WO2012108404A1 - 電気絶縁性樹脂シート - Google Patents

電気絶縁性樹脂シート Download PDF

Info

Publication number
WO2012108404A1
WO2012108404A1 PCT/JP2012/052675 JP2012052675W WO2012108404A1 WO 2012108404 A1 WO2012108404 A1 WO 2012108404A1 JP 2012052675 W JP2012052675 W JP 2012052675W WO 2012108404 A1 WO2012108404 A1 WO 2012108404A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating resin
electrically insulating
resin
sheet according
resin layer
Prior art date
Application number
PCT/JP2012/052675
Other languages
English (en)
French (fr)
Inventor
請井 博一
笠置 智之
佳子 吉良
靖之 木原
彰 玉井
Original Assignee
日東電工株式会社
日東シンコー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社, 日東シンコー株式会社 filed Critical 日東電工株式会社
Priority to CN2012800082034A priority Critical patent/CN103354824A/zh
Publication of WO2012108404A1 publication Critical patent/WO2012108404A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to an electrically insulating resin sheet.
  • this type of electrically insulating resin sheet includes, for example, a polyphenylene sulfide resin having a plurality of aromatic hydrocarbons and a plurality of sulfide bonds (—S—) in the molecule, and a vinyl copolymer.
  • a polyphenylene sulfide resin having a plurality of aromatic hydrocarbons and a plurality of sulfide bonds (—S—) in the molecule and a vinyl copolymer.
  • the thing provided only with the electrically insulating resin layer containing is known (patent document 1).
  • an electrically insulating resin sheet has a tracking resistance as an electrical insulating property required between a coil wire of a motor and the like, but has a tensile strength or the like due to heat generated from the coil wire or the like. There is a problem that the heat resistance may not be sufficient.
  • such an electrically insulating resin sheet does not necessarily have sufficient resistance to tearing force, that is, it does not necessarily have excellent tear resistance as a mechanical property required for the resin sheet. There is no problem.
  • the present invention has been made in view of the above-mentioned problems, and an object thereof is to provide an electrically insulating resin sheet excellent in tear resistance and heat resistance.
  • the electrically insulating resin sheet of the present invention is an electrically insulating resin sheet provided with an electrically insulating resin layer containing a polysulfone resin having a plurality of sulfonyl groups in the molecule and a thermoplastic resin other than the polysulfone resin,
  • the electrically insulating resin layer has a dispersed phase in which a thermoplastic resin other than the polysulfone resin is dispersed in the polysulfone resin.
  • the number of the dispersed phases having the shortest diameter of 0.5 ⁇ m or more is 10 or less.
  • the polysulfone resin is preferably a polyethersulfone resin further including a plurality of ether bonds in the molecule. Further, the polysulfone resin is preferably a polyphenylsulfone resin further containing a plurality of aromatic hydrocarbons in the molecule.
  • the thermoplastic resin other than the polysulfone resin is preferably a polyamide resin.
  • the thermoplastic resin other than the polysulfone resin is a polyamide resin, there is an advantage that the tear resistance of the electrically insulating resin sheet can be further improved.
  • the polyamide resin is preferably a polyamide resin containing an aromatic hydrocarbon in the molecule.
  • the polyamide resin is a polyamide resin containing an aromatic hydrocarbon in the molecule, there is an advantage that the heat resistance of the electrically insulating resin sheet can be further improved.
  • the electrically insulating resin layer preferably contains 1 to 45% by weight of the polyamide resin.
  • the electrically insulating resin sheet according to the present invention further includes at least one sheet material, and the sheet material is disposed on at least one side of the electrically insulating resin layer.
  • the sheet material is preferably a nonwoven fabric.
  • the sheet material is a nonwoven fabric, there is an advantage that delamination between the sheet material and the electrically insulating resin layer is suppressed.
  • the said sheet material is the paper produced by the wet papermaking method.
  • the sheet material preferably contains wholly aromatic polyamide, and more preferably wholly aromatic polyamide paper containing wholly aromatic polyamide fibers.
  • the sheet material contains wholly aromatic polyamide, there is an advantage that the heat resistance of the electrically insulating resin sheet can be further improved.
  • the electrically insulating resin sheet according to the present invention it is preferable that at least the electrically insulating resin layer side of the sheet material is subjected to corona treatment.
  • corona treatment there is an advantage that delamination between the sheet material and the electrically insulating resin layer is suppressed.
  • the electrical insulating resin sheet according to the present invention is preferably used for electrical insulation.
  • the electrically insulating resin sheet of the present invention has the effect of being excellent in tear resistance and heat resistance.
  • FIG. 1 The electron micrograph of the thickness direction cut surface of the electrically insulating resin layer in Example 1.
  • FIG. 2. The electron micrograph of the thickness direction cut surface of the electrically insulating resin layer in Example 2.
  • FIG. The electron micrograph of the thickness direction cut surface of the electrically insulating resin layer in Example 3.
  • FIG. The electron micrograph of the thickness direction cut surface of the electrically insulating resin layer in Example 4.
  • FIG. The electron micrograph of the thickness direction cut surface of the electrically insulating resin layer in a comparative example.
  • the electrically insulating resin sheet of the present embodiment includes an electrically insulating resin layer including a polysulfone resin having a plurality of sulfonyl groups in the molecule and a thermoplastic resin other than the polysulfone resin, and the electrically insulating resin layer includes: A thermoplastic resin other than the polysulfone resin has a dispersed phase dispersed in the polysulfone resin, and has a shortest diameter of 0.5 ⁇ m or more in a 294 ⁇ m 2 area range of the cut surface in the thickness direction of the electrically insulating resin layer. The number of the dispersed phases having is 10 or less.
  • the electrical insulating resin sheet is further provided with at least one sheet material in that the tear resistance is further improved, and the sheet material is disposed on at least one side of the electrical insulating resin layer. Preferably it is.
  • the polysulfone resin is a continuous phase, and a thermoplastic resin other than the polysulfone resin is dispersed and contained in the polysulfone resin as a discontinuous dispersed phase.
  • the shape of the dispersed phase is not particularly limited, and examples of the shape of the dispersed phase include true sphere, oblate shape, plate shape, and needle shape.
  • the number of the dispersed phases having the shortest diameter of 0.5 ⁇ m or more in the 294 ⁇ m 2 area range of the cut surface in the thickness direction is 10 or less.
  • the above-mentioned 294 ⁇ m 2 area range is a rectangular area range of 14 ⁇ m ⁇ 21 ⁇ m. If a rectangular image with a range of 14 ⁇ m ⁇ 21 ⁇ m cannot be obtained due to the thickness of the electrically insulating resin layer being less than 14 ⁇ m, etc., a rectangle with a long side exceeding 21 ⁇ m so as to have a 294 ⁇ m 2 area range Set and measure the shortest diameter of the dispersed phase in the image in such a rectangle.
  • the thickness direction cut surface of the electric insulating resin layer is not particularly limited as long as it is a surface cut in the thickness direction of the electric insulating resin layer.
  • the thickness direction cut surface of the electrically insulating resin layer formed by extrusion molding described later may be a thickness direction cut surface cut along the extrusion direction, and is a direction orthogonal to the extrusion direction. It may be a cut surface along the thickness direction.
  • the dispersed phase is obtained by embedding a resin insulating resin layer having a predetermined size and then creating a cut surface in the thickness direction of the electrically insulating resin layer by a polishing method, and performing a dyeing process and a conductive process. It appears as discontinuities of various shapes in an image obtained by a field emission scanning electron microscope (FE-SEM).
  • the dispersed phase may have various cross-sectional shapes on the cut surface in the thickness direction. Specifically, examples of the cross-sectional shape of the dispersed phase include a perfect circle, an ellipse, and a rectangle.
  • a dispersed phase composed of a polyamide resin dispersed in a continuous phase of a polysulfone resin is produced by producing a cut surface in the thickness direction by the method described in the Examples, and performing a dyeing process and a conductive process, thereby producing an electric field. It appears as a black discontinuity in the image taken by the radial scanning electron microscope.
  • the shortest diameter of the dispersed phase is determined by the diameter of the maximum circle inscribed in each discontinuous having various shapes in an image of a rectangle in the above range by a field emission scanning electron microscope at 5000 magnifications. Specifically, for example, in the cut surface in the thickness direction, when the cut surface shape of the dispersed phase is a rectangle having a long side of 10 times or more compared to the short side, the diameter of the maximum circle inscribed in the shape is Since the length is the short side of the rectangle, the shortest diameter of the dispersed phase is the short side length of the rectangle.
  • the number of the dispersed phases having the shortest diameter of 0.5 ⁇ m or more in the 294 ⁇ m 2 area range of the cut surface in the thickness direction exceeds 10
  • the tear resistance of the electrically insulating resin layer and There is a risk of insufficient heat resistance.
  • the number of the dispersed phases having the shortest diameter of 0.5 ⁇ m or more in the 294 ⁇ m 2 area range of the cut surface in the thickness direction is preferably 0 or more and 5 or less, preferably 0.5 ⁇ m. More preferably, the number of the dispersed phases having the shortest diameter is zero.
  • the thickness of the electrically insulating resin layer is not particularly limited, and is usually 1 ⁇ m to 500 ⁇ m.
  • the polysulfone resin has a molecular structure including a plurality of sulfonyl groups (—SO 2 —).
  • the polysulfone resin include a polyethersulfone resin further including a plurality of ether bonds (—O—) in the molecule, and a polyphenylsulfone resin further including a plurality of aromatic hydrocarbons in the molecule.
  • the polyether polyphenyl sulfone resin which further contains a some ether bond and a some aromatic hydrocarbon in a molecule
  • a polyethersulfone resin or a polysulfone resin can be used in that the moldability of the electrically insulating resin layer can be improved and the heat resistance of the electrically insulating resin layer can be further improved.
  • a phenyl sulfone resin is preferable, and the polyether polyphenyl sulfone resin is more preferable.
  • the polyether polyphenylsulfone resin preferably has a molecular structure represented by the following formula (1).
  • n is a positive integer representing the degree of polymerization and is usually in the range of 10 to 5000.
  • polyether polyphenylsulfone resin commercially available products can be used. For example, “Ultra Zone E Series” manufactured by BASF, “Radel A Series” manufactured by Solvay, “ “Sumika Excel series”.
  • the content of the polysulfone resin is preferably 50% by weight or more, more preferably 55% by weight or more, and further preferably 70% by weight or more.
  • the content of the polysulfone resin is preferably 99% by weight or less, more preferably 90% by weight or less, still more preferably 85% by weight or less, and most preferably 80% by weight or less. preferable.
  • the content ratio of the polysulfone resin is 50% by weight or more, there is an advantage that the heat resistance of the electrically insulating resin layer is further improved.
  • the content rate of the said polysulfone resin is 90 weight% or less, there exists an advantage that the tracking resistance of an electrically insulating resin layer can become more excellent.
  • thermoplastic resin other than the polysulfone resin examples include a polyamide resin, an epoxy group-containing polyhydroxy polyether phenoxy resin obtained by a reaction of bisphenols and epichlorohydrin, and a plurality of oxymethylene (—CH 2 O—) groups in the molecule.
  • thermoplastic resin other than the polysulfone resin is preferably the polyamide resin in that the tear resistance and heat resistance of the electrically insulating resin layer become better.
  • the polyamide resin is obtained by polymerizing at least a polyamine compound and a polycarboxylic acid compound by dehydration condensation.
  • the polyamide resin examples include a polyamide resin having an aromatic hydrocarbon in the molecule, and an aliphatic polyamide resin having a plurality of aliphatic hydrocarbons as the hydrocarbon in the molecule.
  • numerator is preferable at the point that the said electrically insulating resin layer can become the thing excellent in heat resistance.
  • the polyamide resin having an aromatic hydrocarbon in the molecule includes an aromatic polyamide resin having only a plurality of aromatic hydrocarbons as a hydrocarbon in the molecule, an aliphatic hydrocarbon and an aromatic hydrocarbon as hydrocarbons in the molecule. And semi-aromatic polyamide resins having both of the above.
  • aromatic polyamide resins are preferred.
  • polyamine compound used in the polymerization of the polyamide resin include a diamine compound.
  • diamine compound include aliphatic diamines containing linear or branched hydrocarbon groups, alicyclic diamines containing cyclic saturated hydrocarbon groups, and aromatic diamines containing aromatic hydrocarbon groups. .
  • Examples of the aliphatic diamine, the alicyclic diamine, or the aromatic diamine include those represented by the following formula (2).
  • R 1 in the following formula (2) represents an aliphatic hydrocarbon group having 4 to 12 carbon atoms, or an alicyclic hydrocarbon group having 4 to 12 carbon atoms including a cyclic saturated hydrocarbon, or Represents a hydrocarbon group containing an aromatic ring.
  • the carbon of R 1 in the formula (2) is excellent in that the delamination between the sheet material and the electrically insulating resin layer can be further suppressed while being excellent in the heat resistance of the electrically insulating resin layer.
  • Nonanediamine having a number of 9 is preferred, and a mixture of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is more preferred.
  • Examples of the aromatic diamine include phenylenediamine and xylylenediamine.
  • polycarboxylic acid compound used in the polymerization of the polyamide resin include a dicarboxylic acid compound.
  • dicarboxylic acid compound examples include an aliphatic dicarboxylic acid containing a linear or branched hydrocarbon group, an alicyclic dicarboxylic acid containing a cyclic saturated hydrocarbon group, and an aromatic dicarboxylic acid containing an aromatic hydrocarbon group. Etc.
  • R 2 in the following formula (3) represents an aliphatic hydrocarbon group having 4 to 25 carbon atoms, or an alicyclic hydrocarbon group having 4 to 12 carbon atoms including a cyclic saturated hydrocarbon, or Represents a hydrocarbon group containing an aromatic ring.
  • R 2 in the following formula (3) represents an aliphatic hydrocarbon group having 4 to 25 carbon atoms, or an alicyclic hydrocarbon group having 4 to 12 carbon atoms including a cyclic saturated hydrocarbon, or Represents a hydrocarbon group containing an aromatic ring.
  • Examples of the aliphatic dicarboxylic acid include adipic acid and sebacic acid.
  • Examples of the aromatic dicarboxylic acid include terephthalic acid, methyl terephthalic acid, and naphthalene dicarboxylic acid.
  • terephthalic acid can be used because the heat resistance of the polyamide resin can be further improved. Acid is preferred.
  • the polyamide resin may be one obtained by polymerizing one kind of diamine compound and one kind of dicarboxylic acid compound, or may be one obtained by polymerizing a combination of plural kinds of each compound. Good. Further, if necessary, a material obtained by further polymerizing a compound other than the diamine compound and the dicarboxylic acid compound may be used.
  • the polyamide resin is preferably the semi-aromatic polyamide resin.
  • the semi-aromatic polyamide resin an aliphatic diamine as a diamine compound and an aromatic dicarboxylic acid as a dicarboxylic acid compound are polymerized. More preferred are those obtained by polymerizing nonanediamine as an aliphatic diamine and terephthalic acid as an aromatic dicarboxylic acid (PA9T).
  • the content of the thermoplastic resin other than the polysulfone resin is preferably 1% by weight or more, more preferably 5% by weight or more, and more preferably 15% by weight or more. Further preferred.
  • the content of the thermoplastic resin other than the polysulfone resin is preferably 45% by weight or less, more preferably 40% by weight or less, and further preferably 30% by weight or less.
  • the content of the thermoplastic resin other than the polysulfone resin is 1% by weight or more, there is an advantage that the tracking resistance of the electrically insulating resin layer can be further improved.
  • the content rate of thermoplastic resins other than the said polysulfone resin is 45 weight% or less, there exists an advantage that the heat resistance of an electrically insulating resin layer can become more excellent.
  • additives may be blended in the electrically insulating resin layer as long as the effects of the present invention are not impaired.
  • additives include alkylphenol resins, alkylphenol-acetylene resins, xylene resins, coumarone-indene resins, terpene resins, rosin and other tackifiers, brominated flame retardants such as polybromodiphenyl oxide and tetrabromobisphenol A, Chlorinated flame retardants such as chlorinated paraffin and perchlorocyclodecane, phosphorus flame retardants such as phosphate esters and halogen-containing phosphate esters, boron flame retardants, oxide flame retardants such as antimony trioxide, aluminum hydroxide Hydrated metal compounds such as magnesium hydroxide, phenolic, phosphorus, sulfur antioxidants, silica, clay, calcium carbonate, barium carbonate, strontium carbonate, aluminum oxide, magnesium oxide, boron nitride, silicon nitrid
  • aromatic polyamide fibers montmorillonite having a particle size of several nm to several hundred nm, and the like can be mentioned.
  • These additives can be used, for example, in an amount of 0.1 to 5 parts by weight with respect to 100 parts by weight of the resin mixture containing the polysulfone resin and a thermoplastic resin other than the polysulfone resin.
  • FIG. 1 is a cross-sectional view schematically showing a cross section obtained by cutting an electric insulating resin sheet in which a sheet material 3 is disposed on both sides of the electric insulating resin layer 2 in the thickness direction. As shown in FIG. 1, in such an electrically insulating resin sheet 1, a plurality of sheet materials 3 are bonded together via a sheet-like electrically insulating resin layer 2.
  • the sheet material 3 is not particularly limited as long as it is a sheet. Further, the thickness of the sheet material 3 is not particularly limited, and is usually 10 to 100 ⁇ m. In addition, as shown in FIG. 1, the sheet material 3 is usually provided in two sheets of an electrically insulating resin sheet.
  • the sheet material 3 examples include nonwoven fabric, paper, and film.
  • the sheet material 3 is preferably a non-woven fabric or paper in that the tear resistance of the electrically insulating resin sheet can be improved.
  • Examples of the sheet material 3 include those prepared by a wet papermaking method (wet nonwoven fabric and the like), and those prepared by a dry method in the air (dry nonwoven fabric and the like).
  • the sheet material 3 is preferably paper produced by a wet papermaking method in that the electrical insulating resin sheet can be more excellent in tear resistance.
  • Examples of the material of the sheet material 3 include synthetic polymer compounds such as polyamide and polyester, natural polymer compounds such as cellulose, and the like, and the tear resistance of the electrically insulating resin sheet can be further improved. Polyamide is preferred.
  • the polyamide includes a wholly aromatic polyamide in which all of the constituent monomers have aromatic hydrocarbons, an aliphatic polyamide in which all of the constituent monomers have only aliphatic hydrocarbons, and constituent monomers and aliphatic hydrocarbons having aromatic hydrocarbons.
  • semi-aromatic polyamides containing a constituent monomer having The polyamide is preferably a wholly aromatic polyamide in that the tear resistance of the electrically insulating resin sheet can be further improved. That is, it is preferable that the sheet material 3 contains the wholly aromatic polyamide.
  • the sheet material 3 is more preferably a wholly aromatic polyamide paper containing wholly aromatic polyamide fibers, in that the tear resistance of the electrically insulating resin sheet can be further improved. That is, the sheet material 3 is more preferably a wholly aromatic polyamide paper produced by a wet papermaking method using wholly aromatic polyamide fibers.
  • the wholly aromatic polyamide paper examples include, for example, a wholly aromatic polyamide fiber obtained by fiberizing a condensation polymerization product (fully aromatic polyamide) of phenylenediamine and phthalic acid, which includes a benzene ring except for an amide group. Are formed as the main constituent material.
  • the wholly aromatic polyamide paper is preferably excellent in mechanical properties and has a basis weight of 5 g / m 2 or more in terms of good handling in the production process of the electrically insulating resin sheet. When the basis weight is 5 g / m 2 or more, there is an advantage that the mechanical strength is prevented from being insufficient and is not easily broken during the production of the electrically insulating resin sheet.
  • the other components can be added to the wholly aromatic polyamide paper as long as the effects of the present invention are not impaired.
  • the other components include polyphenylene sulfide fibers, polyether ether ketone fibers, polyester fibers, and arylates.
  • examples thereof include organic fibers such as fibers, liquid crystal polyester fibers, and polyethylene naphthalate fibers, or inorganic fibers such as glass fibers, rock wool, asbestos, boron fibers, and alumina fibers.
  • the wholly aromatic polyamide paper include those commercially available from DuPont under the trade name “NOMEX”.
  • the sheet material 3 is preferably subjected to a corona treatment on the electrically insulating resin layer 2 side.
  • the corona treatment is a treatment for roughening the surface of the sheet material 3 by performing discharge treatment on one surface of the sheet material 3 in contact with the electrically insulating resin layer 2 to generate a carboxyl group or a hydroxyl group having polarity.
  • As the corona treatment a conventionally known general method can be employed.
  • the electrical insulating resin sheet generally has a CTI value in a tracking resistance test that is an index of electrical insulation of 130 V or higher, and preferably 175 V or higher.
  • the CTI value is preferably 250 V or less.
  • the tracking resistance test is performed by the method described in the examples.
  • the electrical insulating resin sheet preferably has an end tear resistance value of 100 N / 20 mm or more, preferably 450 N / 20 mm or less, which serves as an index of tear resistance.
  • the end resistance value is measured by the method described in the examples.
  • the electrical insulating resin sheet preferably has a tensile strength residual ratio of 60% or more after 1250 hours at 220 ° C. Further, the strength residual rate is usually 100% or less. The strength residual ratio is determined by the method described in the examples.
  • the electrical insulating resin sheet has the interlayer insulating force between the electrical insulating resin layer and the sheet material greater than the cohesive failure force of the electrical insulating resin layer and the sheet material, and thus the electrical insulation. It is preferable that it is comprised so that delamination may not be carried out between an adhesive resin layer and the said sheet
  • the electric insulating resin layer provided in the electric insulating resin sheet is a conventionally known general mixture of a resin mixture obtained by mixing a polysulfone resin and a thermoplastic resin other than the polysulfone resin while heating to a predetermined temperature. It can be produced by molding into a sheet by a method. Specifically, for example, a polysulfone resin and a thermoplastic resin other than the polysulfone resin are mixed while being heated by a general mixing means such as a kneader, a pressure kneader, a kneading roll, a Banbury mixer, or a twin screw extruder.
  • a general mixing means such as a kneader, a pressure kneader, a kneading roll, a Banbury mixer, or a twin screw extruder.
  • the resin mixture can be prepared by extruding the resin mixture into a sheet by an extruder equipped with a T-die.
  • an electrically insulating resin sheet provided with two sheet materials can be manufactured by pressing a sheet in which an electrically insulating resin layer is sandwiched between two sheet materials.
  • these resins are mixed at a temperature at which the difference in viscosity between the polysulfone resin and a thermoplastic resin other than the polysulfone resin becomes smaller, and the resin mixture is mixed at such a temperature.
  • the particle diameter of the dispersed phase of the thermoplastic resin other than the polysulfone resin described above can be reduced in the produced electrically insulating resin layer.
  • the number of dispersed phases having a shortest diameter of 0.5 ⁇ m or more can be reduced.
  • the particle diameter of the dispersed phase can be reduced as the difference in viscosity ( ⁇ D / ⁇ m ) between the two resins is reduced. Also, the particle diameter of the dispersed phase can be reduced by increasing the shear rate when the resin is mixed.
  • the electrical insulating resin sheet uses an electrical insulating point, for example, an electrical insulation sheet for a motor in an automobile, an electrical insulation sheet for a transformer (transformer), and an electrical insulation for a bus bar. It can be used in sheets and the like.
  • the electrically insulating resin sheet of the present embodiment is as illustrated above, but the present invention is not limited to the electrically insulating resin sheet illustrated above. Moreover, the various aspects used in a general electrically insulating resin sheet can be employed as long as the effects of the present invention are not impaired.
  • the electrical insulating resin sheet in which one sheet material is disposed on each side of the sheet-like electrical insulating resin layer in FIG. 1 has been described. It is not limited to the embodiment, and one sheet material may be disposed only on one side of the sheet-like electrically insulating resin layer. Alternatively, only a sheet-like electrically insulating resin layer may be provided.
  • Example 1 First, the following raw materials were prepared.
  • Polysulfone resin Polyether polyphenylsulfone resin (PES) resin (The molecule contains multiple sulfonyl groups, ether bonds, and aromatic hydrocarbons) (Trade name “Radel A-300A” manufactured by Solvay) was used.
  • Polyamide resin Polyamide resin (PA9T) (Contains multiple terephthalic acid units and nonanediamine units in the molecule) (Kuraray brand name “Genesta N1000A”) Next, the PES resin and the PA resin were mixed at 310 ° C.
  • the resin mixture was formed into a sheet having a thickness of 100 ⁇ m at 310 ° C. by extrusion molding to form an electrically insulating resin layer, and an electrically insulating resin sheet consisting only of the sheet-like electrically insulating resin layer was manufactured.
  • Example 2 An electrically insulating resin sheet consisting only of a sheet-like electrically insulating resin layer was produced in the same manner as in Example 1 except that a resin mixture was prepared at 320 ° C. and extruded at 320 ° C.
  • Example 3 An electrically insulating resin sheet consisting only of a sheet-like electrically insulating resin layer was produced in the same manner as in Example 1 except that a resin mixture was prepared at 330 ° C. and extruded at 330 ° C.
  • Example 4 On the other hand, two wholly aromatic polyamide papers (trade name “NOMEX T410”, thickness 50 ⁇ m, manufactured by DuPont) were prepared as sheet materials. Furthermore, the corona treatment was performed on the surface of each sheet material in contact with the electrically insulating resin layer. The corona treatment was performed under the conditions of an output of 500 W, a treatment speed of 4 m / min, and a sample width of 0.4 m under atmospheric pressure using “500 series” manufactured by PILLAR TECHNOLOGIES as an instrument.
  • Samples of appropriate sizes were cut out from the electrically insulating resin layers of the electrically insulating resin sheets of the examples and comparative examples.
  • the cut sample was resin-embedded with an epoxy resin, and a thickness direction cut surface cut along the extrusion direction of extrusion molding was produced by a polishing method. Further, a sample subjected to electron staining with a heavy metal dye and subjected to conductive treatment by metal deposition was used as an electron microscope observation sample.
  • FE-SEM Field Emission Scanning Electron Microscope
  • 2 to 6 show electron micrographs of the cut surfaces in the thickness direction in the electrically insulating resin layers of the examples and comparative examples. 2 to 6 show the examples in Examples 1 to 4 and the comparative example, respectively.
  • Table 1 shows the evaluation results of heat resistance (strength residual ratio), tear resistance (end tear resistance value), and tracking resistance (CTI value) in each example and each comparative example.
  • the electrically insulating resin sheet of the present invention can be suitably used as an electrically insulating sheet that requires heat resistance and electrical insulation.
  • an electrical insulating sheet material arranged around the coil wire of a motor, a transformer, a bus bar, a capacitor, an electrical insulating sheet material for a cable, or an insulating film of an electronic circuit board. is preferred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Insulating Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paper (AREA)
  • Insulating Bodies (AREA)

Abstract

 耐引裂き性及び耐熱性に優れた電気絶縁性樹脂シートを提供することを課題とする。分子中に複数のスルホニル基を有するポリスルホン樹脂と該ポリスルホン樹脂以外の熱可塑性樹脂とを含む電気絶縁性樹脂層を備えた電気絶縁性樹脂シートであって、該電気絶縁性樹脂層は、前記ポリスルホン樹脂以外の熱可塑性樹脂が前記ポリスルホン樹脂中に分散した分散相を有しており、前記電気絶縁性樹脂層の厚み方向切断面の294μm面積範囲では、0.5μm以上の最短径を有する前記分散相の個数が10以下であることを特徴とする電気絶縁性樹脂シートを提供する。

Description

電気絶縁性樹脂シート
 本発明は、電気絶縁性樹脂シートに関する。
 従来、電気絶縁性樹脂シートとしては、様々なものが知られており、例えば、モーターにおける発熱体であるコイル線の周囲に配されて用いられるものなどが知られている。
 この種の電気絶縁性樹脂シートとしては、具体的には例えば、分子中に複数の芳香族炭化水素及び複数のスルフィド結合(-S-)を有するポリフェニレンスルフィド樹脂と、ビニル系共重合体とを含む電気絶縁性樹脂層のみを備えたものが知られている(特許文献1)。
 しかしながら、斯かる電気絶縁性樹脂シートは、モーターのコイル線とコイル線との間等において要求される電気絶縁性としての耐トラッキング性を有するものの、コイル線などから発生する熱によって引張強度などが低下し得るものであり、耐熱性が必ずしも十分なものではないという問題がある。
 また、斯かる電気絶縁性樹脂シートは、引裂き力に対して必ずしも十分な耐性を有するものではないという問題、即ち、樹脂シートに必要とされる力学的特性としての耐引裂き性が必ずしも優れるものではないという問題がある。
日本国特開2007-186672号公報
 本発明は、上記問題点等に鑑みてなされたものであり、耐引裂き性及び耐熱性に優れた電気絶縁性樹脂シートを提供することを課題とする。
 本発明の電気絶縁性樹脂シートは、分子中に複数のスルホニル基を有するポリスルホン樹脂と該ポリスルホン樹脂以外の熱可塑性樹脂とを含む電気絶縁性樹脂層を備えた電気絶縁性樹脂シートであって、該電気絶縁性樹脂層は、前記ポリスルホン樹脂以外の熱可塑性樹脂が前記ポリスルホン樹脂中に分散した分散相を有しており、前記電気絶縁性樹脂層の厚み方向切断面の294μm面積範囲では、0.5μm以上の最短径を有する前記分散相の個数が10以下であることを特徴とする。
 本発明に係る電気絶縁性樹脂シートにおいては、前記ポリスルホン樹脂が、分子中に複数のエーテル結合をさらに含むポリエーテルスルホン樹脂であることが好ましい。また、前記ポリスルホン樹脂が、分子中に複数の芳香族炭化水素をさらに含むポリフェニルスルホン樹脂であることが好ましい。
 本発明に係る電気絶縁性樹脂シートにおいては、前記ポリスルホン樹脂以外の熱可塑性樹脂がポリアミド樹脂であることが好ましい。
 前記ポリスルホン樹脂以外の熱可塑性樹脂がポリアミド樹脂であることにより、電気絶縁性樹脂シートの耐引裂き性がより優れたものになり得るという利点がある。
 本発明に係る電気絶縁性樹脂シートにおいては、前記ポリアミド樹脂が、分子中に芳香族炭化水素を含むポリアミド樹脂であることが好ましい。前記ポリアミド樹脂が分子中に芳香族炭化水素を含むポリアミド樹脂であることにより、電気絶縁性樹脂シートの耐熱性がより優れたものになり得るという利点がある。
 本発明に係る電気絶縁性樹脂シートにおいては、前記電気絶縁性樹脂層が、1~45重量%の前記ポリアミド樹脂を含むことが好ましい。
 本発明に係る電気絶縁性樹脂シートは、少なくとも1種のシート材をさらに備え、該シート材が前記電気絶縁性樹脂層の少なくとも片面側に配されていることが好ましい。斯かる構成により、電気絶縁性樹脂シートの耐引裂き性及び耐熱性がより優れたものになるという利点がある。
 本発明に係る電気絶縁性樹脂シートにおいては、前記シート材が不織布であることが好ましい。前記シート材が不織布であることにより、シート材と電気絶縁性樹脂層との間における層間剥離が抑制されるという利点がある。また、前記シート材が、湿式抄紙法により作製された紙であることが好ましい。
 また、前記シート材が、全芳香族ポリアミドを含んでいることが好ましく、全芳香族ポリアミド繊維を含む全芳香族ポリアミド紙であることがより好ましい。前記シート材が全芳香族ポリアミドを含んでいることにより、電気絶縁性樹脂シートの耐熱性がより優れたものになり得るという利点がある。
 本発明に係る電気絶縁性樹脂シートにおいては、前記シート材の少なくとも電気絶縁性樹脂層側にコロナ処理が施されていることが好ましい。コロナ処理が施されていることにより、シート材と電気絶縁性樹脂層との間における層間剥離が抑制されるという利点がある。
 本発明に係る電気絶縁性樹脂シートは、電気絶縁用途で使用されることが好ましい。
 本発明の電気絶縁性樹脂シートは、耐引裂き性及び耐熱性に優れているという効果を奏する。
シート材を含む電気絶縁性樹脂シートを厚み方向に切断した断面を模式的に示した断面図。 実施例1における電気絶縁性樹脂層の厚み方向切断面の電子顕微鏡写真。 実施例2における電気絶縁性樹脂層の厚み方向切断面の電子顕微鏡写真。 実施例3における電気絶縁性樹脂層の厚み方向切断面の電子顕微鏡写真。 実施例4における電気絶縁性樹脂層の厚み方向切断面の電子顕微鏡写真。 比較例における電気絶縁性樹脂層の厚み方向切断面の電子顕微鏡写真。
 以下、本発明に係る電気絶縁性樹脂シートの一実施形態について説明する。
 本実施形態の電気絶縁性樹脂シートは、分子中に複数のスルホニル基を有するポリスルホン樹脂と該ポリスルホン樹脂以外の熱可塑性樹脂とを含む電気絶縁性樹脂層を備え、該電気絶縁性樹脂層は、前記ポリスルホン樹脂以外の熱可塑性樹脂が前記ポリスルホン樹脂中に分散した分散相を有しており、前記電気絶縁性樹脂層の厚み方向切断面の294μm面積範囲では、0.5μm以上の最短径を有する前記分散相の個数が10以下であるものである。
 前記電気絶縁性樹脂シートは、耐引裂き性がより優れたものになるという点で、少なくとも1種のシート材をさらに備え、該シート材が前記電気絶縁性樹脂層の少なくとも片面側に配されていることが好ましい。
 前記電気絶縁性樹脂層においては、前記ポリスルホン樹脂が連続相となっており、前記ポリスルホン樹脂以外の熱可塑性樹脂が、不連続な分散相となって前記ポリスルホン樹脂中に分散して含まれている。
 前記分散相は、形状が特に限定されるものではなく、分散相の形状としては、真球状、扁球状、板状、針状等が挙げられる。
 前記電気絶縁性樹脂層においては、厚み方向切断面の294μm面積範囲で、0.5μm以上の最短径を有する前記分散相の個数が10以下である。
 原則として、上記の294μm面積範囲は、14μm×21μmの長方形の面積範囲である。なお、前記電気絶縁性樹脂層の厚みが14μm未満であること等により、14μm×21μm範囲の長方形の像が得られない場合は、294μm面積範囲となるように長辺が21μmを超える長方形を設定し、斯かる長方形における像において、前記分散相の最短径を計測する。
 前記電気絶縁性樹脂層の厚み方向切断面は、電気絶縁性樹脂層の厚み方向に切断した面であれば特に限定されない。具体的には、例えば、後述する押出成形によって成形された電気絶縁性樹脂層の厚み方向切断面は、押出方向に沿って切断した厚み方向切断面であってもよく、押出方向と直交する方向に沿って切断した厚み方向切断面であってもよい。
 前記分散相は、所定の大きさの電気絶縁性樹脂層を樹脂包埋した後、研磨法によって前記電気絶縁性樹脂層の厚み方向切断面を作製し、染色処理及び導電処理を施すことにより、電界放射型走査電子顕微鏡(FE-SEM)による像において、様々な形状の不連続物となって見える。
 前記分散相は、厚み方向切断面において、断面形状が様々なものになり得る。具体的には、分散相の断面形状としては、例えば、真円状、楕円状、長方形状等が挙げられる。
 具体的には例えば、ポリスルホン樹脂の連続相中に分散したポリアミド樹脂からなる分散相は、厚み方向切断面を実施例に記載された方法によって作製し、染色処理及び導電処理を施すことにより、電界放射型走査電子顕微鏡による像において、黒色の不連続物となって見える。
 そして、前記分散相の最短径は、5000倍率における電界放射型走査電子顕微鏡による上記範囲の長方形における像において、様々な形状を有する各不連続物に対して内接する最大円の直径により決定する。
 具体的には、例えば、厚み方向切断面において、分散相の切断面形状が短辺に比して長辺が10倍以上あるような長方形である場合、その形状に内接する最大円の直径は、長方形の短辺の長さであることから、分散相の最短径は、この長方形の短辺長さとする。
 前記電気絶縁性樹脂層においては、厚み方向切断面の294μm面積範囲で、0.5μm以上の最短径を有する前記分散相の個数が10を超えると、電気絶縁性樹脂層の耐引裂き性及び耐熱性が不十分なものになるおそれがある。
 前記電気絶縁性樹脂層においては、厚み方向切断面の294μm面積範囲で、0.5μm以上の最短径を有する前記分散相の個数が0以上であり5以下であることが好ましく、0.5μm以上の最短径を有する前記分散相の個数が0であることがより好ましい。
 前記電気絶縁性樹脂層の厚みは、特に限定されるものではなく、通常、1μm~500μmである。
 前記ポリスルホン樹脂は、スルホニル基(-SO-)を複数含む分子構造を有するものである。
 該ポリスルホン樹脂としては、分子中に複数のエーテル結合(-O-)をさらに含むポリエーテルスルホン樹脂、又は、分子中に複数の芳香族炭化水素をさらに含むポリフェニルスルホン樹脂などが挙げられる。また、該ポリスルホン樹脂としては、分子中に複数のエーテル結合と複数の芳香族炭化水素とをさらに含むポリエーテルポリフェニルスルホン樹脂が挙げられる。
 前記ポリスルホン樹脂としては、前記電気絶縁性樹脂層の成形性が良好なものになるとともに、前記電気絶縁性樹脂層の耐熱性がより優れたものになり得るという点で、ポリエーテルスルホン樹脂又はポリフェニルスルホン樹脂が好ましく、前記ポリエーテルポリフェニルスルホン樹脂がより好ましい。
 前記ポリエーテルポリフェニルスルホン樹脂としては、下記式(1)の分子構造を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、nは、重合度を表す正の整数であり、通常、10~5000の範囲内である。
 前記ポリエーテルポリフェニルスルホン樹脂としては、市販されているものを用いることができ、例えば、BASF社製の「ウルトラゾーンEシリーズ」、ソルベイ社製の「レーデルAシリーズ」、住友化学社製の「スミカエクセルシリーズ」等が挙げられる。
 前記電気絶縁性樹脂層においては、前記ポリスルホン樹脂の含有割合が50重量%以上であることが好ましく、55重量%以上であることがより好ましく、70重量%以上であることがさらに好ましい。また、前記ポリスルホン樹脂の含有割合が99重量%以下であることが好ましく、90重量%以下であることがより好ましく、85重量%以下であることがさらに好ましく、80重量%以下であることが最も好ましい。
 前記ポリスルホン樹脂の含有割合が50重量%以上であることにより、電気絶縁性樹脂層の耐熱性がより優れたものになるという利点がある。また、前記ポリスルホン樹脂の含有割合が90重量%以下であることにより、電気絶縁性樹脂層の耐トラッキング性がより優れたものになり得るという利点がある。
 前記ポリスルホン樹脂以外の熱可塑性樹脂としては、ポリアミド樹脂;ビスフェノール類とエピクロルヒドリンとが反応してなるエポキシ基含有のポリヒドロキシポリエーテルフェノキシ樹脂;分子中に複数のオキシメチレン(-CHO-)基を有するポリアセタール(POM)樹脂;分子中で芳香族炭化水素-エーテル結合の基本構造が繰り返されてなるポリフェニレンエーテル(PPE)樹脂などのポリフェニレンオキシド(PPO)樹脂;分子中で芳香族炭化水素-エーテル結合-芳香族炭化水素-ケトン結合の基本構造が繰り返されてなる芳香族ポリエーテルケトン(PEK)樹脂;分子中で芳香族炭化水素-エーテル結合-芳香族炭化水素-エーテル結合-芳香族炭化水素-ケトン結合の基本構造が繰り返されてなる芳香族ポリエーテルケトン(PEEK)樹脂;分子中に複数の芳香族炭化水素及び複数のスルフィド結合(-S-)を有するポリフェニレンスルフィド(PPS)樹脂;分子中に複数の芳香族炭化水素とイミド結合とエーテル結合とを有するポリエーテルイミド(PEI)樹脂;分子中に複数のイミド結合及び複数のアミド結合を有する熱可塑性ポリアミドイミド樹脂;ポリエチレン、ポリプロピレン、ポリシクロオレフィンなどのポリオレフィン樹脂;アクリロニトリルとブタジエンとスチレンとの共重合体(ABS樹脂)などの芳香族含有ビニル系樹脂;ポリエチレンナフタレート(PEN)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリエチレンテレフタレート(PET)樹脂などのポリエステル樹脂;ポリカーボネート(PC)樹脂;液晶ポリマー(LCP)等が挙げられる。
 前記ポリスルホン樹脂以外の熱可塑性樹脂としては、電気絶縁性樹脂層の耐引裂き性及び耐熱性がより優れたものになるという点で、前記ポリアミド樹脂が好ましい。
 前記ポリアミド樹脂は、少なくともポリアミン化合物とポリカルボン酸化合物とが脱水縮合により重合されてなるものである。
 前記ポリアミド樹脂としては、分子中に芳香族炭化水素を有するポリアミド樹脂、分子中に炭化水素として脂肪族炭化水素のみを複数有する脂肪族ポリアミド樹脂が挙げられる。なかでも、前記電気絶縁性樹脂層がより耐熱性に優れたものになり得るという点で、分子中に芳香族炭化水素を有するポリアミド樹脂が好ましい。
 また、分子中に芳香族炭化水素を有するポリアミド樹脂としては、分子中に炭化水素として芳香族炭化水素のみを複数有する芳香族ポリアミド樹脂、分子中に炭化水素として脂肪族炭化水素及び芳香族炭化水素の両方を有する半芳香族ポリアミド樹脂等が挙げられる。
 分子中に芳香族炭化水素を有するポリアミド樹脂としては、電気絶縁性樹脂層の耐熱性に優れつつシート材と電気絶縁性樹脂層との間における層間剥離がより抑制され得るという点で、前記半芳香族ポリアミド樹脂が好ましい。
 前記ポリアミド樹脂の重合において用いられる前記ポリアミン化合物としては、具体的には、例えば、ジアミン化合物が挙げられる。
 該ジアミン化合物としては、直鎖状又は分岐鎖状の炭化水素基を含む脂肪族ジアミン、環状の飽和炭化水素基を含む脂環族ジアミン、芳香族炭化水素基を含む芳香族ジアミンなどが挙げられる。
 前記脂肪族ジアミン、前記脂環族ジアミン、又は前記芳香族ジアミンとしては、例えば、下記式(2)で表されるものが挙げられる。なお、下記式(2)中のRは、炭素数4~12の脂肪族炭化水素基、若しくは環状飽和炭化水素を含む炭素数4~12の脂環族炭化水素基を表しているか、又は、芳香族環を含む炭化水素基を表している。
           HN-R-NH   ・・・(2)
 前記脂肪族ジアミンとしては、電気絶縁性樹脂層の耐熱性に優れつつシート材と電気絶縁性樹脂層との間における層間剥離がより抑制され得るという点で、式(2)においてRの炭素数が9のノナンジアミンが好ましく、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンを混合したものがより好ましい。
 前記芳香族ジアミンとしては、フェニレンジアミン、キシリレンジアミンなどが挙げられる。
 前記ポリアミド樹脂の重合において用いられる前記ポリカルボン酸化合物としては、具体的には、例えば、ジカルボン酸化合物が挙げられる。
 該ジカルボン酸化合物としては、直鎖状又は分岐鎖状の炭化水素基を含む脂肪族ジカルボン酸、環状の飽和炭化水素基を含む脂環族ジカルボン酸、芳香族炭化水素基を含む芳香族ジカルボン酸などが挙げられる。
 前記脂肪族ジカルボン酸、前記脂環族ジカルボン酸、又は前記芳香族ジカルボン酸としては、例えば、下記式(3)で表されるものが挙げられる。なお、下記式(3)中のRは、炭素数4~25の脂肪族炭化水素基、若しくは環状飽和炭化水素を含む炭素数4~12の脂環族炭化水素基を表しているか、又は、芳香族環を含む炭化水素基を表している。
           HOOC-R-COOH   ・・・(3)
 前記脂肪族ジカルボン酸としては、アジピン酸、セバシン酸などが挙げられる。
 前記芳香族ジカルボン酸としては、テレフタル酸、メチルテレフタル酸、ナフタレンジカルボン酸などが挙げられ、該芳香族ジカルボン酸としては、前記ポリアミド樹脂の耐熱性がより優れたものになり得るという点で、テレフタル酸が好ましい。
 前記ポリアミド樹脂は、上述したジアミン化合物の1種とジカルボン酸化合物の1種とが重合してなるものであってもよく、それぞれの化合物の複数種を組み合わせて重合してなるものであってもよい。また、要すれば、ジアミン化合物とジカルボン酸化合物以外のものがさらに重合されてなるものであってもよい。
 前記ポリアミド樹脂としては、上述したように前記半芳香族ポリアミド樹脂が好ましく、該半芳香族ポリアミド樹脂としては、ジアミン化合物としての脂肪族ジアミンと、ジカルボン酸化合物としての芳香族ジカルボン酸とが重合してなるものがより好ましく、脂肪族ジアミンとしてのノナンジアミンと、芳香族ジカルボン酸としてのテレフタル酸とが重合してなるもの(PA9T)が特に好ましい。
 前記電気絶縁性樹脂層においては、前記ポリスルホン樹脂以外の熱可塑性樹脂の含有割合が1重量%以上であることが好ましく、5重量%以上であることがより好ましく、15重量%以上であることがさらに好ましい。また、前記ポリスルホン樹脂以外の熱可塑性樹脂の含有割合が45重量%以下であることが好ましく、40重量%以下であることがより好ましく、30重量%以下であることがさらに好ましい。
 前記ポリスルホン樹脂以外の熱可塑性樹脂の含有割合が1重量%以上であることにより、電気絶縁性樹脂層の耐トラッキング性がより優れたものになり得るという利点がある。また、前記ポリスルホン樹脂以外の熱可塑性樹脂の含有割合が45重量%以下であることにより、電気絶縁性樹脂層の耐熱性がより優れたものになり得るという利点がある。
 前記電気絶縁性樹脂層には、本発明の効果を損ねない範囲において、種々の添加剤が配合されていても良い。
 該添加剤としては、例えば、アルキルフェノール樹脂、アルキルフェノール-アセチレン樹脂、キシレン樹脂、クマロン-インデン樹脂、テルペン樹脂、ロジンなどの粘着付与剤、ポリブロモジフェニルオキサイド、テトラブロモビスフェノールAなどの臭素系難燃剤、塩素化パラフィン、パークロロシクロデカンなどの塩素系難燃剤、リン酸エステル、含ハロゲンリン酸エステルなどのリン系難燃剤、ホウ素系難燃剤、三酸化アンチモンなどの酸化物系難燃剤、水酸化アルミニウム、水酸化マグネシウムなどの水和金属化合物、フェノール系、リン系、硫黄系の酸化防止剤、シリカ、クレー、炭酸カルシウム、炭酸バリウム、炭酸ストロンチウム、酸化アルミ、酸化マグネシウム、窒化硼素、窒化珪素、窒化アルミニウムといった無機フィラー、熱安定剤、光安定剤、紫外線吸収剤、滑剤、顔料、架橋剤、架橋助剤、シランカップリング剤、チタネートカップリング剤などの一般的なプラスチック用配合成分などが挙げられる。また、芳香族ポリアミド繊維、数nm~数百nmの粒径のモンモリロナイトなどが挙げられる。これら添加剤は、前記ポリスルホン樹脂と前記ポリスルホン樹脂以外の熱可塑性樹脂とを含む樹脂混合物100重量部に対して、例えば0.1~5重量部用いることができる。
 次に、前記電気絶縁性樹脂シートの具体例として、前記電気絶縁性樹脂層の両面側にシート材が配された電気絶縁性樹脂シートを挙げ、図面を参照しながら詳しく説明する。
 図1は、前記電気絶縁性樹脂層2の両面側にシート材3が配された電気絶縁性樹脂シートを厚み方向に切断した断面を模式的に示した断面図である。
 図1に示すように、斯かる電気絶縁性樹脂シート1においては、シート状の電気絶縁性樹脂層2を介して、複数のシート材3が貼り合わされている。
 前記シート材3は、シート状のものであれば特に限定されない。また、シート材3の厚みは、特に限定されるものではなく、通常、10~100μmである。また、前記シート材3は、図1に示すように、通常、電気絶縁性樹脂シートに2枚備えられている。
 前記シート材3としては、例えば、不織布、紙、又はフィルム等が挙げられる。前記シート材3としては、電気絶縁性樹脂シートの耐引裂き性がより優れたものになり得るという点で、不織布又は紙が好ましい。
 前記シート材3としては、湿式抄紙法により作製されたもの(湿式不織布等)、大気中で乾式法により作製されたもの(乾式不織布等)などが挙げられる。
 前記シート材3としては、電気絶縁性樹脂シートの耐引裂き性がより優れたものになり得るという点で、湿式抄紙法により作製された紙が好ましい。
 前記シート材3の材質としては、ポリアミド、ポリエステルなどの合成高分子化合物、セルロースなどの天然高分子化合物等が挙げられ、電気絶縁性樹脂シートの耐引裂き性がより優れたものになり得るという点で、ポリアミドが好ましい。
 該ポリアミドとしては、構成モノマーの全てが芳香族炭化水素を有する全芳香族ポリアミド、構成モノマーの全てが脂肪族炭化水素のみを有する脂肪族ポリアミド、芳香族炭化水素を有する構成モノマーと脂肪族炭化水素を有する構成モノマーとを含む半芳香族ポリアミドなどが挙げられる。前記ポリアミドとしては、電気絶縁性樹脂シートの耐引裂き性がより優れたものになり得るという点で、全芳香族ポリアミドが好ましい。即ち、前記シート材3は、前記全芳香族ポリアミドを含んでいることが好ましい。
 また、前記シート材3としては、電気絶縁性樹脂シートの耐引裂き性がさらに優れたものになり得るという点で、全芳香族ポリアミド繊維を含む全芳香族ポリアミド紙がさらに好ましい。即ち、シート材3としては、全芳香族ポリアミド繊維を用いて湿式抄紙法により作製された全芳香族ポリアミド紙がさらに好ましい。
 前記全芳香族ポリアミド紙としては、例えば、アミド基以外がベンゼン環で構成された、フェニレンジアミンとフタル酸との縮合重合物(全芳香族ポリアミド)を繊維化し、繊維化した全芳香族ポリアミド繊維を主たる構成材として形成されたものが挙げられる。
 前記全芳香族ポリアミド紙は、力学的特性に優れ、電気絶縁性樹脂シートの製造工程におけるハンドリングが良好であるという点で、坪量が5g/m以上であることが好ましい。坪量が5g/m以上であることにより、力学的強度の不足が抑制され電気絶縁性樹脂シートの製造中に破断しにくいという利点がある。
 なお、前記全芳香族ポリアミド紙には、本発明の効果を損なわない範囲において他の成分を加えることができ、該他の成分としては、ポリフェニレンスルフィド繊維、ポリエーテルエーテルケトン繊維、ポリエステル繊維、アリレート繊維、液晶ポリエステル繊維、ポリエチレンナフタレート繊維などの有機繊維、又は、ガラス繊維、ロックウール、アスベスト、ボロン繊維、アルミナ繊維などの無機繊維が挙げられる。
 前記全芳香族ポリアミド紙としては、例えば、デュポン社より商品名「ノーメックス」で市販されているもの等を用いることができる。
 前記シート材3の電気絶縁性樹脂層2側には、コロナ処理が施されていることが好ましい。該コロナ処理が施されていることにより、シート材と電気絶縁性樹脂層との間における層間剥離がより抑制され得るという利点がある。
 前記コロナ処理は、電気絶縁性樹脂層2と接するシート材3の一方の面に放電処理を行い、極性を持つカルボキシル基や水酸基を生成させ、シート材3の面を粗面化する処理である。前記コロナ処理としては、従来公知の一般的な方法を採用することができる。
 前記電気絶縁性樹脂シートは、電気絶縁性の指標となる耐トラッキング試験のCTI値が、通常130V以上であり、175V以上であることが好ましい。また、該CTI値が250V以下であることが好ましい。なお、耐トラッキング試験は、実施例に記載された方法によって行う。
 前記電気絶縁性樹脂シートは、耐引裂き性の指標となる端裂抵抗値が100 N/20mm以上であることが好ましく、450 N/20mm以下であることが好ましい。なお、端裂抵抗値の測定は、実施例に記載された方法によって行う。
 前記電気絶縁性樹脂シートは、220℃で1250時間を経た後の引張強度の強度残率が60%以上であることが好ましい。また、該強度残率は、通常、100%以下である。該強度残率は、実施例に記載された方法によって求める。
 前記電気絶縁性樹脂シートは、前記電気絶縁性樹脂層及び前記シート材の各凝集破壊力より、前記電気絶縁性樹脂層と前記シート材との間の層間接着力が大きいことにより、前記電気絶縁性樹脂層と前記シート材との間で層間剥離しないように構成されていることが好ましい。
 続いて、前記電気絶縁性樹脂シートの製造方法について説明する。
 前記電気絶縁性樹脂シートに備えられている前記電気絶縁性樹脂層は、ポリスルホン樹脂と該ポリスルホン樹脂以外の熱可塑性樹脂とを所定温度に加熱しながら混合した樹脂混合物を、従来公知の一般的な方法によってシート状に成形することにより作製することができる。具体的には、例えば、ポリスルホン樹脂と該ポリスルホン樹脂以外の熱可塑性樹脂とを、ニーダー、加圧ニーダー、混練ロール、バンバリーミキサー、二軸押し出し機などの一般的な混合手段によって加熱しながら混合して樹脂混合物とし、該樹脂混合物をT-ダイを取り付けた押出機によってシート状に押し出すこと等により作製することができる。
 また、例えば、2枚のシート材を備えた電気絶縁性樹脂シートは、2枚のシート材で電気絶縁性樹脂層を挟み込んだ状態のものを押圧することなどにより製造することができる。
 詳しくは、前記電気絶縁性樹脂シートの製造においては、ポリスルホン樹脂と該ポリスルホン樹脂以外の熱可塑性樹脂との粘度差がより小さくなる温度でこれらの樹脂を混合し、斯かる温度で混合した樹脂混合物をシート状の電気絶縁性樹脂層に成形することにより、作製された電気絶縁性樹脂層において、上述したポリスルホン樹脂以外の熱可塑性樹脂の分散相の粒子径を小さくすることができる。分散相の粒子径を小さくすることにより、最短径が0.5μm以上の分散相の個数を少なくすることができる。
 例えば、2種の異なる樹脂がそれぞれ分散相及び連続相となって存在する樹脂混合物においては、分散相の大きさと2種の異なる樹脂の粘度との関係に関して、下記に示す関係式(4)が知られている。
Figure JPOXMLDOC01-appb-M000002
 上記の関係式(4)からも認識できるように、2種の樹脂の粘度差(η/η)を小さくするほど分散相の粒子径を小さくすることができる。また、樹脂を混合するときのせん断速度を大きくすることによっても、分散相の粒子径を小さくすることができる。
 より具体的には、例えば、ポリエーテルポリフェニルスルホン樹脂とポリアミド樹脂(PA9T)とを含む電気絶縁性樹脂層を成形する場合、310℃~340℃の温度範囲において、高温になるほど、ポリエーテルポリフェニルスルホン樹脂とポリアミド樹脂とのメルトフローレート(MFR)の差が大きくなる。従って、例えば、各樹脂を340℃で混合するよりも310℃で混合する方が、これら2種の樹脂の粘度差を小さくすることができ、ポリアミド樹脂の分散相の粒子径を小さくすることができる。即ち、最短径が0.5μm以上の分散相の個数を少なくすることができる。
 前記電気絶縁性樹脂シートは、電気絶縁性を有する点を利用して、例えば、自動車などにおけるモーター用の電気絶縁用シート、変圧器(トランス)用の電気絶縁用シート、バスバー用の電気絶縁用シートなどにおいて使用することができる。
 本実施形態の電気絶縁性樹脂シートは、上記例示の通りであるが、本発明は、上記例示の電気絶縁性樹脂シートに限定されるものではない。
 また、一般の電気絶縁性樹脂シートにおいて用いられる種々の態様を、本発明の効果を損ねない範囲において、採用することができる。
 例えば、上記実施形態では、図1において、シート状の電気絶縁性樹脂層の両面側にそれぞれ1枚のシート材が配されてなる電気絶縁性樹脂シートについて説明したが、本発明はこのような実施形態に限定されるものではなく、シート状の電気絶縁性樹脂層の片面側のみに1枚のシート材が配されてなるものであってもよい。また、シート状の電気絶縁性樹脂層のみを備えたものであってもよい。
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 先ず、下記の原料を用意した。
 ・ポリスルホン樹脂:ポリエーテルポリフェニルスルホン樹脂(PES)樹脂
  (分子中にスルホニル基、エーテル結合、及び芳香族炭化水素を複数含
   む)
  (ソルベイ社製 商品名「レーデルA-300A」)を用いた。
 ・ポリアミド樹脂:ポリアミド樹脂(PA9T)
  (分子中にテレフタル酸単位とノナンジアミン単位とを複数含む)
  (クラレ社製 商品名「ジェネスタN1000A」)
 次に、PES樹脂及びPA樹脂がPES/PA=80/20の重量比になるように、2軸混練機(テクノベル社製)を用いて310℃で混合し、樹脂混合物を調製した。
 続いて、樹脂混合物を押出成形により310℃で100μm厚のシート状に成形して電気絶縁性樹脂層を形成し、シート状の電気絶縁性樹脂層のみからなる電気絶縁性樹脂シートを製造した。
(実施例2)
 320℃で樹脂混合物を調製し、320℃で押出成形した点以外は、実施例1と同様にして、シート状の電気絶縁性樹脂層のみからなる電気絶縁性樹脂シートを製造した。
(実施例3)
 330℃で樹脂混合物を調製し、330℃で押出成形した点以外は、実施例1と同様にして、シート状の電気絶縁性樹脂層のみからなる電気絶縁性樹脂シートを製造した。
(実施例4)
 一方、2枚の全芳香族ポリアミド紙(デュポン社製 商品名「ノーメックスT410」厚み50μm)をシート材として用意した。さらに、それぞれのシート材の電気絶縁性樹脂層と接する側の面には、コロナ処理を施した。コロナ処理は、機器としてPILLAR TECHNOLOGIES社製「500シリーズ」を用いて、大気圧下で、出力500W、処理速度4m/分、試料幅0.4mの条件により行った。
 そして、実施例1の電気絶縁性樹脂層の両面側に2枚の全芳香族ポリアミド紙を配置した状態のものを2枚の金属板で挟み、350℃に加熱した熱プレス機を用いて、圧力200N/cmで60秒間プレスし、電気絶縁性樹脂層の両面側に2枚のシート材を備えた約200μm厚の電気絶縁性樹脂シートを製造した。
(比較例)
 340℃で樹脂混合物を調製し、340℃で押出成形した点以外は、実施例1と同様にして、シート状の電気絶縁性樹脂層のみからなる電気絶縁性樹脂シートを製造した。
<電子顕微鏡観察用試料の作製>
 各実施例及び比較例の電気絶縁性樹脂シートの電気絶縁性樹脂層から適当な大きさのサンプルを切り出した。切り出したサンプルをエポキシ樹脂によって樹脂包埋し、研磨法によって、押出成形の押出方向に沿って切断した厚み方向切断面を作製した。
 さらに、重金属系染色剤によって電子染色を施し、金属蒸着によって導電処理したものを電子顕微鏡観察用試料とした。
<ポリアミド樹脂の分散相における最短径の測定>
 電界放射型走査電子顕微鏡(FE-SEM)「日立社製 製品名S-4800」を用いて、加速電圧10kV、倍率5000倍の観察条件により、14μm(厚み方向)×21μm(押出方向MD)の長方形範囲において、作製した電子顕微鏡観察用試料を観察した。
 黒色の不連続物となって見えるポリアミド樹脂の分散相のそれぞれについて、上述したように、各不連続物に対して内接する最大円の直径によって分散相の最短径を決定した。なお、斯かる測定においては、目視により各分散相を区別した。
 各実施例及び比較例の電気絶縁性樹脂層における厚み方向切断面の電子顕微鏡写真を図2~図6に示す。なお、図2~図6は、それぞれ順に実施例1~4及び比較例におけるものを示す。
<耐熱性の評価>
 製造した電気絶縁性樹脂シートにおける電気絶縁性樹脂層の流れ方向に沿って15mm幅で切断した複数の試験サンプルを作製した。また、作製した試験サンプルの一部を220℃に加熱した恒温槽に1250時間放置した。恒温槽に放置する前と後の試験サンプルについて、JIS C2151における「引張特性」に準じ、23℃において、200mm/分、標線100mmの試験条件で引張試験を行い、引張強度を測定した。そして、下記の式により、強度残率を算出した。
  強度残率(%)={(放置後の引張強度)/(放置前の引張強度)}×100
<耐引裂き性の評価>
 JIS C2151における「端裂抵抗(B法)」に準じて、23℃において、電気絶縁性樹脂シートの縦方向(押出方向 MD)に沿って引裂くときの端裂抵抗値を測定した。
<耐トラッキング性の評価>
 JIS C2134に準じて、23℃において、CTI(Comparative Tracking Index)値を測定した。
 各実施例及び各比較例における耐熱性(強度残率)、耐引裂き性(端裂抵抗値)、及び、耐トラッキング性(CTI値)の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明の電気絶縁性樹脂シートは、耐熱性と電気絶縁性とを要する電気絶縁用シートなどとして好適に用いられ得る。具体的には、例えば、モーターのコイル線の周囲に配される電気絶縁用シート材、トランス、バスバー、コンデンサ、ケーブル用の電気絶縁用シート材、又は、電子回路基板の絶縁膜などの用途に好適である。
1:電気絶縁性樹脂シート、 2:電気絶縁性樹脂層、 3:シート材

Claims (17)

  1.  分子中に複数のスルホニル基を有するポリスルホン樹脂と該ポリスルホン樹脂以外の熱可塑性樹脂とを含む電気絶縁性樹脂層を備えた電気絶縁性樹脂シートであって、
     該電気絶縁性樹脂層は、前記ポリスルホン樹脂以外の熱可塑性樹脂が前記ポリスルホン樹脂中に分散した分散相を有しており、
     前記電気絶縁性樹脂層の厚み方向切断面の294μm面積範囲では、0.5μm以上の最短径を有する前記分散相の個数が10以下であることを特徴とする電気絶縁性樹脂シート。
  2.  前記ポリスルホン樹脂が、分子中に複数のエーテル結合をさらに含むポリエーテルスルホン樹脂である請求項1記載の電気絶縁性樹脂シート。
  3.  前記ポリスルホン樹脂が、分子中に複数の芳香族炭化水素をさらに含むポリフェニルスルホン樹脂である請求項1又は2記載の電気絶縁性樹脂シート。
  4.  前記ポリスルホン樹脂以外の熱可塑性樹脂がポリアミド樹脂である請求項1~3のいずれか1項に記載の電気絶縁性樹脂シート。
  5.  前記ポリアミド樹脂が、分子中に芳香族炭化水素を含むポリアミド樹脂である請求項4記載の電気絶縁性樹脂シート。
  6.  前記電気絶縁性樹脂層が、1~45重量%の前記ポリアミド樹脂を含む請求項4又は5に記載の電気絶縁性樹脂シート。
  7.  少なくとも1種のシート材をさらに備え、該シート材が前記電気絶縁性樹脂層の少なくとも片面側に配されている請求項1~6のいずれか1項に記載の電気絶縁性樹脂シート。
  8.  前記シート材が全芳香族ポリアミドを含んでいる請求項7記載の電気絶縁性樹脂シート。
  9.  前記シート材が、湿式抄紙法により作製された紙である請求項7又は8記載の電気絶縁性樹脂シート。
  10.  前記シート材が、全芳香族ポリアミド繊維を含む全芳香族ポリアミド紙である請求項7~9のいずれか1項に記載の電気絶縁性樹脂シート。
  11.  前記シート材が不織布である請求項7又は8記載の電気絶縁性樹脂シート。
  12.  前記シート材の少なくとも電気絶縁性樹脂層側には、コロナ処理が施されている請求項7~11のいずれか1項に記載の電気絶縁性樹脂シート。
  13.  前記電気絶縁性樹脂層及び前記シート材の各凝集破壊力より、前記電気絶縁性樹脂層と前記シート材との間の層間接着力が大きいことによって、前記電気絶縁性樹脂層と前記シート材との間で層間剥離しないように構成されている請求項7~12のいずれか1項に記載の電気絶縁性樹脂シート。
  14.  耐トラッキング試験のCTI値が175V以上である請求項1~13のいずれか1項に記載の電気絶縁性樹脂シート。
  15.  端裂抵抗値が100N/20mm以上である請求項1~14のいずれか1項に記載の電気絶縁性樹脂シート。
  16.  220℃で1250時間を経た後の引張強度の強度残率が60%以上である請求項1~15のいずれか1項に記載の電気絶縁性樹脂シート。
  17.  電気絶縁用途で使用される請求項1~16のいずれか1項に記載の電気絶縁性樹脂シート。
PCT/JP2012/052675 2011-02-09 2012-02-07 電気絶縁性樹脂シート WO2012108404A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012800082034A CN103354824A (zh) 2011-02-09 2012-02-07 电绝缘性树脂片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011026062A JP5690606B2 (ja) 2011-02-09 2011-02-09 電気絶縁性樹脂シート
JP2011-026062 2011-02-09

Publications (1)

Publication Number Publication Date
WO2012108404A1 true WO2012108404A1 (ja) 2012-08-16

Family

ID=46638618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052675 WO2012108404A1 (ja) 2011-02-09 2012-02-07 電気絶縁性樹脂シート

Country Status (3)

Country Link
JP (1) JP5690606B2 (ja)
CN (1) CN103354824A (ja)
WO (1) WO2012108404A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191773A (ja) * 2014-03-28 2015-11-02 株式会社オートネットワーク技術研究所 絶縁電線およびワイヤーハーネス
US20230040012A1 (en) * 2019-12-25 2023-02-09 Kyocera Corporation Insulating resin
CN112406239A (zh) * 2020-10-16 2021-02-26 西南计算机有限责任公司 一种军用电力设备绝缘体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138401A (ja) * 1993-11-17 1995-05-30 Furukawa Electric Co Ltd:The ポリエーテルスルホン樹脂発泡体の製造方法
JP2005123056A (ja) * 2003-10-17 2005-05-12 Hitachi Chem Co Ltd 電気絶縁用樹脂組成物およびエナメル線
JP2007276457A (ja) * 2006-03-16 2007-10-25 Toray Ind Inc 電気絶縁用シートおよびそれを用いてなるモーター
WO2008114731A1 (ja) * 2007-03-15 2008-09-25 Mitsubishi Plastics, Inc. 熱収縮性部材に用いる樹脂組成物、該樹脂組成物からなる熱収縮性チューブ、及び該チューブで被覆された部材
JP2008231249A (ja) * 2007-03-20 2008-10-02 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物およびその製造方法
JP2009091509A (ja) * 2007-10-11 2009-04-30 Hitachi Chem Co Ltd 電気絶縁用樹脂組成物及びエナメル線

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176245A (ja) * 1997-10-14 1999-07-02 Furukawa Electric Co Ltd:The 多層絶縁電線およびそれを用いた変圧器
JP4875855B2 (ja) * 2005-05-20 2012-02-15 日東シンコー株式会社 積層シート

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138401A (ja) * 1993-11-17 1995-05-30 Furukawa Electric Co Ltd:The ポリエーテルスルホン樹脂発泡体の製造方法
JP2005123056A (ja) * 2003-10-17 2005-05-12 Hitachi Chem Co Ltd 電気絶縁用樹脂組成物およびエナメル線
JP2007276457A (ja) * 2006-03-16 2007-10-25 Toray Ind Inc 電気絶縁用シートおよびそれを用いてなるモーター
WO2008114731A1 (ja) * 2007-03-15 2008-09-25 Mitsubishi Plastics, Inc. 熱収縮性部材に用いる樹脂組成物、該樹脂組成物からなる熱収縮性チューブ、及び該チューブで被覆された部材
JP2008231249A (ja) * 2007-03-20 2008-10-02 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物およびその製造方法
JP2009091509A (ja) * 2007-10-11 2009-04-30 Hitachi Chem Co Ltd 電気絶縁用樹脂組成物及びエナメル線

Also Published As

Publication number Publication date
JP2012164605A (ja) 2012-08-30
JP5690606B2 (ja) 2015-03-25
CN103354824A (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
JP4875855B2 (ja) 積層シート
WO2012008378A1 (ja) 電気絶縁性樹脂組成物、及び、積層シート
JP5964627B2 (ja) 電気絶縁用立体形状物及び電気絶縁性シート材
CN107708988B (zh) 耐电晕的树脂相容性层压件
JP5690606B2 (ja) 電気絶縁性樹脂シート
WO2014030657A1 (ja) 電気絶縁用樹脂組成物及びシート材
JP5695927B2 (ja) 電気絶縁性樹脂シート
JP4681612B2 (ja) 絶縁ラミネートおよびかかるラミネートを含む電気機器
KR102552942B1 (ko) 수지 조성물 및 전기 절연 시트
JP6059500B2 (ja) 電気絶縁用立体形状物
WO2013035652A1 (ja) 電気絶縁性シート
JP2010153120A (ja) 絶縁シート
JP2014157783A (ja) 電気絶縁用シート
JP5151914B2 (ja) 熱ラミネート積層フィルムおよびその製造方法
JP5568401B2 (ja) 電気絶縁性樹脂組成物
JP5710399B2 (ja) 積層シート
JP2016173882A (ja) 絶縁シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12745058

Country of ref document: EP

Kind code of ref document: A1