compound (1) in which m in the table is represented by the following numbers is preferable.
  • the compound (1) of the present invention tends to be excellent in solubility in an organic solvent, the production of the compound (1) tends to be easy, and purification after the production tends to be easy. Moreover, the solution which melt
  • the thin film obtained by coating and forming the compound (1) is preferable because it tends to be a thin film exhibiting high carrier mobility, as will be described later. Next, the manufacturing method of a compound (1) is demonstrated.
  • compound (1) is compound (1b), for example, in the presence of a transition metal compound, a metal compound containing Q (compound (4)) and formula (1a) (In the formula, n, W, X, Y, Z and R represent the same meaning as described above.
  • X 1 Each independently represents a halogen atom, more preferably an iodine atom. X 1 Are preferably the same.
  • the method etc. which include the process (henceforth this process may be mentioned hereafter) etc. which are made to react with the compound (compound (1a)) represented by these can be mentioned.
  • Q in the compound (4) is the above Q 1 And Q 2 And an aromatic hydrocarbon group which may be substituted or an aromatic heterocyclic group which may be substituted.
  • An aromatic heterocyclic group which may be substituted is preferable.
  • a metal atom contained in a compound (4) a tin atom, a magnesium atom, a zinc atom, a boron atom, etc. can be mentioned, for example.
  • the compound (4) containing Q and a tin atom for example, the formula (6) And the like (compound (6)) and the like.
  • Q represents an aromatic hydrocarbon group which may be substituted or an aromatic heterocyclic group which may be substituted.
  • R 4 , R 5 And R 6 As, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl Group, an n-octyl group, an n-decyl group and the like, and an alkyl group having 1 to 10 carbon atoms, preferably a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-hexyl group, More preferred are a methyl group, an ethyl group, an n-propyl group, and an n-butyl group.
  • formula (6-2) (Wherein Q represents the same meaning as described above, and X 6 Represents a halogen atom such as a chlorine atom, a bromine atom or an iodine atom, or an alkoxy group having 1 to 10 carbon atoms. )
  • X 6 represents a halogen atom such as a chlorine atom, a bromine atom or an iodine atom, or an alkoxy group having 1 to 10 carbon atoms.
  • t-butyl An alkyl lithium reagent such as lithium is added, and the mixture is further stirred for 10 minutes to 5 hours in the above temperature range.
  • the solution containing the compound represented by the formula (6-2) and the solvent is in a temperature range of 40 ° C to -110 ° C, preferably 20 ° C to -100 ° C, more preferably 0 ° C to -80 ° C.
  • a Grignard reagent such as isopropylmagnesium bromide is added, and the mixture is further stirred for 10 minutes to 5 hours in the above temperature range.
  • the compound represented by the formula (6-2) and metal magnesium are reacted in the same manner as in the usual method for preparing a Grignard reagent.
  • formula (6-3) (Wherein -H represents hydrogen bonded to the ⁇ -position of the aromatic heterocyclic ring) and a solution containing the solvent and not more than -40 ° C, preferably -55 ° C to -110 ° C, More preferably, after cooling to a temperature range of ⁇ 65 ° C. to ⁇ 100 ° C., an alkyl lithium reagent such as t-butyl lithium is added, and the mixture is further stirred at the above temperature range for 10 minutes to 5 hours.
  • the compound (7) is prepared by reacting the compound represented by (6-2) with a Grignard reagent such as isopropylmagnesium bromide or metallic magnesium as described in the method for producing the compound (6).
  • a Grignard reagent such as isopropylmagnesium bromide or metallic magnesium as described in the method for producing the compound (6).
  • the compound represented by the formula (8) As the compound (4) containing Q and a zinc atom, the compound represented by the formula (8) The compound (compound (8)) etc. which are represented by these can be mentioned.
  • Q represents the same meaning as described above
  • compound (6) and compound (6) are used except that zinc halide such as zinc chloride, zinc bromide and zinc iodide is used instead of the compound represented by formula (6-1). It can be manufactured in the same manner.
  • zinc halide such as zinc chloride, zinc bromide and zinc iodide
  • R 7 And R 8 And a hydroxyl group such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and an n-hexanoxy group, such as an alkoxy group having 1 to 10 carbon atoms such as a phenoxy group, 1- Represents an aryloxy group having 6 to 20 carbon atoms such as a naphthoxy group and a 2-naphthoxy group; R 7 And R 8 May be bonded to R 7 , R 8 And a ring structure composed of boron atoms, for example, 1,3,2-dioxaborolane ring, 4,4,5,5-tetramethyl-1,3,2-dioxaborolane ring, 5,5-dimethyl-1,3 , 2-dioxaborinane ring, 1,3,2-benzodioxaborol ring, 9-borabicyclo3,
  • the compound (9) may be represented by the formula (9-1) (Wherein R 7 And R 8 Represents the same meaning as described above excluding the hydroxyl group, and X 7 Represents the aforementioned alkoxy group or aryloxy group. ) It can manufacture like a compound (6) except using.
  • the amount of the metal compound containing Q (compound (4)) used in this step is usually such that the group represented by Q is 1 to 10 mol, preferably 2 to 4 with respect to 1 mol of compound (1a).
  • the transition metal compound used in this step include a palladium compound and a nickel compound. The paradium compound may be further reacted with a phosphine compound.
  • the transition metal compound a commercially available product may be used as it is.
  • the palladium compound for example, tris (dibenzylideneacetone) dipalladium (0), tris (dibenzylideneacetone) dipalladium (0) / chloroform adduct, palladium acetate (II), palladium chloride (II) , (Bicyclo [2.2.1] hepta-2,5-diene) dichloropalladium (II), (2,2′-bipyridyl) dichloropalladium (II), bis (acetonitrile) chloronitropalladium (II), bis (Benzonitrile) dichloropalladium (II), bis (acetonitrile) dichloropalladium (II), dichloro (1,5-cyclooctadiene) palladium (II), dichloro (ethylenediamine) palladium (II), dichloro (N, N,
  • the palladium compound As the palladium compound, a commercially available product is usually used as it is.
  • the amount of the palladium compound used is usually in the range of 0.001 to 1 mol as a palladium metal atom with respect to 1 mol of the compound (1a).
  • the phosphine compound include triphenylphosphine, tris (2-methylphenyl) phosphine, tris (3-methylphenyl) phosphine, tris (4-methylphenyl) phosphine, tris (pentafluorophenyl) phosphine, tris (4- Fluorophenyl) phosphine, tris (2-methoxyphenyl) phosphine, tris (3-methoxyphenyl) phosphine, tris (4-methoxyphenyl) phosphine, tris (2,4,6-trimethylphenyl) phosphine, tri (3-chlorophenyl) ) Phos
  • the amount of the phosphine compound used is usually 0.5 to 10 moles of phosphorus atoms, preferably 1 to 5 moles per mole of palladium atoms. It is a ratio of.
  • palladium compounds reacted with phosphine compounds include, for example, tetrakis (triphenylphosphine) palladium (0), bis (acetate) bis (triphenylphosphine) palladium (II), bis [1,2-bis (diphenylphosphine).
  • nickel compound examples include dichlorobis (1,1′-diphenylphosphinoferrocenyl) nickel (II), dichlorobis (diphenylphosphino) nickel (II), dichloronickel (II), diiodonickel (II), Examples include dichloro (1,5-cyclooctadiene) nickel (II) and dichloro [1,2-bis (diphenylphosphino) ethane] nickel (II).
  • the amount of the nickel compound used is usually 0.001 to 1 mol as a nickel metal atom with respect to 1 mol of the compound (1a).
  • compound (9) When compound (9) is used in this reaction, it is usually performed in the presence of a base.
  • a base examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, thallium hydroxide, barium hydroxide, lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide.
  • the amount of the base to be used is 1 to 50 mol, preferably 2 to 20 mol, per 1 mol of compound (9).
  • This step is preferably performed in the presence of a solvent.
  • the solvent include aromatic hydrocarbon solvents such as benzene, toluene, and xylene; ether solvents such as diethyl ether, tetrahydrofuran, 1,4-dioxane, tert-butyl methyl ether, cyclopentyl methyl ether, and ethylene glycol dimethyl ether; N, Amide solvents such as N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone; dimethyl sulfoxide; water.
  • a solvent may be used independently and may be used in mixture of 2 or more types.
  • the solvent is preferably used after deaeration.
  • a part or all of compound (1a) or compound (4) used in the method for producing compound (1b) may be dissolved or suspended in a solvent and then degassed by nitrogen bubbling or reduced pressure.
  • the amount of the solvent to be used is generally 0.5 to 200 parts by weight, preferably 2 to 100 parts by weight, per 1 part by weight of compound (1a). This step may be further performed in the presence of a phase transfer catalyst.
  • phase transfer catalyst examples include quaternary ammonium salts such as tetraalkylammonium halide, tetraalkylammonium hydrogensulfate, or tetraalkylammonium hydroxide, preferably tetra-n-butylhalogen. And ammonium halide and benzyltriethyl ammonium halide.
  • the amount of the phase transfer catalyst used is 0.0001 to 1 mol, preferably 0.01 to 0.2 mol, per 1 mol of compound (1a).
  • this step can be performed under the atmosphere, it is preferably performed under an inert gas such as nitrogen or argon.
  • the reaction temperature in this step is usually in the range of 0 to 200 ° C.
  • the reaction time is usually in the range of 1 minute to 96 hours.
  • the obtained reaction mixture and an aqueous sodium chloride solution are mixed, and if necessary, an extraction process is performed by adding an organic solvent insoluble in water, and the obtained organic layer is concentrated and necessary.
  • the compound (1b) can be obtained by using a purification means such as column chromatography, distillation, recrystallization, recycle gel permeation chromatography, sublimation purification or the like.
  • X, Y, W, Z, n and R of the compound (1a) used in this step represent the same meaning as described above.
  • X, Y, Z and W of the compound (1a) are preferably the same, and all are preferably sulfur atoms.
  • X in compound (1a) 1 are each independently a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably all the same and a bromine atom or an iodine atom, more preferably an iodine atom.
  • Examples of the compound (1a) include compounds described in Tables 23 to 25.
  • formula (1c) In the formula, n, R, W, X, Y and Z have the same meaning as described above.) A compound represented by the formula (compound (1c)) is reacted with alkyllithium, and the resulting reaction product is subjected to X as a halogen atom.
  • alkyl lithium examples include methyl lithium, n-butyl lithium, s-butyl lithium, t-butyl lithium, and phenyl lithium, and preferably n-butyl lithium, s-butyl lithium, t- Butyl lithium is mentioned.
  • the amount of alkyl lithium used is usually 1 to 10 mol, preferably 1.5 to 3 mol, per 1 mol of compound (1c).
  • halogenating agent for example, Cl 2 , Br 2 , I 2 And halogen molecules such as iodine monochloride, and succinimides such as N-chlorosuccinimide, N-bromosuccinimide, and N-iodosuccinimide.
  • the amount of the halogenating agent to be used is generally 1 to 10 mol, preferably 1.5 to 3 mol, per 1 mol of compound (1c).
  • the halogenating agent may be added directly to the reaction product of compound (1c) and alkyllithium, or the halogenating agent may be dissolved or suspended in a solvent and added to the reaction product.
  • Examples of the solvent used in the production of the compound (1a) include aliphatic hydrocarbon solvents such as pentane, hexane, and heptane, aromatic hydrocarbon solvents such as toluene and xylene, diethyl ether, tetrahydrofuran, and 1,4. -Ether solvents, such as dioxane, cyclopentyl methyl ether, ethylene glycol dimethyl ether, and propylene glycol dimethyl ether, or a mixed solvent thereof. Pentane, hexane, toluene, diethyl ether, tetrahydrofuran, and cyclopentyl methyl ether are preferable.
  • the amount of the solvent to be used is generally 0.5 to 200 parts by weight, preferably 2 to 100 parts by weight, relative to 1 part by weight of compound (1c).
  • the following method can be mentioned as a specific manufacturing method of a compound (1a).
  • the solution containing the compound (1c) and the solvent is cooled to ⁇ 40 ° C. or lower, preferably ⁇ 55 ° C. to ⁇ 110 ° C., more preferably ⁇ 65 ° C. to ⁇ 100 ° C.
  • the reaction solution containing the lithiated compound (1c) is obtained by further stirring for 10 minutes to 5 hours in the above temperature range. In order to reliably complete the reaction, the temperature may be raised to ⁇ 40 ° C. to 30 ° C.
  • reaction solution is adjusted to a temperature range of room temperature (about 25 ° C.) to ⁇ 100 ° C., a halogenating agent is added, and the mixture is stirred for 0 minute to 5 hours in the temperature range. Thereafter, in order to reliably complete the reaction, the temperature may be raised to ⁇ 40 ° C. to room temperature, and the mixture may be stirred for 10 minutes to 5 hours.
  • the crude product containing the compound (1a) thus obtained is mixed with an aqueous solution of a reducing agent such as sodium sulfite and then separated to obtain an organic layer. The separated aqueous layer may be extracted with an organic solvent insoluble in water and mixed with the organic layer as necessary.
  • a reducing agent such as sodium sulfite
  • Compound (1a) can be obtained.
  • the compound (1c) used for the manufacturing method of a compound (1a) the compound of Table 26 can be mentioned.
  • compounds containing silicon atoms that is, compounds represented by formulas (1c-13) to (1c-32) are preferable.
  • the method for producing the compound (1c) include a compound represented by the formula (1d) in the presence of a transition metal compound, copper halide and an organic base.
  • n, W, X, Y and Z represent the same meaning as described above.
  • X 2 Each independently represents a halogen atom, preferably an iodine atom.
  • X 2 Are preferably the same.
  • a compound represented by formula (compound (1d)) and formula (5) (Wherein R represents an optionally substituted alkyl group, an optionally substituted aryl group or an optionally substituted silyl group, preferably the following formula: (Wherein R 1 , R 2 And R 3 Each independently represents an alkyl group having 1 to 16 carbon atoms or an aryl group having 6 to 12 carbon atoms. ))
  • R 1 , R 2 And R 3 Each independently represents an alkyl group having 1 to 16 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the method of making it react with the compound (compound (5)) represented by these can be mentioned.
  • the amount of compound (5) to be used is generally 1 to 10 mol, preferably 2 to 4 mol, per 1 mol of compound (1d).
  • a transition metal compound in the manufacturing method of a compound (1c) the thing similar to the transition metal compound used with the manufacturing method of a compound (1b) can be illustrated.
  • the amount of the transition metal compound used is 0.001 to 1 mole of transition metal atoms contained in the transition metal compound with respect to 1 mole of the compound (1d).
  • the copper (I) halide used in the method for producing the compound (1c) include copper (I) chloride, copper (I) bromide, and copper (I) iodide, preferably copper bromide (I I) and copper iodide (I).
  • the amount of copper (I) halide used is usually 0.001 to 1 mol per 1 mol of compound (1d).
  • the organic base used in the method for producing the compound (1c) include secondary amines such as diethylamine, diisopropylamine, piperidine, pyrrolidine and dicyclohexylamine, and organic amines such as tertiary amines such as triethylamine and diisopropylethylamine. Can do.
  • the amount of the organic base used is at least 2 mol per 1 mol of compound (1d).
  • the organic base can also be used as a solvent.
  • the amount of the organic base used is usually 0.5 to 200 parts by weight, preferably 2 to 2 parts per 1 part by weight of the compound (1d).
  • the ratio is 100 parts by weight.
  • the production of compound (1c) is preferably carried out in a solvent.
  • the solvent include aromatic hydrocarbon solvents such as benzene, toluene, and xylene; ether solvents such as diethyl ether, tetrahydrofuran, 1,4-dioxane, tert-butyl methyl ether, cyclopentyl methyl ether, and ethylene glycol dimethyl ether; N, Amide solvents such as N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone; dimethyl sulfoxide.
  • a solvent may be used independently and may be used in mixture of 2 or more types.
  • the solvent is preferably used after deaeration.
  • a part or all of the compound (1d) or compound (5) used in the production of the compound (1c) may be dissolved or suspended in a solvent and then degassed by nitrogen bubbling or reduced pressure.
  • the amount of the solvent to be used is generally 0.5 to 200 parts by weight, preferably 2 to 100 parts by weight, relative to 1 part by weight of compound (1d).
  • the compound (1c) can be produced under the atmosphere, but is preferably carried out under an inert gas such as nitrogen or argon.
  • Compound (1c) may be further produced in the presence of a phase transfer catalyst.
  • phase transfer catalyst examples include quaternary ammonium compounds such as tetraalkylammonium halide, tetraalkylammonium hydrosulfate, and tetraalkylammonium hydroxide, preferably tetra-n-butylammonium halide and benzyl. Examples include triethylammonium halide.
  • the amount of the phase transfer catalyst used is 0.0001 to 1 mol, preferably 0.01 to 0.2 mol, per 1 mol of compound (1d).
  • the reaction temperature in the reaction of the compound (1d) and the compound (5) is usually in the range of 0 to 200 ° C.
  • the reaction time for the production of compound (1c) is usually in the range of 1 minute to 96 hours.
  • the obtained reaction mixture and water are mixed and then separated to obtain an organic layer.
  • the separated aqueous layer may be extracted with an organic solvent insoluble in water and mixed with the organic layer as necessary.
  • the obtained organic layer is further washed with a sodium chloride aqueous solution or water, and then concentrated, and if necessary, by performing purification means such as column chromatography, distillation, recrystallization, recycle gel permeation chromatography, etc.
  • Compound (1c) can be obtained.
  • compounds described in Table 27 described later can be exemplified.
  • a compound represented by Formula (1d-3), a compound represented by Formula (1d-6), a compound represented by Formula (1d-9), and a formula (1d-12) A compound represented by formula (1d-15) and a compound represented by formula (1d-18), that is, X 2 (1d) in which is an iodine atom is preferred.
  • a compound represented by the formula (1e) In the formula, n, W, X, Y and Z have the same meaning as described above.
  • a compound represented by the formula (compound (1e)) and X as a halogen atom 2 Is reacted with a carbon atom at the ⁇ -position of X and Y.
  • the production may be performed in the same manner as the production of the compound (1c) except that the compound (1a ′) is used in place of the compound (1d) in the production of the compound (1c).
  • formula (1c') In the formula, n, W, X, Y, Z and R represent the same meaning as described above.
  • a compound represented by the formula (compound (1c ′)) is reacted with alkyllithium, and the resulting reaction product is subjected to X as a halogen atom. 2
  • the method of including the process of making the halogenating agent containing these react can be mentioned.
  • the specific method for producing compound (1a ′) is the same as the method for producing compound (1a) except that compound (1c ′) is used instead of compound (1c) in the method for producing compound (1a). Just do it.
  • Examples of the method for producing compound (1c ′) include a step of reacting a metal compound containing P with compound (1d) in the presence of a transition metal compound.
  • compound (1b ′) is a compound (1b ′).
  • the compound (1d) is used instead of the compound (1a) and the compound exemplified as a metal compound containing Q is used as the metal compound containing P.
  • Specific examples of the compound (1c ′) include compounds described in Tables 28 to 38.
  • the compound (1) of the present invention can be used as an organic semiconductor material soluble in an organic solvent.
  • organic solvent for dissolving the compound (1) include aromatic hydrocarbon solvents such as benzene, toluene, xylene, tetralin, mesitylene, chlorobenzene, o-dichlorobenzene, trichlorobenzene, fluorobenzene, and anisole, such as dichloromethane and chloroform.
  • 1,2-dichloroethane, 1,1 ′, 2,2′-tetrachloroethane, tetrachloroethylene, carbon tetrachloride and other halogenated aliphatic hydrocarbon solvents for example, diethyl ether, dioxane, tetrahydrofuran and other ether solvents, for example, Aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane and cyclohexane, for example, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, e.g.
  • Tellurium solvents such as nitrile solvents such as acetonitrile, propionitrile, methoxyacetonitrile, glutarodinitrile, benzonitrile, such as dimethyl sulfoxide, sulfolane, N, N-dimethylformamide, N, N-dimethylacetamide, N -Aprotic polar solvents such as methyl-2-pyrrolidone.
  • toluene, xylene, tetralin, mesitylene, chlorobenzene, o-dichlorobenzene, dichloromethane, chloroform, tetrahydrofuran and the like can be mentioned.
  • Two or more organic solvents can be used as a mixed solvent.
  • the concentration of the compound (1) in the solution in which the compound (1) is dissolved can usually be in the range of 0.001 to 50% by weight, preferably 0.01 to 10% by weight, more preferably 0.1. ⁇ 5% by weight.
  • the compound (1) may be used alone, or an antioxidant, a stabilizer, a compound (insofar as it does not significantly impair the carrier mobility of the thin film (organic semiconductor active layer) described later.
  • the organic semiconductor material different from the compound (1) may be a low molecular material or a high molecular material.
  • the polymer material may be one obtained by crosslinking a polymer.
  • a polymer material is used. Specific examples include polyacetylene and derivatives thereof, polythiophene and derivatives thereof, polythienylene vinylene and derivatives thereof, polyphenylene and derivatives thereof, polyphenylene vinylene and derivatives thereof, polypyrrole and derivatives thereof, polyaniline and derivatives thereof, polytriarylamine and derivatives thereof.
  • the content of the compound (1) is preferably 10% by weight or more, more preferably 20% by weight or more with respect to 100% by weight of the total of the organic semiconductor material different from the compound (1) and the compound (1).
  • the organic insulating material may be a low molecular material.
  • the polymer material may be a polymer obtained by crosslinking a polymer. Preferably, a polymer material is used.
  • polystyrene polycarbonate, polydimethylsiloxane, nylon, polyimide, cyclic olefin copolymer, epoxy polymer, cellulose, polyoxymethylene, polyolefin polymer, polyvinyl polymer, polyester polymer, polyether polymer, polyamide polymer.
  • Fluoropolymers biodegradable plastics, phenolic resins, amino resins, unsaturated polyester resins, diallyl phthalate resins, epoxy resins, polyimide resins, polyurethane resins, silicone resins, and copolymers combining various polymer units. .
  • the content of the compound (1) with respect to the total of 100% by weight of the organic insulating material and the compound (1) is preferably 10% by weight or more, and more preferably 20% by weight or more.
  • the solution composition can be prepared by dissolving the compound (1) in a solvent at, for example, 10 to 200 ° C., preferably about 20 to 150 ° C.
  • the thin film and organic semiconductor device of this invention are demonstrated.
  • the thin film of the present invention contains compound (1). Since the thin film exhibits high carrier mobility, it is suitable as a material for an organic semiconductor device having the thin film as an organic semiconductor active layer. Moreover, the organic-semiconductor device of this invention contains the thin film of this invention.
  • an organic semiconductor device of this invention an organic transistor, an electroluminescent element, a solar cell etc. can be mentioned, for example.
  • the organic transistor of this invention can be used for an electronic paper, a flexible display, an IC tag, a sensor, etc., for example.
  • Examples of the method for forming a thin film of the present invention include a coating film forming process.
  • the coating film forming process means a film forming process including a step of dissolving the compound (1) in a solvent and applying the obtained solution to a substrate or an insulator layer.
  • Examples of the coating method include a casting method, a dip coating method, a die coater method, a roll coater method, a bar coater method, a spin coating method, an ink jet method, a screen printing method, an offset printing method, and a micro contact printing method. These methods may be used alone or in combination of two or more.
  • a solution containing compound (1) and an organic solvent is applied to a substrate or an insulating layer to form a coating film, and then the solvent contained in the coating film is removed to remove the solvent on the substrate or the insulating layer.
  • a thin film is formed.
  • natural drying treatment, heat treatment, decompression treatment, ventilation treatment or a combination of these treatments is employed, but natural drying treatment or heat treatment is preferred in terms of simple operation.
  • the thin film of the present invention can also be formed by coating film formation using a dispersion in which compound (1) is dispersed in a solvent.
  • the above-described coating film forming process can be easily performed by replacing the solution with the dispersion.
  • the solvent may be water in addition to the organic solvent.
  • the thin film of the present invention can be formed by a simple method such as the above-described coating film forming process.
  • the method for forming a thin film of the present invention there can be mentioned a method for forming a thin film by subjecting the compound (1) to a vacuum process such as a vacuum deposition method, a sputtering method, a CVD method, a molecular beam epitaxial growth method or the like.
  • the method for forming a thin film by a vacuum deposition method is a method in which the compound (1) is heated in a crucible or a metal boat under vacuum, and the evaporated organic semiconductor material is deposited on a substrate or an insulator material.
  • the degree of vacuum during vapor deposition is usually 1 ⁇ 10 -1 Pa or less, preferably 1 ⁇ 10 -3 Pa or less.
  • the substrate temperature during vapor deposition is usually 0 ° C. to 300 ° C., preferably 20 ° C. to 200 ° C.
  • Examples of the deposition rate include a range of 0.001 nm / sec to 10 nm / sec, preferably 0.01 nm / sec to 1 nm / sec.
  • the film thickness of the thin film containing the compound (1) obtained by the coating film forming process or the vacuum process can be appropriately adjusted depending on, for example, the element structure of the organic transistor, but is preferably 1 nm to 10 ⁇ m, and more preferably. Is 5 nm to 1 ⁇ m.
  • Examples of the organic transistor of the present invention include an organic field effect transistor (OFET).
  • the structure of the organic field effect transistor is usually such that a source electrode and a drain electrode are provided in contact with an organic semiconductor active layer comprising the thin film of the present invention, and an insulating layer (dielectric layer) in contact with the organic semiconductor active layer. It is only necessary that a gate electrode be provided with a gap therebetween.
  • the element structure for example, (1) Structure of substrate / gate electrode / insulator layer / source electrode / drain electrode / organic semiconductor active layer, (2) Structure of substrate / gate electrode / insulator layer / organic semiconductor active layer / source electrode / drain electrode (see FIG.
  • the material for forming the source electrode, the drain electrode, and the gate electrode is not particularly limited as long as it is a conductive material.
  • conductive polymer whose conductivity is improved by doping or the like, for example, conductive polyaniline, conductive polypyrrole, conductive polythiophene, a complex of polyethylenedioxythiophene and polystyrenesulfonic acid, or the like is also preferably used. Among them, those having low electrical resistance at the contact surface with the semiconductor layer are preferable. These conductive materials may be used alone or in combination of two or more.
  • the film thickness of the electrode varies depending on the material, but is preferably 0.1 nm to 10 ⁇ m, more preferably 0.5 nm to 5 ⁇ m, and more preferably 1 nm to 3 ⁇ m. Moreover, when it serves as a gate electrode and a board
  • the source electrode and drain electrode used in the organic transistor of the present invention may be subjected to surface treatment. It is preferable that the surface of the electrode in contact with the thin film (organic semiconductor active layer) of the present invention is subjected to surface treatment because the transistor characteristics of the organic transistor including the thin film tend to be improved.
  • Examples of the surface treatment include saturated hydrocarbon compounds having a thiol group such as 1-octylthiol, 1-perfluorooctylthiol, 1-octadecylthiol, and 1-perfluorooctadecylthiol, such as benzenethiol and perfluorobenzenethiol.
  • a thiol compound such as a heterocyclic aromatic compound having a thiol group such as thienyl thiol or perfluorothienyl thiol is used as a solution together with an alcohol or the like, and the electrode is immersed in the solution.
  • a method for modifying the surface of the electrode can be used.
  • the electrode can be formed by various methods using the raw materials. Specific examples include a vacuum deposition method, a sputtering method, a coating method, a thermal transfer method, a printing method, and a sol-gel method. It is preferable to perform patterning as needed during film formation or after film formation. Various methods can be used as the patterning method. Specifically, a photolithographic method combining photoresist patterning and etching may be used. In addition, these methods such as printing methods such as inkjet printing, screen printing, offset printing, letterpress printing, and soft lithography methods such as microcontact printing methods may be used alone, or two or more types may be mixed. It is also possible to perform patterning. Various insulating films can be used as the insulator layer.
  • Examples of the material for the insulating film include inorganic oxides, inorganic nitrides, and organic compounds.
  • Inorganic oxides include silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, barium strontium titanate, barium zirconate titanate, lead zirconate titanate, lead lanthanum titanate, strontium titanate, Examples thereof include barium titanate, barium magnesium fluoride, bismuth titanate, strontium bismuth titanate, strontium bismuth tantalate, bismuth tantalate niobate, and yttrium trioxide, preferably silicon oxide, aluminum oxide, tantalum oxide, and oxide. Titanium.
  • Examples of the inorganic nitride include silicon nitride and aluminum nitride.
  • the organic compound include polyimide, polyamide, polyester, polyacrylate, photocurable resin obtained by photoradical polymerization or photocationic polymerization, a copolymer containing an acrylonitrile component, polyvinylphenol, polyvinyl alcohol, novolak resin, cyanoethyl pullulan.
  • polyimide, polyvinyl phenol, and polyvinyl alcohol are used. These insulator layer materials may be used alone or in combination of two or more.
  • the thickness of the insulator layer varies depending on the material, but is preferably 0.1 nm to 100 ⁇ m, more preferably 0.5 nm to 50 ⁇ m, and more preferably 5 nm to 10 ⁇ m.
  • the insulator layer can be formed by various methods using the above raw materials. Specifically, spin coating, spray coating, dip coating, casting, bar coating, blade coating, screen printing, offset printing, inkjet, vacuum deposition, molecular beam epitaxial growth, ion cluster beam method, ion plating method, sputtering And dry process methods such as atmospheric pressure plasma method and CVD method.
  • a sol-gel method examples include a sol-gel method, alumite on aluminum, and a method of forming an oxide film on a metal such as a thermal oxide film of silicon.
  • the material for the substrate include glass, paper, quartz, ceramic, resin sheet, and the like.
  • the resin sheet material include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, and polyimide.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • polyetherimide polyetheretherketone
  • polyphenylene sulfide polyarylate
  • polyimide polycarbonate
  • PC Polycarbonate
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • the thickness of the substrate is preferably 1 ⁇ m to 10 mm, more preferably 5 ⁇ m to 5 mm.
  • a surface treatment may be performed on the insulator layer or the substrate in the portion of the insulator layer or the substrate in contact with the thin film of the present invention (hereinafter sometimes referred to as an organic semiconductor active layer). By performing the surface treatment on the insulator layer on which the organic semiconductor active layer is laminated, the transistor characteristics of the organic transistor can be improved.
  • the surface treatment includes hydrophobization treatment with hexamethyldisilazane, octadecyltrichlorosilane, octyltrichlorosilane, phenethyltrichlorosilane, acid treatment with hydrochloric acid, sulfuric acid, hydrogen peroxide water, sodium hydroxide, water, etc.
  • Examples of the method for performing the surface treatment include a vacuum deposition method, a sputtering method, a coating method, a printing method, a sol-gel method, and the like.
  • the thin film of the present invention may exhibit luminescence, and can be used as a luminescent thin film.
  • the light-emitting thin film means a thin film containing the compound (1) and emits light under conditions of light or electrical stimulation.
  • the light-emitting thin film is useful as a material for light-emitting elements such as organic light-emitting diodes, liquid crystal display elements, organic electroluminescent elements, and electronic paper.
  • the luminescent thin film of the present invention can be produced in the same manner as a conventionally known method except that the compound (1) of the present invention is used as a material.
  • the organic semiconductor device including the thin film of the present invention can be applied to sensors, RFIDs (radio frequency identification cards), etc. in addition to the organic transistors and light emitting elements.
  • Apparatus LC-9104 (manufactured by Nihon Analytical Industries) Two columns of JAIGEL-1H-40, 20 mm in inner diameter and 60 cm in length, manufactured by Nippon Analytical Industrial Co., Ltd., are connected in series. The identity of the product was measured with the following analyzer. 1.
  • 1 H-NMR EX270 (manufactured by JEOL Ltd.) 2.
  • HRMS JMS-T100GC (manufactured by JEOL Ltd.) 3.
  • a crystal of 3,6-dibromothieno [3,2-b] thiophene was prepared by reacting 2,5-dibromothieno [3,2-b] thiophene with lithium diisopropylamide (Org. Lett., 2007). 9, page 1005).
  • 3,6-dibromothieno [3,2-b] thiophene crystals (5.00 g, 16.8 mmol) were placed, and the inside of the vessel was purged with nitrogen.
  • reaction vessel was charged with bis (triphenylphosphine) palladium dichloride (0.22 g, 0.3 mmol), cuprous iodide (0.12 g, 0.6 mmol) and trimethylsilylacetylene (2.31 g, 23.5 mmol).
  • bis (triphenylphosphine) palladium dichloride (0.22 g, 0.3 mmol)
  • cuprous iodide 0.12 g, 0.6 mmol
  • trimethylsilylacetylene 2.31 g, 23.5 mmol
  • an n-pentane solution (10.7 ml, 16.6 mmol) of t-butyllithium (manufactured by Kanto Chemical Co., Ltd., 1.55 M) was added at the same temperature for 10 minutes.
  • the mixture was further stirred at the same temperature for 10 minutes, and then heated to 0 ° C. and stirred at the same temperature for 1 hour to obtain a reaction solution.
  • an iodine solution in which iodine (4.40 g, 17.3 mmol) was dissolved in 90 ml of dehydrated diethyl ether was prepared. The iodine solution was added to the reaction solution at 0 ° C.
  • reaction solution was added to ice water for liquid separation, and the obtained organic layer was washed successively with a saturated aqueous sodium sulfite solution and a saturated aqueous sodium chloride solution, dried over sodium sulfate, and then the solvent was distilled off under reduced pressure.
  • the mixed solution was added to the reaction solution at room temperature, and the mixture was further stirred at the same temperature for 22 hours.
  • a saturated aqueous sodium chloride solution and chloroform were added to the reaction mixture.
  • the organic layer was separated, washed with water and dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. After washing the obtained crude product with hexane, the product was collected by recycle preparative high performance liquid chromatography (moving bed; chloroform), the solvent was distilled off, and then recrystallized from toluene.
  • the physical properties of the compound (1a-15) were as follows. 1 H-NMR ( ⁇ , CDCl 3 ): 1.07 to 1.21 (m, 42H)
  • Example 7 2,5-bis (thieno [3,2-b] thiophen-2-yl) -3,6-bis [2- (triisopropylsilyl) ethynyl] thieno [3,2-b] thiophene ( Production of Compound (1-15)) 2,5-bis (thieno [3,2-b] thiophen-2-yl) -3 was prepared in the same manner as in Example 4 except that the compound (1a-13) was changed to the compound (1a-15).
  • the substrate was subjected to ultrasonic cleaning in the order of acetone and isopropyl alcohol, dried, cleaned with oxygen plasma, and then heated at 80 ° C. for 5 minutes for dehydration operation.
  • the channel width was 2 mm, and the channel length was 100 ⁇ m.
  • the channel portion was treated with phenethyltrichlorosilane, the electrode portion was treated with pentafluorobenzenethiol, and then 0.6 wt / vol% tetralin of the compound (1-15) produced in Example 7 under a nitrogen atmosphere.
  • a solution was dropped, an organic layer was formed by a spin coating method, and then a solution containing a fluoropolymer was dropped on the organic layer, and an insulating layer was formed by a spin coating method.
  • the film thickness of the compound (1-15) was 25 nm
  • the film thickness of the insulating layer was 300 nm.
  • chromium and aluminum were vapor-deposited in this order, and a gate electrode was installed to manufacture an organic transistor as shown in FIG.
  • the thickness of the chromium layer was 5 nm
  • the thickness of the aluminum layer was 200 nm.
  • the electrical characteristics of the obtained organic transistor device were measured.
  • L and W are the gate length and gate width of the organic transistor
  • Ci is the capacitance per unit area of the gate insulating film
  • Vg is the gate voltage
  • Vt is the gate voltage. It is a threshold voltage.
  • the present invention provides a novel compound capable of providing an organic semiconductor active layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)

Abstract

式(1)[式中、X、Y、W及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。nは0または1を表す。P、P、Q及びQは、それぞれ独立に、式(2)(式中、Rは、水素原子、置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいシリル基を表す。)で表される基、置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族複素環基を表す。ここで、P、P、Q及びQの少なくとも1つの基は、式(2)で表される基である。]で表される化合物は、有機半導体活性層の薄膜に利用できる。

Description

有機トランジスタ用化合物
 本発明は、化合物、該化合物の製造方法、該化合物を含む薄膜及び該薄膜を含む有機トランジスタ等に関する。
 最近、電子ペーパー、大画面フラットパネルディスプレイなどの素子として有機トランジスタが用いられている。このような有機トランジスタは、有機半導体活性層、基板、絶縁層、電極等の部材から構成されており、例えば、特開2006−114581号公報には、ペンタセンを真空蒸着して得られた薄膜を有機半導体活性層として含む有機トランジスタが記載されている。
 このような状況下、有機半導体活性層の薄膜を与え得る新規な化合物が求められている。
 本発明は、有機半導体活性層の薄膜を与え得る新規な化合物を提供する。
<1> 式(1)
Figure JPOXMLDOC01-appb-I000017
(式中、X、Y、W及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。nは0又は1を表す。
、P、Q及びQは、それぞれ独立に、式(2)
Figure JPOXMLDOC01-appb-I000018
(式中、Rは、水素原子、置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいシリル基を表す。)
で表される基、置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族複素環基を表す。ここで、P、P、Q及びQの少なくとも1つの基は、式(2)で表される基である。)
で表される化合物。
<2> 式(2)で表される基が、式(3)
Figure JPOXMLDOC01-appb-I000019
(式中、R、R及びRは、それぞれ独立に、炭素数1~16のアルキル基又は炭素数6~12のアリール基を表す。)
で表される基である<1>に記載の化合物。
<3> X、Y、W及びZが、いずれも硫黄原子である<1>又は<2>に記載の化合物。
<4> P及びPが同一での式(2)で表される基であり、Q及びQが同一で芳香族炭化水素基又は芳香族複素環基である<1>~<3>のいずれかに記載の化合物。
<5> nが0である<1>~<4>のいずれかに記載の化合物。
<6> Q及びQが同一で、チエノ[3,2−b]チオフェン−2−イル基である<1>~<5>のいずれかに記載の化合物。
<7> 遷移金属化合物の存在下、Qを含む金属化合物(但し、Qは、芳香族炭化水素基又は芳香族複素環基を表す。)と、式(1a)
Figure JPOXMLDOC01-appb-I000020
(式中、X、Y、W及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。Rは、水素原子、置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいシリル基を表す。nは0又は1を表し、Xは、それぞれ独立に、ハロゲン原子を表す。)
で表される化合物とを反応させる工程を含む式(1b)
Figure JPOXMLDOC01-appb-I000021
(式中、n、W、X、Y、Z、R及びQは前記と同じ意味を表す。)
で表される化合物の製造方法。
<8> 上記の式(1a)
Figure JPOXMLDOC01-appb-I000022
で表される化合物。
<9> 式(1a)中のW、X、Y及びZがいずれも硫黄原子である<8>に記載の化合物。
<10> 式(1a)中のnが0である<8>又は<9>に記載の化合物。
<11> 式(1a)中のXが、いずれもヨウ素原子である<8>~<10>のいずれかに記載の化合物。
<12> Rが、下記式
Figure JPOXMLDOC01-appb-I000023
(式中、R、R及びRは、それぞれ独立に、炭素数1~16のアルキル基又は炭素数6~12のアリール基を表す。)
で表される<8>~<11>のいずれかに記載の化合物。
<13> 式(1c)
Figure JPOXMLDOC01-appb-I000024
(式中、W、X、Y及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。Rは、水素原子、置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいシリル基を表す。nは0又は1を表す。)
で表される化合物と、アルキルリチウムとを反応させる工程、及び前記工程で得られた反応生成物に、ハロゲン原子としてXを含むハロゲン化剤を反応させる工程を含む式(1a)
Figure JPOXMLDOC01-appb-I000025
(式中、n、R、W、X、Y及びZは前記と同じ意味を表す。Xは、それぞれ独立に、ハロゲン原子を表す。)
で表される化合物の製造方法。
<14> 式(1c)
Figure JPOXMLDOC01-appb-I000026
(式中、W、X、Y及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。Rは、置換されていてもよいシリル基を表す。nは0又は1を表す。)
で表される化合物。
<15> 式(1c)中のW、X、Y及びZが、いずれも硫黄原子である<14>に記載の化合物。
<16> 式(1c)中のnが、0である<14>又は<15>に記載の化合物。
<17> 遷移金属化合物、ハロゲン化銅及び有機塩基の存在下、式(1d)
Figure JPOXMLDOC01-appb-I000027
(式中、X、Y、W及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。nは0又は1を表す。Xは、それぞれ独立に、ハロゲン原子を表す。)
で表される化合物と、式(5)
Figure JPOXMLDOC01-appb-I000028
(式中、Rは、置換されていてもよいシリル基を表す。)
で表される化合物とを反応させる工程を含む式(1c)
Figure JPOXMLDOC01-appb-I000029
(式中、n、W、X、Y、Z、及びRは前記と同じ意味を表す。)
で表される化合物の製造方法。
<18> 式(1d)
Figure JPOXMLDOC01-appb-I000030
(式中、X、Y、W及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。nは0又は1を表す。Xは、ヨウ素原子を表す。)
で表される化合物。
<19> 式(1)
Figure JPOXMLDOC01-appb-I000031
(式中、X、Y、W及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。nは0又は1を表す。P、P、Q及びQは、それぞれ独立に、式(2)
Figure JPOXMLDOC01-appb-I000032
で表される基、置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族複素環基を表す。P、P、Q及びQの少なくとも1つの基は、式(2)で表される基である。)
で表される化合物及び有機溶媒を含有する組成物。
<20> <19>に記載の組成物を基板上に塗布する工程と、基板上に塗布された塗布膜を乾燥する工程とを含む薄膜の製造方法。
<21> <1>~<6>のいずれかに記載の式(1)で表される化合物を含有する薄膜。
<22> <1>~<6>のいずれかに記載の式(1)で表される化合物からなる薄膜。
<23> <21>又は<22>に記載の薄膜を含有する有機半導体デバイス。
<24> <21>又は<22>に記載の薄膜を含有する有機トランジスタ。
 図1は、本発明における有機トランジスタの一つの態様を説明する断面図である。図2は、本発明における有機トランジスタの一つの態様を説明する断面図である。
 11と21は基板、12と25はゲート電極、13と24はゲート絶縁膜、14と22はソース電極、15と23はドレイン電極を表す。16と26は有機半導体活性層を表す。
 以下、本発明について詳細に説明する。本発明は、式(1)
Figure JPOXMLDOC01-appb-I000033
で表される化合物(化合物(1))である。
 化合物(1)におけるX、Y、W及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表し、好ましくは、いずれも硫黄原子である。
 nは0または1を表す。nが0の場合、化合物(1)は下記式
Figure JPOXMLDOC01-appb-I000034
で表され、nが1の場合、化合物(1)は
Figure JPOXMLDOC01-appb-I000035
で表すことができる。
 nは0であることが好ましい。
 P、P、Q及びQは、それぞれ独立に、式(2)
Figure JPOXMLDOC01-appb-I000036
で表される基、置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族複素環基を表す。
 P、P、Q及びQの少なくとも1つの基は、式(2)で表される基である。好ましいP、P、Q及びQの組み合わせとしては、P及びPが同一で式(2)で表される基であり、Q及びQが同一で置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族複素環基である場合、又は、Q及びQが同一で式(2)で表される基であり、P及びPが同一で置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族複素環基である場合等を挙げることができる。
 まず、式(2)で表される基について説明する。
 式(2)に含まれるRは、水素原子、置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいシリル基を表し、好ましくは、置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいシリル基である。
 Rにおけるアルキル基としては、例えば、直鎖状、分枝状又は環状の炭素数1~30のアルキル基を挙げることができ、具体的には、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−イコシル基、n−ヘンイコシル基、n−ドコシル基、n−トリコシル基、n−テトラコシル基、n−ペンタコシル基、n−ヘキサコシル基、n−ヘプタコシル基、n−オクタコシル基、n−ノナコシル基、n−トリアコンチル基などの炭素数1~30の直鎖アルキル基、イソプロピル基、s−ブチル基、t−ブチル基、ネオペンチル基、2−エチルヘキシル基、2−ヘキシルデシル基などの炭素数3~30の分枝アルキル基、シクロペンチル基、シクロヘキシル基などの炭素数5~30のシクロアルキル基を挙げることができる。
 Rで表されるアルキル基は、好ましくはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、ネオペンチル基、シクロペンチル基、n−ヘキシル基、2−エチルヘキシル基、シクロヘキシル基、n−ヘプチル基、n−オクチル基、シクロオクチル基、n−ノニル基、n−デシル基、2−ヘキシルデシル基等の炭素数1~16のアルキル基である。
 Rで表されるアリール基としては、例えば、炭素数6~30のアリール基を挙げることができ、好ましくは、フェニル基、ナフチル基等の炭素数6~12のアリール基が挙げられる。
 Rで表されるアルキル基及びアリール基は一以上の置換基を有していてもよく、該置換基の例は、後述するP、P、Q又はQで表される芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基の例と同じである。
 Rが置換されていてもよいシリル基である場合、式(2)で表される基として、例えば、式(3)
Figure JPOXMLDOC01-appb-I000037
(式中、R、R及びRは、それぞれ独立に、炭素数1~16のアルキル基又は炭素数6~12のアリール基を表す。)
で表される基を挙げることができる。置換されていてもよいシリル基としては、下記式
Figure JPOXMLDOC01-appb-I000038
(式中、R、R及びRは、前記と同じ意味を表す。)
で表される基であることが好ましい。
 ここで、アルキル基及びアリール基は、前記のRとして例示された炭素数1~16のアルキル基及び炭素数6~12のアリール基と同様のものを挙げることができる。
 好ましい式(3)で表される基としては、R、R及びRが、いずれも同一で、メチル基、エチル基又はイソプロピル基(i−C−)である式(3)で表される基を挙げることができる。
 P、P、Q及びQの芳香族炭化水素基とは、芳香族炭化水素化合物に含まれる1つの水素原子が結合手となった基を意味し、芳香族炭化水素化合物とは、炭素原子から形成された環構造を有する環状化合物であって、該環構造が芳香族性を有する炭化水素化合物を意味する。芳香族炭化水素化合物としては、例えば、ベンゼンなどの単環式の芳香族炭化水素化合物、ナフタレンなどの二環式の芳香族炭化水素化合物、アントラセン、フルオレンなどの三環式の芳香族炭化水素化合物等の炭素数6~20のアリール等が挙げられる。
 P、P、Q及びQの芳香族複素環基とは、芳香族複素環化合物に含まれる1つの水素原子が結合手となった基を意味し、芳香族複素環化合物とは、窒素原子、酸素原子、硫黄原子、セレン原子などのヘテロ原子と炭素原子とから形成された環構造を有する環状化合物であって、該環構造が芳香族性を有する化合物を意味する。芳香族複素環化合物としては、例えば、1つの環構造からなる単環式の芳香族複素環化合物、2つの環構造からなる二環式の芳香族複素環化合物、3つの環構造からなる三環式の芳香族複素環化合物等を挙げることができる。
 かかる芳香族複素環化合物としては、例えば、フラン、チオフェン、セレノフェン、ピロール、オキサゾール、チアゾール、ピリジン、ピラジン、ピリミジン、ピリダジン等の単環式の芳香族性複素環化合物、例えば、チエノ[3,2−b]チオフェン、フロ[3,2−b]フラン、チエノ[3,2−b]フラン、ベンゾ[b]チオフェン、ベンゾ[b]フラン等の二環式の芳香族複素環化合物、例えば、ジチエノ[3,2−b:2’,3’−d]チオフェン、ベンゾ[1,2−b:4,5−b’]ジチオフェン、ベンゾ[1,2−b:4,5−b’]ジフラン等の三環式の芳香族複素環化合物等を挙げることができる。
 P、P、Q又はQで表される芳香族炭化水素基及び芳香族複素環基は、一以上の置換基を有していてもよい。置換基としては、例えば、フッ素原子、フッ素原子を有していてもよいアルキル基、フッ素原子を有していてもよいアルコキシ基、フッ素原子を有していてもよいアルキルチオ基、フッ素原子を有していてもよいアリール基、フッ素原子を有していてもよいヘテロアリール基が挙げられ、好ましくは、フッ素原子、アルキル基、アルコキシ基、アルキルチオ基であり、特に好ましいのは、フッ素原子である。
 フッ素原子を有していてもよいアルキル基としては、前記に例示された炭素数1~30のアルキル基又は該アルキル基の水素原子がフッ素に置換されたものが例示される。好ましくは、炭素数1~4のアルキル基である。
 フッ素原子を有していてもよいアルコキシ基としては、例えば、直鎖状、分枝状又は環状の炭素数1~30のアルコキシ基を挙げることができ、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基、n−ペンチルオキシ基、n−ヘキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、n−デシルオキシ基、n−ウンデシルオキシ基、n−ドデシルオキシ基、n−トリデシルオキシ基、n−テトラデシルオキシ基、n−ペンタデシルオキシ基、n−ヘキサデシルオキシ基、n−ヘプタデシルオキシ基、n−オクタデシルオキシ基、n−ノナデシルオキシ基、n−イコシルオキシ基、n−ヘンイコシルオキシ基、n−ドコシルオキシ基、n−トリコシルオキシ基、n−テトラコシルオキシ基、n−ペンタコシルオキシ基、n−ヘキサコシルオキシ基、n−ヘプタコシルオキシ基、n−オクタコシルオキシ基、n−ノナコシルオキシ基、n−トリアコンチルオキシ基等の炭素数1~30の直鎖アルコキシ基、イソプロポキシ基、イソブトキシ基、t−ブトキシ基、ネオペンチルオキシ基、2−エチルヘキシルオキシ基、2−ヘキシルデシルオキシ基、3,7−ジメチルオクチルオキシ基等の炭素数3~30の分枝アルコキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロオクチルオキシ基等の炭素数5~30のシクロアルキル基、メトキシメトキシ基、メトキシエトキシ基、メトキシメトキシメトキシ基、メトキシエトキシエトキシ基、ポリエチレングリコキシ基等の炭素数2~30の(ポリ)アルキレンオキシアルキルオキシ基、及び、上記に例示されたアルコキシ基の水素原子がフッ素原子に置換された基等を挙げることができる。
 好ましいアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、シクロペンチルオキシ基、n−ヘキシルオキシ基、2−エチルヘキシルオキシ基、シクロヘキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、シクロオクチルオキシ基、ノニルオキシ基、デシルオキシ基、2−ヘキシルデシルオキシ基、3,7−ジメチルオクチルオキシ基、n−ウンデシルオキシ基、n−ドデシルオキシ基、n−トリデシルオキシ基、n−テトラデシルオキシ基、n−ペンタデシルオキシ基、n−ヘプタデシルオキシ基、n−オクタデシルオキシ基、n−ノナデシルオキシ基、n−イコシルオキシ基、メトキシメトキシ基、メトキシエトキシ基、メトキシメトキシメトキシ基、メトキシエトキシエトキシ基等の炭素数1~20のアルコキシ基が挙げられ、より好ましくは、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基、n−ペンチルオキシ基、シクロペンチルオキシ基、n−ヘキシルオキシ基、2−エチルヘキシルオキシ基、シクロヘキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、シクロオクチルオキシ基、ノニルオキシ基、デシルオキシ基、2−ヘキシルデシルオキシ基、3,7−ジメチルオクチルオキシ基、n−ウンデシルオキシ基、n−ドデシルオキシ基、n−トリデシルオキシ基、n−テトラデシルオキシ基、n−ペンタデシルオキシ基、n−ヘキサデシルオキシ基、メトキシメトキシ基、メトキシエトキシ基、メトキシメトキシメトキシ基、メトキシエトキシエトキシ基の炭素数1~16のアルコキシ基等が挙げられる。
 フッ素原子を有していてもよいアルキルチオ基としては、例えば、直鎖状、分枝状又は環状の炭素数1~30のアルキルチオ基を挙げることができ、メチルチオ基、エチルチオ基、n−プロピルチオ基、n−ブチルチオ基、n−ペンチルチオ基、n−ヘキシルチオ基、n−ヘプチルチオ基、n−オクチルチオ基、n−ノニルチオ基、n−デシルチオ基、n−ウンデシルチオ基、n−ドデシルチオ基、n−トリデシルチオ基、n−テトラデシルチオ基、n−ペンタデシルチオ基、n−ヘキサデシルチオ基、n−ヘプタデシルチオ基、n−オクタデシルチオ基、n−ノナデシルチオ基、n−イコシルチオ基、n−ヘンイコシルチオ基、n−ドコシルチオ基、n−トリコシルチオ基、n−テトラコシルチオ基、n−ペンタコシルチオ基、n−ヘキサコシルチオ基、n−ヘプタコシルチオ基、n−オクタコシルチオ基、n−ノナコシルチオ基、n−トリアコンチルチオ基等の炭素数1~30の直鎖アルキルチオ基、例えば、イソプロピルチオ基、n−ブチルチオ基、イソブチルチオ基、s−ブチルチオ基、t−ブチルチオ基、2−エチルヘキシルチオ基、n−ヘプチルチオ基、2−ヘキシルデシルチオ基等の炭素数3~30の分枝鎖アルキルチオ基、例えば、シクロペンチルチオ基、シクロヘキシルチオ基、シクロヘプチルチオ基、シクロオクチルチオ基等の炭素数5~30のシクロアルキルチオ基、及び、上記に例示されたアルキルチオ基の水素原子がフッ素原子に置換された基等を挙げることができる。
 好ましいアルキルチオ基としては、例えば、エチルチオ基、n−プロピルチオ基、イソプロピルチオ基、n−ブチルチオ基、イソブチルチオ基、s−ブチルチオ基、t−ブチルチオ基、n−ペンチルチオ基、n−ヘキシルチオ基、2−エチルヘキシルチオ基、シクロヘキシルチオ基、n−ヘプチルチオ基、シクロヘプチルチオ基、n−オクチルチオ基、シクロオクチルチオ基、n−ノニルチオ基、n−デシルチオ基、2−ヘキシルデシルチオ基、n−ウンデシルチオ基、n−ドデシルチオ基、n−トリデシルチオ基、n−テトラデシルチオ基、n−ペンタデシルチオ基、n−ヘキサデシルチオ基、n−ヘプタデシルチオ基、n−オクタデシルチオ基、n−ノナデシルチオ基、及びn−イコシルチオ基等の炭素数2~20のアルキルチオ基が挙げられ、より好ましくはエチルチオ基、n−プロピルチオ基、n−ブチルチオ基、n−ペンチルチオ基、n−ヘキシルチオ基、2−エチルヘキシルチオ基、シクロヘキシルチオ基、n−ヘプチルチオ基、シクロヘプチルチオ基、n−オクチルチオ基、シクロオクチルチオ基、2−エチルヘキシルチオ基、n−ノニルチオ基、n−デシルチオ基、2−n−ヘキシル−n−デシルチオ基、n−ウンデシルチオ基、n−ドデシルチオ基、n−トリデシルチオ基、n−テトラデシルチオ基、n−ペンタデシルチオ基、及びn−ヘキサデシルチオ基等の炭素数2~16のアルキルチオ基が挙げられる。
 フッ素原子を有していてもよいアリール基としては、例えば、前記に例示された炭素数1~30のアリール基又は該アリール基に含まれる水素原子がフッ素原子に置換されたものなどが例示される。好ましくは、フェニル基又はナフチル基である。
 フッ素原子を有していてもよいヘテロアリール基としては、例えば、チエニル基、フリル基、チアゾリル基等の単環式の芳香族複素環基、例えば、チエノ[3,2−b]チエニル基、フロ[3,2−b]フリル基、チエノ[3,2−b]フリル基、ベンゾ[b]チエニル基、ベンゾ[b]フリル基等の二環式の芳香族複素環基であり、好ましくは、チエニル基、フリル基等の単環式の芳香族複素環基、チエノ[3,2−b]チエニル基、ベンゾ[b]チエニル基、ベンゾ[b]フリル基等の二環式の芳香族複素環基、及び、前記に例示されたヘテロアリール基に含まれる水素原子がフッ素原子に置換されたものなどを挙げることができる。
 化合物(1)としては以下の表1~22に記載の化合物を例示することができる。
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
 本発明の化合物(1)としては、P及びPが同一で、かつ、式(2)で表される基であり、Q及びQが同一の置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族複素環基(以下、代表してQと記すことがある。)である化合物、すなわち、式(1b)
Figure JPOXMLDOC01-appb-I000061
(式中、n、W、X、Y、Z、R及びQは前記と同じ意味を表す。)
で表される化合物が好ましい。
 本発明の化合物(1)の異なる例は、P及びPが同一の置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族複素環基(以下、代表してPと記すことがある。)であり、Q及びQが同一で、かつ、式(2)で表される基である化合物、即ち、式(1b’)
Figure JPOXMLDOC01-appb-I000062
(式中、n、W、X、Y、Z、R及びPは前記と同じ意味を表す。)
で表される化合物が好ましい。
 とりわけ、表中のmが以下の番号で表される化合物(1)が好ましい。
13、14,15、40,41,42,60,61,62、100,101,102、120,121,122,140,141,142,160、161,162、180,181,182、200,201,202,220,221,222、240、241、242、260、261、262,280,281,282,300,301,302,320、321、322、340、341、342、360、361、362、380、381、382、400、401、402、420、421,422、440、441、442、460、461、462
 より好ましくは、表中のmが以下の番号で表される化合物(1)である。
13、14、15、40、41
 本発明の化合物(1)は、有機溶媒への溶解性に優れる傾向があることから、化合物(1)の製造が容易な傾向があり、製造後の精製も容易な傾向がある。
 また、化合物(1)を有機溶媒に溶解した溶解液は、塗布及び乾燥して薄膜を形成させることができる。化合物(1)を塗布製膜加工して得られる薄膜は、後述するように、高いキャリア移動度を示す薄膜である傾向があることから好ましい。
 次に、化合物(1)の製造方法について説明する。
 化合物(1)が、化合物(1b)である場合の製造方法としては、例えば、遷移金属化合物の存在下、Qを含む金属化合物(化合物(4))と、式(1a)
Figure JPOXMLDOC01-appb-I000063
(式中、n、W、X、Y、Z及びRは前記と同じ意味を表す。Xは、それぞれ独立に、ハロゲン原子を表し、より好ましくはヨウ素原子である。Xは同一であることが好ましい。)
で表される化合物(化合物(1a))とを反応させる工程(以下、本工程と記すことがある)を含む方法等を挙げることができる。
 化合物(4)におけるQは前記のQ及びQと同様の置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族性複素環基を挙げることができる。好ましくは置換されていてもよい芳香族性複素環基である。
 化合物(4)に含まれる金属原子としては、例えば、スズ原子、マグネシウム原子、亜鉛原子及びホウ素原子等を挙げることができる。
 Q及びスズ原子を含む化合物(4)としては、例えば、式(6)
Figure JPOXMLDOC01-appb-I000064
で表される化合物(化合物(6))等を挙げることができる。
 式(6)中、Qは置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族性複素環基を表す。
 式(6)中、R、R、及びRとしては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、n−オクチル基、n−デシル基等の炭素数1~10のアルキル基であり、好ましくは、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ヘキシル基であり、さらに好ましくは、メチル基、エチル基、n−プロピル基、n−ブチル基である。
 化合物(6)の製造方法としては、例えば、式(6−2)
Figure JPOXMLDOC01-appb-I000065
(式中、Qは前記と同じ意味を表し、Xは塩素原子、臭素原子、ヨウ素原子等のハロゲン原子又は炭素数1~10のアルコキシ基を表す。)
で表される化合物と溶媒とを含む溶液を−40℃以下、好ましくは−55℃~−110℃、更に好ましくは、−65℃~−100℃の温度範囲に冷却させた後、t−ブチルリチウム等のアルキルリチウム試薬を加え、更に上記温度範囲で10分~5時間攪拌する。また、式(6−2)で表される化合物と溶媒とを含む溶液を40℃~−110℃、好ましくは20℃~−100℃、更に好ましくは、0℃~−80℃の温度範囲に設定後、イソプロピルマグネシウムブロマイド等のグリニャール試薬を加え、更に上記温度範囲で10分~5時間攪拌する。または、通常のグリニャール試薬の調製法と同様に、式(6−2)で表される化合物と金属マグネシウムとを反応させる。
 このようにしてQのアニオンを発生させた後、式(6−1)
Figure JPOXMLDOC01-appb-I000066
(式中、Xはフッ素原子、塩素原子、臭素原子又はヨウ素原子であるハロゲン原子を表し、R、R、及びRは前記と同じ意味を表す。)
で表される化合物を加え、30℃~−80℃にて、10分~5時間、反応させる方法等を挙げることができる。
 また、Qが置換されていてもよい芳香族複素環基であり、ハロゲン原子を有さない場合、式(6−3)
Figure JPOXMLDOC01-appb-I000067
(式中、−Hは芳香族複素環のα位に結合している水素を表す)で表される化合物と溶媒とを含む溶液を−40℃以下、好ましくは−55℃~−110℃、更に好ましくは、−65℃~−100℃の温度範囲に冷却させた後、t−ブチルリチウム等のアルキルリチウム試薬を加え、更に上記温度範囲で10分~5時間攪拌する。続いて、得られた反応物に、式(6−1)で表される化合物を加え、−100℃~30℃にて、10分~5時間、反応させる方法を挙げることができる。
 Q及びマグネシウム原子を含む化合物(4)としては、式(7)
Figure JPOXMLDOC01-appb-I000068
で表される化合物(化合物(7))等を挙げることができる。
 式(7)中、Qは前記と同じ意味を表し、Xは、例えば、フッ素原子、塩素原子、臭素原子又はヨウ素原子であるハロゲン原子であり、好ましくは塩素原子、臭素原子又はヨウ素原子である。
 化合物(7)は、化合物(6)の製造方法で述べたように、(6−2)で表される化合物とイソプロピルマグネシウムブロミド等のグリニャール試薬、または金属マグネシウムとの反応で調製する。
 Q及び亜鉛原子を含む化合物(4)としては、式(8)
Figure JPOXMLDOC01-appb-I000069
で表される化合物(化合物(8))等を挙げることができる。
 式(8)中、Qは前記と同じ意味を表し、Xは、フッ素原子、塩素原子、臭素原子又はヨウ素原子であるハロゲン原子であり、好ましくは塩素原子、臭素原子又はヨウ素原子である。
 化合物(8)の製造方法としては、前記式(6−1)で表される化合物に代えて塩化亜鉛、臭化亜鉛、ヨウ化亜鉛などのハロゲン化亜鉛を用いる以外は、化合物(6)と同様にして製造することができる。
 Q及びホウ素原子を含む化合物(4)としては、式(9)
Figure JPOXMLDOC01-appb-I000070
で表される化合物(化合物(9))等を挙げることができる。
 式(9)中、Qは前記と同じ意味を表し、R及びRとは、水酸基、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、及びn−ヘキサノキシ基等の炭素数1~10のアルコキシ基、例えば、フェノキシ基、1−ナフトキシ基、2−ナフトキシ基等の炭素数6~20のアリールオキシ基を表す。
 また、R及びRとは結合していてもよく、R、R及びホウ素原子から成る環構造としては、例えば、1,3,2−ジオキサボロラン環、4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン環、5,5−ジメチル−1,3,2−ジオキサボリナン環、1,3,2−ベンゾジオキサボロール環、9−ボラビシクロ3,3,1−ノナン環を挙げることができる。
 化合物(9)は、式(6−1)で表される化合物に代えて、式(9−1)
Figure JPOXMLDOC01-appb-I000071
(式中、R及びRは水酸基を除く前記と同じ意味を表し、Xは、前記のアルコキシ基、アリールオキシ基を表す。)
を用いる以外は、化合物(6)と同様に製造することができる。
 本工程におけるQを含む金属化合物(化合物(4))の使用量は、化合物(1a)1モルに対して、通常、Qで表される基が1~10モルの割合、好ましくは2~4モルの割合である。
 本工程に用いられる遷移金属化合物としては、例えば、パラジウム化合物、ニッケル化合物が挙げられる。パラジム化合物は、さらにホスフィン化合物と反応させたものであってもよい。
 遷移金属化合物は、市販品をそのまま用いてもよい。
 ここで、パラジウム化合物としては、例えば、トリス(ジベンシリデンアセトン)ジパラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)・クロロホルム付加体、酢酸パラジウム(II)、塩化パラジウム(II)、(ビシクロ[2.2.1]ヘプタ−2,5−ジエン)ジクロロパラジウム(II)、(2,2’−ビピリジル)ジクロロパラジウム(II)、ビス(アセトニトリル)クロロニトロパラジウム(II)、ビス(ベンゾニトリル)ジクロロパラジウム(II)、ビス(アセトニトリル)ジクロロパラジウム(II)、ジクロロ(1,5−シクロオクタジエン)パラジウム(II)、ジクロロ(エチレンジアミン)パラジウム(II)、ジクロロ(N,N,N’,N’−テトラメチレンジアミン)パラジウム(II)、ジクロロ(1,10−フェナントロリン)パラジウム(II)、パラジウム(II)アセチルアセトナート、臭化パラジウム(II)、パラジウム(II)ヘキサフルオロアセチルアセトナート、ヨウ化パラジウム(II)、硝酸パラジウム(II)、硫酸パラジウム(II)、トリフルオロ酢酸パラジウム(II)が挙げられる。かかるパラジウム化合物は、通常、市販品をそのまま用いる。
 パラジウム化合物の使用量は、化合物(1a)1モルに対して、パラジウム金属原子として、通常、0.001~1モルの割合である。
 ホスフィン化合物としては、例えば、トリフェニルホスフィン、トリス(2−メチルフェニル)ホスフィン、トリス(3−メチルフェニル)ホスフィン、トリス(4−メチルフェニル)ホスフィン、トリス(ペンタフルオロフェニル)ホスフィン、トリス(4−フルオロフェニル)ホスフィン、トリス(2−メトキシフェニル)ホスフィン、トリス(3−メトキシフェニル)ホスフィン、トリス(4−メトキシフェニル)ホスフィン、トリス(2,4,6−トリメチルフェニル)ホスフィン、トリ(3−クロロフェニル)ホスフィン、トリ(4−クロロフェニル)ホスフィン、トリ−n−ブチルホスフィン、トリ−tert−ブチルホスフィン、トリシクロヘキシルホスフィン、1,2−ジフェニルホスフィノエタン、1,3−ジフェニルホスフィノプロパン、1,4−ジフェニルホスフィノブタン、1,2−ジシクロヘキシルホスフィノエタン、1,3−ジシクロヘキシルホスフィノプロパン、1,4−ジシクロヘキシルホスフィノブタン、1,2−ジメチルホスフィノエタン、1,3−ジメチルホスフィノプロパン、1,4−ジメチルホスフィノブタン、1,2−ジエチルホスフィノエタン、1,3−ジエチルホスフィノプロパン、1,4−ジエチルホスフィノブタン、1,2−ジイソプロピルホスフィノエタン、1,3−ジイソプロピルホスフィノプロパン、1,4−ジイソプロピルホスフィノブタン、トリ(2−フリルホスフィン)、2−(ジシクロヘキシルホスフィノ)ビフェニル、2−(ジ−tert−ブチルホスフィノ)ビフェニル、2−ジ−tert−ブチルホスフィノ−2’−メチルビフェニル、2−(ジシクロヘキシルホスフィノ−2’−6’−ジメトキシ、1,1’−ビフェニル、2−(ジシクロヘキシルホスフィノ)−2’−(N,N−ジメチルアミノ)ビフェニル、2−ジシクロヘキシルホスフィノ−2’−メチル−ビフェニル、2−(ジシクロヘキシルホスフィノ)−2’,4’,6’−トリ−イソプロピル1,1’−ビフェニル、1,1‘−ビス(ジフェニルホスフィノ)フェロセン、1,1’−ビス(ジ−イソプロピルホスフィノ)フェロセンが挙げられる。かかるホスフィン化合物としては、市販されているものを用いてもよいし公知の方法に準じて製造したものを用いてもよい。ホスフィン化合物の使用量はパラジウム原子1モルに対して、通常、リン原子0.5~10モルの割合、好ましくは1~5モルの割合である。
 さらにホスフィン化合物を反応させたパラジウム化合物としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム(0)、ビス(アセテート)ビス(トリフェニルホスフィン)パラジウム(II)、ビス[1,2−ビス(ジフェニルホスフィノ)エタン]パラジウム(0)、[1,2−ビス(ジフェニルホスフィノ)エタン]ジクロロパラジウム(II)、ジブロモビス(トリフェニルホスフィン)パラジウム(II)、ジクロロビス(ジメチルフェニルホスフィン)パラジウム(II)、ジクロロビス(メチルジフェニルホスフィン)パラジウム(II)、ジクロロビス(トリシクロヘキシルホスフィン)パラジウム(II)、ジクロロビス(トリエチルホスフィン)パラジウム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ジクロロビス[トリス(2−メチルフェニル)ホスフィン]パラジウム(II)、テトラキス(メチルジフェニルホスフィン)パラジウム(0)、テトラキス(トリシクロヘキシルホスフィン)パラジウム(0)、ジクロロビス(1,1’−ジフェニルホスフィノフェロセニル)パラジウム(II)が挙げられる。これらは市販されており、市販品をそのまま使用してもよい。
 ニッケル化合物としては、例えば、ジクロロビス(1,1’−ジフェニルホスフィノフェロセニル)ニッケル(II)、ジクロロビス(ジフェニルホスフィノ)ニッケル(II)、ジクロロニッケル(II)、ジヨードニッケル(II)、ジクロロ(1,5−シクロオクタジエン)ニッケル(II)、ジクロロ[1,2−ビス(ジフェニルホスフィノ)エタン]ニッケル(II)が挙げられる。
 ニッケル化合物の使用量は、化合物(1a)1モルに対して、ニッケル金属原子として、通常、0.001~1モルの割合である。
 本反応で化合物(9)を用いる場合は、通常、塩基の存在下で行われる。かかる塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化タリウム、水酸化バリウム、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウム−tert−ブトキシド、カリウム−tert−ブトキシド、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸タリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム、ジエチルアミン、トリエチルアミン、ジイソプロピルアミン、ピペリジンが挙げられる。塩基の使用量は、化合物(9)1モルに対して、1~50モルの割合、好ましくは2~20モルの割合である。
 本工程は、溶媒の存在下で行うことが好ましい。溶媒としては、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、tert−ブチルメチルエーテル、シクロペンチルメチルエーテル、エチレングリコールジメチルエーテルなどのエーテル溶媒;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノンなどのアミド溶媒;ジメチルスルホキシド;水が挙げられる。溶媒は単独で用いてもよいし2種以上を混合して用いてもよい。溶媒は脱気して用いることが好ましい。また、化合物(1b)の製造方法で用いる化合物(1a)又は化合物(4)の一部又は全てを溶媒に溶解又は懸濁させてから、窒素バブリング又は減圧等で脱気してもよい。溶媒の使用量は、化合物(1a)1重量部に対して、通常、0.5~200重量部の割合、好ましくは2~100重量部の割合である。
 本工程は、さらに、相間移動触媒の存在下で行ってもよい。相間移動触媒としては、例えば、テトラアルキルハロゲン化アンモニウム、テトラアルキル硫酸水素アンモニウム、又は、テトラアルキル水酸化アンモニウムなどの第4級アンモニウム塩等を挙げることができ、好ましくは、テトラ−n−ブチルハロゲン化アンモニウム、ベンジルトリエチルハロゲン化アンモニウム等が挙げられる。
 相間移動触媒の使用量は、化合物(1a)1モルに対して、0.0001~1モルの割合、好ましくは0.01~0.2モルの割合である。
 本工程は大気下でも可能であるが、窒素あるいはアルゴン等の不活性ガス下で行うことが好ましい。
 本工程における反応温度は、通常、0~200℃の範囲内である。
 反応時間は、通常、1分~96時間の範囲内である。
 本工程の終了後、例えば、得られた反応混合物と塩化ナトリウム水溶液とを混合し、必要に応じて水に不溶の有機溶媒を加えて抽出処理をし、得られた有機層を濃縮し、必要に応じてカラムクロマトグラフィー、蒸留、再結晶、リサイクルゲルパーミネーションクロマトグラフィー、昇華精製等の精製手段を用いることで、化合物(1b)を得ることができる。
 本工程に用いられる化合物(1a)のX、Y、W、Z、n及びRは、前記と同じ意味を表す。
 化合物(1a)のX、Y、Z及びWとしては、同一であることが好ましく、いずれも硫黄原子であることが好ましい。
 化合物(1a)におけるXは、それぞれ独立に、フッ素原子、塩素原子、臭素原子及びヨウ素原子等のハロゲン原子であり、好ましくは、いずれも同一で臭素原子又はヨウ素原子、より好ましくはヨウ素原子である。
 化合物(1a)としては、表23~25記載の化合物を例示することができる。
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
 化合物(1a)の製造方法としては、例えば、式(1c)
Figure JPOXMLDOC01-appb-I000075
(式中、n、R、W、X、Y及びZは前記と同じ意味を表す。)
で表される化合物(化合物(1c))と、アルキルリチウムとを反応させ、得られた反応生成物に、ハロゲン原子としてXを含むハロゲン化剤を反応させる工程を含む方法を挙げることができる。
 アルキルリチウムとしては、例えば、メチルリチウム、n−ブチルリチウム、s−ブチルリチウム、t−ブチルリチウム、及びフェニルリチウム等をが挙げることができ、好ましくはn−ブチルリチウム、s−ブチルリチウム、t−ブチルリチウムが挙げられる。
 アルキルリチウムの使用量は、化合物(1c)1モルに対して、通常、1~10モル、好ましくは1.5~3モルの割合である。
 ハロゲン化剤としては、例えば、Cl、Br、I、一塩化ヨウ素等のハロゲン分子、N−クロロコハク酸イミド、N−ブロモコハク酸イミド、N−ヨードコハク酸イミド等のコハク酸イミド類等が挙げられる。
 ハロゲン化剤の使用量は化合物(1c)1モルに対して、通常、1~10モル、好ましくは1.5~3モルの割合である。ハロゲン化剤は、化合物(1c)とアルキルリチウムとの反応生成物に直接加えてもよいし、ハロゲン化剤を溶媒に溶解、または懸濁して該反応生成物に加えてもよい。
 化合物(1a)の製造の際に用いられる溶媒としては、例えば、ペンタン、ヘキサン、及びヘプタン等の脂肪族炭化水素溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、シクロペンチルメチルエーテル、エチレングリコールジメチルエーテル及びプロピレングリコールジメチルエーテル等のエーテル溶媒、又はこれらの混合溶媒が挙げられる。好ましくは、ペンタン、ヘキサン、トルエン、ジエチルエーテル、テトラヒドロフラン、及びシクロペンチルメチルエーテルが挙げられる。溶媒の使用量は、化合物(1c)1重量部に対して、通常、0.5~200重量部の割合、好ましくは2~100重量部の割合である。
 化合物(1a)の具体的な製造方法として、以下の方法を挙げることができる。
 まず、化合物(1c)及び溶媒を含む溶液を−40℃以下、好ましくは−55℃~−110℃、更に好ましくは、−65℃~−100℃の温度範囲に冷却させた後、アルキルリチウムを加え、更に上記温度範囲で10分~5時間攪拌することで化合物(1c)のリチオ化物を含む反応溶液を得る。なお、反応を確実に終了させるために−40℃~30℃に昇温して、10分~5時間攪拌してもよい。
 次いで、該反応溶液を室温(約25℃)~−100℃の温度範囲に調整した後、ハロゲン化剤を加え、上記温度範囲にて0分~5時間攪拌する。その後、反応を確実に終了させるために−40℃~室温に昇温して、10分~5時間攪拌してもよい。
 かくして得られた化合物(1a)を含む粗生成物に、例えば、亜硫酸ナトリウム等の還元剤の水溶液とを混合した後、分液して有機層を得る。分液された水層は、必要に応じて水に不溶の有機溶媒を加えて抽出処理して該有機層と混合してもよい。得られた有機層は、更に塩化ナトリウム水溶液や水などで洗浄した後、濃縮し、必要に応じてカラムクロマトグラフィー、蒸留、再結晶、リサイクルゲルパーミネーションクロマトグラフィー等の精製手段を行うことで、化合物(1a)を得ることができる。
 化合物(1a)の製造方法に用いられる化合物(1c)の例示としては、表26記載の化合物を挙げることができる。表26記載の化合物の中でも、ケイ素原子を含む化合物、即ち、式(1c−13)~(1c−32)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-T000076
 化合物(1c)の製造方法としては、例えば、遷移金属化合物、ハロゲン化銅及び有機塩基の存在下、式(1d)
Figure JPOXMLDOC01-appb-I000077
(式中、n、W、X、Y及びZは前記と同じ意味を表す。Xは、それぞれ独立に、ハロゲン原子を表し、好ましくはヨウ素原子である。Xは同一であることが好ましい。)
で表される化合物(化合物(1d))と、式(5)
Figure JPOXMLDOC01-appb-I000078
(式中、Rは置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいシリル基を表し、好ましくは、下記式
Figure JPOXMLDOC01-appb-I000079
(式中、R、R及びRは、それぞれ独立に、炭素数1~16のアルキル基又は炭素数6~12のアリール基を表す。))
で表される化合物(化合物(5))とを反応させる方法を挙げることができる。
 化合物(5)の使用量は化合物(1d)1モルに対して、通常、1~10モル、好ましくは2~4モルの割合である。
 化合物(1c)の製造方法における遷移金属化合物としては、化合物(1b)の製造方法で用いる遷移金属化合物と同様のものを例示することができる。遷移金属化合物の使用量は、化合物(1d)1モルに対して、遷移金属化合物に含まれる遷移金属原子を0.001~1モルの割合である。
 化合物(1c)の製造方法に用いられるハロゲン化銅(I)としては、例えば、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)が挙げられ、好ましくは臭化銅(I)、ヨウ化銅(I)である。
 ハロゲン化銅(I)の使用量は、化合物(1d)1モルに対して、通常、0.001~1モルの割合である。
 化合物(1c)の製造方法に用いられる有機塩基としては、例えば、ジエチルアミン、ジイソプロピルアミン、ピペリジン、ピロリジン、ジシクロヘキシルアミン等の2級アミン、トリエチルアミン、ジイソプロピルエチルアミン等の3級アミン等の有機アミンを挙げることができる。
 有機塩基の使用量は、化合物(1d)1モルに対して、少なくとも2モルの割合である。また、有機塩基は溶媒として使用することも可能であり、この場合、有機塩基の使用量は、化合物(1d)1重量部に対して、通常、0.5~200重量部、好ましくは2~100重量部の割合である。
 化合物(1c)の製造は溶媒中で行うことが好ましい。溶媒としては、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、tert−ブチルメチルエーテル、シクロペンチルメチルエーテル、エチレングリコールジメチルエーテルなどのエーテル溶媒;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノンなどのアミド溶媒;ジメチルスルホキシドが挙げられる。溶媒は単独で用いてもよいし2種以上を混合して用いてもよい。溶媒は脱気して用いることが好ましい。また、化合物(1c)の製造に用いる化合物(1d)又は化合物(5)の一部又は全てを溶媒に溶解又は懸濁させてから、窒素バブリング又は減圧等で脱気してもよい。溶媒の使用量は、化合物(1d)1重量部に対して通常、0.5~200重量部、好ましくは2~100重量部の割合である。
 化合物(1c)の製造は大気下でも可能であるが、窒素あるいはアルゴン等の不活性ガス下で行うことが好ましい。
 化合物(1c)の製造は、さらに、相間移動触媒の存在下で行ってもよい。相間移動触媒としては、例えば、テトラアルキルアンモニウムハライド、テトラアルキルアンモニウムヒドロスルフェイト、テトラアルキルアンモニウムヒドロキシドなどの第4級アンモニウム化合物を挙げることができ、好ましくは、テトラ−n−ブチルアンモニウムハライド、ベンジルトリエチルアンモニウムハライド等が挙げられる。
 相間移動触媒の使用量は、化合物(1d)1モルに対して、0.0001~1モル、好ましくは0.01~0.2モルの割合である。
 化合物(1d)と化合物(5)との反応における反応温度は、通常、0~200℃の範囲内である。
 化合物(1c)の製造の反応時間は、通常、1分~96時間の範囲内である。
 化合物(1d)と化合物(5)との反応終了後、例えば、得られた反応混合物と水とを混合した後分液し、有機層を得る。分液された水層は、必要に応じて水に不溶の有機溶媒を加えて抽出処理して該有機層と混合してもよい。得られた有機層は、更に塩化ナトリウム水溶液や水などで洗浄した後、濃縮し、必要に応じてカラムクロマトグラフィー、蒸留、再結晶、リサイクルゲルパーミネーションクロマトグラフィー等の精製手段を行うことで、化合物(1c)を得ることができる。
 化合物(1c)の製造に用いられる化合物(1d)の例として、後述する表27に記載の化合物を挙げることができる。
 表27の中でも、式(1d−3)で表される化合物、式(1d−6)で表される化合物、式(1d−9)で表される化合物、式(1d−12)で表される化合物、式(1d−15)で表される化合物及び式(1d−18)で表される化合物、即ち、Xがヨウ素原子である化合物(1d)が好ましい。
Figure JPOXMLDOC01-appb-T000080
 化合物(1d)の製造方法としては、式(1e)
Figure JPOXMLDOC01-appb-I000081
(式中、n、W、X、Y及びZは前記と同じ意味を表す。)
で表される化合物(化合物(1e))と、ハロゲン原子としてXを含むハロゲン化剤を反応させてX及びYのα位の炭素原子にXを結合させた化合物(以下、α置換体と記すことがある)を得、得られたα置換体を、リチウムジイソプロピルアミド等の強塩基と反応させてXをX及びYのβ位の炭素原子に結合するように転移させる方法を挙げることができる。
 化合物(1)が、化合物(1b’)である場合の製造方法としては、例えば、遷移金属化合物、ハロゲン化銅及び有機塩基の存在下、式(1a’)
Figure JPOXMLDOC01-appb-I000082
(式中、n、W、X、Y、Z及びPは前記と同じ意味を表す。Xは、それぞれ独立に、ハロゲン原子を表す。)
で表される化合物(化合物(1a’))と化合物(5)とを反応させる工程を含む方法を挙げることができる。
 具体的には、化合物(1c)の製造における化合物(1d)に代えて化合物(1a’)を用いる以外は、化合物(1c)の製造と同様に行えばよい。
 化合物(1a’)の製造方法としては、例えば、式(1c’)
Figure JPOXMLDOC01-appb-I000083
(式中、n、W、X、Y、Z及びRは前記と同じ意味を表す。)
で表される化合物(化合物(1c’))と、アルキルリチウムとを反応させ、得られた反応生成物に、ハロゲン原子としてXを含むハロゲン化剤を反応させる工程を含む方法を挙げることができる。
 具体的な化合物(1a’)の製造方法としては、化合物(1a)の製造方法における化合物(1c)の代わりに化合物(1c’)を用いる以外には、化合物(1a)の製造方法と同様に行えばよい。
 化合物(1c’)の製造方法としては、例えば、遷移金属化合物の存在下、Pを含む金属化合物と、化合物(1d)とを反応させる工程を挙げることができ、具体的には、化合物(1b)の製造方法における化合物(1a)の代わりに化合物(1d)を用い、Pを含む金属化合物としてQを含む金属化合物として例示された化合物を用いる以外は、化合物(1b)の製造方法と同様に行えばよい。
 具体的な化合物(1c’)としては、表28~38に記載の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000094
 本発明の化合物(1)は有機溶媒に可溶な有機半導体材料として使用可能である。
 化合物(1)を溶解する有機溶媒としては、例えばベンゼン、トルエン、キシレン、テトラリン、メシチレン、クロロベンゼン、o−ジクロロベンゼン、トリクロロベンゼン、フルオロベンゼン、アニソール等の芳香族炭化水素溶媒、例えば、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,1’,2,2’−テトラクロロエタン、テトラクロロエチレン、四塩化炭素等のハロゲン化脂肪族炭化水素溶媒、例えば、ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル溶媒、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素溶媒、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン溶媒、例えば、酢酸エチル、酢酸ブチル等のエステル溶媒、例えば、アセトニトリル、プロピオニトリル、メトキシアセトニトリル、グルタロジニトリル、ベンゾニトリル等のニトリル溶媒、例えば、ジメチルスルフォキサイド、スルフォラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等の非プロトン性極性溶媒を挙げることができる。好ましくは、トルエン、キシレン、テトラリン、メシチレン、クロロベンゼン、o−ジクロロベンゼン、ジクロロメタン、クロロホルム、テトラヒドロフラン等が挙げられる。有機溶媒は2種以上を混合溶媒にして用いることもできる。
 化合物(1)を溶解した溶液における化合物(1)の濃度は、通常、0.001~50重量%の範囲を挙げることができ、好ましくは0.01~10重量%、より好ましくは0.1~5重量%である。
 該溶液には、化合物(1)は単独で使用してもよいし、後述する薄膜(有機半導体活性層)のキャリア移動度を著しく損なわない範囲であれば、酸化防止剤、安定剤、化合物(1)とは異なる有機半導体材料、有機絶縁性材料などと混合してもよい。
 化合物(1)とは異なる有機半導体材料としては、低分子材料でもよく、高分子材料でもよい。高分子材料は、高分子を架橋反応させたものであってもよい。好ましくは、高分子材料が挙げられる。具体例としては、ポリアセチレン及びその誘導体、ポリチオフェン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフェニレン及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリピロール及びその誘導体、ポリアニリン及びその誘導体、ポリトリアリールアミン及びその誘導体、ポリキノリン及びその誘導体、ペリレン及びその誘導体、テトラセン及びその誘導体、ペンタセン及びその誘導体、フタロシアニン及びその誘導体などが挙げられる。本発明の薄膜において、化合物(1)とは異なる有機半導体材料と化合物(1)との合計100重量%に対する化合物(1)の含有量は、10重量%以上が好ましく、20重量%以上がより好ましい。
 該有機絶縁性材料としては、低分子材料でもよい。高分子材料は、高分子を架橋反応がさせたものであってもよい。好ましくは、高分子材料が挙げられる。具体例としては、ポリスチレン、ポリカーボネート、ポリジメチルシロキサン、ナイロン、ポリイミド、環状オレフィンコポリマー、エポキシポリマー、セルロース、ポリオキシメチレン、ポリオレフィン系ポリマー、ポリビニル系ポリマー、ポリエステル系ポリマー、ポリエーテル系ポリマー、ポリアミド系ポリマー、フッ素系ポリマー、生分解性プラスチック、フェノール系樹脂、アミノ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、エポキシ樹脂、ポリイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、及び各種ポリマーユニットを組み合わせたコポリマーなどが挙げられる。本発明の薄膜において、有機絶縁性材料と化合物(1)との合計100重量%に対する化合物(1)の含有量は、10重量%以上が好ましく、20重量%以上がより好ましい。なお、該溶液組成物の調製は、溶媒に化合物(1)を、例えば、10~200℃、好ましくは20~150℃程度で溶解することで得ることができる。
 次に、本発明の薄膜及び有機半導体デバイスについて説明する。
 本発明の薄膜は、化合物(1)を含有する。該薄膜は高いキャリア移動度を示すことから、該薄膜を有機半導体活性層として有する有機半導体デバイスの材料として好適である。
 また、本発明の有機半導体デバイスは、本発明の薄膜を含有するものである。本発明の有機半導体デバイスとしては、例えば、有機トラジスタ、電界発光素子、太陽電池等を挙げることができる。また、本発明の有機トランジスタは、例えば、電子ペーパー、フレキシブルディスプレイ、ICタグ、及びセンサ等に使用可能である。
 本発明の薄膜の形成方法としては、例えば、塗布成膜加工を挙げることができる。ここで、塗布成膜加工とは、前述したように、化合物(1)を溶媒に溶解し、得られた溶液を基板もしくは絶縁体層に塗布する工程を有する成膜加工を意味する。
 塗布の方法としては、キャスティング法、ディップコート法、ダイコーター法、ロールコーター法、バーコーター法、スピンコート法、インクジェット法、スクリーン印刷法、オフセット印刷法、マイクロコンタクト印刷法などが挙げられる。これらの手法は、単独で用いてもよいし、2種以上を組み合わせてもよい。
 化合物(1)及び有機溶媒を含む溶液を、基板又は絶縁層に塗布して塗布膜を形成せしめた後、該塗布膜に含有されている溶媒を除去することで、基板上又は絶縁層上に薄膜が形成される。この有機溶媒の除去には自然乾燥処理、加熱処理、減圧処理、通風処理又はこれらを組み合わせた処理が採用されるが、操作が簡便である点で自然乾燥処理もしくは加熱処理が好ましい。この処理に係わる条件を簡単に記載すると、大気下で放置もしくはホットプレートで基板加熱(例えば、40~250℃、好ましくは、50~200℃)という条件が挙げられる。
 本発明の薄膜は、化合物(1)が溶媒に分散している分散液を用いて塗布成膜加工により薄膜を形成することもできる。この場合は、上述の塗布成膜加工において、溶液を該分散液に読み替えれば容易に実施可能である。この場合、溶媒は前記有機溶媒に加え、水であってもよい。
 このように、本発明の薄膜は、上記の塗布成膜加工等の簡便な方法により形成することができる。
 本発明の薄膜を形成する方法の異なる例示として、化合物(1)を、真空蒸着法、スパッタリング法、CVD法、分子線エピタキシャル成長法などの真空プロセスに供して薄膜を形成する方法を挙げることができる。
 真空蒸着法による薄膜の形成方法は、化合物(1)をルツボや金属ボート中で真空下、加熱し、蒸発した有機半導体材料を基板もしくは絶縁体材料に蒸着させる方法である。蒸着時の真空度は、通常1×10−1Pa以下、好ましくは1×10−3Pa以下である。蒸着時の基板温度は通常0℃~300℃、好ましくは20℃~200℃である。蒸着速度は、例えば、0.001nm/sec~10nm/secの範囲等を挙げることができ、好ましくは0.01nm/sec~1nm/secの範囲である。
 上記塗布成膜加工又は上記真空プロセスにより得られる化合物(1)を含有する薄膜の膜厚は、たとえば有機トランジスタの素子構造により適宜調節することができるが、好ましくは1nm~10μmであり、さらに好ましくは5nm~1μmである。
 本発明の有機トランジスタとしては、例えば、有機電界効果トランジスタ(OFET)が挙げられる。
 該有機電界効果トランジスタの構造は、通常、ソース電極及びドレイン電極が本発明の薄膜からなる有機半導体活性層に接して設けられており、さらに有機半導体活性層に接した絶縁層(誘電体層)を挟んでゲート電極が設けられていればよい。その素子構造としては、例えば、
(1)基板/ゲート電極/絶縁体層/ソース電極・ドレイン電極/有機半導体活性層 という構造、
(2)基板/ゲート電極/絶縁体層/有機半導体活性層/ソース電極・ドレイン電極 という構造(図1参照)
(3)基板/有機半導体活性層/ソース電極・ドレイン電極/絶縁体層/ゲート電極 という構造
(4)基板/ソース電極・ドレイン電極/有機半導体活性層/絶縁体層/ゲート電極(図2参照)という構造などがあげられる。このとき、ソース電極,ドレイン電極, ゲート電極は、それぞれ複数設けてもよい。また、複数の有機半導体活性層を同一平面内に設けてもよいし、積層して設けてもよい。
 次に、本発明の有機トランジスタの他の構成成分に関し、具体例を挙げて説明する。
 本発明における、有機トランジスタの作製において、ソース電極、ドレイン電極及びゲート電極を形成する材料は導電性材料であれば特に限定されず、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン鉛、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、アルミニウム、ルテニウム、ゲルマニウム、モリブデン、酸化モリブデン、タングステン、酸化スズ・アンチモン、酸化インジウム・スズ(ITO)、フッ素ドープ酸化亜鉛、亜鉛、炭素、グラファイト、グラッシーカーボン、銀ペースト及びカーボンペースト、リチウム、ベリリウム、ナトリウム、マグネシウム、カリウム、カルシウム、スカンジウム、チタン、マンガン、ジルコニウム、ガリウム、ニオブ、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、アルミニウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、リチウム/アルミニウム混合物等が用いられるが、特に、白金、金、銀、酸化モリブデン、インジウム、ITO、炭素が好ましい。又は、ドーピング等で導電率を向上させた公知の導電性ポリマー、例えば、導電性ポリアニリン、導電性ポリピロール、導電性ポリチオフェン、ポリエチレンジオキシチオフェンとポリスチレンスルホン酸の錯体等も好適に用いられる。中でも半導体層との接触面において電気抵抗が少ないものが好ましい。これらの導電性材料は単独で使用してもよいし、2種類以上を混合して使用してもよい。電極の膜厚は、材料によっても異なるが、好ましくは0.1nm~10μmであり、さらに好ましくは0.5nm~5μmであり、より好ましくは1nm~3μmである。また、ゲート電極と基板を兼ねる場合は上記の膜厚より大きくてもよい。
 本発明の有機トランジスタに用いられるソース電極、ドレイン電極は、表面処理が施されていてもよい。本発明の薄膜(有機半導体活性層)と接触する電極表面に表面処理が施されていると、該薄膜を含む有機トランジスタのトランジスタ特性が向上する傾向があることから好ましい。表面処理としては、例えば、1−オクチルチオール、1−パーフルオロオクチルチオール、1−オクタデシルチオール、1−パーフルオロオクタデシルチオール等のチオール基を有する飽和炭化水素化合物、例えば、ベンゼンチオール、パーフルオロベンゼンチオール等のチオール基を有する芳香族化合物、例えば、チエニルチオール、パーフルオロチエニルチオール等のチオール基を有する複素環芳香族化合物等のチオール化合物をアルコールなどとともに溶液とし、上記電極を該溶液に浸漬処理するなどして上記電極の表面を修飾する方法等を挙げることができる。
 電極の形成方法としては、上記原料を用いて種々の方法で実施することができる。具体的には、真空蒸着法、スパッタ法、塗布法、熱転写法、印刷法、ゾルゲル法などが挙げられる。成膜時又は成膜後に、パターニングを必要に応じて行うことが好ましい。パターニングの方法としては、種々の方法を用いることができる。具体的には、フォトレジストのパターニングとエッチングを組み合わせたフォトリソグラフィー法などが挙げられる。また、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷などの印刷法、マイクロコンタクトプリンティング法などのソフトリソグラフィーの手法なども挙げられるこれらの手法は単独で用いてもよいし、2種類以上を混合してパターニングを行うことも可能である。
 絶縁体層としては種々の絶縁膜を用いることができる。該絶縁膜の材料として、無機酸化物、無機窒化物、有機化合物等を挙げることができる。
 無機酸化物としては、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、酸化スズ、酸化バナジウム、チタン酸バリウムストロンチウム、ジルコニウム酸チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン、チタン酸ストロンチウム、チタン酸バリウム、フッ化バリウムマグネシウム、チタン酸ビスマス、チタン酸ストロンチウムビスマス、タンタル酸ストロンチウムビスマス、タンタル酸ニオブ酸ビスマス、トリオキサイドイットリウムなどが挙げられ、好ましくは、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタンである。無機窒化物としては、窒化ケイ素、窒化アルミニウム等が挙げられる。有機化合物としては、ポリイミド、ポリアミド、ポリエステル、ポリアクリレート、光ラジカル重合又は光カチオン重合して得られる光硬化性樹脂、アクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリビニルアルコール、ノボラック樹脂、シアノエチルプルランなどが挙げられ、好ましくは、ポリイミド、ポリビニルフェノール、ポリビニルアルコールが挙げられる。これらの絶縁体層の材料は単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 絶縁体層の膜厚は、材料によっても異なるが、好ましくは0.1nm~100μmであり、さらに好ましくは0.5nm~50μmであり、より好ましくは5nm~10μmである。
 絶縁体層の形成方法としては、上記原料を用いて種々の方法で実施することができる。具体的には、スピンコーティング、スプレーコーティング、ディップコーティング、キャスト、バーコート、ブレードコーティング、スクリーン印刷、オフセット印刷、インクジェット、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、イオンプレーティング法、スパッタリング法、大気圧プラズマ法、CVD法などのドライプロセス法が挙げられる。その他、ゾルゲル法やアルミニウム上のアルマイト、シリコンの熱酸化膜のように金属上に酸化物膜を形成する方法などが挙げられる。
 基板の材料としては、ガラス、紙、石英、セラミック、樹脂製シートなどが挙げられる。該樹脂製シートの材質としては、具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)などが挙げられる。基板の厚さは、好ましくは1μm~10mmであり、さらに好ましくは5μm~5mmである。
 本発明の薄膜(以下、有機半導体活性層と記すことがある)と接触する絶縁体層や基板の部分において、絶縁体層や基板上に表面処理を行ってもよい。有機半導体活性層が積層される絶縁体層上に表面処理を行うことにより、有機トランジスタのトランジスタ特性を向上させることができる。表面処理としては、具体的には、ヘキサメチルジシラザン、オクタデシルトリクロロシラン、オクチルトリクロロシラン、フェネチルトリクロロシランなどによる疎水化処理、塩酸、硫酸、過酸化水素水などによる酸処理、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニアなどによるアルカリ処理、オゾン処理、フッ素化処理、酸素やアルゴンなどのプラズマ処理、ラングミュラー・ブロジェット膜の形成処理、その他の絶縁体や半導体の薄膜の形成処理、機械的処理、コロナ放電などの電気的処理、繊維などを利用したラビング処理などが挙げられる。
 表面処理を行う方法としては、例えば、真空蒸着法、スパッタ法、塗布法、印刷法、ゾルゲル法などが挙げられる。
 また、有機半導体活性層上に樹脂もしくは無機化合物からなる保護膜を設けてもよい。保護膜の形成により、外気の影響を抑制してトランジスタの駆動を安定化することができる。
 本発明の薄膜は、化合物(1)を含有することから、高いキャリア移動度を示す。ゆえに、本発明の薄膜は、有機トランジスタにおける有機半導体活性層として有用であり、本発明の薄膜を含有する有機半導体活性層をもつ有機トランジスタは優れたトランジスタ特性を発現するものであり、有機半導体デバイスに有用なものとなる。
 本発明の薄膜は発光性を示す場合があり、発光性薄膜として用いることができる。
 発光性薄膜とは、化合物(1)を含む薄膜であって、光や電気的刺激の条件下で発光する薄膜を意味する。発光性薄膜は、例えば有機発光ダイオード、液晶表示素子、有機電界発光素子、電子ペーパー等の発光素子の材料として有用である。
 本発明の発光性薄膜は、本発明の化合物(1)を材料として用いる以外は、従来公知の方法と同様に製造することができる。
 本発明の薄膜を含む有機半導体デバイスとしては、前記の有機トランジスタ、発光素子のほか、センサー、RFIDs(radio frequency identification cards)などに適用可能である。
以下、本発明を実施例によりさらに詳しく説明する。
 反応の進行の確認は、以下のガスクロマトグラフィー(GC)及び高速液体クロマトグラフィー(LC)の分析条件で行った。
1.ガスクロマトグラフィー分析
 装置 島津GC2010
 カラム J&Wサイエンティフィック社製、DB−1、内径0.25mm、長さ30m
2.高速液体クロマトグラフィー分析
 装置 島津LC10AT
 カラム 化学物質評価機構製、L−column ODS、内径4.6mm、長さ15cm
リサイクル分取高速液体クロマトグラフィー精製は以下の装置、カラムを用いて行った。
 装置 LC−9104(日本分析工業社製)
カラム 日本分析工業社製、JAIGEL−1H−40、内径20mm、長さ60cmの2本直列に接続。
 生成物の同定は以下の分析装置で測定した。
1.H−NMR:EX270(日本電子株式会社製)
2.HRMS:JMS−T100GC(日本電子株式会社製)
3.LC−HRMS:QSTAR XL(Applied Biosystems社製)
カラム 化学物質評価機構製、L−column ODS、内径4.6mm、長さ15cm
実施例1:3,6−ジヨードチエノ[3,2−b]チオフェン(化合物(1d−3)の製造
Figure JPOXMLDOC01-appb-I000095
 チエノ[3,2−b]チオフェンにN−ブロモコハク酸イミドを反応させることで2,5−ジブロモチエノ[3,2−b]チオフェンを調製した(Dalton Trans.、2005年、874頁参照)。
 次いで、2,5−ジブロモチエノ[3,2−b]チオフェンにリチウムジイソプロピルアミドを反応させることで3,6−ジブロモチエノ[3,2−b]チオフェンの結晶を調製した(Org.Lett.、2007年、9巻、1005頁参照)。
 攪拌子、温度計を具備した反応容器に、3,6−ジブロモチエノ[3,2−b]チオフェンの結晶(5.00g、16.8mmol)を入れ、該容器内を窒素置換した。次に、該容器に脱水ジエチルエーテル170mlを加え、該結晶を室温(約25℃)にて溶解した後、溶解液を−78℃まで冷却した。続いて、該溶解液に、n−ブチルリチウム(関東化学製、1.57M)のヘキサン溶液(23.5ml、36.9mmol)を約−78℃を維持しながら10分間かけて加え、同温でさらに2時間攪拌し、反応液を得た。別途、ヨウ素(10.2g、40.3mmol)を脱水ジエチルエーテル100mlに溶解した溶液を、−78℃に調整された反応液に、15分間かけて加え、同温でさらに2時間攪拌した。反応液を室温まで昇温して同温で3時間攪拌した後、飽和塩化アンモニウム水溶液に加え、さらに、ジエチルエーテルを加えた。有機層を分取し、飽和亜硫酸ナトリウム水溶液、飽和塩化ナトリウム水溶液で順に洗浄し、硫酸ナトリウムで乾燥した後、溶媒を減圧下で留去した。得られた生成物をシリカゲルクロマトグラフィー(移動層;ヘキサン)で精製することで、3,6−ジヨードチエノ[3,2−b]チオフェン(化合物(1d−3)、6.11g、15.6mmol)の黄色結晶を収率93%で得た。化合物(1d−3)の物性は以下の通りであった。
H−NMR(δ、CDCl):7.48(s、2H)
実施例2:3,6−ビス[2−(トリメチルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1c−13)の製造
Figure JPOXMLDOC01-appb-I000096
 窒素雰囲気下、攪拌子、温度計、コンデンサーを取り付けた反応容器にて、3,6−ジヨードチエノ[3,2−b]チオフェン(4.00g、10.2mmol)、ジイソプロピルアミン143ml及びトルエン100mlを混合した後、得られた混合液を室温にて攪拌しながら、注射針を通して窒素を30分間吹き込んだ。次に、該反応容器にビス(トリフェニルホスフィン)パラジウムジクロリド(0.22g、0.3mmol)、ヨウ化第一銅(0.12g、0.6mmol)及びトリメチルシリルアセチレン(2.31g、23.5mmol)を窒素雰囲気下、室温にて加え、60℃に昇温して同温で5時間攪拌した。次いで、室温まで冷却した後、水及びクロロホルムを加えた。有機層を分取、水で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下で留去した。得られた生成物をシリカゲルクロマトグラフィー(移動層;ヘキサン)で精製することで、3,6−ビス[2−(トリメチルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1c−13)、3.24g、9.74mmol)の白色結晶を収率95%で得た。化合物(1c−13)は、表26のm=13である化合物に対応する。化合物(1c−13)の物性は以下の通りであった。
H−NMR(δ、CDCl):0.26(s、18H)、7.54(s、2H)
実施例3:3,6−ビス[2−(トリメチルシリル)エチニル]−2,5−ジヨードチエノ[3,2−b]チオフェン(化合物(1a−13)の製造
Figure JPOXMLDOC01-appb-I000097
 攪拌子、温度計を取り付けた反応容器に、実施例2で得られた3,6−ビス[2−(トリメチルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1c−13)、2.40g、7.22mmol)の結晶を仕込み、該容器内を窒素置換した後、脱水ジエチルエーテル50mlを加え、該結晶を室温にて溶解した。得られた溶解液を−78℃まで冷却した後、t−ブチルリチウム(関東化学製、1.55M)のn−ペンタン溶液(10.7ml、16.6mmol)を同温にて10分間かけて加え、同温でさらに10分間攪拌した後、0℃に昇温して同温で1時間攪拌して反応液を得た。別途、ヨウ素(4.40g、17.3mmol)を脱水ジエチルエーテル90mlに溶解したヨウ素溶液を調製した。該反応液に0℃にて該ヨウ素溶液を10分間かけて加えた後、室温に昇温して同温で1時間攪拌した。反応液を氷水に加え分液し、得られた有機層を飽和亜硫酸ナトリウム水溶液、飽和塩化ナトリウム水溶液で順に洗浄し、硫酸ナトリウムで乾燥後、溶媒を減圧下で留去した。得られた生成物をシリカゲルクロマトグラフィー(移動層;ヘキサン)で精製することで、3,6−ビス[2−(トリメチルシリル)エチニル]−2,5−ジヨードチエノ[3,2−b]チオフェン(3.68g、6.30mmol)の黄色結晶を収率87%で得た。化合物(1a−13)は、表23のm=13である化合物に対応する。化合物(1a−13)の物性は以下の通りであった。
H−NMR(δ、CDCl):0.28(s、18H)
実施例4:2,5−ビス(チエノ[3,2−b]チオフェン−2−イル)−3,6−ビス[2−(トリメチルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1−13))の製造
Figure JPOXMLDOC01-appb-I000098
 攪拌子、温度計を取り付けた反応容器に、チエノ[3,2−b]チオフェン(1.50g、10.7mmol)の結晶を仕込み、反応容器内を窒素置換した。次に、該容器に脱水テトラヒドロフラン100mlを加え結晶を室温にて溶解した後、得られた溶解液を−78℃まで冷却した。冷却された溶解液にt−ブチルリチウム(関東化学製、1.55M)のn−ペンタン溶液(6.21ml、9.63mmol)を同温にて5分間かけて加え、さらに同温で1時間攪拌し、続いて、トリ(n−ブチル)スズクロリド(2.61ml、9.63mmol)を−78℃にて5分間かけて加えた後、室温に昇温し、同温でさらに3時間攪拌して反応液を得た。
 攪拌子を取り付けた別の反応容器に、実施例3で得られた3,6−ビス[2−(トリメチルシリル)エチニル]−2,5−ジヨードチエノ[3,2−b]チオフェン(化合物(1a−13)、2.81g、4.81mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0.44g、0.48mmol)、トリ(2−フリル)ホスフィン(0.22g、0.96mmol)及び脱水テトラヒドロフラン100mlを窒素雰囲気下で室温にて混合して混合液を得た。
 上記の反応液に、該混合液を室温にて加え、同温にてさらに22時間攪拌した。反応混合物に飽和塩化ナトリウム水溶液及びクロロホルムを加えた。有機層を分取、水で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下で留去した。得られた粗生成物をヘキサンにて洗浄した後、リサイクル分取高速液体クロマトグラフィー(移動層;クロロホルム)によって生成物を分取し、溶媒を留去した後、トルエンから再結晶することで、2,5−ビス(チエノ[3,2−b]チオフェン−2−イル)−3,6−ビス[2−(トリメチルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1−13)、0.72g、1.18mmol)の黄色結晶を収率25%で得た。化合物(1−13)は、表1のm=13である化合物に対応する。化合物(1−13)の物性は以下の通りであった。
H−NMR(δ、CDCl):0.36(s、18H)、7.27(d、2H)、7.42(d、2H)、7.81(s、2H)
LC−HRMS(APPI+):calcd for C2825Si、608.9814;found 608.9805
実施例5:3,6−ビス[2−(トリイソプロピルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1c−15)の製造
Figure JPOXMLDOC01-appb-I000099
 トリメチルシリルアセチレンをトリイソプロピルシリルアセチレンに変更した以外は、実施例2と同様の操作により、3,6−ビス[2−(トリイソプロピルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1c−15))の白黄色結晶を収率98%で得た。化合物(1c−15)は、表26のm=15である化合物に対応する。化合物(1c−15)の物性は以下の通りであった。
H−NMR(δ、CDCl):1.05~1.19(m、42H)、7.53(s、2H)
[実施例6:3,6−ビス[2−(トリイソプロピルシリル)エチニル]−2,5−ジヨードチエノ[3,2−b]チオフェン(化合物(1a−15))の製造
Figure JPOXMLDOC01-appb-I000100
 化合物(1c−13)を化合物(1c−15)に変更した以外は、実施例3と同様の操作により、3,6−ビス[2−(トリイソプロピルシリル)エチニル]−2,5−ジヨードチエノ[3,2−b]チオフェン(化合物(1a−15))の黄色結晶を収率95%で得た。化合物(1a−15)は、表23のm=15である化合物に対応する。化合物(1a−15)の物性は以下の通りであった。
H−NMR(δ、CDCl):1.07~1.21(m、42H)
実施例7:2,5−ビス(チエノ[3,2−b]チオフェン−2−イル)−3,6−ビス[2−(トリイソプロピルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1−15))の製造
Figure JPOXMLDOC01-appb-I000101
 化合物(1a−13)を化合物(1a−15)に変更した以外は、実施例4と同様の操作により、2,5−ビス(チエノ[3,2−b]チオフェン−2−イル)−3,6−ビス[2−(トリイソプロピルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1−15))の黄色結晶を収率29%で得た。化合物(1−15)は、表1のm=15である化合物に対応する。化合物(1−15)の物性は以下の通りであった。
H−NMR(δ、CDCl):1.14~1.29(m、42H)、7.25(d、2H)、7.41(d、2H)7.88(s、2H)
LC−HRMS(APPI+):calcd for C4049Si、777.1692;found 777.1686
実施例8:3,6−ビス[2−(トリエチルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1c−14))の製造
Figure JPOXMLDOC01-appb-I000102
 トリメチルシリルアセチレンをトリエチルシリルアセチレンに変更した以外は、実施例2と同様の操作により、3,6−ビス[2−(トリエチルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1c−14))の黄色オイルを収率98%で得た。化合物(1c−14)は、表26のm=14である化合物に対応する。化合物(1c−14)の物性は以下の通りであった。
H−NMR(δ、CDCl):0.70(q、12H)、1.07(t、18H)、7.54(s、2H)
実施例9:3,6−ビス[2−(トリエチルシリル)エチニル]−2,5−ジヨードチエノ[3,2−b]チオフェン(化合物(1a−14))の製造
Figure JPOXMLDOC01-appb-I000103
 化合物(1c−13)を化合物(1c−14)に変更した以外は、実施例3と同様の操作により、3,6−ビス[2−(トリエチルシリル)エチニル]−2,5−ジヨードチエノ[3,2−b]チオフェン(化合物(1a−14))の黄色結晶を収率99%で得た。化合物(1a−14)は、表23のm=14である化合物に対応する。化合物(1a−14)の物性は以下の通りであった。
H−NMR(δ、CDCl):0.71(q、12H)、1.09(t、18H)
実施例10:2,5−ビス(チエノ[3,2−b]チオフェン−2−イル)−3,6−ビス[2−(トリエチルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1−14))の製造
Figure JPOXMLDOC01-appb-I000104
 化合物(1a−13)を化合物(1a−14)に変更した以外は、実施例4と同様の操作により、2,5−ビス(チエノ[3,2−b]チオフェン−2−イル)−3,6−ビス[2−(トリエチルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1−14))の黄色結晶を収率41%で得た。化合物(1−14)は、表1のm=14である化合物に対応する。化合物(1−14)の物性は以下の通りであった。
H−NMR(δ、CDCl):0.78(q、12H)、1.13(t、18H)、7.25(d、2H)、7.41(d、2H)7.85(s、2H)
LC−HRMS(APPI+):calcd for C3437Si、693.0753;found 693.0758
実施例11:2,5−ビス(ジチエノ[3,2−b:2’,3’−d]チオフェン−2−イル)−3,6−ビス[2−(トリメチルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1−40))の製造
Figure JPOXMLDOC01-appb-I000105
 チエノ[3,2−b]チオフェンをジチエノ[3,2−b:2’,3’−d]チオフェンに変更した以外は、実施例4と同様の操作で反応を行った。反応終了後、反応液を室温まで冷却して濾過し、濾上物を水、エタノール、ヘキサンの順で洗浄し、乾燥することで、2,5−ビス(ジチエノ[3,2−b:2’,3’−d]チオフェン−2−イル)−3,6−ビス[2−(トリメチルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1−40))の橙色結晶を収率56%で得た。化合物(1−40)は、表2のm=40である化合物に対応する。化合物(1−40)の物性は以下の通りであった。
H−NMR(δ、CDCl):0.38(s、18H)、7.31(d、2H)、7.42(d、2H)、7.81(s、2H)
HRMS(EI+):calcd for C3224Si、719.9182;found 719.9148
実施例12:2,5−ビス(ジチエノ[3,2−b:2’,3’−d]チオフェン−2−イル)−3,6−ビス[2−(トリエチルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1−41))の製造
Figure JPOXMLDOC01-appb-I000106
 チエノ[3,2−b]チオフェンをジチエノ[3,2−b:2’,3’−d]チオフェンに変更し、化合物(1a−13)を実施例9で得られた化合物(1a−14)に変更し、トルエンからの再結晶を省いた以外は、実施例4と同様の操作により、2,5−ビス(ジチエノ[3,2−b:2’,3’−d]チオフェン−2−イル)−3,6−ビス[2−(トリエチルシリル)エチニル]チエノ[3,2−b]チオフェン(化合物(1−41))の黄色結晶を収率52%で得た。化合物(1−41)は、表2のm=41である化合物に対応する。化合物(1−41)の物性は以下の通りであった。
H−NMR(δ、CDCl):0.80(q、12H)、1.15(t、18H)、7.29(d、2H)、7.40(d、2H)、7.84(s、2H)
HRMS(EI+):calcd for C3836Si、804.0121;found 804.0103
実施例13:薄膜及び該薄膜を有機半導体層とする有機トランジスタの製造
 ガラス基板上に、リフトオフプロセスまたはフォトリソグラフィを用いて、クロム、金の順に蒸着して、ソース及びドレイン電極を設置した。この時のクロム層の厚さは5nm、金層の厚さは40nmであった。電極設置後、基板をアセトン、イソプロピルアルコールの順で超音波洗浄を行い、乾燥後、酸素プラズマにてクリーニングを行った後、脱水操作のために80℃で5分間加熱した。この時のチャネル幅は2mm、チャネル長は100μmであった。チャネル部分にフェネチルトリクロロシラン処理を、電極部分にペンタフルオロベンゼンチオール処理を行った後、窒素雰囲気下にて、実施例7で製造した化合物(1−15)の0.6重量/容積%のテトラリン溶液を滴下し、スピンコート法により有機層を、次に有機層の上にフッ素系ポリマーを含有する溶液を滴下し、スピンコート法により絶縁層を形成した。この時の化合物(1−15)の膜厚は25nm、絶縁層の膜厚は300nmであった。絶縁層の上にシャドーマスクを用いて、クロム、アルミニウムの順に蒸着してゲート電極を設置し、図2に示すような有機トランジスタを製造した。この時のクロム層の厚さは5nm、アルミニウム層の厚さは200nmであった。
 次に、得られた有機トランジスタデバイスの電気特性を測定した。その結果、あるゲート電圧(Vg)において、ドレイン電圧(Vd)に対するドレイン電流(Id)の変化曲線は、良好であり、高いドレイン電圧において飽和領域を有していた。また、ゲート電極に印加する負のゲート電圧を増加させると、負のドレイン電流も増加することから、化合物(1−15)の薄膜を有機半導体層にもつ有機トランジスタは、p型の有機トランジスタであることを確認することができた。さらに、有機トランジスタのキャリアの飽和電界効果移動度μは、有機トランジスタの電気的特性の飽和領域におけるドレイン電流Idを表す式
 Id=(W/2L)μCi(Vg−Vt) ・・・(a)
を用いて算出した。ここで、L及びWは、それぞれ、有機トランジスタのゲート長及びゲート幅であり、Ciは、ゲート絶縁膜の単位面積当たりの容量であり、Vgは、ゲート電圧であり、Vtは、ゲート電圧のしきい値電圧である。式(a)を用いて、製造した薄膜を有機半導体層にもつ有機トランジスタのキャリアの電界効果移動度μを計算した結果、キャリアの電界効果移動度は、0.068cm/Vsであった。
 本発明は、有機半導体活性層を与え得る新規な化合物を提供する。

Claims (24)

  1.  式(1)
    Figure JPOXMLDOC01-appb-I000001
    (式中、X、Y、W及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。nは0又は1を表す。P、P、Q及びQは、それぞれ独立に、式(2)
    Figure JPOXMLDOC01-appb-I000002
    (式中、Rは、水素原子、置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいシリル基を表す。)
    で表される基、置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族複素環基を表す。ここで、P、P、Q及びQの少なくとも1つの基は、式(2)で表される基である。)
    で表される化合物。
  2.  式(2)で表される基が、式(3)
    Figure JPOXMLDOC01-appb-I000003
    (式中、R、R及びRは、それぞれ独立に、炭素数1~16のアルキル基又は炭素数6~12のアリール基を表す。)
    で表される基である請求項1に記載の化合物。
  3.  X、Y、W及びZが、いずれも硫黄原子である請求項1又は2に記載の化合物。
  4.  P及びPが同一で式(2)で表される基であり、Q及びQが同一で置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族複素環基である請求項1~3のいずれかに記載の化合物。
  5.  nが0であることを特徴とする請求項1~4のいずれか記載の化合物。
  6.  Q及びQが同一で、チエノ[3,2−b]チオフェン−2−イル基である請求項1~5のいずれかに記載の化合物。
  7.  遷移金属化合物の存在下、Qを含む金属化合物(但し、Qは、置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族複素環基を表す。)
    と、式(1a)
    Figure JPOXMLDOC01-appb-I000004
    (式中、X、Y、W及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。Rは、水素原子、置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいシリル基を表す。nは0又は1を表し、Xは、それぞれ独立に、ハロゲン原子を表す。)
    で表される化合物とを反応させる工程を含む式(1b)
    Figure JPOXMLDOC01-appb-I000005
    (式中、n、W、X、Y、Z、R及びQは前記と同じ意味を表す。)
    で表される化合物の製造方法。
  8. 式(1a)
    Figure JPOXMLDOC01-appb-I000006
    (式中、X、Y、W及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。Rは、水素原子、置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいシリル基を表す。nは0又は1を表し、Xは、それぞれ独立に、ハロゲン原子を表す。)
    で表される化合物。
  9.  式(1a)中のW、X、Y及びZがいずれも硫黄原子である請求項8に記載の化合物。
  10.  式(1a)中のnが0である請求項8又は9に記載の化合物。
  11.  式(1a)中のXが、いずれもヨウ素原子である請求項8~10のいずれかに記載の化合物。
  12.  Rが、下記式
    Figure JPOXMLDOC01-appb-I000007
    (式中、R、R及びRは、それぞれ独立に、炭素数1~16のアルキル基又は炭素数6~12のアリール基を表す。)
    で表される請求項8~11のいずれかに記載の化合物。
  13.  式(1c)
    Figure JPOXMLDOC01-appb-I000008
    (式中、W、X、Y及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。Rは、水素原子、置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいシリル基を表す。nは0または1を表す。)
    で表される化合物と、アルキルリチウムとを反応させる工程、及び前記工程で得られた反応生成物に、ハロゲン原子としてXを含むハロゲン化剤を反応させる工程を含む式(1a)
    Figure JPOXMLDOC01-appb-I000009
    (式中、n、R、W、X、Y及びZは前記と同じ意味を表す。Xは、それぞれ独立に、ハロゲン原子を表す。)
    で表される化合物の製造方法。
  14.  式(1c)
    Figure JPOXMLDOC01-appb-I000010
    (式中、W、X、Y及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。Rは、置換されていてもよいシリル基を表す。nは0又は1を表す。)
    で表される化合物。
  15.  式(1c)中のW、X、Y及びZが、いずれも硫黄原子である請求項14に記載の化合物。
  16.  式(1c)中のnが、0である請求項14又は15に記載の化合物。
  17.  遷移金属化合物、ハロゲン化銅及び有機塩基の存在下、式(1d)
    Figure JPOXMLDOC01-appb-I000011
    (式中、X、Y、W及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。nは0又は1を表す。Xは、それぞれ独立に、ハロゲン原子を表す。)
    で表される化合物と、式(5)
    Figure JPOXMLDOC01-appb-I000012
    (式中、Rは、置換されていてもよいシリル基を表す。)
    で表される化合物とを反応させる工程を含む式(1c)
    Figure JPOXMLDOC01-appb-I000013
    (式中、n、W、X、Y、Z、及びRは前記と同じ意味を表す。)
    で表される化合物の製造方法。
  18.  式(1d)
    Figure JPOXMLDOC01-appb-I000014
    (式中、X、Y、W及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。nは0又は1を表す。Xは、ヨウ素原子を表す。)
    で表される化合物。
  19.  式(1)
    Figure JPOXMLDOC01-appb-I000015
    (式中、X、Y、W及びZは、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。nは0又は1を表す。
    、P、Q及びQは、それぞれ独立に、式(2)
    Figure JPOXMLDOC01-appb-I000016
    (式中、Rは、水素原子、置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいシリル基を表す。)
    で表される基、置換されていてもよい芳香族炭化水素基又は置換されていてもよい芳香族複素環基を表す。ここで、P、P、Q及びQの少なくとも1つの基は、式(2)で表される基である。)
    で表される化合物及び有機溶媒を含有する組成物。
  20.  請求項19に記載の組成物を基板上に塗布する工程と、基板上に塗布された塗布膜を乾燥する工程とを含む薄膜の製造方法。
  21.  請求項1~6のいずれかに記載の式(1)で表される化合物を含有する薄膜。
  22.  請求項1~6のいずれかに記載の式(1)で表される化合物からなる薄膜。
  23.  請求項21又は22に記載の薄膜を含有する有機半導体デバイス。
  24.  請求項21又は22に記載の薄膜を含有する有機トランジスタ。
PCT/JP2012/053027 2011-02-15 2012-02-03 有機トランジスタ用化合物 WO2012111533A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011029467A JP2012167057A (ja) 2011-02-15 2011-02-15 化合物、該化合物の製造方法、該化合物を含む薄膜及び該薄膜を含む有機トランジスタ
JP2011-029467 2011-02-15

Publications (1)

Publication Number Publication Date
WO2012111533A1 true WO2012111533A1 (ja) 2012-08-23

Family

ID=46672459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053027 WO2012111533A1 (ja) 2011-02-15 2012-02-03 有機トランジスタ用化合物

Country Status (3)

Country Link
JP (1) JP2012167057A (ja)
TW (1) TW201245216A (ja)
WO (1) WO2012111533A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183622A (zh) * 2019-05-27 2019-08-30 西北师范大学 一种含噻吩的共轭有机硼聚合物及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073382A (ja) * 2001-07-09 2003-03-12 Merck Patent Gmbh チエノチオフェン誘導体
JP2005076030A (ja) * 2003-08-28 2005-03-24 Merck Patent Gmbh モノ、オリゴおよびポリチエノ[2,3−b]チオフェン
JP2006114581A (ja) * 2004-10-13 2006-04-27 Japan Science & Technology Agency 有機電界効果トランジスタの製造方法及びその有機電界効果トランジスタ
JP2006232898A (ja) * 2005-02-23 2006-09-07 Ricoh Co Ltd 導電性高分子材料、それを用いた電界効果型トランジスタ及びその製造方法
CN101353352A (zh) * 2008-09-11 2009-01-28 中国科学院化学研究所 并六噻吩及其衍生物和它们的制备方法与应用
JP2009062302A (ja) * 2007-09-05 2009-03-26 Chisso Corp [1]ベンゾカルコゲノ[3,2−b][1]ベンゾカルコゲノフェン骨格を有する化合物およびこれを用いた有機トランジスタ
JP2010520322A (ja) * 2007-02-28 2010-06-10 コーニング インコーポレイテッド 縮合チオフェン、縮合チオフェンの製造方法およびその使用方法
JP2010524983A (ja) * 2007-04-28 2010-07-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機半導体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073382A (ja) * 2001-07-09 2003-03-12 Merck Patent Gmbh チエノチオフェン誘導体
JP2005076030A (ja) * 2003-08-28 2005-03-24 Merck Patent Gmbh モノ、オリゴおよびポリチエノ[2,3−b]チオフェン
JP2006114581A (ja) * 2004-10-13 2006-04-27 Japan Science & Technology Agency 有機電界効果トランジスタの製造方法及びその有機電界効果トランジスタ
JP2006232898A (ja) * 2005-02-23 2006-09-07 Ricoh Co Ltd 導電性高分子材料、それを用いた電界効果型トランジスタ及びその製造方法
JP2010520322A (ja) * 2007-02-28 2010-06-10 コーニング インコーポレイテッド 縮合チオフェン、縮合チオフェンの製造方法およびその使用方法
JP2010524983A (ja) * 2007-04-28 2010-07-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機半導体
JP2009062302A (ja) * 2007-09-05 2009-03-26 Chisso Corp [1]ベンゾカルコゲノ[3,2−b][1]ベンゾカルコゲノフェン骨格を有する化合物およびこれを用いた有機トランジスタ
CN101353352A (zh) * 2008-09-11 2009-01-28 中国科学院化学研究所 并六噻吩及其衍生物和它们的制备方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183622A (zh) * 2019-05-27 2019-08-30 西北师范大学 一种含噻吩的共轭有机硼聚合物及其制备方法

Also Published As

Publication number Publication date
JP2012167057A (ja) 2012-09-06
TW201245216A (en) 2012-11-16

Similar Documents

Publication Publication Date Title
Li et al. Stable solution-processed high-mobility substituted pentacene semiconductors
KR101656763B1 (ko) 신규한 칼코겐 함유 유기 화합물 및 그 용도
JP5728990B2 (ja) ジカルコゲノベンゾジピロール化合物、該化合物の製造方法、該化合物を含む薄膜及び該薄膜を含む有機半導体デバイス
JP6008158B2 (ja) カルコゲン含有有機化合物およびその用途
KR101556095B1 (ko) 신규의 헤테로고리 화합물 및 그 이용
KR20110065511A (ko) 신규 화합물 및 유기 반도체 재료
KR20230106556A (ko) 축합다환 헤테로방향족 화합물, 이를 포함하는 유기박막 및 상기 유기 박막을 포함하는 전자 소자
WO2011108765A1 (ja) 多環式化合物
WO2011004869A1 (ja) 置換ベンゾカルコゲノアセン化合物、該化合物を含有する薄膜及び該薄膜を含有する有機半導体デバイス
KR20100135834A (ko) [1]벤조티에노[3,2-b][1]벤조티오펜 화합물 및 이의 제조 방법, 및 이를 이용한 유기 전자 소자
WO2013039842A1 (en) Compounds having semiconducting properties and related compositions and devices
JP2015110571A (ja) 新規複素環式化合物及びその中間体の製造方法並びにその用途
KR101890723B1 (ko) 반도체 조성물
JP2010043038A (ja) ラダー型化合物及び有機半導体材料
JP6079259B2 (ja) 有機半導体層及び有機薄膜トランジスタ
JP2014110347A (ja) 有機半導体層形成用材料
JP2012111748A (ja) 置換カルコゲノアセン化合物及び該化合物を含有する有機半導体デバイス
JP2012206989A (ja) 可溶性ヘテロアセン化合物及び該化合物を含有する薄膜および有機トランジスタ
JP2012184196A (ja) 含ピロールヘテロアセン化合物、該化合物の製造方法、該化合物を含む薄膜及び該薄膜を含む有機半導体デバイス
WO2012111533A1 (ja) 有機トランジスタ用化合物
JP6656506B2 (ja) ベンゾチエノベンゾチオフェン誘導体、有機半導体材料、及び有機トランジスタ
JP6252032B2 (ja) ベンゾジフラン誘導体及び有機薄膜トランジスタ
EP2511278B1 (en) Thienopyrazine compound and field effect transistor containing same
JP6399956B2 (ja) ヘテロアセン誘導体、その製造方法、有機半導体層、及び有機薄膜トランジスタ
JPWO2017057747A1 (ja) 有機半導体膜形成用組成物、化合物、有機半導体膜、有機半導体素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747285

Country of ref document: EP

Kind code of ref document: A1