WO2013035652A1 - 電気絶縁性シート - Google Patents

電気絶縁性シート Download PDF

Info

Publication number
WO2013035652A1
WO2013035652A1 PCT/JP2012/072297 JP2012072297W WO2013035652A1 WO 2013035652 A1 WO2013035652 A1 WO 2013035652A1 JP 2012072297 W JP2012072297 W JP 2012072297W WO 2013035652 A1 WO2013035652 A1 WO 2013035652A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
insulating sheet
resin layer
protective layer
sheet
Prior art date
Application number
PCT/JP2012/072297
Other languages
English (en)
French (fr)
Inventor
請井 博一
佳子 吉良
靖之 木原
彰 玉井
Original Assignee
日東電工株式会社
日東シンコー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社, 日東シンコー株式会社 filed Critical 日東電工株式会社
Publication of WO2013035652A1 publication Critical patent/WO2013035652A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/04Insulators

Definitions

  • the present invention relates to an electrically insulating sheet that is used after being subjected to deformation such as bending.
  • an electrical insulating sheet (hereinafter also referred to as an insulating sheet) composed of a sheet material having electrical insulation has been used in various products.
  • an insulating sheet is arrange
  • the insulation sheet as described above may be subjected to deformation such as bending so as to correspond to the shape of the object to be attached.
  • deformation such as bending so as to correspond to the shape of the object to be attached.
  • the protrusions extending along the axial direction inside the cylindrical stator core and alternately formed in the circumferential direction ( Among the magnetic poles and the recesses (slots)
  • an insulating sheet deformed so as to follow the shape of the inner surface of the recesses is attached to the inside of the recesses.
  • an insulating sheet is arrange
  • the insulating sheet as described above includes, for example, an electrically insulating resin layer, and a protective layer that is laminated on both sides of the resin layer to protect the resin layer, and the resin layer and the protective layer have an adhesive.
  • an electrically insulating resin layer and a protective layer that is laminated on both sides of the resin layer to protect the resin layer, and the resin layer and the protective layer have an adhesive.
  • There are known ones formed integrally with each other see Patent Document 1).
  • the resin layer is generally formed using a stretched sheet in which a resin material is formed into a sheet shape and stretched (see Patent Document 2).
  • a stretched sheet By forming the resin layer using such a stretched sheet, the dimensional stability and the mechanical stability of the insulating sheet with respect to heat are improved.
  • the insulating sheet as described above is maintained in a desired deformed state by removing the external force even when the external sheet is deformed so as to have a shape corresponding to the shape of the object to be attached. It becomes difficult. For this reason, when the insulating sheet is attached so as to correspond to the shape of the object to be attached, the deformed state of the insulating sheet deformed so as to correspond to the shape of the object to be attached is held by a jig or a hand. In the state, the insulating sheet is attached to the attachment object.
  • an object of the present invention is to provide an electrical insulating sheet in which a desired deformed state can be easily maintained even when the external force is removed after applying an external force to be deformed into a desired shape.
  • the present inventors have found that the stress generated when an external force is applied to the insulating sheet and the insulating sheet is deformed is less likely to be relaxed over time. Further, the present inventors have found that it is difficult to maintain the deformed state of the insulating sheet when the external force is removed due to the influence of such stress. And the inventors discovered that the deformation
  • the electrical insulating sheet according to the present invention is made of a sheet material having electrical insulation, and is formed so that the stress relaxation rate is 35% or more when stretched by 5% at 23 ° C. and held for 10 minutes. Is done.
  • the sheet material preferably includes a resin layer formed of a resin material, and the resin layer is preferably formed of a resin layer sheet that is formed into a sheet shape without being subjected to a stretching process.
  • the resin layer is preferably formed of a thermoplastic resin, and has at least one of nitrogen and sulfur as a constituent element of a molecule constituting the thermoplastic resin.
  • the thermoplastic resin is at least one of a polyamide resin or a polysulfone resin.
  • the polyamide resin is preferably an aromatic polyamide having an aromatic hydrocarbon in the molecule.
  • the polysulfone resin is preferably a polyethersulfone resin having a plurality of ether bonds in the molecule.
  • the polysulfone resin is preferably a polyphenylsulfone resin having a plurality of aromatic hydrocarbons in the molecule.
  • the resin layer preferably further contains a thermoplastic elastomer resin.
  • the thermoplastic elastomer resin is preferably a maleic anhydride-modified polyolefin thermoplastic elastomer.
  • the sheet material preferably includes a protective layer laminated on at least one surface side of the resin layer, and the protective layer preferably contains a wholly aromatic polyamide.
  • the protective layer is preferably formed from a protective layer sheet, and the protective layer sheet is preferably composed of a paper material formed by a wet papermaking method.
  • the protective layer is preferably composed of wholly aromatic polyamide paper containing wholly aromatic polyamide fibers.
  • it is preferable that the said protective layer is comprised from a nonwoven fabric.
  • the protective layer is preferably subjected to corona treatment on at least the surface on the resin layer side.
  • the insulating sheet is preferably used as an electric insulating material for a motor coil.
  • seat which concerns on this embodiment.
  • the perspective view which showed the method of evaluating the attachment property in an Example.
  • FIG. 1A An embodiment of the present invention will be described with reference to FIG. 1A.
  • the electrical insulating sheet (hereinafter also referred to as an insulating sheet) 1 is used in a state where deformation such as bending is applied. Specifically, the insulating sheet 1 is deformed so as to correspond to the shape of the attachment object. The insulating sheet 1 is attached to the object in a deformed state.
  • the insulating sheet 1 is composed of a sheet material having electrical insulation.
  • the insulating sheet 1 is configured such that the stress relaxation rate becomes a predetermined value.
  • the insulating sheet 1 is configured to have a stress relaxation rate of 35% or more when stretched 5% at 23 ° C. and held for 10 minutes.
  • the stress relaxation rate is measured based on the method defined in JIS K 7161, the stress (initial stress) measured when stretched 5% at 23 ° C., and measured when held for 10 minutes in that state. It is calculated from the stress (post-relaxation stress). Specifically, it is calculated by the method shown in the following example.
  • the insulating sheet 1 includes a resin layer 2 formed of a resin material and protective layers 3 and 3 that are laminated on both surfaces of the resin layer 2 to protect the resin layer 2.
  • the insulating sheet 1 is composed of a sheet material formed by bonding protective layers 3 and 3 on both surfaces of the resin layer 2.
  • the resin layer 2 is preferably formed without undergoing a stretching process.
  • the resin layer 2 is preferably composed of a resin layer sheet formed by forming a resin material into a sheet shape without being subjected to stretching treatment.
  • the resin layer 2 can be formed by using a resin layer sheet produced by a production method that does not include a stretching process such as a melt extrusion method or a solvent casting method.
  • the resin material used for the resin layer 2 (that is, the resin layer sheet), it is preferable to use a resin that is difficult to molecularly align.
  • a resin having a bending site for example, an ether bond, an ester bond, an amide bond, a sulfonyl group, an alkylene chain, etc.
  • examples of the resin material include polyesters, polyetherimides, polyether ketones, polyether ether ketones, polycarbonates, polyamides, polysulfones, and polyarylates.
  • any one or a plurality of these resins may be mixed and used.
  • the use of a polyamide or polysulfone resin improves the affinity with the protective layer 3 (specifically, wholly aromatic polyamide paper) described later.
  • thermoplastic resin is used for formation of the resin layer 2 (namely, sheet
  • the thermoplastic resin preferably has at least one of nitrogen and sulfur as a constituent element of a molecule constituting itself.
  • the resin layer 2 that is, the resin layer sheet
  • the molecular orientation regulation is broken by the heating after the stretching treatment, and the resin characteristics are deteriorated. Can be suppressed.
  • a thermal laminate can be used for adhesion
  • the insulating sheet 1 can be formed without being affected by the properties (temperature and humidity suitable for bonding) of the adhesive that bonds the resin layer sheet and the protective layer sheet (paper) described later.
  • thermoplastic resin having nitrogen (N) as a constituent element examples include a polyamide resin; a polyetherimide (PEI) resin having a plurality of aromatic hydrocarbons, imide bonds, and ether bonds in the molecule; And a thermoplastic polyamide-imide resin having a plurality of imide bonds and a plurality of amide bonds.
  • a polyamide resin is preferably used in that stress relaxation properties are improved when the insulating sheet 1 is deformed and processed three-dimensionally.
  • the interlayer adhesion between the resin layer 2 and the protective layer 3 when the insulating sheet 1 is deformed is improved. For this reason, it becomes easy for the resin layer 2 and the protective layer 3 to follow each other against the deformation of the insulating sheet 1. This is because the polyamide resin has a relatively high polarity, so that the resin layer 2 can be more closely attached to the protective layer 3.
  • the polyamide resin is constituted by polymerizing at least a polyamine compound and a polycarboxylic acid compound by dehydration condensation.
  • the polyamide resin examples include an aromatic polyamide resin having an aromatic hydrocarbon in the molecule and an aliphatic polyamide resin having only an aliphatic hydrocarbon as a hydrocarbon in the molecule.
  • an aromatic polyamide resin having an aromatic hydrocarbon in the molecule is preferably used in that the resin layer 2 can be more excellent in heat resistance. Since the polyamide resin is an aromatic polyamide resin having an aromatic hydrocarbon in the molecule, for example, the motor bobbin formed in a three-dimensional manner by deforming the insulating sheet 1 maintains electrical insulation, It is more resistant to heat generated from the coil.
  • the aromatic polyamide resin having an aromatic hydrocarbon in the molecule includes a wholly aromatic polyamide resin having only an aromatic hydrocarbon as a hydrocarbon in the molecule, an aliphatic hydrocarbon and an aromatic as a hydrocarbon in the molecule.
  • examples thereof include semi-aromatic polyamide resins having both hydrocarbons.
  • Examples of the polyamine compound used in the polymerization of the polyamide resin include a diamine compound.
  • Examples of the diamine compound include an aliphatic diamine containing a linear or branched hydrocarbon group, an alicyclic diamine containing a cyclic saturated hydrocarbon group, and an aromatic diamine containing an aromatic hydrocarbon group. Can be mentioned.
  • R 1 represents an aliphatic hydrocarbon group having 4 to 12 carbon atoms, an alicyclic hydrocarbon group having 4 to 12 carbon atoms including a cyclic saturated hydrocarbon, or an aromatic ring. Represents a hydrocarbon group containing H 2 N—R 1 —NH 2 (1)
  • nonanediamine having 9 carbon atoms in R1 is preferably used in the formula (1) in that the electrical insulation of the resin layer 2 can be further improved.
  • 1,9-nonanediamine More preferably, a mixture of 2-methyl-1,8-octanediamine is used.
  • aromatic diamines examples include phenylenediamine and xylylenediamine.
  • Examples of the polycarboxylic acid compound used in the polymerization of the polyamide resin include a dicarboxylic acid compound.
  • Examples of the dicarboxylic acid compound include an aliphatic dicarboxylic acid containing a linear or branched hydrocarbon group, an alicyclic dicarboxylic acid containing a cyclic saturated hydrocarbon group, and an aromatic containing an aromatic hydrocarbon group. And dicarboxylic acid.
  • R 2 in the following formula (2) represents an aliphatic hydrocarbon group having 4 to 25 carbon atoms or an alicyclic hydrocarbon group having 4 to 12 carbon atoms including a cyclic saturated hydrocarbon, Or the hydrocarbon group containing an aromatic ring is represented.
  • Examples of the aliphatic dicarboxylic acid include adipic acid and sebacic acid.
  • aromatic dicarboxylic acid examples include terephthalic acid, methyl terephthalic acid, and naphthalene dicarboxylic acid.
  • terephthalic acid is preferable in that the heat resistance of the polyamide resin can be improved. It is preferable to be used.
  • the polyamide resin may be formed by polymerizing one kind of the above-described diamine compound and one kind of dicarboxylic acid compound, and is formed by polymerizing a combination of plural kinds of the respective compounds. It may be. Further, the polyamide resin may be formed by further polymerizing other than the diamine compound and the dicarboxylic acid compound, if necessary.
  • the above semi-aromatic polyamide resin is preferably used.
  • the semi-aromatic polyamide resin those formed by polymerization of an aliphatic diamine as a diamine compound and an aromatic dicarboxylic acid as a dicarboxylic acid compound are preferably used, and nonanediamine as an aliphatic diamine and It is more preferable to use one formed by polymerization of terephthalic acid as an aromatic dicarboxylic acid (PA9T).
  • the content rate of a polyamide resin is 1 weight% or more, and it is more preferable that it is 10 weight% or more. Moreover, it is preferable that the content rate of a polyamide resin is 90 weight% or less, and it is more preferable that it is 70 weight% or less.
  • the content ratio of the polyamide resin is 1% by weight or more, delamination between the protective layer 3 and the resin layer 2 is further suppressed when the insulating sheet 1 is deformed by bending or the like.
  • the content rate of a polyamide resin is 90 weight% or less, and the crystal component contained in a polyamide resin falls. For this reason, the stress relaxation property of the resin layer 2 improves and it becomes easy to maintain with the shape when the insulating sheet 1 deform
  • thermoplastic resin having nitrogen (N) as a constituent element examples include thermoplastic elastomer resins having a nitrogen (N) -containing polar functional group and exhibiting rubber elasticity at room temperature (20 ° C.).
  • the nitrogen (N) -containing polar functional group is preferably an isocyanate group (—NCO) or an amino group such as —NRR ′, —NHR, —NH 2.
  • R and R 'in the functional group represent a hydrogen atom, an alkyl group, an aryl group, or the like.
  • the thermoplastic elastomer resin include polyurethane-based, nitrile-based, and polyamide-based thermoplastic elastomer resins.
  • thermoplastic resin having sulfur (S) as a constituent element examples include a polysulfone resin; a polyphenylene sulfide (PPS) resin having a plurality of aromatic hydrocarbons and a plurality of sulfide bonds (—S—) in the molecule, etc. Is mentioned.
  • PPS polyphenylene sulfide
  • a polysulfone resin as a thermoplastic resin having sulfur (S) as a constituent element, the interlayer adhesion between the resin layer 2 and the protective layer 3 when the insulating sheet 1 is deformed is improved. For this reason, it becomes easy for the resin layer 2 and the protective layer 3 to follow each other against the deformation of the insulating sheet 1. This is because, since the polysulfone resin is amorphous, stress relaxation of the resin layer 2 is promoted, and the deformed shape of the insulating sheet 1 is easily maintained.
  • Polysulfone resin has a plurality of sulfonyl groups in the molecule. That is, the polysulfone resin has a molecular structure containing a plurality of sulfonyl groups (—SO 2 —).
  • the polysulfone resin include a polyethersulfone resin further having a plurality of ether bonds (—O—) in the molecule, and a polyphenylsulfone resin further having a plurality of aromatic hydrocarbons in the molecule.
  • the polyether polyphenyl sulfone resin which further has a some ether bond and a some aromatic hydrocarbon in a molecule
  • polysulfone resin a polyethersulfone resin or a polyphenylsulfone resin is used in that the moldability of the resin layer 2 when the insulating sheet 1 is deformed and processed three-dimensionally becomes good. It is preferable that a polyether polyphenylsulfone resin is used.
  • N in the formula (3) is a positive integer representing the degree of polymerization, and is usually in the range of 10 to 5000.
  • polyether polyphenylsulfone resin a commercially available product can be used.
  • polyether polyphenylsulfone resin “Ultrazone E series” manufactured by BASF, “Radel A series” manufactured by Solvay, “Sumika Excel series” manufactured by Sumitomo Chemical, and the like can be used.
  • the content rate of a polysulfone resin is 20 weight% or more, and it is more preferable that it is 40 weight% or more. Moreover, it is preferable that the content rate of a polysulfone resin is 90 weight% or less, and it is more preferable that it is 70 weight% or less.
  • the content ratio of the polysulfone resin is 20% by weight or more, the heat resistance of the resin layer 2 becomes more excellent. Moreover, since the resin layer 2 can adhere more closely to the protective layer 3 when the content ratio of the polysulfone resin is 90% by weight or less, delamination between the resin layer 2 and the protective layer 3 is further suppressed. .
  • thermoplastic resin having sulfur (S) as a constituent element examples include thermoplastic elastomer resins having a sulfur (S) -containing polar functional group and exhibiting rubber elasticity at room temperature (20 ° C.).
  • examples of the sulfur (S) -containing polar functional group include —SH, —SO 3 H, —SO 2 H, —SOH,> C ⁇ S, —CH ⁇ S, —CSOR, and the like.
  • R and R ′ in the functional group represent a hydrogen atom, an alkyl group, an aryl group, or the like.
  • specific examples of the thermoplastic elastomer resin include polyurethane-based, nitrile-based, and polyamide-based thermoplastic elastomer resins.
  • the resin layer 2 may be formed using another thermoplastic resin in addition to the thermoplastic resin having at least one of nitrogen and sulfur as a constituent element of the molecule.
  • the other thermoplastic resin is not particularly limited.
  • polyacetal (POM) resin having a plurality of oxymethylene (—CH 2 O—) groups in the molecule; heat generated by reaction of bisphenols and epichlorohydrin Plastic polyhydroxy polyether phenoxy resin; polyphenylene oxide (PPO) resin such as polyphenylene ether (PPE) resin in which the basic structure of the aromatic hydrocarbon-ether bond is repeated in the molecule; aromatic hydrocarbon in the molecule Aromatic polyetherketone (PEK) resin in which the basic structure of ether bond-aromatic hydrocarbon-ketone bond is repeated; aromatic hydrocarbon-ether bond-aromatic hydrocarbon-ether bond-aromatic carbonization in the molecule Aromatic polyethers with repeated hydrogen-ketone bond basic structure -Terketone (PEEK) resin; Polyolefin resin such
  • thermoplastic resins include thermoplastic elastomer resins that exhibit rubber elasticity at room temperature (20 ° C.). By using the thermoplastic elastomer resin, the bending elastic modulus of the insulating sheet 1 is further reduced, and the insulating sheet 1 is easily bent.
  • thermoplastic elastomer resin include polyolefin-based and polyester-based thermoplastic elastomer resins. For example, polybutadiene-based thermoplastic elastomers, styrene-butadiene-based thermoplastic elastomers, styrene-isoprene block copolymers, and the like. Is mentioned.
  • thermoplastic elastomer resin examples include —COOH (carboxyl group), an acid anhydride group of carboxyl group, —OH,> C ⁇ O, —CH ⁇ O, —COOR (where R is a hydrogen atom, an alkyl group, An aryl group or the like), an epoxy group, or a compound having a polar functional group such as a halogen group in the molecule.
  • the polar functional group is preferably a carboxyl group, a carboxyl acid anhydride group, a hydroxy group (—OH), more preferably a carboxyl acid anhydride group, and a maleic acid anhydride (maleic anhydride group). Is particularly preferred.
  • thermoplastic elastomer resin has a polar functional group in the molecule
  • the resin layer 2 is easily mixed with other components when the resin layer 2 is formed.
  • a maleic anhydride-modified polyolefin thermoplastic elastomer as the thermoplastic elastomer resin.
  • an ethylene-propylene maleic anhydride-modified copolymer is preferably used as the maleic anhydride-modified polyolefin-based thermoplastic elastomer.
  • the content of the thermoplastic elastomer resin is preferably 0.1% by weight or more, and more preferably 0.5% by weight or more. Moreover, it is preferable that the content rate of a thermoplastic elastomer resin is 5.0 weight% or less, and it is more preferable that it is 4.0 weight% or less.
  • the content ratio of the thermoplastic elastomer resin is 0.1% by weight or more, the bending elastic modulus of the insulating sheet 1 is further reduced, so that the insulating sheet 1 is easily bent.
  • the tensile elasticity modulus of the insulating sheet 1 becomes smaller, the moldability when the insulating sheet 1 is deformed and processed three-dimensionally becomes better.
  • the heat resistance of the resin layer 2 becomes more excellent because the content rate of a thermoplastic elastomer resin is 5.0 weight% or less.
  • the thickness of the resin layer 2 is not particularly limited and is preferably 1 ⁇ m to 500 ⁇ m.
  • additives may be blended in the resin layer 2 (that is, the resin layer sheet) as long as the effects of the present invention are not impaired.
  • additives include tackifiers, bromine flame retardants, chlorine flame retardants, phosphorus flame retardants, oxide flame retardants, hydrated metal compounds, antioxidants, inorganic fibers, heat stabilizers, light General plastic components such as stabilizers, ultraviolet absorbers, lubricants, pigments, crosslinking agents, crosslinking aids, silane coupling agents, titanate coupling agents, and the like can be mentioned.
  • aromatic polyamide fibers, montmorillonite having a particle size of several nm to several hundred nm, and the like can be mentioned.
  • These additives may be used in an amount of, for example, 0.1 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • tackifiers include alkylphenol resins, alkylphenol-acetylene resins, xylene resins, coumarone-indene resins, terpene resins, and rosins.
  • brominated flame retardants include polybromodiphenyl oxide and tetrabromobisphenol A.
  • Chlorinated flame retardants include chlorinated paraffin, perchlorocyclodecane and the like.
  • phosphorus flame retardants include phosphate esters and halogen-containing phosphate esters.
  • oxide flame retardant include boron flame retardant and antimony trioxide.
  • the hydrated metal compound include aluminum hydroxide and magnesium hydroxide.
  • antioxidant examples include phenol-based, phosphorus-based, and sulfur-based agents.
  • inorganic fiber examples include silica, clay, calcium carbonate, barium carbonate, strontium carbonate, aluminum oxide, magnesium oxide, boron nitride, silicon nitride, aluminum nitride such as aluminum nitride, and glass fiber.
  • the protective layer 3 protects the resin layer 2.
  • the insulating sheet 1 since the protective layers 3 and 3 are laminated on both surfaces of the resin layer 2, when the insulating sheet 1 is three-dimensionally deformed by bending or the like, the surface of the resin layer 2 is bent or the like. It is possible to suppress damage due to contact with the equipment that performs the operation. Moreover, in the state which the insulating sheet 1 deform
  • the protective layer 3 is formed from a protective layer sheet formed in a sheet shape.
  • the thickness of the protective layer 3 is not particularly limited and is preferably 10 to 100 ⁇ m.
  • a protective layer sheet made of non-woven fabric, paper, film, or the like can be used as the protective layer 3 in that the electrical insulation of the insulating sheet 1 becomes more excellent.
  • the protective layer 3 one produced by a wet papermaking method or one produced by a dry method in the atmosphere can be used. It is preferable that paper produced by a wet papermaking method is used as the protective layer 3 in that the electrical insulation of the insulating sheet 1 becomes more excellent.
  • the material of the protective layer 3 synthetic polymer compounds such as polyamide and polyester, natural polymer compounds such as cellulose, and the like can be used.
  • Polyamide is used as the material of the protective layer 3 in that it is excellent in electrical insulation and further suppresses delamination between the protective layer 3 and the resin layer 2 when deformation such as bending is applied. It is preferable.
  • Polyamides include wholly aromatic polyamides in which all of the constituent monomers have aromatic hydrocarbons, aliphatic polyamides in which all of the constituent monomers have only aliphatic hydrocarbons, and semi-aromatics in which some of the constituent monomers have aromatic hydrocarbons.
  • Group polyamides and the like can be used.
  • a wholly aromatic polyamide may be used as the polyamide in that it is excellent in electrical insulation and further suppresses delamination between the protective layer 3 and the resin layer 2 when the insulating sheet 1 is deformed.
  • the protective layer 3 contains a wholly aromatic polyamide.
  • the protective layer 3 it is more preferable to use a wholly aromatic polyamide paper containing a wholly aromatic polyamide fiber in that the electrical insulating property of the insulating sheet 1 becomes more excellent. That is, it is more preferable to use wholly aromatic polyamide paper produced by a wet papermaking method using wholly aromatic polyamide fibers.
  • the wholly aromatic polyamide paper for example, a wholly aromatic polyamide fiber obtained by forming a fiber from a condensation polymer (fully aromatic polyamide) of phenylenediamine and phthalic acid having a benzene ring other than an amide group. What was formed as a main component material can be used.
  • the wholly aromatic polyamide paper has excellent mechanical properties. For this reason, the deformation
  • the wholly aromatic polyamide paper preferably has a basis weight of 5 g / m 2 or more. When the basis weight is 5 g / m 2 or more, insufficient mechanical strength is suppressed, and the occurrence of breakage during the manufacture of the three-dimensionally shaped electrical insulating material is suppressed.
  • the wholly aromatic polyamide paper may be added to the wholly aromatic polyamide paper as long as the effects of the present invention are not impaired.
  • organic fiber, inorganic fiber, glass fiber, or the like can be used.
  • the organic fiber include polyphenylene sulfide fiber, polyether ether ketone fiber, polyester fiber, arylate fiber, liquid crystal polyester fiber, and polyethylene naphthalate fiber.
  • the inorganic fiber include rock wool, asbestos, boron fiber, and alumina fiber.
  • the wholly aromatic polyamide paper for example, those commercially available from DuPont under the trade name “Nomex” can be used.
  • the protective layer 3 is preferably subjected to a corona treatment on the resin layer 2 side.
  • the corona treatment is a treatment in which a discharge treatment is performed on one surface of the protective layer 3 in contact with the resin layer 2 to generate a polar carboxyl group or a hydroxyl group and roughen the surface.
  • a conventionally known general method can be employed.
  • the protective layer 3 is arrange
  • the insulating sheet 1 is configured such that the interlayer adhesive force between the resin layer 2 and the protective layer 3 is greater than the cohesive failure strength of the resin layer 2 and the protective layer 3. With such a configuration, delamination between the resin layer 2 and the protective layer 3 is suppressed.
  • the insulating sheet 1 preferably does not include a layer containing a resin cured by molecular crosslinking. That is, it is preferable that the insulating sheet 1 does not include a layer containing a resin cured by three-dimensional crosslinking. By not providing such a layer, the stress generated in the insulating sheet 1 can be more easily relaxed, and the shape of the insulating sheet 1 can be easily maintained when deformation such as bending is applied.
  • the resin material composed of the above-described thermoplastic resin or the like is stirred while being heated to a predetermined temperature. And it is shape
  • a general mixing means such as a kneader, a pressure kneader, a kneading roll, a Banbury mixer, or a twin screw extruder is extruded into a sheet by an extruder equipped with a T-die.
  • the resin layer sheet may be formed by a method in which a solid resin material is cast while being melted by heating.
  • the resin layer sheet may be formed by a method in which the resin material is dissolved in an appropriate solvent and the resin solution is applied onto the substrate, and then the solvent is dried and removed.
  • a sheet for protective layer may be formed by using commercially available sheet-like paper or nonwoven fabric.
  • the resin layer sheet is sandwiched between the two protective layer sheets.
  • the insulating sheet 1 can be produced by pressing the two protective layer sheets and the resin layer sheet while heating them at a predetermined temperature (thermal lamination).
  • the insulating sheet 1 manufactured as described above uses the point of electrical insulation, for example, an electrical insulating member for a motor in a car or the like, a transformer, a bus bar, a capacitor, or a power source. It can be used for an electrical insulation member for a cable, an electrical insulation member for an IGBT module terminal, or the like.
  • a desired deformation state can be easily maintained even when the external force is removed after being deformed to a desired shape by applying an external force.
  • the insulating sheet 1 has a stress relaxation rate of 35% or more when stretched at 23 ° C. by 5% and held for 10 minutes, so that the stress generated when deformation such as bending is applied is effective. To be relaxed. Thereby, after the external force is applied to the insulating sheet 1 to be deformed into a desired shape, the stress for returning to the state before the deformation is reduced (reduced) even when the external force is removed. Therefore, the shape of the deformed region is maintained in a desired shape. That is, the deformation state of the insulating sheet 1 is maintained without continuously applying external force.
  • the deformed insulating sheet 1 is attached to the object. Is not required, and the work of attaching the insulating sheet 1 along the shape of the object to be attached is not necessary. Thereby, workability
  • work of the insulating sheet 1 improves.
  • the resin layer 2 is formed using the resin layer sheet formed into a sheet shape without the resin material being stretched, and thus the resin layer sheet is obtained by stretching the resin material. As compared with the case where the layer 2 is formed, the stress generated in the insulating sheet 1 in the deformed state is easily relaxed.
  • the molecules constituting the resin layer 2 are arranged in a certain direction and stretched.
  • the orientation is higher than that in the case where it is not.
  • the insulating sheet 1 provided with the stretched resin layer 2 is deformed, a stress that maintains the orientation of the molecules constituting the resin layer 2 is generated in the resin layer.
  • the stress generated in the resin layer 2 when the insulating sheet 1 is deformed is hardly relaxed, the stress generated in the insulating sheet 1 is not easily relaxed.
  • the orientation of the molecules constituting the resin layer 2 is: It will be lower than when stretched. For this reason, it is difficult for stress to maintain the orientation to occur in the resin layer 2, and the stress generated in the resin layer 2 when the insulating sheet 1 is deformed is easily relaxed. Thereby, the stress generated in the insulating sheet 1 in the deformed state is easily relaxed, and the deformed state of the insulating sheet 1 is easily maintained.
  • transforms in the position of a nitrogen atom or a sulfur atom by having at least one of nitrogen or sulfur as a constituent element of the molecule
  • the electrical insulating sheet according to the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention. Further, the configurations and methods of the plurality of embodiments described above may be arbitrarily adopted and combined (even if the configurations and methods according to one embodiment are applied to the configurations and methods according to other embodiments). Of course, it is of course possible to arbitrarily select configurations, methods, and the like according to various modifications described below and employ them in the configurations, methods, and the like according to the above-described embodiments.
  • the protective layers 3 and 3 are laminated on both surfaces of the resin layer 2.
  • the present invention is not limited to this, and the insulating layer in which the protective layer 3 is laminated on one surface of the resin layer 2. It may be a sheet. Alternatively, the insulating sheet may be formed only from the resin layer 2.
  • the protective layer 3 is laminated
  • the insulating sheet may be formed by bonding through an agent.
  • the slipperiness of the surface of the insulating sheet 1 may be improved by finely roughening the surface of the insulating sheet 1 (ie, the surface of the protective layer 3 that does not face the resin layer 2).
  • protective layer sheet Two fully aromatic polyamide papers (manufactured by DuPont, trade name: “NOMEX T410”, thickness: 50 ⁇ m) were used as the protective layer sheet. Corona treatment was performed on the surface in contact with the resin layer sheet in the protective layer sheet (surface in contact with the resin layer when the insulating sheet was formed). For the corona treatment, “500 series” manufactured by PILLAR TECHNOLOGIES was used. The corona treatment was performed under conditions of an atmospheric pressure, an output of 500 W, a treatment speed of 4 m / min, and a sample width of 0.4 m.
  • Example 2 Production of resin layer sheet (1) Materials used Polysulfone resin: Polyether polyphenylsulfone resin (PES) resin (having a plurality of sulfonyl groups, ether bonds, and aromatic hydrocarbons in the molecule) (manufactured by Solvay, (Product name: Radel A-300A) A mixture of 5 wt% maleic anhydride modified polyolefin thermoplastic elastomer and 95 wt% polyamide (PA) resin (Kuraray, trade name “Genesta N1001A”) (maleic anhydride modified polyolefin heat Plastic elastomer; ethylene-propylene maleic anhydride modified copolymer (EPMA)) (PA resin; PA9T having terephthalic acid units and nonanediamine units in the molecule) (2) Preparation of sheet A resin in which PES resin, PA resin, and EPMA were blended at a weight ratio of 80: 19: 1 was mixed at 310 ° C
  • protective layer sheet Two fully aromatic polyamide papers (manufactured by DuPont, trade name: “NOMEX T410”, thickness: 50 ⁇ m) were used as the protective layer sheet. Corona treatment was performed on the surface in contact with the resin layer sheet in the protective layer sheet (surface in contact with the resin layer when the insulating sheet was formed). For the corona treatment, “500 series” manufactured by PILLAR TECHNOLOGIES was used. The corona treatment was performed under conditions of an atmospheric pressure, an output of 500 W, a treatment speed of 4 m / min, and a sample width of 0.4 m.
  • Example 3 Production of Resin Layer Sheet A resin layer sheet was produced by the same material and method as in Example 1 except that the thickness was 100 ⁇ m. 2. Production of protective layer sheet The same protective layer sheet (thickness: 50 ⁇ m) as in Example 1 was used. 3. Preparation of insulating sheet An adhesive (Nitto Shinko Co., Ltd. polyurethane-based cross-linking adhesive) was applied to both sides of the resin layer sheet so that the thickness after drying was 30 ⁇ m, and dried at 120 ° C. for 3 minutes. . And the sheet
  • an adhesive Nito Shinko Co., Ltd. polyurethane-based cross-linking adhesive
  • PET polyethylene terephthalate
  • ⁇ Comparative example 2> The same materials as in Example 3 except that a biaxially stretched polyethylene naphthalate (PEN) film having a thickness of 50 ⁇ m (manufactured by Teijin DuPont Films, trade name: “Teonex Q51”) was used as the sheet for the resin layer, and An insulating sheet (thickness: 210 ⁇ m) was produced by the method.
  • PEN polyethylene naphthalate
  • PI polyimide
  • Kapton 200H a polyimide film having a thickness of 50 ⁇ m
  • a polyimide (PI) film consists of a thermosetting resin, and a molecule
  • Preparation of test piece The insulation sheet was cut so as to be 15 mm in the extrusion direction (MD direction) at the time of preparation of the insulation sheets of each Example and each Comparative Example, and a test piece of 15 mm ⁇ 200 mm was prepared.
  • Calculation of Stress Relaxation Rate Based on JIS K 7161, a tensile test was performed under the following conditions, and the stress relaxation rate was calculated by the following equation (4). Specifically, the test piece was stretched to a strain of 5% under the conditions of 23 ° C., a tensile speed of 200 mm / min, and a standard line of 100 mm, and the load (initial stress) at that time was measured.
  • ⁇ Shape maintenance> The insulating sheets of each Example and each Comparative Example were cut into a size of 20 mm ⁇ 100 mm, and each test piece was formed. The central part in the MD direction of each test piece was pressed at 4 MPa along the thickness direction of each test piece for 1 second, and each test piece was bent 180 ° along the direction perpendicular to the MD direction. Then, after each test piece was left for 10 minutes, each test piece was measured from the side of each test piece (direction perpendicular to the thickness direction and MD direction) at a magnification of 25 times with a microscope VHX-100 (manufactured by Keyence). The opening angle (°) of was measured. The opening angle of each insulating sheet is shown in Table 1 below.
  • each test piece was folded so as to be U-shaped when viewed from the side, and a three-dimensional object 10 was produced.
  • the ease of insertion when each test piece bent in the metal cylinder X provided with the insertion hole which has a rectangular opening of 30 mm x 5 mm was inserted by hand was evaluated.
  • those that were easily inserted were evaluated as “ ⁇ ”, and those that had to be held in a U-shape at the time of insertion were evaluated as “ ⁇ ”.
  • the evaluation results of each insulating sheet are shown in Table 1 below.
  • ⁇ Dielectric breakdown voltage (BDV)> Based on JIS K 691l, the dielectric breakdown voltage (BDV) was measured at a boosting rate of 1 kV / sec.
  • the dielectric breakdown voltage of each insulating sheet is shown in Table 1 below.
  • Each example has a smaller opening angle than each comparative example, and it is recognized that the mounting property is better. That is, since the stress relaxation rate is 35% or more, the stress generated when the insulating sheet is folded is effectively relaxed, and thus the folded shape is favorably maintained. For this reason, the attachment to an attachment target object can be performed easily.
  • Example 3 even when the resin layer and the protective layer are bonded with an adhesive, the bent shape is maintained well because the stress relaxation rate is 35% or more. Therefore, attachment to an attachment target object can be performed easily.
  • Example 3 has a smaller opening angle than Comparative Examples 1 to 3, and has better mounting properties. That is, when the stress relaxation rate is 35% or more, the bent shape is well maintained, so that the insulating sheet can be formed thick.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Insulating Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

 電気絶縁性を有するシート材から構成され、23℃で5%伸長されて10分間保持される際の応力緩和率が35%以上である。

Description

電気絶縁性シート
 本発明は、折り曲げ等の変形が加えられて使用される電気絶縁性シートに関する。
 従来から、電気絶縁性を有するシート材から構成された電気絶縁性シート(以下、絶縁シートとも記す)が様々な製品で使用されている。例えば、絶縁シートは、コイルモーターにおける絶縁性を確保する部材として、ステータコアとコイル線との間に配置される。これにより、ステータコアとコイル線とが直接接するのが防止されることで、絶縁性が確保される。
 上述のような絶縁シートは、取り付ける対象物の形状に対応するように、折り曲げ等の変形が加えられる場合がある。例えば、上記のように、ステータコアとコイル線との間に絶縁シートが配置される場合には、筒状のステータコアの内側において軸方向に沿って伸びると共に周方向に交互に形成された凸部(磁極)及び凹部(スロット)のうち、凹部の内面の形状に沿うように変形された状態の絶縁シートが凹部の内側に取り付けられる。そして、凹部の内側にコイル線が配置されることで、ステータコアとコイル線との間に絶縁シートが配置される。
 上述のような絶縁シートとしては、例えば、電気絶縁性を有する樹脂層と、該樹脂層の両面に積層されて樹脂層を保護する保護層とを備え、樹脂層と保護層とが接着剤を介して一体的に形成されてなるものが知られている(特許文献1参照)。
 樹脂層は、一般的に、樹脂材料がシート状に形成されて延伸処理されてなる延伸シートを用いて形成されている(特許文献2参照)。このような延伸シートを用いて樹脂層が形成されることで、絶縁シートの熱に対する寸法の安定性や力学的な安定性の向上が図られている。
日本国特開2003-009447号公報 日本国特開平7-32549号公報
 しかしながら、上記のような絶縁シートは、取り付け対象物の形状に対応した形状となるように、外力が加えられて変形した場合であっても、外力が取り除かれることで所望の変形状態が維持され難くなる。このため、取り付け対象物の形状に対応するように絶縁シートが取り付けられる際には、取り付け対象物の形状に対応するように変形された絶縁シートの変形状態が治具や手などで保持された状態で、取り付け対象物に絶縁シートが取り付けられる。
 このため、取り付け対象物の形状によっては、治具や手などが取り付け対象物に緩衝し、絶縁シートを取り付けることが困難となる。このため、絶縁シートの取り付け作業に多大な手間がかかり、該取り付け作業の効率、及び、絶縁シートの取り付け精度(取り付け位置などの精度)が低下する。
 そこで、本発明は、外力を加えて所望する形状に変形させた後、外力が取り除かれた際にも所望の変形状態が容易に維持される電気絶縁性シートを提供することを課題とする。
 本発明者らは、絶縁シートに外力が加えられて絶縁シートが変形した際に生じる応力が経時的に緩和され難くなっていることを見出した。また、本発明者らは、斯かる応力の影響によって、外力を取り除いた際に絶縁シートが変形状態を維持し難くなることを見出した。
 そして、発明者らは、変形状態において絶縁シートに生じる応力が緩和し易くなることで、絶縁シートの変形状態が良好に維持されることを見出した。
 即ち、本発明に係る電気絶縁性シートは、電気絶縁性を有するシート材から構成され、23℃で5%伸長されて10分間保持される際の応力緩和率が35%以上となるように形成される。
 前記シート材は、樹脂材料から形成される樹脂層を備え、該樹脂層は、樹脂材料が延伸処理されることなくシート状に形成される樹脂層用シートで形成されることが好ましい。
 前記樹脂層は、熱可塑性樹脂から形成され、該熱可塑性樹脂を構成する分子の構成元素として、窒素、又は、硫黄の少なくとも一方を有することが好ましい。
 前記熱可塑性樹脂は、ポリアミド樹脂、又は、ポリスルホン樹脂の少なくとも一方であることが好ましい。また、前記ポリアミド樹脂は、芳香族炭化水素を分子中に有する芳香族ポリアミドであることが好ましい。また、前記ポリスルホン樹脂は、複数のエーテル結合を分子中に有するポリエーテルスルホン樹脂であることが好ましい。また、前記ポリスルホン樹脂は、複数の芳香族炭化水素を分子中に有するポリフェニルスルホン樹脂であることが好ましい。
 前記樹脂層は、熱可塑性エラストマー樹脂を更に含有することが好ましい。また、前記熱可塑性エラストマー樹脂は、無水マレイン酸変性ポリオレフィン系熱可塑性エラストマーであることが好ましい。
 前記シート材は、樹脂層の少なくとも一方の面側に積層される保護層を備え、該保護層は、全芳香族ポリアミドを含有することが好ましい。また、前記保護層は、保護層用シートから形成され、該保護層用シートは、湿式抄紙法で形成される紙材料から構成されることが好ましい。また、前記保護層は、全芳香族ポリアミド繊維を含有する全芳香族ポリアミド紙から構成されることが好ましい。また、前記保護層は、不織布から構成されることが好ましい。また、前記保護層は、少なくとも樹脂層側の表面にコロナ処理が施されることが好ましい。
 また、上記の絶縁シートは、モーターコイルの電気絶縁材として用いられることが好ましい。
本実施形態に係る電気絶縁性シートの断面図。 実施例における取り付け性を評価する方法を示した斜視図。
 以下、本発明の実施形態について図1Aを参照しながら説明する。
 本実施形態に係る電気絶縁性シート(以下、絶縁シートとも記す)1は、折り曲げ等の変形が加えられた状態で使用されるものである。具体的には、絶縁シート1は、取り付け対象物の形状に対応するように変形が加えられる。そして、絶縁シート1は、変形状態で対象物に取り付けられる。
 絶縁シート1は、電気絶縁性を有するシート材から構成されている。また、絶縁シート1は、応力緩和率が所定の値となるように構成されている。具体的には、絶縁シート1は、23℃で5%伸長されて10分間保持された際の応力緩和率が35%以上となるように構成されている。応力緩和率とは、JIS K 7161に規定する方法に基づいて、23℃で5%伸長されたときに測定される応力(初期応力)と、その状態で10分間保持された際に測定される応力(緩和後応力)とから算出されるものである。具体的には、下記実施例に示す方法で算出される。
 また、絶縁シート1は、樹脂材料から形成された樹脂層2と、該樹脂層2の両面に積層されて樹脂層2を保護する保護層3,3とから構成されている。具体的には、絶縁シート1は、樹脂層2の両面に保護層3,3が貼合わされて形成されるシート材から構成されている。
 樹脂層2は、延伸処理を経ることなく形成されることが好ましい。具体的には、樹脂層2は、樹脂材料が延伸処理されることなくシート状に形成されて構成される樹脂層用シートから構成されることが好ましい。樹脂層2を形成する方法としては、例えば、溶融押し出法や、溶媒キャスト法などの延伸工程を含まない製法で作製される樹脂層用シートを用いて樹脂層2が形成され得る。
 樹脂層2(即ち、樹脂層用シート)に用いられる樹脂材料としては、分子配向し難い樹脂が用いられることが好ましい。例えば、樹脂材料としては、分子主鎖内に屈曲部位(例えば、エーテル結合,エステル結合,アミド結合,スルホニル基,アルキレン鎖等)のある樹脂が用いられることが好ましい。具体的には、樹脂材料としては、ポリエステル類やポリエーテルイミド類,ポリエーテルケトン類,ポリエーテルエーテルケトン類,ポリカーボネート類,ポリアミド類,ポリスルホン類,ポリアリレート類等が挙げられる。また、これら樹脂の何れか一つ、又は、複数が混合されて用いられてもよい。特に、ポリアミド類,ポリスルホン類の樹脂が用いられることで、後述する保護層3(具体的には、全芳香族ポリアミド紙)との親和性がより良好になる。
 また、樹脂層2(即ち、樹脂層用シート)の形成には、熱可塑性樹脂が用いられることが好ましい。該熱可塑性樹脂は、自身を構成する分子の構成元素として、窒素、又は、硫黄の少なくとも一方を有することが好ましい。
 熱可塑性樹脂を用いて延伸処理されることなく樹脂層2(即ち、樹脂層用シート)が形成されることで、延伸処理後の加熱によって分子配向規制が崩れ、樹脂特性が低下してしまうのを抑制することができる。これにより、樹脂層用シートと後述する保護層用シート(紙)との接着に熱ラミネートが用いられ得る。このため、樹脂層用シートと後述する保護層用シート(紙)とを接着する接着剤の特性(接着に適した温度や湿度)の影響を受けることなく絶縁シート1が形成され得る。
 窒素(N)を構成元素として有する熱可塑性樹脂としては、例えば、ポリアミド樹脂;分子中に複数の芳香族炭化水素とイミド結合とエーテル結合とを有するポリエーテルイミド(PEI)樹脂;分子中に複数のイミド結合及び複数のアミド結合を有する熱可塑性ポリアミドイミド樹脂が挙げられる。特に、絶縁シート1が変形されて立体的に加工された際の応力緩和性が良好になる点では、ポリアミド樹脂が用いられることが好ましい。
 窒素(N)を構成元素として有する熱可塑性樹脂としてポリアミド樹脂が用いられることで、絶縁シート1が変形した際の樹脂層2と保護層3との層間接着性が良好になる。このため、絶縁シート1の変形に対して、樹脂層2と保護層3とが互いに追従し易くなる。これは、ポリアミド樹脂が比較的高い極性を有するため、樹脂層2が保護層3とより密着し得るからである。
 ポリアミド樹脂は、少なくともポリアミン化合物とポリカルボン酸化合物とが脱水縮合により重合されて構成されるものである。
 ポリアミド樹脂としては、分子中に芳香族炭化水素を有する芳香族ポリアミド樹脂、分子中に炭化水素として脂肪族炭化水素のみを有する脂肪族ポリアミド樹脂が挙げられる。特に、樹脂層2がより耐熱性に優れたものになり得るという点では、分子中に芳香族炭化水素を有する芳香族ポリアミド樹脂が用いられることが好ましい。ポリアミド樹脂が、分子中に芳香族炭化水素を有する芳香族ポリアミド樹脂であることにより、例えば、絶縁シート1が変形されて立体的に形成されたモーター用ボビンが、電気絶縁性を維持しつつ、コイルから生じる熱に対して、より耐性に優れたものになる。
 また、分子中に芳香族炭化水素を有する芳香族ポリアミド樹脂としては、分子中に炭化水素として芳香族炭化水素のみを有する全芳香族ポリアミド樹脂,分子中に炭化水素として脂肪族炭化水素及び芳香族炭化水素の両方を有する半芳香族ポリアミド樹脂等が挙げられる。全芳香族ポリアミド樹脂が用いられることで、絶縁シート1が変形した際の樹脂層2と保護層3との層間接着性が良好になる。このため、絶縁シート1の変形に対して、樹脂層2と保護層3とが互いに追従し易くなる。また、半芳香族ポリアミド樹脂を用いることで、樹脂層2が耐熱性に優れた絶縁シート1になる。また、半芳香族ポリアミド樹脂を用いることで、樹脂層2と保護層3との間でより層間剥離し難くなる。
 ポリアミド樹脂の重合において用いられるポリアミン化合物としては、例えば、ジアミン化合物が挙げられる。該ジアミン化合物としては、直鎖状、又は、分岐鎖状の炭化水素基を含む脂肪族ジアミン,環状の飽和炭化水素基を含む脂環族ジアミン,芳香族炭化水素基を含む芳香族ジアミン等が挙げられる。
 脂肪族ジアミン,脂環族ジアミン、又は、芳香族ジアミンとしては、例えば、下記式(1)で表されるものが挙げられる。なお、下記式(1)中のR1は、炭素数4~12の脂肪族炭化水素基、若しくは環状飽和炭化水素を含む炭素数4~12の脂環族炭化水素基、又は、芳香族環を含む炭化水素基を表している。

           H2N-R1-NH2・・・(1)
 脂肪族ジアミンとしては、樹脂層2の電気絶縁性がより優れたものになり得るという点で、式(1)においてR1の炭素数が9のノナンジアミンが用いられることが好ましく、1,9-ノナンジアミン、及び、2-メチル-1,8-オクタンジアミンを混合したものが用いられることがより好ましい。
 芳香族ジアミンとしては、フェニレンジアミン、キシリレンジアミン等が挙げられる。
 ポリアミド樹脂の重合において用いられるポリカルボン酸化合物としては、例えば、ジカルボン酸化合物が挙げられる。該ジカルボン酸化合物としては、直鎖状、又は、分岐鎖状の炭化水素基を含む脂肪族ジカルボン酸、環状の飽和炭化水素基を含む脂環族ジカルボン酸、芳香族炭化水素基を含む芳香族ジカルボン酸などが挙げられる。
 脂肪族ジカルボン酸、脂環族ジカルボン酸、又は、芳香族ジカルボン酸としては、例えば、下記式(2)で表されるものが挙げられる。なお、下記式(2)中のR2は、炭素数4~25の脂肪族炭化水素基、若しくは、環状飽和炭化水素を含む炭素数4~12の脂環族炭化水素基を表しているか、又は、芳香族環を含む炭化水素基を表している。

           HOOC-R2-COOH・・・(2)
 脂肪族ジカルボン酸としては、アジピン酸,セバシン酸などが挙げられる。
 芳香族ジカルボン酸としては、テレフタル酸,メチルテレフタル酸,ナフタレンジカルボン酸などが挙げられ、該芳香族ジカルボン酸としては、ポリアミド樹脂の耐熱性がより優れたものになり得るという点で、テレフタル酸が用いられることが好ましい。
 ポリアミド樹脂は、上述したジアミン化合物の1種とジカルボン酸化合物の1種とが重合して形成されるものであってもよく、それぞれの化合物の複数種が組み合わされて重合して形成されるものであってもよい。また、ポリアミド樹脂は、要すれば、ジアミン化合物とジカルボン酸化合物以外のものが更に重合されて形成されるものであってもよい。
 ポリアミド樹脂としては、上記の半芳香族ポリアミド樹脂が用いられることが好ましい。該半芳香族ポリアミド樹脂としては、ジアミン化合物としての脂肪族ジアミンと、ジカルボン酸化合物としての芳香族ジカルボン酸とが重合して形成されるものが用いられることが好ましく、脂肪族ジアミンとしてのノナンジアミンと、芳香族ジカルボン酸としてのテレフタル酸とが重合して形成されるもの(PA9T)が用いられることがより好ましい。
 樹脂層2においては、ポリアミド樹脂の含有割合が1重量%以上であることが好ましく、10重量%以上であることがより好ましい。また、ポリアミド樹脂の含有割合が90重量%以下であることが好ましく、70重量%以下であることがより好ましい。
 ポリアミド樹脂の含有割合が1重量%以上であることにより、絶縁シート1が曲げ加工等で変形された際に、保護層3と樹脂層2との間の層間剥離がより抑制される。また、ポリアミド樹脂の含有割合が90重量%以下であることにより、ポリアミド樹脂に含まれる結晶成分が低下する。このため、樹脂層2の応力緩和性が向上し、絶縁シート1が変形したときの形状で維持され易くなる。
 また、窒素(N)を構成元素として有する熱可塑性樹脂としては、窒素(N)含有極性官能基を有し、常温(20℃)にてゴム弾性を示す熱可塑性エラストマー樹脂が挙げられる。窒素(N)含有極性官能基としては、-NRR’,-NHR,-NH2,>C=N-,-CN,-NCO,-OCN,-SCN,-NO,-NO2,-CONH2,-CONHR,-CONH-,>C=NH等が挙げられる。特に、窒素(N)含有極性官能基としては、イソシアネート基(-NCO)、又は、-NRR’,-NHR,-NH2等のアミノ基が好ましい。なお、上記官能基におけるR,R’は、水素原子、アルキル基、アリール基等を示す。また、上記熱可塑性エラストマー樹脂としては、例えば、ポリウレタン系,ニトリル系、又は、ポリアミド系の各熱可塑性エラストマー樹脂が挙げられる。
 硫黄(S)を構成元素として有する熱可塑性樹脂としては、例えば、ポリスルホン樹脂;分子中に複数の芳香族炭化水素、及び、複数のスルフィド結合(-S-)を有するポリフェニレンスルフィド(PPS)樹脂等が挙げられる。特に、絶縁シート1が変形されて立体的に加工されるときの樹脂層2の成形性が良好なものになるという点では、ポリスルホン樹脂が用いられることが好ましい。
 硫黄(S)を構成元素として有する熱可塑性樹脂としてポリスルホン樹脂が用いられることで、絶縁シート1を変形させた際の樹脂層2と保護層3との層間接着性が良好になる。このため、絶縁シート1の変形に対して、樹脂層2と保護層3とが互いに追従し易くなる。これは、ポリスルホン樹脂が非晶質であるため、樹脂層2の応力緩和が促進され、絶縁シート1の変形形状を維持し易くなるからである。
 ポリスルホン樹脂は、分子中に複数のスルホニル基を有するものである。即ち、ポリスルホン樹脂は、スルホニル基(-SO2-)を複数含む分子構造を有するものである。該ポリスルホン樹脂としては、分子中に複数のエーテル結合(-O-)を更に有するポリエーテルスルホン樹脂、又は、分子中に複数の芳香族炭化水素を更に有するポリフェニルスルホン樹脂などが挙げられる。また、該ポリスルホン樹脂としては、分子中に複数のエーテル結合と複数の芳香族炭化水素とを更に有するポリエーテルポリフェニルスルホン樹脂が挙げられる。
 ポリスルホン樹脂としては、絶縁シート1が変形されて立体的に加工されるときの樹脂層2の成形性が良好なものになるという点で、ポリエーテルスルホン樹脂、又は、ポリフェニルスルホン樹脂が用いられることが好ましく、ポリエーテルポリフェニルスルホン樹脂が用いられることがより好ましい。
 ポリエーテルポリフェニルスルホン樹脂としては、下記式(3)の分子構造を有するものが好ましい。式(3)中のnは、重合度を表す正の整数であり、通常、10~5000の範囲内である。
Figure JPOXMLDOC01-appb-C000001
 ポリエーテルポリフェニルスルホン樹脂としては、市販されているものが用いられ得る。例えば、ポリエーテルポリフェニルスルホン樹脂としては、BASF社製の「ウルトラゾーンEシリーズ」、ソルベイ社製の「レーデルAシリーズ」、住友化学社製の「スミカエクセルシリーズ」等が用いられ得る。
 樹脂層2においては、ポリスルホン樹脂の含有割合が20重量%以上であることが好ましく、40重量%以上であることがより好ましい。また、ポリスルホン樹脂の含有割合が90重量%以下であることが好ましく、70重量%以下であることがより好ましい。
 ポリスルホン樹脂の含有割合が20重量%以上であることにより、樹脂層2の耐熱性がより優れたものになる。また、ポリスルホン樹脂の含有割合が90重量%以下であることにより、樹脂層2が保護層3とより密着し得ることから、樹脂層2と保護層3との間の層間剥離がより抑制される。
 また、硫黄(S)を構成元素として有する熱可塑性樹脂としては、硫黄(S)含有極性官能基を有し、常温(20℃)にてゴム弾性を示す熱可塑性エラストマー樹脂が挙げられる。硫黄(S)含有極性官能基としては、-SH,-SO3H,-SO2H,-SOH,>C=S,-CH=S,-CSOR等が挙げられる。なお、上記官能基におけるR,R’は、水素原子,アルキル基,アリール基等を示す。また、熱可塑性エラストマー樹脂としては、具体的には、例えば、ポリウレタン系,ニトリル系、又は、ポリアミド系の各熱可塑性エラストマー樹脂などが挙げられる。
 また、樹脂層2は、上述したように、窒素、又は、硫黄の少なくとも一方を分子の構成元素として有する熱可塑性樹脂に加えて他の熱可塑性樹脂が用いられて形成されてもよい。他の熱可塑性樹脂としては、特に限定されるものではなく、例えば、分子中に複数のオキシメチレン(-CH2O-)基を有するポリアセタール(POM)樹脂;ビスフェノール類とエピクロルヒドリンとが反応してなる熱可塑性のポリヒドロキシポリエーテルフェノキシ樹脂;分子中で芳香族炭化水素-エーテル結合の基本構造が繰り返されてなるポリフェニレンエーテル(PPE)樹脂などのポリフェニレンオキシド(PPO)樹脂;分子中で芳香族炭化水素-エーテル結合-芳香族炭化水素-ケトン結合の基本構造が繰り返されてなる芳香族ポリエーテルケトン(PEK)樹脂;分子中で芳香族炭化水素-エーテル結合-芳香族炭化水素-エーテル結合-芳香族炭化水素-ケトン結合の基本構造が繰り返されてなる芳香族ポリエーテルエーテルケトン(PEEK)樹脂;ポリエチレン,ポリプロピレン,ポリシクロオレフィンなどのポリオレフィン樹脂;ポリエチレンナフタレート(PEN)樹脂,ポリブチレンテレフタレート(PBT)樹脂,ポリエチレンテレフタレート(PET)樹脂などのポリエステル樹脂;ポリカーボネート(PC)樹脂;液晶ポリマー(LCP)等が挙げられる。
 更に、他の熱可塑性樹脂としては、常温(20℃)にてゴム弾性を示す熱可塑性エラストマー樹脂が挙げられる。熱可塑性エラストマー樹脂が用いられることで、絶縁シート1の曲げ弾性率が更に小さくなり、絶縁シート1が折り曲げられ易くなる。該熱可塑性エラストマー樹脂としては、例えば、ポリオレフィン系,ポリエステル系の各熱可塑性エラストマー樹脂などが挙げられ、例えば、ポリブタジエン系熱可塑性エラストマー,スチレン・ブタジエン系熱可塑性エラストマー、又は、スチレン・イソプレンブロックコポリマーなどが挙げられる。
 また、該熱可塑性エラストマー樹脂としては、-COOH(カルボキシル基),カルボキシル基の酸無水物基,-OH,>C=O,-CH=O,-COOR(Rは、水素原子,アルキル基,アリール基等を示す),エポキシ基、又は、ハロゲン基などの極性官能基を分子中に有するものなどが挙げられる。極性官能基としては、カルボキシル基,カルボキシル基の酸無水物基,ヒドロキシ基(-OH)などが好ましく、カルボキシル基の酸無水物基がより好ましく、マレイン酸の酸無水物(無水マレイン酸基)が特に好ましい。熱可塑性エラストマー樹脂が極性官能基を分子中に有することで、樹脂層2が形成される際に、他の構成成分と混ざり易くなる。特に、熱可塑性エラストマー樹脂としては、無水マレイン酸変性ポリオレフィン系熱可塑性エラストマーが用いられることが好ましい。該無水マレイン酸変性ポリオレフィン系熱可塑性エラストマーとしては、エチレン-プロピレン無水マレイン酸変性共重合体が用いられることが好ましい。
 樹脂層2(即ち、樹脂層用シート)においては、熱可塑性エラストマー樹脂の含有割合が0.1重量%以上であることが好ましく、0.5重量%以上であることがより好ましい。また、熱可塑性エラストマー樹脂の含有割合が5.0重量%以下であることが好ましく、4.0重量%以下であることがより好ましい。
 前記熱可塑性エラストマー樹脂の含有割合が0.1重量%以上であることにより、絶縁シート1の曲げ弾性率が更に小さくなるため、絶縁シート1が曲げられ易くなる。また、絶縁シート1の引張弾性率がより小さくなるため、絶縁シート1が変形されて立体的に加工されるときの成形性がより良好なものになる。また、熱可塑性エラストマー樹脂の含有割合が5.0重量%以下であることにより、樹脂層2の耐熱性がより優れたものになる。
 樹脂層2の厚みとしては、特に限定されるものではなく、1μm~500μmであることが好ましい。
 樹脂層2(即ち、樹脂層用シート)には、本発明の効果を損ねない範囲において、種々の添加剤が配合されても良い。該添加剤としては、例えば、粘着付与剤,臭素系難燃剤,塩素系難燃剤,リン系難燃剤,酸化物系難燃剤,水和金属化合物,酸化防止剤,無機繊維,熱安定剤,光安定剤,紫外線吸収剤,滑剤,顔料,架橋剤,架橋助剤,シランカップリング剤,チタネートカップリング剤などの一般的なプラスチック用配合成分などが挙げられる。また、芳香族ポリアミド繊維,数nm~数百nmの粒径のモンモリロナイトなどが挙げられる。これら添加剤は、熱可塑性樹脂100重量部に対して、例えば、0.1~5重量部用いられ得る。
 粘着付与剤としては、アルキルフェノール樹脂,アルキルフェノール-アセチレン樹脂,キシレン樹脂,クマロン-インデン樹脂,テルペン樹脂,ロジンなどが挙げられる。臭素系難燃剤としては、ポリブロモジフェニルオキサイド,テトラブロモビスフェノールAなどが挙げられる。塩素系難燃剤としては、塩素化パラフィン,パークロロシクロデカンなどが挙げられる。リン系難燃剤としては、リン酸エステル,含ハロゲンリン酸エステルなどが挙げられる。酸化物系難燃剤としては、ホウ素系難燃剤,三酸化アンチモンなどが挙げられる。水和金属化合物としては、水酸化アルミニウム,水酸化マグネシウムなどが挙げられる。酸化防止剤としては、フェノール系,リン系,硫黄系のものが挙げられる。無機繊維としては、シリカ,クレー,炭酸カルシウム,炭酸バリウム,炭酸ストロンチウム,酸化アルミニウム,酸化マグネシウム,窒化硼素,窒化珪素,窒化アルミニウムといった無機フィラー,ガラス繊維などが挙げられる。
 保護層3は、樹脂層2を保護するものである。絶縁シート1においては、樹脂層2の両面に保護層3,3が積層されているため、絶縁シート1が曲げ加工等により立体的に変形されるときに、樹脂層2の表面が曲げ加工等を行う設備との接触によって損傷してしまうのを抑制することができる。また、絶縁シート1が変形した状態で、例えば、モーターコイルへ組み込まれる際に、コイル線やステータコアと接触して樹脂層2が損傷するのを抑制することができる。保護層3は、シート状に形成された保護層用シートから形成される。また、保護層3の厚みとしては、特に限定されるものではなく、10~100μmであることが好ましい。
 保護層3としては、例えば、不織布、紙、又は、フィルム等からなる保護層用シートが用いられ得る。絶縁シート1の電気絶縁性がより優れたものになるという点で、不織布、又は、紙が保護層3として用いられることが好ましい。
 また、保護層3としては、湿式抄紙法により作製されたもの、大気中で乾式法により作製されたものなどが用いられ得る。絶縁シート1の電気絶縁性がより優れたものになるという点で、湿式抄紙法により作製された紙が保護層3として用いられることが好ましい。
 保護層3の材質としては、ポリアミド,ポリエステルなどの合成高分子化合物,セルロースなどの天然高分子化合物等が用いられ得る。電気絶縁性に優れ、しかもを曲げ加工等の変形を加えた際の保護層3と樹脂層2との間の層間剥離がより抑制されるという点で、ポリアミドが保護層3の材質として用いられることが好ましい。
 ポリアミドとしては、構成モノマーの全てが芳香族炭化水素を有する全芳香族ポリアミド,構成モノマーの全てが脂肪族炭化水素のみを有する脂肪族ポリアミド,構成モノマーの一部が芳香族炭化水素を有する半芳香族ポリアミドなどが用いられ得る。電気絶縁性に優れ、しかも絶縁シート1に変形を加えたときの保護層3と樹脂層2との間の層間剥離が更に抑制されるという点で、全芳香族ポリアミドがポリアミドとして用いられることが好ましい。即ち、保護層3は、全芳香族ポリアミドを含んでいることが好ましい。
 また、保護層3としては、絶縁シート1の電気絶縁性がより優れたものになるという点で、全芳香族ポリアミド繊維を含む全芳香族ポリアミド紙が用いられることが更に好ましい。即ち、全芳香族ポリアミド繊維が用いられて湿式抄紙法により作製された全芳香族ポリアミド紙が用いられることが更に好ましい。
 全芳香族ポリアミド紙としては、例えば、アミド基以外がベンゼン環で構成されたフェニレンジアミンとフタル酸との縮合重合物(全芳香族ポリアミド)が繊維化され、繊維化された全芳香族ポリアミド繊維を主たる構成材として形成されたものが用いられ得る。
 前記全芳香族ポリアミド紙は、力学的特性に優れている。このため、絶縁シート1に変形が加えられて電気絶縁用立体形状物が形成される際の製造工程におけるハンドリングが良好になる。全芳香族ポリアミド紙は、坪量が5g/m2以上であることが好ましい。坪量が5g/m2以上であることにより、力学的強度の不足が抑制され、電気絶縁用立体形状物の製造中に破断が生じるのが抑制される。
 なお、全芳香族ポリアミド紙には、本発明の効果を損なわない範囲において他の成分が加えられ得る。他の成分としては、有機繊維,無機繊維、又は、ガラス繊維等が用いられ得る。有機繊維としては、ポリフェニレンスルフィド繊維,ポリエーテルエーテルケトン繊維,ポリエステル繊維,アリレート繊維,液晶ポリエステル繊維,ポリエチレンナフタレート繊維などが挙げられる。無機繊維としては、ロックウール,アスベスト,ボロン繊維,アルミナ繊維などが挙げられる。
 前記全芳香族ポリアミド紙としては、例えば、デュポン社より商品名「ノーメックス」で市販されているもの等が用いられ得る。
 保護層3の樹脂層2側には、コロナ処理が施されていることが好ましい。該コロナ処理が施されていることにより、保護層3と樹脂層2との間における層間剥離をより抑制することができる。コロナ処理は、樹脂層2と接する保護層3の一方の面に放電処理が行われることで、極性を持つカルボキシル基や水酸基が生成されて、粗面化される処理である。コロナ処理においては、従来公知の一般的な方法が採用され得る。
 絶縁シート1は、樹脂層2の両面に接するように保護層3が配置される。しかも、絶縁シート1は、樹脂層2及び保護層3の各凝集破壊力よりも、樹脂層2と前記保護層3との間の層間接着力が大きくなるように構成されていることが好ましい。斯かる構成により、樹脂層2と保護層3との間における層間剥離が抑制される。
 絶縁シート1は、分子架橋により硬化した樹脂を含む層を備えていないことが好ましい。即ち、絶縁シート1は、3次元架橋により硬化した樹脂を含む層を備えていないことが好ましい。斯かる層を備えていないことにより、絶縁シート1に生じた応力がより緩和させ易くなり、折り曲げ等の変形が加えられたときの絶縁シート1の形状が維持され易くなる。
 次に、絶縁シート1の製造方法について説明する。
 具体的には、上述した熱可塑性樹脂等からなる樹脂材料が所定温度に加熱されながら撹拌される。そして、従来公知の一般的な方法によってシート状に成形されて樹脂層用シートが作製される。より詳しくは、ニーダー,加圧ニーダー,混練ロール,バンバリーミキサー,二軸押し出し機などの一般的な混合手段により加熱されながら撹拌された樹脂材料がT-ダイを取り付けた押出機によってシート状に押し出されること等によって、樹脂層用シートが作製される。
 又は、固形の樹脂材料が加熱溶融されながらキャストされる方法によって樹脂層用シートが形成されてもよい。又は、樹脂材料が適当な溶剤に溶解され、斯かる樹脂溶液が基材上に塗布された後、溶剤が乾燥除去される方法によって樹脂層用シートが形成されてもよい。
 また、例えば、市販されているシート状の紙や不織布が用いられて保護層用シートが形成されてもよい。
 そして、2枚の保護層用シートの間に樹脂層用シートが挟み込まれる。この状態で、例えば、2枚の保護層用シートと樹脂層用シートとを所定温度で加熱しつつ押圧すること(熱ラミネート)で絶縁シート1が作製され得る。
 上述のようにして作製された絶縁シート1は、電気絶縁性を有する点が利用されて、例えば、自動車などにおけるモーター用の電気絶縁用部材、変圧器(トランス),バスバー,コンデンサー、又は、電源ケーブル用の電気絶縁用部材、IGBTモジュール端子の電気絶縁用部材などに使用され得る。
 以上のように、本発明に係る絶縁シートによれば、外力が加えられて所望する形状に変形された後、外力が取り除かれた際にも所望する変形状態が容易に維持され得る。
 即ち、前記絶縁シート1は、23℃で5%伸長されて10分間保持された際の応力緩和率が35%以上であることで、折り曲げ等の変形が加えられた際に生じる応力が効果的に緩和される。これにより、絶縁シート1に外力が加えられて所望する形状に変形された後、外力が取り除かれた際にも、変形前の状態に戻ろうとする応力が緩和されている(小さくなっている)ため、変形した領域の形状が所望する形状に維持される。つまり、外力を加え続けることなく絶縁シート1の変形状態が維持される。
 このため、絶縁シート1を取り付ける対象物の形状に対応するように絶縁シート1が変形された後、変形状態の絶縁シート1が対象物に取り付けられるため、治具等で絶縁シート1の変形状態が保持されたり、取り付け対象物の形状に絶縁シート1が沿わされつつ取り付けられたりする作業が不要となる。これにより、絶縁シート1の取り付け作業の作業性が向上する。
 また、樹脂材料が延伸処理されることなくシート状に形成された樹脂層用シートを用いて樹脂層2が形成されることで、樹脂材料が延伸処理されてなる樹脂層用シートを用いて樹脂層2が形成される場合よりも、変形状態において絶縁シート1に生じる応力が緩和され易くなる。
 具体的には、樹脂材料が延伸処理されて形成された樹脂層用シートを用いて樹脂層2が形成される場合には、樹脂層2を構成する分子が一定方向に配列し、延伸処理されていない場合よりも配向性が高くなる。このため、延伸処理されてなる樹脂層2を備える絶縁シート1が変形した際には、樹脂層2を構成する分子の配向性を維持するような応力が樹脂層に生じることとなる。これにより、絶縁シート1が変形した際に樹脂層2に生じる応力が緩和され難くなるため絶縁シート1に生じる応力が緩和され難くなる。
 これに対し、樹脂材料が延伸処理されずにシート状に形成されてなる樹脂層用シートが用いられて樹脂層2が形成された場合には、樹脂層2を構成する分子の配向性は、延伸処理された場合よりも低いものとなる。このため、配向性を維持しようとする応力が樹脂層2に生じ難くなり、絶縁シート1が変形した際に樹脂層2に生じる応力が緩和され易くなる。これにより、変形状態において絶縁シート1に生じる応力が緩和され易くなり、絶縁シート1の変形状態が維持され易くなる。
 また、樹脂層2を構成する熱可塑性樹脂の分子の構成元素として、窒素、又は、硫黄の少なくとも一方を有することで、樹脂層2を構成する分子が窒素原子、又は、硫黄原子の位置で変形(屈曲)し易くなる。これにより、絶縁シート1が変形した際に樹脂層2に応力が生じるのを緩和させ易くすることができる。このため、変形状態において絶縁シート1に生じる応力が緩和され易くなり、絶縁シート1の変形状態が維持され易くなる。
 なお、本発明に係る電気絶縁性シートは、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。また、上記した複数の実施形態の構成や方法等を任意に採用して組み合わせてもよく(1つの実施形態に係る構成や方法等を他の実施形態に係る構成や方法等に適用してもよく)、更に、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。
 例えば、上記実施形態では、樹脂層2の両面に保護層3,3が積層されているが、これに限定されるものではなく、樹脂層2の一方の面に保護層3が積層された絶縁シートであってもよい。又は、樹脂層2のみから絶縁シートが形成されてもよい。
 また、上記実施形態では、樹脂層2に保護層3が積層されて押圧されている(熱ラミネートされている)が、これに限定されるものではなく、樹脂層2と保護層3とが接着剤を介して接着されて絶縁シートが形成されてもよい。
 また、絶縁シート1の表面(即ち、保護層3の樹脂層2に対峙しない面)が微細に荒らされることで、絶縁シート1の表面の滑り性が向上されてもよい。
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
<実施例1>
1.樹脂層用シートの作製
(1)使用材料
 ・ポリアミド(PA)樹脂(構成モノマー:ヘキサメチレンジアミン,2-メチルペンタメチレンジアミン,テレフタル酸)(デュポン社製、商品名:「ザイテルHTN501」)
 ・熱可塑性のポリヒドロキシポリエーテルフェノキシ樹脂(ビスフェノール類とエピクロルヒドリンとが反応したもの、重量平均分子量:52000)(東都化成社製、商品名:「フェノトートYP-50S」)
(2)シートの作製
 「ザイテルHTN501」(PA樹脂)と「フェノトートYP-50S」(ポリヒドロキシポリエーテルフェノキシ樹脂)との重量比が60:40となるように配合されたものが2軸混練機(テクノベル社製)によって310℃で混合されて樹脂混合物が調製された。
 続いて、樹脂混合物が310℃で押出成形され、厚み70μmの樹脂層用シートが作製された。
2.保護層用シートの作製
 2枚の全芳香族ポリアミド紙(デュポン社製、商品名:「ノーメックスT410」、厚み:50μm)が保護層用シートとして用いられた。
 保護層用シートにおける樹脂層用シートと接する面(絶縁シートが形成された際の樹脂層と接する面)には、コロナ処理が施された。コロナ処理には、PILLAR TECHNOLOGIES社製「500シリーズ」が用いられた。また、コロナ処理は、大気圧下、出力500W、処理速度4m/分、試料幅0.4mの条件で行われた。
3.絶縁シートの作製
 得られた2枚の保護層用シートの間に樹脂層用シートが配置され、2枚の金属板で挟み込まれて、熱プレス機で350℃に加熱されて圧力200N/cm2で60秒間プレスされた。これにより、樹脂層の両面に2枚の保護層を備えた170μm厚の絶縁シートが作製された。
<実施例2>
1.樹脂層用シートの作製
(1)使用材料
 ・ポリスルホン樹脂:ポリエーテルポリフェニルスルホン樹脂(PES)樹脂(分子中にスルホニル基,エーテル結合、及び、芳香族炭化水素を複数有する)(ソルベイ社製、商品名:「レーデルA-300A」)
 ・5重量%濃度の無水マレイン酸変性ポリオレフィン系熱可塑性エラストマーと、95重量%濃度のポリアミド(PA)樹脂との混合物(クラレ社製、商品名「ジェネスタN1001A」)(無水マレイン酸変性ポリオレフィン系熱可塑性エラストマー;エチレン-プロピレン無水マレイン酸変性共重合体(EPMA))(PA樹脂;分子中にテレフタル酸単位及びノナンジアミン単位を有するPA9T)
(2)シートの作製
 PES樹脂とPA樹脂とEPMAとが重量比で80:19:1となるように配合されたものが、2軸混練機(テクノベル社製)によって310℃で混合されて樹脂混合物が調製された。
 続いて、樹脂混合物が310℃で押出成形され、厚み100μmの樹脂層用シートが作製された。
2.保護層用シートの作製
 2枚の全芳香族ポリアミド紙(デュポン社製、商品名:「ノーメックスT410」、厚み:50μm)が保護層用シートとして用いられた。
 保護層用シートにおける樹脂層用シートと接する面(絶縁シートが形成された際の樹脂層と接する面)には、コロナ処理が施された。コロナ処理には、PILLAR TECHNOLOGIES社製「500シリーズ」が用いられた。また、コロナ処理は、大気圧下、出力500W、処理速度4m/分、試料幅0.4mの条件で行われた。
3.絶縁シートの作製
 得られた2枚の保護層用シートの間に樹脂層用シートが配置され、2枚の金属板で挟み込まれ、熱プレス機によって350℃に加熱されて圧力200N/cm2で60秒間プレスされた。これにより、樹脂層の両面に2枚の保護層を備えた200μm厚の絶縁シートが作製された。
<実施例3>
1.樹脂層用シートの作製
 厚みが100μmであること以外は、実施例1と同一の材料及び方法によって樹脂層用シートが作製された。
2.保護層用シートの作製
 実施例1と同一の保護層用シート(厚み:50μm)が用いられた。
3.絶縁シートの作製
 樹脂層用シートの両面に、乾燥後の厚みが30μmとなるように接着剤(日東シンコー社製、ポリウレタン系架橋型接着剤)が塗工され、120℃で3分間乾燥された。そして、保護層用シートが樹脂層用シートの両面に積層され、90℃、0.2MPaの圧力で加圧された。その後、130℃で24時間経過させることで接着剤を硬化させ、絶縁シート(厚み:260μm)が作製された。
<比較例1>
 厚みが50μmの二軸延伸ポリエチレンテレフタレート(PET)フィルム(東レ社製、商品名:「ルミラーS10」)が樹脂層用シートとして用いられたこと以外は、実施例3と同一の材料及び方法によって絶縁シート(厚み:210μm)が作製された。
<比較例2>
 厚みが50μmの二軸延伸ポリエチレンナフタレート(PEN)フィルム(帝人デュポンフィルム社製、商品名:「テオネックスQ51」)が樹脂層用シートとして用いられたこと以外は、実施例3と同一の材料及び方法によって絶縁シート(厚み:210μm)が作製された。
<比較例3>
 厚みが50μmのポリイミド(PI)フィルム(東レデュポン社製、商品名:「カプトン200H」)が樹脂層用シートとして用いられたこと以外は、実施例3と同一の材料及び方法によって絶縁シート(厚み:210μm)が作製された。なお、ポリイミド(PI)フィルムは、熱硬化性樹脂からなり、シート状に形成される際(架橋時)に、分子が配向するものである。
<応力緩和率>
1.試験片の作製
 各実施例及び各比較例の絶縁シートの作製時の押出方向(MD方向)に15mmとなるように絶縁シートが切断され、15mm×200mmの試験片が作製された。
2.応力緩和率の算出
 JIS K 7161に基づいて、下記の条件で引っ張り試験が行われ、下記式(4)によって応力緩和率が算出された。具体的には、23℃、引張速度200mm/分、標線100mmの引っ張り条件で、歪みが5%となるように試験片が伸長され、その際の荷重(初期応力)が測定された。また、その状態で更に10分間保持され、その際の荷重(緩和後応力)が測定された。
 そして、下記式(4)より応力緩和率が算出された。各絶縁シートの応力緩和率については、下記表1に示す。

  応力緩和率(%)=(初期応力-緩和後応力)/初期応力×100・・・(4)
<形状維持性>
 各実施例及び各比較例の絶縁シートが20mm×100mmのサイズに切断され、各試験片が形成された。
 各試験片のMD方向中央部が各試験片の厚み方向に沿って4MPaで1秒間加圧され、各試験片がMD方向と直行する方向に沿って180°折り曲げられた。
 その後、各試験片が10分間放置された後、マイクロスコープVHX-100(キーエンス社製)によって倍率25倍で、各試験片の側方(厚み方向及びMD方向に直行する方向)から各試験片の開き角度(°)が測定された。各絶縁シートの開き角度については、下記表1に示される。
<取り付け性の評価>
 図1Bに示すように、各試験片を側方から見た際にU字状となるように、各試験片が折り曲げられて立体形状物10を作製した。該立体形状物10の辺a及びbの寸法としては、a=30mm、b=5mmとした。
 そして、30mm×5mmの矩形状の開口を有する挿入孔を備えた金属製の筒Xに折り曲げられた各試験片が手で挿入される際の挿入され易さが評価された。なお、容易に挿入されたものは「○」、挿入時にコ字状の形状が手で保持される必要があったものは「×」として評価された。
各絶縁シートの評価結果については、下記表1に示される。
<絶縁破壊電圧(BDV)>
 JIS K 691lに基づいて、昇圧速度1kV/秒で絶縁破壊電圧(BDV)が測定された。各絶縁シートの絶縁破壊電圧については、下記表1に示される。
Figure JPOXMLDOC01-appb-T000002
<まとめ>
 各実施例の方が各比較例よりも開き角度が小さく、取り付け性が良好であることが認められる。つまり、応力緩和率が35%以上であることで、絶縁シートが折り曲げられた際に生じる応力が効果的に緩和されるため、折り曲げた状態の形状が良好に維持される。このため、取り付け対象物への取り付けが容易に行われ得る。
 また、実施例3のように、樹脂層と保護層とが接着剤で接着された場合であっても、応力緩和率が35%以上であることで、折り曲げた状態の形状が良好に維持されるため、取り付け対象物への取り付けが容易に行われ得る。
 また、実施例3の方が比較例1~3よりも開き角度が小さく、取り付け性が良好であることが認められる。つまり、応力緩和率が35%以上であることで、折り曲げた状態の形状が良好に維持されるため、絶縁シートの厚みが厚く形成され得る。
 1…電気絶縁性シート、2…樹脂層、3…保護層

Claims (15)

  1.  電気絶縁性を有するシート材から構成され、
     23℃で5%伸長されて10分間保持される際の応力緩和率が35%以上である、電気絶縁性シート。
  2.  前記シート材は、樹脂材料から形成される樹脂層を備え、
     該樹脂層は、前記樹脂材料が延伸処理されることなくシート状に形成される樹脂層用シートで形成される、請求項1に記載の電気絶縁性シート。
  3.  前記樹脂層は、熱可塑性樹脂から形成され、
     該熱可塑性樹脂を構成する分子の構成元素として、窒素、又は、硫黄の少なくとも一方を有する、請求項2に記載の電気絶縁性シート。
  4.  前記熱可塑性樹脂は、ポリアミド樹脂、又は、ポリスルホン樹脂の少なくとも一方である、請求項3に記載の電気絶縁性シート。
  5.  前記ポリアミド樹脂は、芳香族炭化水素を分子中に有する芳香族ポリアミドである、請求項4に記載の電気絶縁性シート。
  6.  前記ポリスルホン樹脂は、複数のエーテル結合を分子中に有するポリエーテルスルホン樹脂である、請求項4又は5に記載の電気絶縁性シート。
  7.  前記ポリスルホン樹脂は、複数の芳香族炭化水素を分子中に有するポリフェニルスルホン樹脂である、請求項4乃至6の何れか一項に記載の電気絶縁性シート。
  8.  前記樹脂層は、熱可塑性エラストマー樹脂を更に含有する、請求項2乃至7の何れか一項に記載の電気絶縁性シート。
  9.  前記熱可塑性エラストマー樹脂は、無水マレイン酸変性ポリオレフィン系熱可塑性エラストマーである、請求項8に記載の電気絶縁性シート。
  10.  前記シート材は、樹脂層の少なくとも一方の面側に積層される保護層を備え、
     該保護層は、全芳香族ポリアミドを含有する、請求項2乃至9の何れか一項に記載の電気絶縁性シート。
  11.  前記保護層は、保護層用シートから形成され、
     該保護層用シートは、湿式抄紙法で形成される紙材料から構成される、請求項10に記載の電気絶縁性シート。
  12.  前記保護層は、全芳香族ポリアミド繊維を含有する全芳香族ポリアミド紙から構成される、請求項10又は11に記載の電気絶縁性シート。
  13.  前記保護層は、不織布から構成される、請求項10乃至12の何れか一項に記載の電気絶縁性シート。
  14.  前記保護層は、少なくとも樹脂層側の表面にコロナ処理が施される、請求項10乃至13の何れか一項に記載の電気絶縁性シート。
  15.  モーターコイルの電気絶縁材として用いられる、請求項1乃至14の何れか一項に記載の電気絶縁性シート。
PCT/JP2012/072297 2011-09-06 2012-09-03 電気絶縁性シート WO2013035652A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-193963 2011-09-06
JP2011193963A JP2013053269A (ja) 2011-09-06 2011-09-06 電気絶縁性シート

Publications (1)

Publication Number Publication Date
WO2013035652A1 true WO2013035652A1 (ja) 2013-03-14

Family

ID=47832097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072297 WO2013035652A1 (ja) 2011-09-06 2012-09-03 電気絶縁性シート

Country Status (2)

Country Link
JP (1) JP2013053269A (ja)
WO (1) WO2013035652A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146053A1 (ja) * 2012-03-29 2013-10-03 日東電工株式会社 電気絶縁性樹脂シート
JP2016174441A (ja) * 2015-03-16 2016-09-29 日東シンコー株式会社 スロットライナー

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101641405B1 (ko) * 2013-12-27 2016-07-20 주식회사 두산 연성 인쇄회로기판 형성용 절연 수지 시트 및 이의 제조방법, 이를 포함하는 인쇄회로기판

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003717A (ja) * 2000-06-21 2002-01-09 Polymatech Co Ltd 熱伝導性シート
JP2008514471A (ja) * 2004-09-30 2008-05-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 絶縁ラミネートおよびかかるラミネートを含む電気機器
JP2009199840A (ja) * 2008-02-20 2009-09-03 Somar Corp 絶縁シート、絶縁シートを用いた回転電機及び回転電機の製造方法
JP2010030222A (ja) * 2008-07-30 2010-02-12 Hitachi Engineering & Services Co Ltd 無接着剤アラミド−ポリフェニレンサルファイド積層体の製造方法、回転電機の絶縁部材及び絶縁構造
JP2010153120A (ja) * 2008-12-24 2010-07-08 Nitto Shinko Kk 絶縁シート
JP2012162694A (ja) * 2011-02-09 2012-08-30 Nitto Denko Corp 電気絶縁性樹脂シート

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003717A (ja) * 2000-06-21 2002-01-09 Polymatech Co Ltd 熱伝導性シート
JP2008514471A (ja) * 2004-09-30 2008-05-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 絶縁ラミネートおよびかかるラミネートを含む電気機器
JP2009199840A (ja) * 2008-02-20 2009-09-03 Somar Corp 絶縁シート、絶縁シートを用いた回転電機及び回転電機の製造方法
JP2010030222A (ja) * 2008-07-30 2010-02-12 Hitachi Engineering & Services Co Ltd 無接着剤アラミド−ポリフェニレンサルファイド積層体の製造方法、回転電機の絶縁部材及び絶縁構造
JP2010153120A (ja) * 2008-12-24 2010-07-08 Nitto Shinko Kk 絶縁シート
JP2012162694A (ja) * 2011-02-09 2012-08-30 Nitto Denko Corp 電気絶縁性樹脂シート

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146053A1 (ja) * 2012-03-29 2013-10-03 日東電工株式会社 電気絶縁性樹脂シート
JP2016174441A (ja) * 2015-03-16 2016-09-29 日東シンコー株式会社 スロットライナー

Also Published As

Publication number Publication date
JP2013053269A (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
US11331876B2 (en) Electrically insulating resin composition and laminate sheet
JP5964627B2 (ja) 電気絶縁用立体形状物及び電気絶縁性シート材
JP4875855B2 (ja) 積層シート
JP5056015B2 (ja) 二軸配向ポリアリーレンスルフィドフィルムおよびそれからなる積層ポリアリーレンスルフィドシート
US10037833B2 (en) Insulated wire, coil, and electrical or electronic equipment, and method of producing the insulated wire
TWI656538B (zh) Insulated wire, motor coil, electrical and electronic equipment, and method of manufacturing insulated wire
WO2013035652A1 (ja) 電気絶縁性シート
JP5695927B2 (ja) 電気絶縁性樹脂シート
KR20180118660A (ko) 절연 전선, 코일 및 전기·전자 기기
WO2014030657A1 (ja) 電気絶縁用樹脂組成物及びシート材
KR102552942B1 (ko) 수지 조성물 및 전기 절연 시트
JP5690606B2 (ja) 電気絶縁性樹脂シート
JP2014157783A (ja) 電気絶縁用シート
JP6327243B2 (ja) 絶縁シート及びフラットケーブル
JP5151914B2 (ja) 熱ラミネート積層フィルムおよびその製造方法
JP2014080527A (ja) 電気絶縁用立体形状物及び電気絶縁用立体形状物の製造方法
JP5568401B2 (ja) 電気絶縁性樹脂組成物
JP5710399B2 (ja) 積層シート
JP2019127033A (ja) 積層体及びその製造方法
JP2011140150A (ja) 積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830279

Country of ref document: EP

Kind code of ref document: A1