WO2012109777A1 - 一种无硼无氟玻璃纤维组合物 - Google Patents

一种无硼无氟玻璃纤维组合物 Download PDF

Info

Publication number
WO2012109777A1
WO2012109777A1 PCT/CN2011/001115 CN2011001115W WO2012109777A1 WO 2012109777 A1 WO2012109777 A1 WO 2012109777A1 CN 2011001115 W CN2011001115 W CN 2011001115W WO 2012109777 A1 WO2012109777 A1 WO 2012109777A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
glass
cao
mgo
boron
Prior art date
Application number
PCT/CN2011/001115
Other languages
English (en)
French (fr)
Inventor
韩利雄
杜迅
姚远
陈德全
Original Assignee
重庆国际复合材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆国际复合材料有限公司 filed Critical 重庆国际复合材料有限公司
Priority to BR112013020222A priority Critical patent/BR112013020222B1/pt
Priority to EP11858719.5A priority patent/EP2676939B1/en
Priority to US13/574,694 priority patent/US9051207B2/en
Publication of WO2012109777A1 publication Critical patent/WO2012109777A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Definitions

  • the present invention relates to a glass fiber composition, and more particularly to a boron-free, fluorine-free, high performance glass fiber composition.
  • Glass fiber is a very important inorganic non-metallic reinforcing material. It is a glass fiber reinforced composite material formed by compounding with various resins. It has excellent performance and is widely used in civil engineering, transportation, electronics, machinery, chemistry, etc. field. At present, glass fiber has thousands of varieties and specifications, and more than 50,000 uses. Among various fiber reinforced products, glass fiber reinforced composite products account for more than 85% of the total.
  • C glass boron-containing medium alkali glass
  • Traditional E glass such as the direct roving roving 362K/352B for LFT produced by Jushi Group Co., Ltd.; SMC/BMC roving 956/957 produced by OCV
  • tensile strength tensile strength
  • insufficient elastic modulus tensile strength
  • chemical resistance tensile strength
  • insufficient elastic modulus poor chemical resistance
  • some components in the glass are likely to cause environmental pollution.
  • various companies have added some new glass components and carried out many R&D innovations.
  • Chinese and foreign companies have developed many new fiberglass products, many development directions and technological achievements have no industrial application value.
  • Fluorine-free E-glass is a formulation developed in recent years under environmental pressure. The use of other fluxes in place of fluoride has increased the cost of glass. Many fluorine-free E-glass technologies have no industrial application value, and most of the related technologies are not put into production.
  • ECR glass fiber the classic corrosion-resistant glass fiber
  • the ECR glass fiber is composed of a Si0 2 -Al 2 0 3 -CaO-MgO quaternary system with 3 to 5 °/. Ti0 2 , liquidus temperature over 1200 "C, molding temperature up to 1340 ° C.
  • E-CR glass fiber completely removes boron and fluorine, too high Ti0 2 content makes the glass fiber very dark, limiting it Many uses; in addition, such high liquidus temperatures and molding temperatures are severe tests for platinum drain plates and refractories. Production difficulty and production costs are too high, and large-scale applications have not been realized.
  • glass fiber is a kind of fibrous material which is made by drawing various natural mineral materials into a glass state at a high temperature according to a certain distribution ratio, and is also a kind of glass, a kind of fibrous glass. Therefore, glass fiber can be called glass fiber or fiber glass. According to the composition of the glass, the glass fiber can generally be divided into an alkali-free glass fiber, a medium-alkali glass fiber and a high-alkali glass fiber, wherein the alkali-free glass fiber is called E glass fiber abroad, and its alkali metal oxide (Na 2 0, The K 2 0, Li 2 0) content is generally less than 1%.
  • E glass English is generally called E-glas S.
  • E-glass also known as alkali-free glass, is a borosilicate glass. It is currently the most widely used glass component for glass fiber, has good electrical insulation and mechanical properties, is widely used in the production of glass fiber for electrical insulation, and is also widely used in the production of fiberglass for glass reinforced plastics (Reference: Wang Chengyu , Chen Min, Chen Jianhua, Chemical Industry Press, July 1, 2006, “Glass Manufacturing Process", p. 182; Zhang Yaoming, Chemical Industry Press, November 1, 2010 revised edition, “Glass Fiber and Mineral Cotton The book, page 216).
  • E glass fiber Since the birth of the 1930s, E glass fiber has been continuously improved and perfected, and has gradually become an important inorganic non-metallic reinforcing material. It has now formed an independent industrial system, mainly used to reinforce polyester resin and epoxy. Resins, vinyl resins and phenolic resins are widely used in construction, transportation, military, and life. Among them, "E" glass is the most used fiberglass product.
  • glass fiber Since glass fiber (hereinafter also referred to as glass fiber) is essentially a kind of glass, it does not contain crystals inside, and a network structure is mainly composed of Si and Al atoms, and various cations are filled in the voids.
  • Traditional E glass contains B (boron), and B can also participate in the network structure in glass. When various oxides are added to the glass, they eventually exist in atomic form, regardless of which compound is added.
  • the traditional E glass fiber belongs to the Si0 2 -Al 2 0 3 -B 2 0 3 -CaO system glass, which has good insulation, heat resistance, good corrosion resistance, high mechanical strength, and low drawing. Temperature and wide operation Temperature, good processing performance, has been applied since the birth of the 1930s.
  • Conventional E glass usually contains a certain amount of B and F (fluorine), which is very effective in reducing the glass melting temperature, reducing the surface tension and viscosity of the glass, and can significantly reduce the difficulty of glass fiber production.
  • B and F mainly help to melt and reduce the surface tension of the glass, and can effectively improve the molding properties of the glass fiber. If the amount of B or F is drastically reduced, or B and F are completely removed, the viscosity of the glass liquid will rise significantly, and the operating temperature must be increased, which greatly increases the difficulty of fiber formation. Therefore, there must be other ways to compensate for the role of B and F, and it is very difficult to find this effective way.
  • Patent Document No. US5,789,329 discloses a boron-free glass fibers, which contains 59 ⁇ 62% Si0 2, 20 ⁇ 24% CaO , 12-15% A1 2 0 3, 1-4% MgO, 0-0.5 % F 2 , 0.1-2% Na 2 0, 0-0.9% Ti0 2 , 0-0.5% Fe 2 0 3 , 0-2% K 2 0, 0 ⁇ 0.5% SO 3 .
  • the glass fiber has no added B 2 O 3 and retains part of F 2 , but the actual liquidus temperature of the glass fiber is relatively high, basically above 1169 ° C, and the molding range ⁇ ⁇ is less than 80 ° C.
  • the glass fiber can also achieve boron-free and fluorine-free, at this time, the liquidus temperature of the glass fiber is as high as 1206 ° C, and the molding range ⁇ ⁇ is only 38 ° C, which is difficult to produce in practical application, and is highly prone to analysis. Crystal problem.
  • Patent Document No. WO99/12,858 discloses a low boron low fluorine reinforced glass fiber containing Si0 2 58-62%, CaO >22%, Al 2 O 10 ⁇ 16% 3 , MgO >1.5%, CaO+MgO ⁇ 28%, R 2 0 ⁇ 2%, Ti0 2 ⁇ 1.5%, Fe 2 0 3 ⁇ 0.5 %, F 2 ⁇ 2%, B 2 0 3 ⁇ 2%.
  • the glass fiber greatly reduces the B 2 0 3 content, it still requires F 2 , Li 2 0 and B 2 0 3 , and does not truly achieve fluorine-free and boron-free.
  • the alkali metal content of the glass fiber is relatively high, which causes the corrosion resistance of the product to be greatly reduced.
  • WO2001 / Patent Document No. 032,576 discloses a reinforced glass fiber, comprising 54.5 ⁇ 58% Si0 2, 17-25% CaO , 12-15.5% A1 2 0 3, 0-5% MgO, R 2 0 ⁇ 2% , Ti0 2 ⁇ 1%, Fe 2 0 3 ⁇ 0.5%, F 2 ⁇ 1%, B 2 0 3 ⁇ 3%.
  • the content of Si0 2 is higher than 57%, the content of B 2 0 3 must be higher than 2%.
  • the invention has made efforts to reduce the boron and fluorine content of glass fibers, fluorine-free and boron-free have not been achieved.
  • the glass fiber SiO 2 content is low, which is unfavorable for the strength of the glass fiber, which may affect its application range.
  • U.S. Patent No. 6,818,575 discloses a group of low boron low fluorine glass fibers containing 52 to 62% SiO 2 , 16-25% CaO, 8 to 16% A1 2 0 3 , 1-5% MgO, 0-1 % F 2 , 0-2% Na 2 0, 0-2% Ti0 2 , 0.05-0.8% Fe 2 0 3 , 0-2% K 2 0, 0 ⁇ 5% B 2 0 3 .
  • the glass fiber has a lower molding temperature and a better molding interval.
  • the inventors added a higher content of Li 2 0 (0.6% to 1.4%) and Ti0 2 (0.5% to 1.5%) in the formulation of the claims, and the total alkali metal content was also 0.9. %the above. High alkali metal content will significantly reduce the corrosion resistance of glass fibers, and Li 2 0 raw materials are relatively expensive, which will increase production costs.
  • WO2005 / Patent Document No. 093,227 discloses a low boron glass fibers of low fluorine E, which contains 59 ⁇ 63% Si0 2, 16-23% CaO , 10-16% A1 2 0 3, 1-3.2% MgO, 0 -0.5% F 2 , 0 ⁇ 2% R 2 O, 0-1% Ti0 2 , 0-0.5% ZnO, 0 ⁇ l% MnO, 0 ⁇ 0.5°/. Li 2 0, 0.1 ⁇ 1.8% B 2 0 3 .
  • the glass fiber B 2 0 3 content is greatly reduced relative to the conventional E glass, there is still a small amount of retention, and a strong coloring of MnO is also added, which has an effect on the color of the glass fiber.
  • WO2005 / Patent Document No. 092,808 discloses a similar low boron glass fibers of low fluorine E, which contains 58 ⁇ 63% Si0 2, 16-23% CaO , 10 ⁇ 16% Al 2 O 3, 0.5 ⁇ 3.5% MgO , 0-0.5% F 2 , 0 ⁇ 2 % R 2 O, 1.5% Ti0 2 , 0-0.4% ZnO, 0-1% MnO, 0-0.4% Li 2 0, 0 ⁇ 1.5% B 2 0 3 .
  • the glass fiber not only retains a small amount of boron and fluorine, but also strongly pigmented MnO and CoO, which significantly affect the color of the glass fiber, which greatly limits its application.
  • the glass fiber molding temperature is also very high, almost all above 1350 ° C, the actual production is very difficult.
  • the patent document CN200710069773.5 discloses an alkali-free glass fiber containing 58-62% Si0 2 , 20-24% CaO, 12-14% A1 2 0 3 , 2-4% MgO, 0.06-0.6% F. 2 , 0.73 ⁇ 2 % R 2 O, 2% Ti0 2 , 0.55 ⁇ 0.6% Fe 2 O 3 .
  • the patent does not contain boron, but its alkali metal content is significantly higher, which causes the strength and corrosion resistance of the glass fiber to decrease. At the same time, up to 2% Ti0 2 content can also adversely affect the color of the glass fiber.
  • the patent document CN200810121473.1 discloses a low boron low fluorine glass fiber containing 54-62% Si0 2 , 20-28% CaO, 12-18% A1 2 0 3 , 2-6% MgO, 0- 0.4% F 2 , 0-5% B 2 0 3 , 0-0.8% R 2 O, 0.1-1% Ti0 2 , 0.1-0.5% Fe 2 O 3 .
  • B 2 0 3 and F 2 may be 0 in the formulation, when the glass fiber is completely free of F and B, the molding temperature and the liquidus temperature are significantly higher, and the production is extremely difficult. .
  • the patent document CN200910099335.2 discloses a low boron glass fiber which contains 57 to 61 ° /. Si0 2 , 20-25% CaO, 12-16% A1 2 0 3 , 1-3.5% MgO, 0 ⁇ 2 % SrO, 0 ⁇ 1 Ce0 2 , 0-0.5% Mn0 2 , 0 ⁇ 1% F 2 , 0-2.5% B 2 0 3 , 0-0.8% R 2 0, 0.1-1.5% Ti0 2 , 0.1-0.6% Fe 2 0 3 .
  • the glass fiber significantly reduced the B 2 0 3 content, it still retained F 2 .
  • the expensive Ce0 2 , SrO and Mn0 2 are added to the formulation, which obviously increases the production cost of the glass fiber.
  • the object of the present invention is to effectively solve the contradiction that the B and F raw materials are completely discarded in the glass fiber formulation, and the glass fiber has a suitable molding temperature and good fiber-forming property, and can realize a large scale. Production, the glass fiber also has better tensile strength and corrosion resistance, and the application field is more extensive.
  • the purpose of the present invention is to provide a glass fiber which is boron-free and fluorine-free, and more in line with the environmental protection requirements of today's society (to achieve zero emissions of atmospheric pollutants fluoride and boride); has a higher than conventional E glass fiber (such as Owens) Corning's DB475/800 series glass wool tube sheet uses E glass fiber) Better mechanical properties (tensile strength increased by more than 15%, elastic modulus increased by more than 5%) and corrosion resistance (acid and alkali corrosion resistance increased by 20) More than the above); With suitable molding temperature ( ⁇ 1280 ° C) and molding interval (> 80 ° C), the fiber forming performance is good, and mass production can be achieved.
  • E glass fiber such as Owens
  • Corning's DB475/800 series glass wool tube sheet uses E glass fiber
  • the T liquid represents the liquidus temperature of the glass, which corresponds to the temperature at which the glass crystallization rate is 0, and also corresponds to the upper limit of the glass crystallization temperature.
  • represents the difference in the liquid, which corresponds to the operable range of glass fiber molding.
  • the larger the ⁇ value Indicates that the wider the process window provided for fiber forming, the more difficult it is to crystallize during the fiberglass forming process, and the less difficult to produce.
  • the technical solution adopted by the present invention is as follows - a glass fiber composition containing the following components in weight percent within the ranges defined below:
  • Na 2 0+K 2 0 is greater than 0, ⁇ 0.8
  • Fe 2 0 3 is greater than 0, ⁇ 0.6
  • Total of all ingredients: :, including other trace impurities in the composition is 100%. Sometimes when the total content of the component is slightly less than or greater than 100%, it can be understood that the remaining amount is equivalent to an impurity or a small amount of unanalyzed component, or an acceptable error in the analytical method taken.
  • the weight percentages of the components of the invention are:
  • Na 2 0+K 2 0 is greater than 0, ⁇ 0.7
  • Fe 2 0 3 is greater than 0, ⁇ 0.5
  • the glass fiber molding temperature does not exceed 1265 ° C, the liquidus temperature does not exceed 1150 ° C, and ⁇ ⁇ is greater than 80 ° C.
  • the tensile strength of the glass fiber formed by the composition is increased by more than 15%, the elastic modulus is increased by 5% or more, and the corrosion resistance is improved by more than 20 times. Equivalent to E-CR fiberglass.
  • a continuous fiber having substantially the following glass composition can be prepared: 59.97% Si0 2 ; 13.24% A1 2 0 3 ; 73.21% Si0 2 + A1 2 0 3 ; 22.08% CaO; 3.16% MgO; 25.19% CaO+ MgO; 0.27% Ti0 2 ; 0.51% Na 2 0+K 2 0 ; 0.29% Fe 2 0 3 and 0.48% ZnO.
  • the glass has a molding temperature of about 1245 ° C, a liquidus temperature of about 1140 ° C, and a ⁇ of 105 V. This glass also has the following properties: tensile strength 2366 MPa, elastic modulus 84.8 GPa (according to ASTM 2343).
  • Corrosion resistance 10% loss of weight in HC1 solution is about 0.74%, weight loss in 10% H2SO4 solution is about 0.97%, weight loss in O.lmol/L NaOH solution is about 4.34% (powder method, heating at 60 °C water bath, soaking for 24 hours).
  • ZnO is added to the glass fiber composition of the present invention.
  • ZnO is an intermediate oxide in glass, which can reduce the thermal expansion of glass, improve the high temperature viscosity of glass, and improve the chemical stability and thermal stability of glass fiber.
  • the ZnO content of the present invention is selected to be 0.1 to 2%, preferably 0.1 to 1.5%. Under this ratio, ZnO interacts with other oxides to obtain larger ⁇ and reduce the difficulty of glass fiber formation. On the other hand, it can significantly improve the mechanical properties and corrosion resistance of glass fibers.
  • the glass composition of the present invention does not substantially contain 8 2 0 3 and F 2 , and "substantially free of” means that the present invention does not specifically add any B 2 O 3 or F 2 in addition to trace components which may be carried by raw material impurities. Raw materials. Therefore, the glass fiber of the invention truly realizes boron-free and fluorine-free, and substantially does not emit boride and fluoride which are seriously polluted by the atmosphere in the production process, which not only meets the green production requirements advocated by today's society, but also reduces the exhaust gas treatment pressure. Save on production costs.
  • the glass fibers of the present invention can be prepared as follows. According to the selected composition components, the corresponding raw materials are weighed and mixed in a pneumatically homogenized manner. Most of the raw materials used are natural minerals such as pyrophyllite, kaolin, quartz, limestone, dolomite and the like. The mixed batch material is melted in the pool kiln to form a stable molten glass, which is then discharged through the platinum drain plate and is drawn by the wire drawing machine and wound into a certain diameter of glass fiber. The resulting glass fibers can be in various forms by other conventional operations: continuous filaments, chopped strands, felt, cloth, and the like.
  • the process flow of the present invention is preferably as follows: ore is selected to be crushed by one ore, and melted by a kiln in a kiln.
  • a platinum slab is discharged from a slab, and the immersion liquid is dried.
  • the production method of the present invention is preferably: the raw material is prepared and transported to a glass melting unit kiln by a batch preparation, and is fired into a glass liquid, and the glass liquid is discharged from a platinum-iridium alloy multi-row large leaking plate, and is subjected to forced cooling and high-speed draft forming.
  • the fiber is coated with the prepared immersion liquid, sent to the raw silk drying workshop, and dried to become the final product.
  • the main equipment and systems used in the present invention include: conical mixer, horizontal mixer, screw conveyor, bucket elevator, mixed material silo, screw feeder, large furnace combustion system, piping system, passage premixing System, combustion pipe system, single-tube large-volume machine, wire-drawing wire drawing machine, single-head large-winding direct wireless wire drawing machine, large-volume roving machine.
  • the apparatus and system are assembled and designed according to the technical solution of the present invention.
  • the platinum-iridium alloy multi-row large leaking plate adopts the stamped leakage plate designed by the inventor.
  • the devices and systems are not within the scope of the compositions of the present invention.
  • the composition of the present invention is not limited to the use of the above-described stamping and leakage plate, and is not limited to the use of the above-described apparatus and system.
  • the beneficial effects of the invention are:
  • the glass fiber of the invention Compared with the conventional E glass fiber, the glass fiber of the invention has more excellent corrosion resistance, higher strength and elastic modulus, and does not contain B and F which pollute the environment, and is environmentally friendly and can be widely applied.
  • B and F which pollute the environment
  • the beneficial effects of the present invention are:
  • the invention eliminates expensive boron raw materials and fluorine raw materials, and the raw material cost can be reduced; on the other hand, in the traditional glass fiber production, due to environmental protection requirements, it is necessary to carry out the B-containing F-containing exhaust gas. A certain treatment can be discharged, and the present invention does not contain boron and fluorine, and this process can be omitted, and a part of the production cost can be reduced.
  • the present invention has a molding temperature and a liquidus temperature close to that of ordinary E glass fibers, and a larger molding range, which is advantageous for reducing the difficulty of forming glass fibers and improving the production efficiency of glass fibers.
  • the glass fiber of the present invention is optimized by the formulation, and the mechanical properties of the product are remarkably improved. Compared with the ordinary E glass fiber, the tensile strength is increased by more than 15%, and the elastic modulus is increased by more than 5%.
  • the traditional E glass fiber has poor corrosion resistance.
  • the B 2 0 3 which is easy to cause phase separation is removed from the glass fiber of the invention, and ZnO which can improve the corrosion resistance is added, and is optimized by the formula. Adjustment, so that the product's acid resistance, alkali resistance and water resistance are greatly improved, reaching E-CR glass fiber The level of corrosion resistance of the dimension.
  • a glass fiber composition the weight percentage of each component is: 59.97% Si0 2; 13.24% A1 2 0 3 ; 73.21% Si0 2 + A1 2 0 3 ; 22.08% CaO; 3.16% MgO; 25.24% CaO + MgO; 0.27% Ti ⁇ 2 ; 0.51% Na 2 O+K 2 O ; 0.29% Fe 2 0 3 and 0.48% ZnO.
  • the glass has a molding temperature of about 1245 ° C, a liquidus temperature of about 1140 ° C, and a ⁇ of 105 ° C.
  • a glass fiber composition the weight percentage of each component is: 59.75% Si0 2 ; 13.63% A1 2 0 3 ; 73.38% Si0 2 + Al 2 0 3 ; 22.10% CaO; 2.78% MgO; 24.88% CaO + MgO; 0.31% Ti0 2 ; 0.48% Na 2 O+K 2 O ; 0.29% Fe 2 0 3 and 0.66% ZnO.
  • the glass has a molding temperature of about 1255 ° C, a liquidus temperature of about 1128 ° C, and a ⁇ of 127 ° C.
  • a glass fiber composition the weight percentage of each component is: 60.11% Si0 2; 13.16% A1 2 0 3 ; 73.27% Si0 2 + Al 2 0 3 ; 21.67% CaO; 2.93% MgO; 24.60% CaO + MgO; 0.41% Ti0 2 ; 0.47% Na 2 O+K 2 O ; 0.28% Fe 2 0 3 and 0.97% ZnO.
  • the glass has a molding temperature of about 1255 ° C, a liquidus temperature of about 1134 ° C, and a ⁇ of 121 ° C.
  • a glass fiber composition the weight percentage of each component is: 60.19% Si0 2; 13.16% A1 2 0 3 ; 73.35% Si0 2 + Al 2 0 3 ; 21.61% CaO; 2.85% MgO; 24.46% CaO+ MgO; 1.02% Ti0 2 ; 0.52% Na 2 0+K 2 0 ; 0.28% Fe 2 0 3 and 0.37% ZnO.
  • the glass has a molding temperature of approximately 1256 ° C, a liquidus temperature of approximately 1144 ° C, and a ⁇ of 112 ° (:.
  • a glass fiber composition the weight percentage of each component is: 60.02% Si0 2; 13.10% A1 2 0 3 ;
  • the glass has a molding temperature of approximately 1253. C, the liquidus temperature is about 1146 ° C, and ⁇ is 107 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

一种无硼无氟玻璃纤维组合物 技术领域
本发明涉及一种玻璃纤维组合物, 尤其涉及一种无硼无氟的高性能玻璃纤 维组合物。
背景技术
玻璃纤维是一种非常重要的无机非金属增强材料, 它与各种树脂复合后形 成的玻璃纤维增强复合材料具有十分优异的性能, 广泛应用于土木建筑、 交通 运输、 电子电器、 机械、 化学等领域。 目前, 玻璃纤维已经有数千个品种与规 格, 5万多种用途。在各种纤维增强制品中, 玻璃纤维增强复合材料产品己占到 总量的 85%以上。
E玻璃纤维最早诞生于美国 owens corning公司, 目前美国和欧洲仍是世界 上最主要的玻璃纤维消费地区。 中国地区虽然玻璃纤维行业起步较晚, 但发展 十分迅速。到 2004年,中国的玻璃纤维年产量超过美国,居世界第一位,到 2010 年, 中国玻璃纤维年产量已经达到世界玻纤总量的一半以上, 而且出现了三家 大型的玻璃纤维制造企业: 巨石集团有限公司、 重庆国际复合材料有限公司和 泰山玻璃纤维有限公司, 其产量和规模都已位居世界玻纤行业前六强。 目前, 中国已经成为全球最大的玻璃纤维制造和出口基地, 也是全球最重要的玻璃纤 维研发、 创新基地之一。
一、 产品公开情况
目前,含硼的中碱玻璃 (C玻璃)在国外只是少量用于生产耐酸的中碱玻璃纤 维产品。 传统 E 玻璃 (如巨石集团有限公司生产的 LFT 用直接无捻粗纱 362K/352B; OCV公司生产的 SMC/BMC粗纱 956/957)尽管独霸市场, 但它在 性能、 成分、 成本、 工艺上存在多种缺陷, 如拉伸强度、 弹性模量不足, 耐化 学腐蚀性较差, 玻璃中某些成分容易引起环境污染等。 为克服这些缺陷, 近几 年来, 各国企业把一些新的玻璃成分加入进来, 进行了很多研发革新。 不过, 虽然中外企业开发了许多新玻璃纤维产品, 但是很多开发方向、 技术成果没有 工业应用价值。
无氟 E玻璃是近年来迫于环境压力而研制的配方, 由于取代氟化物使用了 其他助熔剂从而使玻璃成本上升。 很多无氟 E玻璃技术没有工业应用价值, 大 部分相关技术并没有投入生产。
Owens Corning公司在 20世纪 80年代开发出了经典的耐腐蚀玻璃纤维 (ECR 玻璃纤维), 它是最早的可以实际应用的无硼无氟玻璃纤维。 ECR玻璃纤维由 Si02-Al203-CaO-MgO四元系统组成, 同时还有 3〜5°/。的 Ti02, 液相线温度超过 1200 "C , 成型温度高达 1340°C。 虽然 E-CR玻纤完全去除了硼和氟, 但过高的 Ti02含量使得玻璃纤维颜色很深, 限制了它的许多用途; 另外, 如此高的液相 线温度和成型温度对铂金漏板和耐火材料都是严峻的考验, 生产难度和生产成 本太高, 一直无法实现大规模应用。
Owens Corning公司是历史最悠久的 E玻璃纤维生产企业, 它于 20世纪 90 年代末开发出了一种无硼的无碱玻璃纤维: Advantex,它的电气性能、强度性质 与标准的 E玻璃纤维相仿,其耐化学腐蚀能力与 ECR玻璃相近。由于它不含硼, 故玻璃熔制中硼化合物的挥发得以避免, 从而减轻环境污染, 也减轻了对耐火 材料的侵蚀。 但是, 该玻璃仍含氟, 而且组分搭配要求制备玻璃的成型温度、 液相线温度、成型范围 ΔΤ需要改变通用设备, 采用并不通用的专属装置, 生产 成本也较高, 这给大规模工业推广带来困难。
二、 文献公开情况 技术上讲, 玻璃纤维是指按照一定成分配比, 用各种天然矿物材料经高温 熔融成玻璃态后, 拉制成的一种纤维状材料, 其本质也是一种玻璃, 一种纤维 状玻璃,故玻璃纤维既可称为 glass fiber,也可称为 fiber glass。根据玻璃的成分, 通常可以将玻璃纤维分为无碱玻璃纤维、 中碱玻璃纤维和高碱玻璃纤维, 其中 无碱玻璃纤维国外称之为 E玻璃纤维, 其碱金属氧化物(Na20、 K20、 Li20) 含量一般小于 1%。
目前国际上玻璃纤维产品 90%以上都属于 E玻璃。
E玻璃英文一般称为 E-glasS。 E-玻璃亦称无碱玻璃, 是一种硼硅酸盐玻璃。 目前是应用最广泛的一种玻璃纤维用玻璃成分, 具有良好的电气绝缘性及机械 性能,广泛用于生产电绝缘用玻璃纤维,也大量用于生产玻璃钢用玻璃纤维(参 考文献: 王承遇、陈敏、陈建华著,化学工业出版社 2006年 7月 1日出版, 《玻 璃制造工艺》第 182页; 张耀明著, 化学工业出版社 2010年 11月 1日修订版, 《玻璃纤维与矿物棉全书》第 216页)。
自上世纪 30年代诞生以来, E玻璃纤维得到了持续的改良和完善, 逐渐成 为一种重要的无机非金属增强材料, 现已形成一个独立的工业体系, 主要用于 增强聚酯树脂、 环氧树脂、 乙烯树脂和酚醛树脂等, 被广泛用于建筑、 交通、 军事、 生活等各个领域。 其中 "E "玻璃是使用量最大的玻璃纤维产品。
由于玻璃纤维 (下文也可简称玻纤)本质就是一种玻璃, 其内部不含有晶 体, 主要由 Si、 Al原子构成网络结构, 各种阳离子填充于空隙中。 传统的 E玻 璃中都含有 B (硼), B在玻璃中也可以参与网络结构。各种氧化物加入玻璃后, 最终都是以原子形式存在, 跟加入的是哪种化合物无关。
传统的 E玻璃纤维属于 Si02-Al203-B203-CaO系统玻璃,这种玻璃绝缘性好、 耐热性强、 抗腐蚀性好、 机械强度高, 而且具有较低的拉丝温度和较宽的作业 温度, 加工性能良好, 从 20世纪 30年代诞生后一直应用至今。 传统 E玻璃中 通常都含有一定量的 B和 F (氟), 它们对降低玻璃熔制温度、 降低玻璃液表面 张力和粘度十分有效, 可以显著减小玻纤生产难度。
但 B和 F进入玻纤后, 对玻纤的强度和耐腐蚀性都有负面影响。 另外在玻 璃熔制过程中, B和 F都容易挥发, 且挥发量较大, 尤其是氟化物, 其挥发量 可超过 50%, 这不仅浪费大量原料, 而且严重污染环境。 因而国内外对其排放 都有严格控制, 要求玻纤企业必须有配套的废气处理装置, 这无疑又增加了玻 纤的生产成本。
所以, 开发低硼低氟, 甚至无硼无氟玻璃纤维一直是国际玻璃纤维行业发 展趋势之一, 目前相关研究和技术专利已有不少, 但在实际应用时均存在技术 缺陷、 性能缺陷。 因为在传统玻璃中, B和 F主要起助熔、 降低玻璃液表面张 力的作用, 能有效改善玻璃纤维的成型性能。 如果大幅降低 B或 F的用量, 或 者完全去掉 B和 F, 玻璃液的粘度会明显上升, 作业温度就必须提高, 这大大 增加了纤维成型难度。 因此, 必须要有其它途径来弥补 B和 F的作用, 而寻找 这一有效途径则是非常困难。
US5,789,329号专利文献公开了一种无硼玻璃纤维, 它含有 59〜62% Si02, 20〜24% CaO, 12-15% A1203, 1-4% MgO, 0-0.5% F2, 0.1-2% Na20, 0-0.9% Ti02, 0-0.5% Fe203, 0-2% K20, 0~0.5% SO3。 该玻璃纤维没有添加 B203, 保留了部 分的 F2,但这种玻纤实际液相线温度较高,基本都在 1169°C以上, 成型范围 ΔΤ 小于 80°C。 另外, 虽然该玻璃纤维也可实现无硼无氟, 但此时玻璃纤维液相线 温度高达 1206°C, 成型范围 ΔΤ只有 38°C, 这在实际应用时生产难度很大, 极 易出现析晶问题。
W099/12,858号专利文献公开了一种低硼低氟的增强玻璃纤维,它含有 Si02 58-62%, CaO >22%, Al2O 10~16% 3, MgO >1.5%, CaO+MgO<28%, R20 <2%, Ti02 <1.5%, Fe203 <0.5%, F2 <2%, B203 <2%。该玻璃纤维虽大幅降低了 B203 含量, 但仍要求 F2、 Li20和 B203, 没有真正实现无氟无硼。 另外该玻璃纤维中 碱金属含量偏高, 这会使得产品耐腐蚀性能大大降低。
WO2001/032,576号专利文献公开了一种增强玻璃纤维, 它含有 54.5〜58% Si02, 17-25% CaO, 12-15.5% A1203, 0-5% MgO, R20 <2%, Ti02 <1%, Fe203 <0.5%, F2 <1%, B203 <3%。 同时要求当 Si02含量高于 57%时, B203含量必须 高于 2%。 虽然该发明在降低玻璃纤维硼和氟含量方面做出了努力, 但仍未实现 无氟无硼。 另外该玻璃纤维 Si02含量偏低, 这对玻璃纤维强度不利, 会影响它 的应用范围。
美国专利 US6, 818,575 发明了一组低硼低氟的玻璃纤维, 它含有 52〜62% Si02, 16-25% CaO, 8~16% A1203, 1-5% MgO, 0-1% F2, 0-2% Na20, 0-2% Ti02, 0.05-0.8% Fe203, 0-2% K20, 0~5% B203。 该玻璃纤维具有较低的成型温度和 较好的成型区间。 发明人为了获得这些成型优点, 其权利要求的配方中均加入 了较高含量的 Li20 (0.6%~1.4%)和 Ti02 (0.5%~1.5%), 碱金属总含量也都在 0.9%以上。 碱金属含量偏高会明显降低玻璃纤维的耐腐蚀性能, 而且 Li20原料 都比较昂贵, 会增加生产成本。
WO2005/093,227号专利文献公开了一种低硼低氟的 E玻璃纤维, 它含有 59〜63% Si02, 16-23% CaO, 10-16% A1203, 1-3.2% MgO, 0-0.5% F2, 0~2%R2O, 0-1% Ti02, 0-0.5% ZnO, 0〜l% MnO, 0〜0.5°/。 Li20, 0.1〜1.8% B203。 虽然该 玻璃纤维 B203含量相对于传统 E玻璃大幅下降, 但仍有少量保留, 同时还加入 了强着色的 MnO, 这对玻璃纤维颜色会有影响。 另外该玻璃纤维成型温度非常 高 (高达 1350°C以上), 这在实际生产中很难实现。 WO2005/092,808号专利文献公开了一种类似的低硼低氟的 E玻璃纤维, 它 含有 58〜63% Si02, 16-23% CaO, 10〜16% Al2O3, 0.5〜3.5% MgO, 0-0.5% F2, 0〜2%R2O, 1.5% Ti02, 0-0.4% ZnO, 0-1% MnO, 0-0.4% Li20, 0〜1.5% B203。 该玻璃纤维不仅仍保留有少量硼和氟,还加入了强着色的 MnO和 CoO,这些物 质会显著影响玻璃纤维的颜色, 使其应用领域大大受限。 另外, 该玻璃纤维成 型温度也非常高, 几乎都在 1350°C以上, 实际生产难度很大。
CN200710069773.5号专利文献公开了一种无碱玻璃纤维, 它含有 58〜62% Si02, 20-24% CaO, 12-14% A1203, 2-4% MgO, 0.06-0.6% F2, 0.73〜2%R2O, 2% Ti02, 0.55~0.6% Fe2O3。 该专利不含硼, 但其碱金属含量明显偏高, 这会使 得玻璃纤维的强度和耐腐蚀性能下降。同时高达 2%的 Ti02含量也会对玻璃纤维 的色泽产生不利影响。
CN200810121473.1 号专利文献公开了一种低硼低氟的玻璃纤维, 它含有 54-62% Si02, 20-28% CaO, 12-18% A1203, 2-6% MgO, 0-0.4% F2, 0-5% B203, 0~0.8%R2O, 0.1-1% Ti02, 0.1~0.5% Fe2O3。 虽然该发明在权利要求中提到其配 方中 B203和 F2可以为 0,但当该玻璃纤维完全无 F无 B时,其成型温度和液相 温度明显偏高, 生产难度极大。
CN200910099335.2号专利文献公开了一种低硼玻璃纤维, 它含有 57〜61°/。 Si02, 20-25% CaO, 12-16% A1203, 1-3.5% MgO, 0〜2% SrO, 0〜1 Ce02, 0-0.5% Mn02, 0~1% F2, 0-2.5% B203, 0-0.8% R20, 0.1-1.5% Ti02, 0.1~0.6% Fe203。 该玻璃纤维虽然明显降低了 B203含量,但仍保留了 F2。同时为了改善玻纤性能, 配方中还加入了价格昂贵的 Ce02、 SrO和 Mn02, 这显然会大大增加玻纤的生 产成本。
可以看出, 虽然不管是出于环保压力, 还是成本考虑, 降低玻璃纤维中8、 F成分, 如 B203和 F2含量是玻璃纤维行业共同努力的方向之一, 但在实际生产 中减少玻璃纤维的硼和氟含量时, 其成型温度和液相线都会升高, 拉丝难度也 随之增加。这使得大部分玻璃纤维发明专利中都或多或少的保留部分 B203或 F2, 考虑到 B203和 F2挥发量较大, 实际加入比例肯定更高;也有专利采取加入昂贵 的其它成分, 或者大幅提高生产作业温度, 但这些方案在实际生产时实施难度 都很大, 基本难以实现。
本发明的目的正是为了有效解决这种矛盾,即在玻璃纤维配方中完全弃用 B 和 F原料的同时, 又能保证玻璃纤维具有合适的成型温度和良好的成纤性能, 可实现大规模生产, 同时该玻璃纤维还具有更好地拉伸强度和耐腐蚀性能, 应 用领域更广泛。
发明内容
本发明的目的是为了提供这样一种玻璃纤维, 它无硼无氟, 更符合当今社 会的环保要求(实现大气污染物氟化物、硼化物的零排放); 具有比传统 E玻璃 纤维 (如 Owens Corning公司 DB475/800系列玻璃棉管板使用的 E玻璃纤维) 更优异的机械性能(拉伸强度提高 15%以上, 弹性模量提高 5%以上)和耐腐蚀 性能(耐酸碱腐蚀性提高 20倍以上); 具有合适的成型温度(<1280°C )和成型 区间 (>80°C ), 成纤性能良好, 可实现大规模生产。
本发明内容中, 使用的参数或术语定义如下:
^=3表示玻璃粘度为 103泊时的温度, 相当于玻璃纤维成型时玻璃液的温 度, 也称作纤维成型温度。
T液表示玻璃液相线温度, 相当于玻璃结晶速度为 0时的温度, 也相当于玻 璃析晶温度上限。
ΔΤ表示 液的差值,相当于玻璃纤维成型的可操作范围。 ΔΤ值越大, 表示提供给纤维成型的工艺窗口越宽, 玻璃纤维成型过程中越不易析晶, 生产 难度也越小
为实现上述目的, 本发明采取的技术方案如下- 一种玻璃纤维组合物, 含有在下述确定范围内的以重量百分数表示的下述 组分:
Si02 56-61
A1203 12-16
Si02 + Al20: 72-75
CaO 21-25
MgO 2- 5
CaO+ MgO 24-27
Ti02 0.1- 1.5
ZnO 0.1-2
Na20+K20 大于 0 , ≤0.8
Fe203 大于 0 , ≤0.6
所有成分的总: :, 包括该组合物中其它的痕量杂质为 100%。有时成分总含 量略微小于或大于 100%时, 可以理解为, 其余的量相当于杂质或未分析的少量 成分, 或是所采取的分析方法中出现的可以接受的误差所造成的。
在特别优选的实施方案中, 本发明的各组分重量百分比为:
Si02 59-61
A1203 12.5-14
Si02 + Al203 73-75
CaO 21-22.5 MgO 2.5-3.5
CaO+ MgO 24-26
Ti02 0.卜 1.2
ZnO 0.1-1.5
Na20+K20 大于 0, ≤0.7
Fe203 大于 0, ≤0.5
该玻璃纤维成型温度不超过 1265°C, 液相线温度不超过 1150°C, ΔΤ大于 80°C。 同时, 与当前市场上最优异的 ZenTron E玻璃纤维相比, 本组合物形成的 玻璃纤维拉伸强度提高了 15%以上,弹性模量提高了 5%以上,耐腐蚀性提高 20 倍以上, 几乎与 E-CR玻璃纤维相当。
在特别优选的实施方案中, 可以制备大致具有如下玻璃组合物的连续纤维: 59.97% Si02; 13.24% A1203; 73.21% Si02 + A1203; 22.08% CaO; 3.16% MgO; 25.19% CaO+ MgO; 0.27% Ti02; 0.51% Na20+K20 ; 0.29% Fe203和 0.48% ZnO。 该玻璃的成型温度大约为 1245°C , 液相线温度大约为 1140 °C, ΔΤ为 105 V。 这种玻璃还具有如下性能: 拉伸强度 2366MPa, 弹性模量 84.8GPa (根据 ASTM 2343) 。 耐腐蚀性能: 10% HC1溶液中失重约 0.74%, 10% H2SO4溶液中 失重约 0.97%, O.lmol/L NaOH溶液中失重约 4.34% (粉末法, 60°C水浴加热, 浸泡 24h)。
本发明的玻璃纤维组合物中加入了 ZnO, ZnO在玻璃中属于中间体氧化物, 它能降低玻璃的热膨胀性, 改善玻璃高温粘度, 提高玻璃纤维的化学稳定性和 热稳定性。本发明选择 ZnO含量为 0.1〜2%,优选的是 0.1~1.5%。 ZnO在此比例 条件下, 与其它氧化物共同作用, 一方面可以获得较大的 ΔΤ, 降低玻璃纤维成 型难度; 另一方面可以显著提高玻璃纤维的机械性能和耐腐蚀性能。 本发明玻璃组合物中基本不含有 8203和 F2, "基本不含有"是指除了原料 杂质可能带入的痕量成分以外, 本发明不专门添加任何含有 B203或 F2的原料。 因此, 本发明玻璃纤维真正实现无硼无氟, 在生产过程中基本不会排放对大气 有严重污染的硼化物和氟化物, 既符合当今社会倡导的绿色生产要求, 同时减 少了废气处理压力, 节约了生产成本。
通常, 本发明的玻璃纤维可以按照如下方式来制备。 根据选定的组合物成 分, 按比例称量相应原料以气力均化的方式混合, 所用原料大部分为天然矿物, 如叶腊石、 高岭土、 石英、 石灰石、 白云石等。 混合后的配合料在池窑中熔化, 形成稳定的玻璃液, 然后经铂金漏板流出, 并被拉丝机牵引、 缠绕成一定直径 的玻璃纤维。 得到的玻璃纤维经其它的常规操作, 可呈现不同的形式: 连续丝、 短切丝、 毡、 布等。
本发明的工艺流程优选为: 矿石遴选一矿石粉碎一按比配料一窑炉融化一 铂金漏板流出一拉丝→涂覆浸润液一原丝烘干。 本发明的生产方法优选为: 原 料经配合料制备输送至玻璃熔制单元窑, 烧制成玻璃液, 玻璃液由铂铑合金多 排孔大漏板流出, 经强制冷却和高速牵伸成型为纤维, 涂上配制好的浸润液, 送到原丝烘干车间, 烘干后成为最终产品。
本发明采用的主要设备和系统包括: 锥形混合机、 卧式混合机、 螺旋输送 机、 斗式提升机、 混合料料仓、 螺旋叫料机、 大炉燃烧系统、 管道系统、 通路 预混系统、 燃烧管道系统、 单筒大卷机、 装丝饼拉丝机、 单头大卷绕直接无捻 拉丝机、 大卷装无捻粗纱机。 所述设备和系统, 按照本发明的技术方案进行组 配和设计, 例如, 其铂铑合金多排孔大漏板采用本发明人设计的冲压漏板。 所 述设备和系统不属于本发明的组合物保护范围。 而且, 本发明的组合物并不拘 泥于使用上述冲压漏板, 也不拘泥于使用上述设备和系统的组配关系。 本发明的有益效果为:
与传统的 E玻璃纤维相比, 本发明玻璃纤维具有更优异的耐腐蚀性能, 更 高的强度和弹性模量, 而且不含会污染环境的 B和 F, 属于环境友好型产品, 可广泛应用于风电叶片、 汽车消音器、 压缩天然气瓶、 高压玻璃钢管道、 城市 污水管道、 汽车零部件复合材料和通用玻纤复合材料等领域。 具体而言, 本发 明的有益效果是:
( 1 )环保: 传统 E玻璃纤维中含有一定量的 B和 F, 而硼化物和氟化物在 玻璃熔制过程中很容易挥发, 其挥发物会严重污染大气环境, 是玻璃纤维生产 过程中排放的最主要的大气污染物。 而本发明玻璃纤维中完全不添加含硼和含 氟原料, 极大地降低了玻璃纤维生产过程中空气污染物的排放, 非常符合当今 社会倡导的绿色环保生产理念。
(2) 降低生产成本: 一方面, 本发明省去了昂贵的硼原料和氟原料, 原料 成本得以下降; 另一方面, 传统玻璃纤维生产中, 由于环保要求, 必须对含 B 含 F废气进行一定处理才能排放, 而本发明不含硼和氟, 则可以省略这一过程, 又能降低一部分生产成本。
(3 )本发明具有接近于普通 E玻璃纤维的成型温度和液相线温度, 同时成 型范围更大, 这有利于降低玻璃纤维成型难度, 提高玻璃纤维的生产效率。
(4) 良好的机械性能: 本发明玻璃纤维通过配方优化, 产品的机械性能显 著提高, 与普通 E玻璃纤维相比, 其拉伸强度提高 15%以上, 弹性模量提高 5% 以上。
(5 )优良的耐腐蚀性能: 传统 E玻璃纤维耐腐蚀性能较差, 本发明玻璃纤 维中去掉了容易引起分相的 B203, 加入了能提高耐腐蚀性能的 ZnO, 并通过配 方优化调整, 使得产品的耐酸、耐碱和耐水性都大幅提高, 达到了 E-CR玻璃纤 维的耐腐蚀性水平。
具体实施方式
下面通过具体实施例进一步说明本发明的技术方案, 这些实施例能够说明 而不限制本发明。
实验中采用 BROOKFIELD高温粘度仪来检测玻璃纤维的成型温度, 采用
Orton Model梯度炉来测定玻璃纤维的液相线温度。
实施例 1
一种玻璃纤维组合物,其各组分重量百分比为: 59.97% Si02; 13.24% A1203; 73.21% Si02 + A1203; 22.08% CaO; 3.16% MgO; 25.24% CaO+ MgO; 0.27% Ti〇2; 0.51% Na2O+K2O ; 0.29% Fe203和 0.48% ZnO。 该玻璃的成型温度大约为 1245 °C , 液相线温度大约为 1140°C, ΔΤ为 105°C。
实施例 2
一种玻璃纤维组合物,其各组分重量百分比为: 59.75% Si02; 13.63% A1203 ; 73.38% Si02 + Al203; 22.10% CaO; 2.78% MgO; 24.88% CaO+ MgO; 0.31% Ti02; 0.48% Na2O+K2O ; 0.29% Fe203和 0.66% ZnO。 该玻璃的成型温度大约为 1255 °C , 液相线温度大约为 1128°C , ΔΤ为 127°C。
实施例 3
一种玻璃纤维组合物,其各组分重量百分比为: 60.11% Si02; 13.16% A1203; 73.27% Si02 + Al203; 21.67% CaO; 2.93% MgO; 24.60% CaO+ MgO; 0.41% Ti02; 0.47% Na2O+K2O ; 0.28% Fe203和 0.97% ZnO。 该玻璃的成型温度大约为 1255 °C, 液相线温度大约为 1134°C, ΔΤ为 121 °C。
实施例 4
一种玻璃纤维组合物,其各组分重量百分比为: 60.19% Si02; 13.16% A1203; 73.35% Si02 + Al203; 21.61% CaO; 2.85% MgO; 24.46% CaO+ MgO; 1.02% Ti02; 0.52% Na20+K20; 0.28% Fe203和 0.37% ZnO。 该玻璃的成型温度大约为 1256 °C, 液相线温度大约为 1144 °C, ΔΤ为 112° (:。
实施例 5
一种玻璃纤维组合物, 其各组分重量百分比为: 60.02% Si02; 13.10% A1203;
73.12% Si02 + A1203; 21.27% CaO; 2.92% MgO; 24.19% CaO+ MgO; 0.64% Ti02;
0.50% Na2O+K2O ; 0.28% Fe203和 1.27% ZnO。 该玻璃的成型温度大约为 1253 。C, 液相线温度大约为 1146°C, ΔΤ为 107°C。

Claims

WO 2012/109777 权 利 要 求 书 PCT/CN2011/001115
1、 一种无硼无氟玻璃纤维组合物, 其特征在于, 含有在下述确定范围内的 以重量百分数表示的下述组分:
Si02 56-61
A1203 12-16
Si02 + Al203 72-75
CaO 21-25
MgO 2- 5
CaO+ MgO 24-27
Ti02 0.1- 1.5
ZnO 0.1-2
Na20+K20 大于 0, ≤0.8
Fe203 大于 0, ≤0.6
2、 根据权利要求 1所述的一种无硼无氟玻璃纤维组合物, 其特征在于, 含 有在下述确定范围内的以重量百分数表示的下述组分:
Si02 59-61
A1203 12.5-14
Figure imgf000016_0001
CaO 21-22.5
MgO 2.5-3.5
CaO+ MgO 24-26
Ti02 0.卜 1.2
ZnO 0.卜 1.5
Na20+K20 大于 0, ≤0.7 WO 2012/109777 权 利 要 求 书 PCT/CN2011/001115
Fe203 大于 0, ≤0.5
3、 根据权利要求 2所述的一种无硼无氟玻璃纤维组合物, 其特征在于, 含 有在下述确定范围内的以重量百分数表示的下述组分:
Si02 59.97
A1203 13.24
Si02 + Al203 73.21
CaO 22.08
MgO 3.16
CaO+ MgO 25.24
Ti02 0.27
Na20+K20 0.51
Fe203 0.29
ZnO 0.48
4、 根据权利要求 2所述的一种无硼无氟玻璃纤维组合物, 其特征在于, 含 有在下述确定范围内的以重量百分数表示的下述组分:
Si02 59.75
A1203 13.63
Figure imgf000017_0001
CaO 22.10
MgO 2.78
CaO+ MgO 24.88
Ti02 0.31 WO 2012/109777 权 利 要 求 书 PCT/CN2011/001115
Na20+K20 0.48
Fe203 0.29
ZnO 0.66
5、 根据权利要求 2所述的一种无硼无氟玻璃纤维组合物, 其特征在于, 含 有在下述确定范围内的以重量百分数表示的下述组分:
Si02 60.11
A1203 13.16
Si02 + Al203 73.27
CaO 21.67
MgO 2.93
CaO+ MgO 24.60
Ti02 0.41
Na20+K20 0.47
Fe203 0.28
ZnO 0.97
6、 根据权利要求 2所述的一种无硼无氟玻璃纤维组合物, 其特征在于, 含 有在下述确定范围内的以重量百分数表示的下述组分:
Si02 60.19
A1203 13.16
Si02 + Al20: 73.35
CaO 21.61
MgO 2.85
CaO+ MgO 24.46 WO 2012/109777 权 利 要 求 书 PCT/CN2011/001115
Figure imgf000019_0001
Na20+K20 0.52
Fe203 0.28
ZnO 0.37
7、 根据权利要求 2所述的一种无硼无氟玻璃纤维组合物, 其特征在于, 含 有在下述确定范围内的以重量百分数表示的下述组分:
Si02 60.02
A1203 13.10
Si02 + Al20: 73.12
CaO 21.27
MgO 2.92
CaO+ MgO 24.19
Ti02 0.64
Na20+K20 0.50
Fe203 0.28
ZnO 1.27
PCT/CN2011/001115 2011-02-14 2011-07-06 一种无硼无氟玻璃纤维组合物 WO2012109777A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112013020222A BR112013020222B1 (pt) 2011-02-14 2011-07-06 composições de fibra de vidro livres de boro e flúor
EP11858719.5A EP2676939B1 (en) 2011-02-14 2011-07-06 Glass fibre composition free of boron and fluorine
US13/574,694 US9051207B2 (en) 2011-02-14 2011-07-06 Boron and fluorine-free glass fiber composites

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100374720A CN102173594B (zh) 2011-02-14 2011-02-14 一种无硼无氟玻璃纤维组合物
CN201110037472.0 2011-07-14

Publications (1)

Publication Number Publication Date
WO2012109777A1 true WO2012109777A1 (zh) 2012-08-23

Family

ID=44516892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001115 WO2012109777A1 (zh) 2011-02-14 2011-07-06 一种无硼无氟玻璃纤维组合物

Country Status (5)

Country Link
US (1) US9051207B2 (zh)
EP (1) EP2676939B1 (zh)
CN (1) CN102173594B (zh)
BR (1) BR112013020222B1 (zh)
WO (1) WO2012109777A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838110B (zh) * 2010-05-19 2014-02-26 巨石集团有限公司 一种适用于池窑生产的制备高性能玻璃纤维用组合物
CN102173594B (zh) 2011-02-14 2012-05-23 重庆国际复合材料有限公司 一种无硼无氟玻璃纤维组合物
CN102730976A (zh) * 2011-04-11 2012-10-17 重庆国际复合材料有限公司 用于增强有机或无机的玻璃丝及其组合物
CN102603197B (zh) * 2011-12-20 2013-11-27 内江华原电子材料有限公司 以工业矿渣为原料生产无碱玻璃纤维的方法
CN103145341B (zh) * 2013-03-22 2016-06-08 内江华原电子材料有限公司 一种无氟无硼无碱玻璃纤维及其制备方法
CN104150780A (zh) * 2013-07-30 2014-11-19 安徽丹凤集团桐城玻璃纤维有限公司 一种玻璃纤维
CN103771716A (zh) * 2014-02-13 2014-05-07 江苏长海复合材料股份有限公司 一种ecr无氟无硼高强直接纱及其制备方法
CN104445965B (zh) * 2014-05-15 2017-01-11 江西大华新材料股份有限公司 一种高性能玻璃纤维
CN107056076A (zh) * 2017-06-19 2017-08-18 重庆国际复合材料有限公司 一种玻璃纤维
EP3502068A1 (en) 2017-12-19 2019-06-26 OCV Intellectual Capital, LLC High performance fiberglass composition
CN114349354B (zh) * 2018-06-22 2024-01-12 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料
CN108840574B (zh) * 2018-09-21 2022-11-22 辽宁新洪源环保材料有限公司 一种5万吨细纱池窑玻璃组合物
CN109133654B (zh) * 2018-09-21 2022-08-09 辽宁新洪源环保材料有限公司 一种高性能珍珠岩纤维及其制备方法
JP7488260B2 (ja) 2018-11-26 2024-05-21 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 改善された弾性率を有する高性能ガラス繊維組成物
JP7480142B2 (ja) 2018-11-26 2024-05-09 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 改善された比弾性率を有する高性能ガラス繊維組成物
DE102018133413A1 (de) * 2018-12-21 2020-06-25 Schott Ag Chemisch beständige, Bor- und Alkali-freie Gläser
WO2023190982A1 (ja) * 2022-03-30 2023-10-05 日本板硝子株式会社 ガラス繊維
TW202400539A (zh) * 2022-03-30 2024-01-01 日商日本板硝子股份有限公司 玻璃纖維
CN115806391B (zh) * 2022-12-15 2024-03-29 清远忠信世纪电子材料有限公司 一种低膨胀系数玻璃纤维及其制备方法
CN116282934B (zh) * 2023-02-24 2023-08-15 泰山玻璃纤维有限公司 高镁高比模量玻璃纤维组合物及玻璃纤维

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523265A (en) * 1995-05-04 1996-06-04 Owens-Corning Fiberglas Technology, Inc. Glass compositions and fibers therefrom
US5789329A (en) 1995-06-06 1998-08-04 Owens Corning Fiberglas Technology, Inc. Boron-free glass fibers
WO1999012858A1 (fr) 1997-09-10 1999-03-18 Vetrotex France S.A. Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
WO2002062712A1 (en) * 2001-02-05 2002-08-15 Koninklijke Philips Electronics N.V. Multicomponent glass, glass fiber, twister and taper
CN1392870A (zh) * 2000-09-06 2003-01-22 Ppg工业俄亥俄公司 形成玻璃纤维的组合物
WO2005092808A1 (fr) 2004-03-17 2005-10-06 Saint-Gobain Vetrotex France S.A. Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
WO2005093227A2 (fr) 2004-03-17 2005-10-06 Saint-Gobain Vetrotex France S.A. Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
CN101597140A (zh) * 2009-07-02 2009-12-09 重庆国际复合材料有限公司 一种高强度高模量玻璃纤维
CN102173594A (zh) * 2011-02-14 2011-09-07 重庆国际复合材料有限公司 一种无硼无氟玻璃纤维组合物

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL42018A (en) * 1972-04-28 1977-10-31 Owens Corning Fiberglass Corp Boron and fluorine free mixtures for making glass fibers
US3876481A (en) * 1972-10-18 1975-04-08 Owens Corning Fiberglass Corp Glass compositions, fibers and methods of making same
US4026715A (en) * 1973-03-19 1977-05-31 Owens-Corning Fiberglas Corporation Glass compositions, fibers and methods of making same
ATE173721T1 (de) * 1994-11-08 1998-12-15 Rockwool Int Synthetische glasfasern
US6346494B1 (en) * 1995-11-08 2002-02-12 Rockwool International A/S Man-made vitreous fibres
GB9525475D0 (en) * 1995-12-13 1996-02-14 Rockwool Int Man-made vitreous fibres and their production
JP2000247677A (ja) * 1999-02-24 2000-09-12 Nitto Boseki Co Ltd 耐食性ガラス繊維組成
US6962886B2 (en) * 1999-05-28 2005-11-08 Ppg Industries Ohio, Inc. Glass Fiber forming compositions
US6686304B1 (en) * 1999-05-28 2004-02-03 Ppg Industries Ohio, Inc. Glass fiber composition
JP3584966B2 (ja) * 2000-01-21 2004-11-04 日東紡績株式会社 耐熱性ガラス繊維及びその製造方法
US20050085369A1 (en) * 2001-12-12 2005-04-21 Jensen Soren L. Fibres and their production
JP4842839B2 (ja) * 2004-12-24 2011-12-21 日本板硝子株式会社 鱗片状ガラス
CN101012105B (zh) * 2006-12-21 2010-05-19 泰山玻璃纤维股份有限公司 一种低介电常数玻璃纤维
FR2910462B1 (fr) * 2006-12-22 2010-04-23 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
US7767606B2 (en) * 2007-03-15 2010-08-03 Ocv Intellectual Capital, Llc Low viscosity E-glass composition enabling the use of platinum and rhodium free bushings
US8338524B2 (en) * 2007-06-18 2012-12-25 Nippon Sheet Glass Company, Limited Glass compositions
CN101269915B (zh) * 2008-05-07 2010-11-10 济南大学 一种低介电常数玻璃纤维
CN101503279B (zh) * 2009-03-02 2012-04-11 巨石集团有限公司 一种新型玻璃纤维组合物
CN101767934B (zh) * 2009-12-18 2012-03-28 泰山玻璃纤维有限公司 一种无氟低硼无碱玻璃纤维配方及制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523265A (en) * 1995-05-04 1996-06-04 Owens-Corning Fiberglas Technology, Inc. Glass compositions and fibers therefrom
US5789329A (en) 1995-06-06 1998-08-04 Owens Corning Fiberglas Technology, Inc. Boron-free glass fibers
WO1999012858A1 (fr) 1997-09-10 1999-03-18 Vetrotex France S.A. Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
CN1392870A (zh) * 2000-09-06 2003-01-22 Ppg工业俄亥俄公司 形成玻璃纤维的组合物
US6818575B2 (en) 2000-09-06 2004-11-16 Ppg Industries Ohio, Inc. Glass fiber forming compositions
WO2002062712A1 (en) * 2001-02-05 2002-08-15 Koninklijke Philips Electronics N.V. Multicomponent glass, glass fiber, twister and taper
WO2005092808A1 (fr) 2004-03-17 2005-10-06 Saint-Gobain Vetrotex France S.A. Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
WO2005093227A2 (fr) 2004-03-17 2005-10-06 Saint-Gobain Vetrotex France S.A. Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
CN101597140A (zh) * 2009-07-02 2009-12-09 重庆国际复合材料有限公司 一种高强度高模量玻璃纤维
CN102173594A (zh) * 2011-02-14 2011-09-07 重庆国际复合材料有限公司 一种无硼无氟玻璃纤维组合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG C Y; CHEN M; CHEN J H: "Glass Manufacturing Process", 1 July 2006, CHEMICAL INDUSTRY PRESS, pages: 182
ZHANG Y M: "Glass Fiber and Mineral Wool", 1 November 2010, CHEMICAL INDUSTRY PRESS, pages: 216

Also Published As

Publication number Publication date
BR112013020222B1 (pt) 2020-01-28
EP2676939A4 (en) 2016-09-14
EP2676939B1 (en) 2017-11-15
US9051207B2 (en) 2015-06-09
CN102173594B (zh) 2012-05-23
US20140113799A1 (en) 2014-04-24
EP2676939A1 (en) 2013-12-25
BR112013020222A2 (pt) 2017-11-14
CN102173594A (zh) 2011-09-07

Similar Documents

Publication Publication Date Title
WO2012109777A1 (zh) 一种无硼无氟玻璃纤维组合物
EP2450321B1 (en) High-intensity and high-modulus glass fiber
WO2021068423A1 (zh) 铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件
CN102482142B (zh) 改善了模量的不含锂玻璃
CN104445966B (zh) 一种玻璃纤维
CN101269909B (zh) 一种浮法玻璃
CN108191234A (zh) 锡氧化物掺杂赤泥耐碱玻璃纤维及其制备方法
CN101704631B (zh) 一种利用热态高炉渣制造矿渣纤维的方法
WO2011113303A1 (zh) 有高强度及节能减排环保和低黏度特征的玻璃纤维及制备方法与玻璃纤维复合材料
CN109485342B (zh) 红麻秸秆轻质抗裂保温砂浆及其制备方法
JP2000247683A (ja) 耐食性を有するガラス繊維
Li et al. Continuous glass fibers for reinforcement
CN103332866B (zh) 一种玻璃纤维
CN109970377B (zh) 一种水溶性有机高分子增韧矿渣基地质聚合物胶凝材料及制备方法
CN113603368A (zh) 一种膨胀纤维抗裂防水剂用改性玄武岩纤维的制备方法
CN105753330A (zh) 一种耐碱玻璃纤维组合物、耐碱玻璃纤维及耐碱玻璃纤维的制备方法
CN104591543A (zh) 一种无硼高性能玻璃纤维及其制备方法
CN107010831A (zh) 一种高掺碎玻璃的平板玻璃及其制备方法
CN108840574B (zh) 一种5万吨细纱池窑玻璃组合物
CN109133654B (zh) 一种高性能珍珠岩纤维及其制备方法
CN103396001A (zh) 一种低能耗的玻璃纤维
CN104445963A (zh) 一种熔融高炉炉渣制备玻璃纤维的方法
CN101423331A (zh) 一种低硼玻璃纤维的生产配方
CN115432932A (zh) 具有超高比模量的玻璃纤维组合物及玻璃纤维
CN108545949A (zh) 可纤维化的玻璃组合物及制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13574694

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858719

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011858719

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011858719

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013020222

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013020222

Country of ref document: BR

Free format text: ESCLARECA A INCLUSAO DE YONGQUAN XIONG E LINXIANG LI NO QUADRO DE INVENTORES DA PETICAO INICIAL, UMA VEZ QUE OS MESMOS NAO FAZEM PARTE DO QUADRO DE INVENTORES NA PUBLICACAO INTERNACIONAL.

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013020222

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013020222

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130808