WO2012111468A1 - パラジウム触媒及びそれを用いたビスアリール化合物の製造方法 - Google Patents

パラジウム触媒及びそれを用いたビスアリール化合物の製造方法 Download PDF

Info

Publication number
WO2012111468A1
WO2012111468A1 PCT/JP2012/052625 JP2012052625W WO2012111468A1 WO 2012111468 A1 WO2012111468 A1 WO 2012111468A1 JP 2012052625 W JP2012052625 W JP 2012052625W WO 2012111468 A1 WO2012111468 A1 WO 2012111468A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium catalyst
palladium
mmol
residue
catalyst
Prior art date
Application number
PCT/JP2012/052625
Other languages
English (en)
French (fr)
Inventor
久大 萩原
Original Assignee
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人新潟大学 filed Critical 国立大学法人新潟大学
Priority to JP2012557891A priority Critical patent/JP5896926B2/ja
Publication of WO2012111468A1 publication Critical patent/WO2012111468A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/04Substitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • B01J31/1625Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups
    • B01J31/1633Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups covalent linkages via silicon containing groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/321Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a non-metal atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/18Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by condensation involving halogen atoms of halogenated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium

Definitions

  • the present invention relates to a palladium catalyst for the Suzuki-Miyaura reaction and a method for producing a bisaryl compound using the palladium catalyst.
  • the Suzuki-Miyaura reaction is a coupling reaction between an aromatic halide and an aromatic boronic acid. This reaction is catalyzed by palladium in the presence of a base and usually requires a phosphorus-based ligand for catalyst activation. And since the product bisaryl compound is a substance useful as a pharmaceutical or an organic electronic material, it is a useful reaction used not only for basic research but also industrially.
  • Non-Patent Document 1 discloses that a hydroxyapatite-immobilized palladium catalyst is active in the Suzuki-Miyaura coupling using bromobenzene and phenylboric acid, and the catalyst rotation efficiency (TON) ) Is also high, but the activity of the catalyst is somewhat low, and there is a drawback that severe reaction conditions of a reaction temperature of 120 ° C. are necessary.
  • Non-Patent Document 2 shows that a solid-phase palladium catalyst using a non-crosslinkable amphiphilic polymer having aryl phosphine as a ligand is active in Suzuki-Miyaura coupling and has a high TON.
  • severe reaction conditions of a reaction temperature of 100 ° C. are necessary.
  • the cost for producing the non-crosslinkable amphiphilic polymer is high.
  • the present inventor has developed a palladium catalyst in which a palladium compound dissolved in an ionic liquid is immobilized on a porous carrier (Patent Document 1), but has higher stability. Development of a high-performance palladium catalyst having recyclability is desired.
  • an object of the present invention is to provide a novel palladium catalyst having high stability and recyclability and a method for producing a novel bisaryl compound using the palladium catalyst.
  • a biaryl compound of the present invention when a biaryl compound is produced by reacting an aromatic halide with an aromatic boronic acid in the presence of a palladium catalyst and a base, an ionic liquid is used as the palladium catalyst.
  • a palladium catalyst in which a dissolved palladium compound is immobilized on a porous carrier and then coated with a polymer is used.
  • porous amorphous alumina pores in which palladium acetate dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate is surface-modified with a diethylaminopropyl residue are used as the palladium catalyst.
  • a palladium catalyst is used which is fixed inside and coated with polystyrene.
  • the porous amorphous silica gel in which palladium acetate dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate is surface-modified with a diethylaminopropyl residue is used as the palladium catalyst.
  • a palladium catalyst is used which is fixed inside and coated with polystyrene.
  • porous amorphous alumina pores in which palladium acetate dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate is surface-modified with a diethylaminopropyl residue are used as the palladium catalyst.
  • a palladium catalyst which is fixed inside and coated with polyethylene terephthalate is used.
  • the porous amorphous silica gel in which palladium acetate dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate is surface-modified with a diethylaminopropyl residue is used as the palladium catalyst.
  • a palladium catalyst which is fixed inside and coated with polyethylene terephthalate is used.
  • the palladium catalyst of the present invention is formed by fixing a palladium compound dissolved in an ionic liquid on a porous carrier and then coating with a polymer.
  • the palladium catalyst of the present invention is obtained by immobilizing palladium acetate dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate in pores of porous amorphous alumina whose surface is modified with a diethylaminopropyl residue and then polystyrene. It is made by coating with.
  • the palladium catalyst of the present invention is obtained by immobilizing palladium acetate dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate in pores of porous amorphous silica gel whose surface is modified with diethylaminopropyl residue, and then polystyrene. It is made by coating with.
  • the palladium catalyst of the present invention is obtained by immobilizing palladium acetate dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate in pores of porous amorphous alumina whose surface is modified with a diethylaminopropyl residue, and then adding polyethylene It is formed by coating with terephthalate.
  • the palladium catalyst of the present invention is obtained by immobilizing palladium acetate dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate in pores of porous amorphous silica gel whose surface is modified with a diethylaminopropyl residue, It is formed by coating with terephthalate.
  • a novel palladium catalyst having high stability and recyclability, and a method for producing a novel bisaryl compound using this palladium catalyst.
  • the palladium catalyst of the present invention is formed by fixing a palladium compound dissolved in an ionic liquid on a porous carrier and then coating with a polymer.
  • This palladium catalyst exhibits high activity for the Suzuki-Miyaura reaction and is recovered by filtration and can be recycled.
  • palladium compounds include palladium acetate (Pd (OAc) 2 , where (OAc) is an acetic acid residue), palladium salts such as palladium chloride (PdCl 2 ), palladium black (Pd), tetra (triphenylphosphine).
  • palladium salts such as palladium chloride (PdCl 2 ), palladium black (Pd), tetra (triphenylphosphine).
  • palladium compounds such as palladium complexes such as palladium (Pd (PPh 3 ) 4 , where Ph is a phenyl group) are included. Of these, palladium acetate is particularly preferably used.
  • the porous carrier is not limited to a specific one, and a general porous solid made of silica gel, alumina, titania, zeolite, apatite, hydroxyapatite, or the like can be used. Furthermore, these shapes are not limited, and an amorphous porous carrier or a honeycomb-shaped one can be used, but an amorphous one is preferably used. Particularly preferably, normal-phase and reverse-phase amorphous silica gel and amorphous alumina are used.
  • a porous carrier that has been pretreated with an amino-substituted silane compound can be used.
  • the amino-substituted silane compound is not limited to a specific one.
  • 3- (trimethoxysilyl) -N, N-diethylamine ((C 2 H 5 ) HN (CH 2 ) 3 Si (OCH 3 ) 3 ) and the like are preferably used.
  • a porous carrier pretreated with 3- (trimethoxysilyl) -thiopropanol (HS (CH 2 ) 3 Si (OCH 3 ) 3 ) can also be used.
  • porous carrier was converted to diethylaminopropyl by pretreatment with 3- (trimethoxysilyl) -N, N-diethylamine ((C 2 H 5 ) HN (CH 2 ) 3 Si (OCH 3 ) 3 ). It becomes surface modified with a residue.
  • the palladium compound is immobilized on the porous carrier in a state dissolved in the ionic liquid.
  • the ionic liquid may be any liquid as long as it is liquid at room temperature, preferably 35 ° C. or less and can dissolve the palladium compound, such as 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] PF 6 ), 1 -Hexyl-3-methylimidazolium hexafluorophosphate ([hmim] PF 6 ), 1-butyl-3-methylimidazolium bistrifluoromethylsulfonylimide ([bmim] TFSI), 1-butyl-3-methylimidazolium bistri Fluoromethanesulfonylamide ([bmim] NTf 2 ), 1-ethyl-3-methylimidazolium tetracyanoborate ([emim] TCB), 1-ethyl-3-methylimidazolium tris
  • the porous carrier on which the palladium compound dissolved in the ionic liquid is immobilized is coated with a polymer.
  • the polymer is not limited to a specific one, and a general synthetic resin can be used.
  • PS polystyrene
  • PET polyethylene terephthalate
  • ABS resin polystyrene
  • PS polystyrene
  • PET polyethylene terephthalate
  • the method for producing a biaryl compound of the present invention uses the above-described palladium catalyst of the present invention when a biaryl compound is produced by reacting an aromatic halide with an aromatic boronic acid in the presence of a palladium catalyst and a base. It is.
  • the aromatic halides and aromatic boronic acids are not limited to specific ones, and combinations of all types of aromatic halides or heteroaromatic halides with aromatic boronic acids or heteroaromatic boronic acids.
  • the biaryl compound can be produced by Suzuki-Miyaura coupling.
  • organic and inorganic bases can be used as the base and are not limited to specific ones, but potassium carbonate is particularly preferably used.
  • the reaction between the aromatic halide and the aromatic boronic acid proceeds even in a commonly used organic solvent, but is most efficiently performed in a mixed solvent of ethanol and water.
  • the palladium catalyst of the present invention has the advantages that it exhibits high stability and activity, can be easily recovered by filtration and can be recycled, and can be prepared from a known substance by a simple operation.
  • this method for producing a biaryl compound using a palladium catalyst does not require a ligand for the reaction, and the reaction proceeds in a mixed solvent of ethanol and water and has a high degree of environmental friendliness.
  • the reaction proceeds at room temperature and does not require heating, and various compounds can be reacted. Furthermore, it is possible to prevent the catalyst from being deactivated due to clustering and contamination of the product by the catalyst, which is observed in a homogeneous catalyst.
  • Porous amorphous alumina obtained by surface modification of palladium acetate (Pd (OAc) 2 ) dissolved in ionic liquid ([bmim] PF 6 ) with diethylaminopropyl residue (— (CH 2 ) 3 NEt 2 ) 3 )
  • a palladium catalyst PS-Pd-SILC was prepared by immobilizing in the pores and then coating with polystyrene (PS), and various reactions were attempted.
  • Catalyst preparation operation (Preparation of PS-Pd-SILC): Amorphous alumina (manufactured by JGC Chemical Co., Ltd., spherical, specific surface area 152 m 2 / g, 4.749 g) dried in an oven at 120 ° C. for 24 hours under nitrogen atmosphere and 3- (trimethoxysilyl) -propyl-N, N-diethylamine (1880 ⁇ l, 7.5 mmol) and toluene (38 ml) were added, and the mixture was heated to reflux and stirred for 24 hours. After cooling to room temperature, the solvent and the catalyst were separated by decantation. The residue was washed with methylene chloride (CH 2 Cl 2 ) and dried under reduced pressure to obtain granular amorphous alumina (5.034 g) surface-treated with diethylaminopropyl groups.
  • CH 2 Cl 2 methylene chloride
  • Suzuki-Miyaura reaction of 4-acetyltrifluoromethanesulfonate and phenylboronic acid Potassium carbonate (166 mg, 1.2 mmol), phenylboronic acid (102 mg, 0.84 mmol), and PS-Pd-SILC (130.3 mg, 0.03 mmol, 5 mol%) were placed in a 30 mL two-necked flask. Water (1 mL) was added to dissolve potassium carbonate. Ethanol (1 mL) was added, followed by 4-acetyl trifluoromethanesulfonate (113 ⁇ L, 0.6 mmol) and stirred at room temperature for 19 hours.
  • PS-Pd-SILC was able to be recycled 10 times in the Suzuki-Miyaura reaction of 4-bromoacetophenone and phenylboronic acid. Further, the catalyst rotation number (TON) was as high as 170,000, and the TOF as high as 2,400 (h ⁇ 1 ).
  • reaction Example 10 The substrate generality of the Suzuki-Miyaura reaction using PS-Pd-SILC is described below. Ortho-substituted biphenyl, which is difficult to synthesize due to steric hindrance, could be easily synthesized at room temperature. In addition, phenol triflate having low reactivity also reacted with boronic acid at room temperature.
  • Porous amorphous alumina obtained by surface modification of palladium acetate (Pd (OAc) 2 ) dissolved in ionic liquid ([bmim] PF 6 ) with diethylaminopropyl residue (— (CH 2 ) 3 NEt 2 ) 3 )
  • a palladium catalyst alumina PET-Pd-SILC prepared by fixing in the pores and then coating with polyethylene terephthalate (PET) was prepared, and various reactions were attempted.
  • reaction Example 17 The substrate generality of the Suzuki-Miyaura reaction using alumina PET-Pd-SILC is described below. Ortho-substituted biphenyl, which is difficult to synthesize due to steric hindrance, could be easily synthesized at room temperature. In addition, phenol triflate having low reactivity also reacted with boronic acid at room temperature. In addition, the generality of the substrate using silica PET-Pd-SILC of Example 3 described later is also shown.
  • Suzuki-Miyaura reaction of 4-bromoacetophenone and phenylboronic acid Potassium carbonate (155 mg, 1.12 mmol), phenylboronic acid (96 mg, 0.784 mmol), and silica PET-Pd-SILC (118.3 mg, 0.03 mmol, 5 mol%) were placed in a 30 mL two-necked flask. Water (1 mL) was added to dissolve potassium carbonate. Ethanol (1 mL) was added, followed by 4-bromoacetophenone (111.4 mg), and the mixture was stirred at room temperature for 2.5 hours. A mixed solvent of ether / ethanol was added and the catalyst was removed by decantation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

高い安定性とリサイクル性を有する新規のパラジウム触媒と、このパラジウム触媒を用いた新規のビスアリール化合物の製造方法を提供する。パラジウム触媒及び塩基の存在下において、芳香族ハロゲン化物と芳香族ボロン酸とを反応させてビアリール化合物を製造するに際し、パラジウム触媒として、イオン液体に溶解したパラジウム化合物を多孔質担体に固定化させた後に高分子で被覆してなるパラジウム触媒を用いた。

Description

パラジウム触媒及びそれを用いたビスアリール化合物の製造方法
 本発明は、鈴木-宮浦反応用のパラジウム触媒と、このパラジウム触媒を用いたビスアリール化合物の製造方法に関する。
 鈴木-宮浦反応は、芳香族ハロゲン化物と芳香族ボロン酸とのカップリング反応である。この反応は、塩基の存在下、パラジウムにより触媒され、通常は触媒の活性化のためリン系の配位子が必要である。そして、生成物であるビスアリール化合物は、医薬品や有機電子材料として有用な物質であるため、基礎研究のみならず工業的にも利用されている有用な反応である。
 しかし、パラジウムは高価であり、また、製品中への混入が規制されているため、漏洩がなくリサイクル使用可能なパラジウム触媒の開発が期待されている。併せて、高価で毒性のあるリン系配位子の使用を必要としない高い触媒活性も要求されている。
 なお、反応後のパラジウム触媒のリサイクル使用に関し、非特許文献1には、ヒドロキシアパタイト固定化パラジウム触媒が、ブロモベンゼンとフェニルホウ酸を用いた鈴木-宮浦カップリングに活性を示し、触媒回転効率(TON)も高いことが示されているが、触媒の活性がやや低く、反応温度120℃という厳しい反応条件が必要であるという欠点があった。
 また、非特許文献2には、配位子としてアリールホスフィンを有する非架橋性両親媒性高分子を用いた固相パラジウム触媒が鈴木-宮浦カップリングに活性を示し、TONも高いことが示されているが、非特許文献1と同様、反応温度100℃という厳しい反応条件が必要である。さらに、非架橋性両親媒性高分子を作成するためのコストが高いという欠点があった。
 なお、本発明者は、これらの欠点を解消するために、イオン液体に溶解したパラジウム化合物を多孔質担体に固定化させたパラジウム触媒を開発している(特許文献1)が、より高い安定性とリサイクル性を有する高性能のパラジウム触媒の開発が望まれている。
特開2008-184418号公報
金田清臣,有機合成化学協会誌,61, 436(2003) 山田陽一,薬学雑誌,125, 749(2005)
 そこで、本発明は、高い安定性とリサイクル性を有する新規のパラジウム触媒と、このパラジウム触媒を用いた新規のビスアリール化合物の製造方法を提供することを目的とする。
 上記課題を解決するために鋭意検討した結果、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形アルミナの空孔内に固定化させた後にポリスチレンで被覆することで、高い安定性とリサイクル性を有し、鈴木-宮浦カップリング反応を収率よく進行させることのできるパラジウム触媒が得られることを見出し、本発明に想到した。
 すなわち、本発明のビアリール化合物の製造方法は、パラジウム触媒及び塩基の存在下において、芳香族ハロゲン化物と芳香族ボロン酸とを反応させてビアリール化合物を製造するに際し、前記パラジウム触媒として、イオン液体に溶解したパラジウム化合物を多孔質担体に固定化させた後に高分子で被覆してなるパラジウム触媒を用いるものである。
 本発明のビアリール化合物の製造方法は、前記パラジウム触媒として、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形アルミナの空孔内に固定化させた後にポリスチレンで被覆してなるパラジウム触媒を用いるものである。
 本発明のビアリール化合物の製造方法は、前記パラジウム触媒として、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形シリカゲルの空孔内に固定化させた後にポリスチレンで被覆してなるパラジウム触媒を用いるものである。
 本発明のビアリール化合物の製造方法は、前記パラジウム触媒として、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形アルミナの空孔内に固定化させた後にポリエチレンテレフタレートで被覆してなるパラジウム触媒を用いるものである。
 本発明のビアリール化合物の製造方法は、前記パラジウム触媒として、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形シリカゲルの空孔内に固定化させた後にポリエチレンテレフタレートで被覆してなるパラジウム触媒を用いるものである。
 本発明のパラジウム触媒は、イオン液体に溶解したパラジウム化合物を多孔質担体に固定化させた後に高分子で被覆してなるものである。
 本発明のパラジウム触媒は、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形アルミナの空孔内に固定化させた後にポリスチレンで被覆してなるものである。
 本発明のパラジウム触媒は、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形シリカゲルの空孔内に固定化させた後にポリスチレンで被覆してなるものである。
 本発明のパラジウム触媒は、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形アルミナの空孔内に固定化させた後にポリエチレンテレフタレートで被覆してなるものである。
 本発明のパラジウム触媒は、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形シリカゲルの空孔内に固定化させた後にポリエチレンテレフタレートで被覆してなるものである。
 本発明によれば、高い安定性とリサイクル性を有する新規のパラジウム触媒と、このパラジウム触媒を用いた新規のビスアリール化合物の製造方法が提供される。
 本発明のパラジウム触媒は、イオン液体に溶解したパラジウム化合物を多孔質担体に固定化させた後に高分子で被覆してなるものである。
Figure JPOXMLDOC01-appb-C000001
 このパラジウム触媒(Pd-SILC)は、鈴木-宮浦反応に高い活性を示すとともに、濾過操作により回収され、リサイクル使用が可能である。
Figure JPOXMLDOC01-appb-C000002
 ここで、パラジウム化合物には、酢酸パラジウム(Pd(OAc)、ここで(OAc)は酢酸残基)、塩化パラジウム(PdCl)などのパラジウム塩、パラジウムブラック(Pd)、テトラ(トリフェニルホスフィン)パラジウム(Pd(PPh、ここでPhはフェニル基)などのパラジウム錯体など、一般に知られているパラジウム化合物が含まれる。これらの中では、特に酢酸パラジウムが好適に用いられる。
 また、多孔質担体としては、特定のものに限定されず、シリカゲル、アルミナ、チタニア、ゼオライト、アパタイト、ヒドロキシアパタイトなどからなる一般的な多孔質固体を用いることができる。さらに、これらの形状も限定されず、無定形の多孔質担体、ハニカム状に成形したものなどを用いることができるが、好ましくは、無定形のものが用いられる。特に好ましくは、順相及び逆相の無定形シリカゲル、無定形アルミナが用いられる。
 また、多孔質担体として、アミノ置換シラン化合物により前処理されたものを用いることができる。アミノ置換シラン化合物としては、特定のものに限定されるものではないが、例えば、3-(トリメトキシシリル)-N,N-ジエチルアミン((C)HN(CHSi(OCH)などが好適に用いられる。また、3-(トリメトキシシリル)-チオプロパノール(HS(CHSi(OCH)で前処理した多孔質担体を用いることもできる。なお、3-(トリメトキシシリル)-N,N-ジエチルアミン((C)HN(CHSi(OCH)で前処理されることにより、多孔質担体は、ジエチルアミノプロピル残基で表面修飾された状態になる。
 そして、パラジウム化合物は、イオン液体に溶解した状態で多孔質担体に固定化されている。イオン液体としては、常温、好ましくは35℃以下で液体であって、パラジウム化合物を溶解できるものであればよく、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート([bmim]PF)、1-ヘキシル-3-メチルイミダゾリウムヘキサフルオロホスフェート([hmim]PF)、1-ブチル-3-メチルイミダゾリウムビストリフルオロメチルスルフォニルイミド([bmim]TFSI)、1-ブチル-3-メチルイミダゾリウムビストリフルオロメタンスルフォニルアミド([bmim]NTf)、1-エチル-3-メチルイミダゾリウムテトラシアノボレート([emim]TCB)、1-エチル-3-メチルイミダゾリウムトリス(ペンタフルオロエチル)トロフルオロフォスフェート([emim]FAP)などを用いることができるが、[bmim]PFが特に好適に用いられる。
 さらに、イオン液体に溶解したパラジウム化合物を固定化させた多孔質担体は、高分子で被覆されている。高分子としては、特定のものに限定されず、一般的な合成樹脂を用いることができるが、例えば、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ABS樹脂などを用いることができる。
 本発明のビアリール化合物の製造方法は、パラジウム触媒及び塩基の存在下において、芳香族ハロゲン化物と芳香族ボロン酸とを反応させてビアリール化合物を製造するに際し、上記の本発明のパラジウム触媒を用いるものである。なお、芳香族ハロゲン化物、芳香族ボロン酸、としては、特定のものに限定されず、あらゆる種類の芳香族ハロゲン化物又はヘテロ芳香族ハロゲン化物と、芳香族ボロン酸又はヘテロ芳香族ボロン酸の組合せにて、鈴木-宮浦カップリングによるビアリール化合物の製造が可能である。
 ここで、塩基としては有機及び無機の塩基を用いることができ、特定のものに限定されないが、特に炭酸カリウムが好適に用いられる。また、芳香族ハロゲン化物と芳香族ボロン酸との反応は通常用いられる有機溶媒中でも進行するが、エタノールと水の混合溶媒中において最も効率よく行われる。
 以上の本発明のパラジウム触媒は、高い安定性と活性を示し、濾過により容易に回収されリサイクル可能であり、さらに、既知物質から簡便な操作で調製できる、という利点を有する。また、このパラジウム触媒を用いたビアリール化合物の製造方法は、反応に配位子を必要とせず、反応はエタノールと水の混合溶媒中で進行して環境対応度が高い。また、反応は室温で進行して加熱の必要がなく、さまざまな化合物を反応させることができる。さらに、均一系の触媒で見られるクラスター化による触媒の失活や触媒による生成物への汚染を防ぐことが可能となる。
 以下、具体的な実施例に基づいて、本発明について詳細に説明する。なお、本発明は、以下の実施例によって制限されるものではない。
 イオン液体([bmim]PF)に溶解した酢酸パラジウム(Pd(OAc))をジエチルアミノプロピル残基(-(CHNEt)で表面修飾した多孔質の無定形アルミナ(Al)の空孔内に固定化させた後にポリスチレン(PS)で被覆してなるパラジウム触媒(PS-Pd-SILC)を調製し、種々の反応を試みた。
 [反応例1]
Figure JPOXMLDOC01-appb-C000003
 触媒調製操作(PS-Pd-SILCの調製):
 窒素雰囲気下、120℃のオーブンで24時間乾燥した無定形アルミナ(日揮化学製、球状、比表面積152m/g、4.749g)に3-(トリメトシキシリル)-プロピル-N,N-ジエチルアミン(1880μl、7.5mmol)、トルエン(38ml)を加え、24時間加熱還流、撹拌した。室温まで冷却した後、デカンテーションにより溶媒と触媒を分離した。残留物を塩化メチレン(CHCl)で洗浄し減圧下乾燥させ、ジエチルアミノプロピル基で表面加工した粒状の無定形アルミナ(5.034g)を得た。
 30mL二口フラスコにジエチルアミノプロピル基で表面加工した粒状の無定形アルミナ(1.00g)、イオン液体[bmim]PF(109mg)、酢酸パラジウム(68mg、0.3mmol)を入れ、THF(2mL)に懸濁させた。その後、窒素雰囲気下、室温にて4時間攪拌し、溶媒を減圧留去した。続いてEtO(×5)により洗浄し、減圧下で乾燥し、担持触媒Pd-SILC(1.132g)を得た。担持量は0.258mmol/gであった。
 20mLフラスコにシクロヘキサン(3mL)、ポリスチレン(251mg、分子量25万)を入れ、湯浴にて溶解させた。先に調製したPd-SILCを入れ5分撹拌したのち、取り出して風乾した。この操作を2回繰り返し、PS-Pd-SILCを得た(1.151g)。
 以下、このパラジウム触媒(PS-Pd-SILC)を用いて種々の反応を試みた。
 [反応例2]
Figure JPOXMLDOC01-appb-C000004
 4-ブロモアセトフェノンとフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに4-ブロモアセトフェノン(131.4mg、0.66mmol)、炭酸カリ(182mg、1.32mmol)、フェニルボロン酸(113mg、0.924mmol)、PS-Pd-SILC(117mg、0.0033mmol、0.5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で1時間撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物4-フェニルアセトフェノン(129.6mg、100%)を得た。
 [反応例3]
Figure JPOXMLDOC01-appb-C000005
 4-ブロモニトロベンゼンとフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに4-ブロモニトロベンゼン(118mg、0.584mmol)、炭酸カリ(162mg、1.32mmol)、フェニルボロン酸(100mg、0.82mmol)、PS-Pd-SILC(137.2mg、0.0292mmol、5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で9時間撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:10)により精製し、生成物4-フェニルニトロベンゼン(107mg、92%)を得た。
 [反応例4]
Figure JPOXMLDOC01-appb-C000006
 1-ブロモナフタレンとフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに1-ブロモナフタレン(84μL、0.6mmol)、炭酸カリ(166mg、1.2mmol)、フェニルボロン酸(103mg、0.82mmol)、PS-Pd-SILC(130.7mg、0.0292mmol、5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で5時間撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:10)により精製し、生成物1-フェニルナフタレン(107mg、88%)を得た。
 [反応例5]
Figure JPOXMLDOC01-appb-C000007
 4-アセチルトリフルオロメタンスルフォネートとフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに炭酸カリ(166mg、1.2mmol)、フェニルボロン酸(102mg、0.84mmol)、PS-Pd-SILC(130.3mg、0.03mmol、5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え、続いて4-アセチルトリフルオロメタンスルフォネート(113μL、0.6mmol)を加え、室温で19時間撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物4-フェニルアセトフェノン(108mg、92%)を得た。
 [反応例6]
Figure JPOXMLDOC01-appb-C000008
 4-ブロモアセトフェノンと2-メトキシフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに4-ブロモアセトフェノン(125mg、0.62mmol)、炭酸カリ(172mg、1.24mmol)、2-メトキシフェニルボロン酸(133mg、0.87mmol)、PS-Pd-SILC(130.6mg、0.031mmol、5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で1.5時間撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物4-(2?メトキシフェニル)アセトフェノン(138mg、97%)を得た。
 [反応例7]
Figure JPOXMLDOC01-appb-C000009
 4-ブロモアセトフェノンと2-イソプロピルフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに4-ブロモアセトフェノン(124mg、0.62mmol)、炭酸カリ(172mg、1.24mmol)、2-イソプロピルフェニルボロン酸(139mg、0.86mmol)、PS-Pd-SILC(126mg、0.031mmol、5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で1.5時間撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物4-(2?イソプロピルフェニル)アセトフェノン(148mg、100%)を得た。
 [反応例8]
Figure JPOXMLDOC01-appb-C000010
 4-ブロモアセトフェノンと1-ナフタレンボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに4-ブロモアセトフェノン(123mg、0.62mmol)、炭酸カリ(172mg、1.24mmol)、1-ナフタレンボロン酸(149mg、0.87mmol)、PS-Pd-SILC(124.7mg、0.031mmol、5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で4時間撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物1-(4?アセチルフェニル)ナフタレン(159mg、100%)を得た。
 [反応例9]
 リサイクル実験:
 20mLフラスコにシクロヘキサン(3mL)、ポリスチレン(251mg)を入れ、湯浴にて溶解させた。ジエチルアミノプロピル基で表面加工した無定形アルミナを用い、酢酸パラジウムと[bmim]PFから調製したPd-SILC(120.7mg、0.0284mmmol)を入れ5分撹拌したのち、取り出して風乾した。この操作を2回繰り返し、PS-Pd-SILC(124.5mg)を得た。
 30mL二口フラスコに4-ブロモアセトフェノン(112.7mg、0.566mmol)、炭酸カリ(157.3mg、1.14mmol)、フェニルボロン酸(97.3mg、0.798mmol)、上記PS-Pd-SILC(5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で60分撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物4?フェニルアセトフェノン(110.2mg、99%)を得た。
 この触媒を室温で減圧乾燥後、次の実験に用いた。結果を表に示す。なお、10回使用後のPS-Pd-SILCの重量は127.7mgであった。
 PS-Pd-SILCは4-ブロモアセトフェノンとフェニルボロン酸との鈴木-宮浦反応において10回のリサイクル使用を行うことができた。また、触媒回転数(TON)は170,000、TOFは2,400(h-1)という高い活性を示した。
Figure JPOXMLDOC01-appb-T000011
 [反応例10]
 PS-Pd-SILCを用いた鈴木-宮浦反応の基質一般性を以下に記す。立体障害のため合成の難しいオルト置換ビフェニルも、室温で容易に合成できた。また、反応性の低いフェノールのトリフレート体もボロン酸と室温で反応した。
Figure JPOXMLDOC01-appb-T000012
 イオン液体([bmim]PF)に溶解した酢酸パラジウム(Pd(OAc))をジエチルアミノプロピル残基(-(CHNEt)で表面修飾した多孔質の無定形アルミナ(Al)の空孔内に固定化させた後にポリエチレンテレフタレート(PET)で被覆してなるパラジウム触媒(アルミナPET-Pd-SILC)を調製し、種々の反応を試みた。
 [反応例11]
 触媒調製操作(アルミナPET-Pd-SILCの調整):
 窒素雰囲気下、120℃のオーブンで24時間乾燥した無定形アルミナ(日揮化学製、球状、比表面積152m/g、4.749g)に3-(トリメトシキシリル)-プロピル-N,N-ジエチルアミン(1880μl、7.5mmol)、トルエン(38ml)を加え、24時間加熱還流、撹拌した。室温まで冷却した後、デカンテーションにより溶媒と触媒を分離した。残留物を塩化メチレン(CHCl)で洗浄し減圧下乾燥させ、ジエチルアミノプロピル基で表面加工した粒状の無定形アルミナ(5.034g)を得た。
 30mL二口フラスコにジエチルアミノプロピル基で表面加工した粒状の無定形アルミナ(1.00g)、イオン液体[bmim]PF(109mg)、酢酸パラジウム(68mg、0.3mmol)を入れ、THF(2mL)に懸濁させた。その後、窒素雰囲気下、室温にて4時間攪拌し、溶媒を減圧留去した。続いてEtO(×5)により洗浄し、減圧下で乾燥し、担持触媒Pd-SILC(1.132g)を得た。担持量は0.258mmol/gであった。
 20mLフラスコに1,1,1,3,3,3-ヘキサフルオロ-2-イソプロパノール(0.1mL)、ポリエチレンテレフタレート(PET)(49.7mg)を入れ、半分溶解させ飽和溶液を調製した。先に調製したPd-SILC(130.6mg)を入れ5分撹拌したのち、取り出して風乾した。この操作を2回繰り返し、アルミナPET-Pd-SILC(136.2mg)を得た。
 以下、このパラジウム触媒(アルミナPET-Pd-SILC)を用いて種々の反応を試みた。
 [反応例12]
Figure JPOXMLDOC01-appb-C000013
 4-ブロモアセトフェノンとフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに4-ブロモアセトフェノン(131.4mg、0.66mmol)、炭酸カリ(182mg、1.32mmol)、フェニルボロン酸(113mg、0.924mmol)、アルミナPET-Pd-SILC(117mg、0.0033mmol、0.5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で1時間撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物4-フェニルアセトフェノン(129.6mg、100%)を得た。
 [反応例13]
Figure JPOXMLDOC01-appb-C000014
 4-ブロモアセトフェノンと2-メチルフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに4-ブロモアセトフェノン(135.9mg、0.68mmol)、炭酸カリ(188mg、1.36mmol)、2-メチルフェニルボロン酸(129.6mg、0.95mmol)、アルミナPET-Pd-SILC(136.2mg、0.034mmol、0.5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で30分撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物4-(2-メチルフェニル)アセトフェノン(149mg、100%)を得た。
 [反応例14]
Figure JPOXMLDOC01-appb-C000015
 4-ブロモアセトフェノンと2-イソプロピルフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに4-ブロモアセトフェノン(119.8mg、0.6mmol)、炭酸カリ(166mg、1.2mmol)、2-イソプロピルフェニルボロン酸(137.8mg、0.84mmol)、アルミナPET-Pd-SILC(123.4mg、0.03mmol、0.5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で180分撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物4-(2-イソプロピルフェニル)アセトフェノン(141mg、98%)を得た。
 [反応例15]
Figure JPOXMLDOC01-appb-C000016
 4-ブロモアセトフェノンと2-フェニルフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに4-ブロモアセトフェノン(123.4mg、0.62mmol)、炭酸カリ(171mg、1.24mmol)、2-フェニルフェニルボロン酸(173mg、0.87mmol)、アルミナPET-Pd-SILC(130.4mg、0.031mmol、0.5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で80分撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物4-(2-フェニルフェニル)アセトフェノン(162mg、96%)を得た。
 [反応例16]
Figure JPOXMLDOC01-appb-C000017
 1-ブロモナフタレンとフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに1-ブロモナフタレン(136.7mg、0.65mmol)、炭酸カリ(182mg、1.32mmol)、2-フェニルフェニルボロン酸(113mg、0.92mmol)、アルミナPET-Pd-SILC(130.4mg、0.031mmol、0.5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で19時間撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物1-フェニルナフタレン(110mg、81%)を得た。
 [反応例17]
 アルミナPET-Pd-SILCを用いた鈴木-宮浦反応の基質一般性を以下に記す。立体障害のため合成の難しいオルト置換ビフェニルも、室温で容易に合成できた。また、反応性の低いフェノールのトリフレート体もボロン酸と室温で反応した。なお、併せて、後述する実施例3のシリカPET-Pd-SILCを用いた基質一般性も示した。
Figure JPOXMLDOC01-appb-T000018
 イオン液体([bmim]PF)に溶解した酢酸パラジウム(Pd(OAc))をジエチルアミノプロピル残基(-(CHNEt)で表面修飾した多孔質の無定形シリカ(SiO)の空孔内に固定化させた後にポリエチレンテレフタレート(PET)で被覆してなるパラジウム触媒(シリカPET-Pd-SILC)を調製し、種々の反応を試みた。
 [反応例18]
 触媒調製操作(シリカPET-Pd-SILCの調製):
 30mL二口フラスコにジエチルアミノプロピル基で表面加工した粒状の無定形シリカ(1.00g)、イオン液体[bmim]PF(107mg)、酢酸パラジウム(68mg、0.3mmol)を入れ、THF(4mL)に懸濁させた。その後、窒素雰囲気下、室温にて4時間攪拌し、溶媒を減圧留去した。続いてEtO(×5)により洗浄し、減圧下で乾燥し、担持触媒Pd-SILC(1.14g)を得た。担持量は0.26mmol/gであった。
 20mLフラスコに1,1,1,3,3,3-ヘキサフルオロ-2-イソプロパノール(0.1mL)にポリエチレンテレフタレート(PET)(51mg)を入れ、半分溶解させ飽和溶液を調製した。先に調製したPd-SILC(100mg)を入れ5分撹拌したのち、取り出して風乾した。この操作を2回繰り返し、シリカPET-Pd-SILC(107mg)を得た。
 以下、このパラジウム触媒(シリカPET-Pd-SILC)を用い、リサイクル実験を含む種々の反応を試みた。
 このパラジウム触媒(シリカPET-Pd-SILC)を用いて別途行った4-ブロモアセトフェノンとフェニルボロン酸の鈴木-宮浦反応の粗生成物のICP-AES分析では、パラジウムは全く検出されなかった。
[反応例19]
Figure JPOXMLDOC01-appb-C000019
 4-ブロモアセトフェノンとフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに炭酸カリ(155mg、1.12mmol)、フェニルボロン酸(96mg、0.784mmol)、シリカPET-Pd-SILC(118.3mg、0.03mmol、5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え、続いて4-ブロモアセトフェノン(111.4mg)を加え、室温で2.5時間撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物4-フェニルアセトフェノン(121mg、100%)を得た。
[反応例20]
Figure JPOXMLDOC01-appb-C000020
 4-ブロモアセトフェノンと2-フェニルフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに4-ブロモアセトフェノン(96mg、0.48mmol)、炭酸カリ(133mg、0.96mmol)、2-フェニルフェニルボロン酸(133mg、0.024mmol)、シリカPET-Pd-SILC(115mg、0.031mmol、0.5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で90分撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物4-(2-フェニルフェニル)アセトフェノン(128mg、98%)を得た。
[反応例21]
Figure JPOXMLDOC01-appb-C000021
 4-ブロモアセトフェノンと2-フェニルフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに4-ブロモアセトフェノン(108.4mg、0.54mmol)、炭酸カリ(149mg、1.08mmol)、2-メチルフェニルボロン酸(103mg、0.76mmol)、シリカPET-Pd-SILC(130.4mg、0.031mmol、0.5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で90分撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物4-(2-メチルフェニル)アセトフェノン(115mg、100%)を得た。
[反応例22]
Figure JPOXMLDOC01-appb-C000022
 2-ブロモトルエンとフェニルボロン酸の鈴木-宮浦反応:
 30mL二口フラスコに2-ブロモトルエン(63μL、0.52mmol)、炭酸カリ(144mg、1.08mmol)、フェニルボロン酸(89mg、0.76mmol)、シリカPET-Pd-SILC(119mg、0.026mmol、0.5mol%)を入れた。水(1mL)を加え炭酸カリを溶解させた。エタノール(1mL)を加え室温で4時間撹拌した。エーテル/エタノールの混合溶媒を加えデカンテーションにより触媒を除いた。有機層を減圧留去し、残渣をシリカゲルカラムクロマト(EtOAc:ヘキサン=1:3)により精製し、生成物2-メチルビフェニル(61mg、70%)を得た。
[反応例23]
Figure JPOXMLDOC01-appb-C000023
 表3、エントリー4と同条件下、4-ブロモアセトフェノンと2-フェニルフェニルボロン酸の鈴木-宮浦反応を用い、シリカPET-Pd-SILCのリサイクル実験を行った。その結果、反応性を落とすことなく、平均収率98%、平均反応時間3時間で10回のリサイクル使用に成功した。
Figure JPOXMLDOC01-appb-T000024

Claims (10)

  1. パラジウム触媒及び塩基の存在下において、芳香族ハロゲン化物と芳香族ボロン酸とを反応させてビアリール化合物を製造するに際し、前記パラジウム触媒として、イオン液体に溶解したパラジウム化合物を多孔質担体に固定化させた後に高分子で被覆してなるパラジウム触媒を用いることを特徴とするビアリール化合物の製造方法。
  2. 前記パラジウム触媒として、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形アルミナの空孔内に固定化させた後にポリスチレンで被覆してなるパラジウム触媒を用いることを特徴とする請求項1記載のビアリール化合物の製造方法。
  3. 前記パラジウム触媒として、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形シリカゲルの空孔内に固定化させた後にポリスチレンで被覆してなるパラジウム触媒を用いることを特徴とする請求項1記載のビアリール化合物の製造方法。
  4. 前記パラジウム触媒として、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形アルミナの空孔内に固定化させた後にポリエチレンテレフタレートで被覆してなるパラジウム触媒を用いることを特徴とする請求項1記載のビアリール化合物の製造方法。
  5. 前記パラジウム触媒として、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形シリカゲルの空孔内に固定化させた後にポリエチレンテレフタレートで被覆してなるパラジウム触媒を用いることを特徴とする請求項1記載のビアリール化合物の製造方法。
  6. イオン液体に溶解したパラジウム化合物を多孔質担体に固定化させた後に高分子で被覆してなることを特徴とするパラジウム触媒。
  7. 1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形アルミナの空孔内に固定化させた後にポリスチレンで被覆してなることを特徴とする請求項6記載のパラジウム触媒。
  8. 1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形シリカゲルの空孔内に固定化させた後にポリスチレンで被覆してなることを特徴とする請求項6記載のパラジウム触媒。
  9. 1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形アルミナの空孔内に固定化させた後にポリチレンテレフタレートで被覆してなることを特徴とする請求項6記載のパラジウム触媒。
  10. 1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに溶解した酢酸パラジウムをジエチルアミノプロピル残基で表面修飾した多孔質の無定形シリカゲルの空孔内に固定化させた後にポリエチレンテレフタレートで被覆してなることを特徴とする請求項6記載のパラジウム触媒。
PCT/JP2012/052625 2011-02-18 2012-02-06 パラジウム触媒及びそれを用いたビスアリール化合物の製造方法 WO2012111468A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012557891A JP5896926B2 (ja) 2011-02-18 2012-02-06 パラジウム触媒及びそれを用いたビスアリール化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011032892 2011-02-18
JP2011-032892 2011-02-18

Publications (1)

Publication Number Publication Date
WO2012111468A1 true WO2012111468A1 (ja) 2012-08-23

Family

ID=46672396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052625 WO2012111468A1 (ja) 2011-02-18 2012-02-06 パラジウム触媒及びそれを用いたビスアリール化合物の製造方法

Country Status (2)

Country Link
JP (1) JP5896926B2 (ja)
WO (1) WO2012111468A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039479A1 (ja) * 2014-09-12 2016-03-17 東洋合成工業株式会社 高分子担持遷移触媒
CN110124732A (zh) * 2019-04-13 2019-08-16 复旦大学 用于金属催化偶联反应的高分子催化剂及其制备方法
CN113751076A (zh) * 2020-06-04 2021-12-07 南京工业大学 双咪唑鎓盐钯负载多孔有机聚合物催化剂及其制法与应用
CN115193459A (zh) * 2022-08-03 2022-10-18 哈尔滨工业大学(深圳) 一种非均相钯催化剂的制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358542A (ja) * 1991-06-05 1992-12-11 Mitsubishi Rayon Co Ltd 機械的強度に優れた固体触媒及びその製造法
JPH04363147A (ja) * 1991-06-06 1992-12-16 Mitsubishi Rayon Co Ltd メタクロレイン及びメタクリル酸の製造法
JPH0549938A (ja) * 1991-08-21 1993-03-02 Mitsubishi Rayon Co Ltd アクロレイン及びアクリル酸合成用触媒及びその製造法
JPH06145103A (ja) * 1992-11-10 1994-05-24 Daicel Chem Ind Ltd 炭酸ジエステルの製造法
JPH11104499A (ja) * 1997-08-11 1999-04-20 Eurecat Europ De Retraitement De Catalyseurs 保護層の堆積による触媒の保護方法
JP2008184418A (ja) * 2007-01-30 2008-08-14 Niigata Univ パラジウム触媒及びそれを用いたビアリール系化合物又はヘテロビアリール系化合物の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062109A1 (ja) * 2009-11-20 2011-05-26 国立大学法人新潟大学 パラジウム触媒及びそれを用いたビスアリール化合物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358542A (ja) * 1991-06-05 1992-12-11 Mitsubishi Rayon Co Ltd 機械的強度に優れた固体触媒及びその製造法
JPH04363147A (ja) * 1991-06-06 1992-12-16 Mitsubishi Rayon Co Ltd メタクロレイン及びメタクリル酸の製造法
JPH0549938A (ja) * 1991-08-21 1993-03-02 Mitsubishi Rayon Co Ltd アクロレイン及びアクリル酸合成用触媒及びその製造法
JPH06145103A (ja) * 1992-11-10 1994-05-24 Daicel Chem Ind Ltd 炭酸ジエステルの製造法
JPH11104499A (ja) * 1997-08-11 1999-04-20 Eurecat Europ De Retraitement De Catalyseurs 保護層の堆積による触媒の保護方法
JP2008184418A (ja) * 2007-01-30 2008-08-14 Niigata Univ パラジウム触媒及びそれを用いたビアリール系化合物又はヘテロビアリール系化合物の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039479A1 (ja) * 2014-09-12 2016-03-17 東洋合成工業株式会社 高分子担持遷移触媒
CN106687213A (zh) * 2014-09-12 2017-05-17 东洋合成工业株式会社 高分子负载过渡催化剂
JPWO2016039479A1 (ja) * 2014-09-12 2017-06-29 東洋合成工業株式会社 高分子担持遷移触媒
US10308562B2 (en) 2014-09-12 2019-06-04 Toyo Gosei Co., Ltd. Polymer-supported transition catalyst
US10800715B2 (en) 2014-09-12 2020-10-13 Toyo Gosei Co., Ltd. Polymer-supported transition catalyst
CN110124732A (zh) * 2019-04-13 2019-08-16 复旦大学 用于金属催化偶联反应的高分子催化剂及其制备方法
CN113751076A (zh) * 2020-06-04 2021-12-07 南京工业大学 双咪唑鎓盐钯负载多孔有机聚合物催化剂及其制法与应用
CN113751076B (zh) * 2020-06-04 2023-09-19 南京工业大学 双咪唑鎓盐钯负载多孔有机聚合物催化剂及其制法与应用
CN115193459A (zh) * 2022-08-03 2022-10-18 哈尔滨工业大学(深圳) 一种非均相钯催化剂的制备方法及应用
CN115193459B (zh) * 2022-08-03 2024-01-12 哈尔滨工业大学(深圳) 一种非均相钯催化剂的制备方法及应用

Also Published As

Publication number Publication date
JPWO2012111468A1 (ja) 2014-07-03
JP5896926B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
Karimi et al. Ordered Mesoporous Organosilica with Ionic‐Liquid Framework: An Efficient and Reusable Support for the Palladium‐Catalyzed Suzuki–Miyaura Coupling Reaction in Water
Okamoto et al. Suzuki− Miyaura coupling catalyzed by polymer-incarcerated palladium, a highly active, recoverable, and reusable Pd catalyst
Rostamnia et al. Ordered interface mesoporous immobilized Pd pre-catalyst: En/Pd complexes embedded inside the SBA-15 as an active, reusable and selective phosphine-free hybrid catalyst for the water medium Heck coupling process
Bandini et al. Aryl alkynylation versus alkyne homocoupling: unprecedented selectivity switch in Cu, phosphine and solvent-free heterogeneous Pd-catalysed couplings
Baleizão et al. Oxime carbapalladacycle covalently anchored to high surface area inorganic supports or polymers as heterogeneous green catalysts for the Suzuki reaction in water
Ghorbani-Choghamarani et al. Modification of boehmite nanoparticles with Adenine for the immobilization of Cu (II) as organic–inorganic hybrid nanocatalyst in organic reactions
Kaboudin et al. Pd (II)-β-cyclodextrin complex: Synthesis, characterization and efficient nanocatalyst for the selective Suzuki-Miyaura coupling reaction in water
Elhamifar et al. Palladium‐Containing Ionic Liquid‐Based Ordered Mesoporous Organosilica: An Efficient and Reusable Catalyst for the Heck Reaction
Kandathil et al. Immobilized N-heterocyclic carbene-palladium (II) complex on graphene oxide as efficient and recyclable catalyst for Suzuki–Miyaura cross-coupling and reduction of nitroarenes
Bhunia et al. Anchoring of palladium (II) in chemically modified mesoporous silica: an efficient heterogeneous catalyst for Suzuki cross-coupling reaction
Targhan et al. Palladium nanoparticles immobilized with polymer containing nitrogen-based ligand: a highly efficient catalyst for Suzuki–Miyaura and Mizoroki–Heck coupling reactions
Borah et al. Efficient Suzuki–Miyaura coupling reaction in water: stabilized Pdo-montmorillonite clay composites catalyzed reaction
Singh et al. Synthesis and characterization of recyclable and recoverable MMT-clay exchanged ammonium tagged carbapalladacycle catalyst for Mizoroki–Heck and Sonogashira reactions in ionic liquid media
Iwai et al. Silica-Supported Triptycene-Type Phosphine. Synthesis, Characterization, and Application to Pd-Catalyzed Suzuki–Miyaura Cross-Coupling of Chloroarenes
JP5896926B2 (ja) パラジウム触媒及びそれを用いたビスアリール化合物の製造方法
Tandukar et al. N-heterocyclic carbene–palladium complex immobilized on silica nanoparticles: Recyclable catalyst for high yield Suzuki and Heck coupling reactions under mild conditions
More et al. Palladium supported ionic liquid phase catalyst (Pd@ SILP-PS) for room temperature Suzuki-Miyaura cross-coupling reaction
JP4815604B2 (ja) ビアリール系化合物の製造方法
Wan et al. Carbonylative Suzuki coupling and alkoxycarbonylation of aryl halides using palladium supported on phosphorus‐doped porous organic polymer as an active and robust catalyst
Du et al. Application of an air-and-moisture-stable diphenylphosphinite cellulose-supported nanopalladium catalyst for a Heck reaction
Razavi et al. Aminophosphine Palladium (0) Complex Supported on ZrO 2 Nanoparticles (ZrO 2@ AEPH 2-PPh 2-Pd (0)) as an Efficient Heterogeneous Catalyst for Suzuki–Miyaura and Heck–Mizoroki Reactions in Green Media
Naikwade et al. Magnetic Nanoparticle Decorated N-Heterocyclic Carbene–Nickel Complex with Pendant Ferrocenyl Group for C–H Arylation of Benzoxazole
Pharande et al. Cellulose Schiff base-supported Pd (II): An efficient heterogeneous catalyst for Suzuki Miyaura cross-coupling
Tamoradi et al. SBA-15@ adenine–Pd: a novel and green heterogeneous nanocatalyst in Suzuki and Stille reactions and synthesis of sulfides
Dânoun et al. Nanostructured Pyrophosphate Na2PdP2O7‐Catalyzed Suzuki‐Miyaura Cross‐Coupling Under Microwave Irradiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012557891

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746632

Country of ref document: EP

Kind code of ref document: A1