WO2012108158A1 - モータ駆動装置 - Google Patents

モータ駆動装置 Download PDF

Info

Publication number
WO2012108158A1
WO2012108158A1 PCT/JP2012/000736 JP2012000736W WO2012108158A1 WO 2012108158 A1 WO2012108158 A1 WO 2012108158A1 JP 2012000736 W JP2012000736 W JP 2012000736W WO 2012108158 A1 WO2012108158 A1 WO 2012108158A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase
winding
power supply
loss
Prior art date
Application number
PCT/JP2012/000736
Other languages
English (en)
French (fr)
Inventor
貴史 福榮
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12744746.4A priority Critical patent/EP2675061B1/en
Priority to CN201280002262.0A priority patent/CN103053110B/zh
Publication of WO2012108158A1 publication Critical patent/WO2012108158A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/16Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using ac to ac converters without intermediate conversion to dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a motor drive device that drives a motor with an output obtained by full-wave rectification using a single-phase AC power supply as an input or a variable-voltage / variable-frequency AC output obtained by directly switching a single-phase AC power supply.
  • FIG. 16 shows a schematic configuration of a conventional motor driving device.
  • the conventional motor drive device has a rectifier circuit 102 that performs full-wave rectification on the output of the single-phase AC power supply 101, and a variable voltage / variable frequency obtained by switching the rectified output of the rectifier circuit 102.
  • an inverter 104 that drives the motor 103 by AC output.
  • the motor driving device includes a signal generating means 105 for generating a PWM signal for turning on / off the switching element of the inverter 104 based on a voltage command value, and the voltage command for increasing the pulse width of the PWM signal.
  • a control means for performing control for advancing the phase of the inverter output voltage by advancing the output timing of the PWM signal when the saturation state in which the inverter output voltage corresponding to the value cannot be obtained.
  • the output voltage phase of the inverter 104 is advanced during the period in which the torque supply from the single-phase AC power supply 101 to the motor 103 is interrupted by the regenerative current, A current is forced to flow from the inverter output to the motor 103. For this reason, a current forcibly flows from the inverter output to the motor 103 every half cycle of the power source, the effective current value of the motor 103 increases, and the motor loss increases.
  • the amount of current that is forced to flow to the motor increases, so that the motor loss increases remarkably. Met.
  • An object of the present invention is to provide a highly efficient motor drive device in which system loss including motor loss is suppressed.
  • the present invention drives a motor by a full-wave rectified output using a single-phase AC power supply as an input or a variable voltage / variable frequency AC output obtained by directly switching a single-phase AC power supply.
  • the motor drive device that performs the period in which the maximum value of the induced voltage of the motor is larger than the instantaneous value of the absolute value voltage of the single-phase AC power supply voltage in a predetermined motor rotation speed range is a period of one cycle of the single-phase AC power supply.
  • system loss including motor loss due to regenerative current can be suppressed, and a highly efficient motor drive device can be provided.
  • Waveform diagram showing intermittent torque supply and continuous torque supply in the motor drive device of the first embodiment The figure which shows the change of the motor current with respect to the motor induced voltage in a motor drive device
  • the figure which shows schematic structure of the voltage supply to the inverter in a motor drive device The figure which shows the change of the inverter loss with respect to the motor induced voltage in the motor drive device of Embodiment 1.
  • a full-wave rectifier circuit that receives a single-phase AC power supply, an inverter that converts output DC power of the full-wave rectifier circuit into AC power, a control unit that controls the PWM drive of the inverter,
  • the frequency is set to 40 times or more of the single-phase AC power supply frequency, and is composed of a reactor arranged on the line between the inverter and the single-phase AC power supply and a capacitor connected in parallel on the input side of the inverter
  • a motor driven by the inverter a motor drive device comprising:
  • the motor has a specification in which the induced voltage and winding resistance of the motor are adjusted so as to reduce an interruption period of torque supply from the single-phase AC power source to the motor due to a regenerative current in a predetermined motor rotation speed range. It is an IPM motor having.
  • the motor drive device according to the first aspect of the present invention thus configured is a highly efficient motor drive device with reduced motor loss.
  • the motor according to the first aspect of the invention has a period in which the maximum value of the induced voltage of the motor is larger than the instantaneous value of the absolute value voltage of the single-phase AC power supply voltage in a predetermined motor rotation speed range.
  • the winding specifications may be adjusted to be less than half of the single-phase AC power supply period.
  • the motor drive device of the second invention configured as described above, it is possible to shorten the interruption period of the torque supply from the single-phase AC power source to the motor by the regenerative current, and to suppress the motor loss.
  • the motor drive device according to the second aspect of the present invention can suppress the loss in the inverter that occurs when the regenerative current passes through the inverter by suppressing the regenerative current.
  • the effective voltage value of the induced voltage of the motor is less than 70% of the effective voltage value of the single-phase AC power supply in a predetermined motor speed range. You may have adjusted winding specifications.
  • the motor drive device of the third invention configured as described above, it is possible to shorten the interruption period of the torque supply from the single-phase AC power source to the motor by the regenerative current, and to suppress the motor loss.
  • the motor drive device of 3rd invention can suppress the loss part in the inverter which generate
  • the motor according to the first aspect of the present invention has a square motor effective current value that changes depending on the length of a regeneration period that occurs near the zero cross of a single-phase AC power supply in a predetermined motor rotation speed range, Winding specifications adjusted to minimize the sum of the product of motor winding resistance (motor loss) and the inverter loss, which varies depending on the number of turns and winding diameter when the motor winding copper amount is constant. You may have.
  • the interruption period of the torque supply from the single-phase AC power source to the motor by the regenerative current can be shortened, and the loss of the entire system can be suppressed.
  • the motor according to the first aspect of the present invention has a square motor effective current value that changes depending on the length of a regeneration period that occurs near the zero cross of a single-phase AC power supply in a predetermined motor rotational speed range,
  • the interruption period of torque supply from the single-phase AC power source to the motor by the regenerative current can be shortened, and the loss of the entire system can be suppressed.
  • the sixth invention includes a single-phase AC power source, a motor, a bidirectional switch group that is arranged between the single-phase AC power source and the motor, and that directly switches an AC voltage, and that constitutes the bidirectional switch group.
  • a motor drive device including a control unit that performs PWM drive control of the direction switch, The motor has a specification in which the induced voltage and winding resistance of the motor are adjusted so as to reduce an interruption period of torque supply from the single-phase AC power source to the motor due to a regenerative current in a predetermined motor rotation speed range. It is an IPM motor having.
  • the motor drive device of the sixth aspect of the present invention configured as described above can substantially eliminate the interruption period of torque supply from the single-phase AC power supply to the motor by the regenerative current. Furthermore, the motor drive device of 6th invention can suppress the loss part in the inverter which generate
  • the motor according to the sixth aspect of the present invention has a period in which the maximum value of the induced voltage of the motor is larger than the instantaneous value of the absolute value voltage of the single-phase AC power supply voltage in a predetermined motor rotation speed range.
  • the winding specifications may be adjusted to be less than half of the single-phase AC power supply period.
  • the motor drive device of the seventh invention configured as described above can shorten the interruption period of the torque supply from the single-phase AC power source to the motor by the regenerative current, and can suppress the motor loss.
  • the motor drive device of 7th invention can suppress the loss in the inverter which generate
  • the motor according to the sixth aspect of the invention is such that the effective voltage value of the induced voltage of the motor is less than 70% of the effective voltage value of the single-phase AC power supply in a predetermined motor rotation speed range. You may have adjusted winding specifications.
  • the motor drive device according to the eighth aspect of the present invention configured as described above can shorten the interruption period of the torque supply from the single-phase AC power source to the motor by the regenerative current, and can suppress the motor loss. Furthermore, the motor drive device according to the eighth aspect of the present invention can suppress a loss in the inverter that occurs when the regenerative current passes through the inverter by suppressing the regenerative current.
  • the motor according to the sixth aspect of the invention is a motor effective current value that changes depending on the length of a regeneration period that occurs near the zero cross of a single-phase AC power supply in a predetermined motor rotation speed range, Adjusted to minimize the sum of the product (motor loss) of the motor winding resistance, which varies depending on the number of turns and the winding diameter when the amount of winding copper of the motor is constant, and the loss in the bidirectional switch group. You may have winding specifications.
  • the motor drive apparatus of the ninth invention configured in this way can shorten the interruption period of the torque supply from the single-phase AC power source to the motor by the regenerative current, and can suppress the loss of the entire system.
  • the motor according to the sixth aspect of the present invention is characterized in that the motor effective current value that changes depending on the length of the regeneration period that occurs near the zero cross of the single-phase AC power source in the predetermined motor rotation speed range and the The sum of the product (motor loss) of the motor winding resistance, which varies with the number of turns and the winding diameter when the amount of winding copper of the motor is constant, and the loss in the bidirectional switch group is 1.1 times the minimum value. You may have winding specifications adjusted to be less than.
  • the motor drive device of the tenth invention configured as described above can shorten the interruption period of torque supply from the single-phase AC power source to the motor by the regenerative current, and can suppress the loss of the entire system.
  • the motor in the sixth aspect of the invention may be configured such that a permanent magnet is not used for the rotor, or a synchronous reluctance motor using a permanent magnet as an auxiliary is used.
  • the motor driving apparatus of the eleventh aspect of the present invention configured as described above can substantially eliminate the interruption period of torque supply from the single-phase AC power supply to the motor by the regenerative current.
  • the motor drive device according to the eleventh aspect of the present invention can suppress a loss in the inverter that occurs when the regenerative current passes through the inverter by suppressing the regenerative current.
  • the motor in the first to tenth aspects of the invention may be configured using a ferrite magnet as a magnet used for a rotor in the motor.
  • the motor drive apparatus of the twelfth aspect of the present invention configured as described above, by using a ferrite magnet as a magnet used for the rotor, it is possible to reduce the magnetic force without using a strong and expensive magnet composed of a rare metal or the like. A weak and inexpensive magnet can be used.
  • the motor drive device of the twelfth aspect of the invention can reduce the motor loss by shortening the shut-off period of torque supply from the single-phase AC power supply to the motor by the regenerative current by using the ferrite magnet.
  • the motor drive device of the twelfth aspect of the invention can suppress the loss in the inverter that is generated when the regenerative current passes through the inverter by suppressing the regenerative current.
  • FIG. 1 is a diagram showing a schematic configuration of a motor drive device according to a first embodiment of the present invention.
  • the motor driving apparatus according to the first embodiment includes a full-wave rectifier circuit 21 including a diode bridge that receives AC power from a single-phase AC power supply 1, and the full-wave rectifier circuit 21.
  • An inverter 4 composed of a plurality of semiconductor switching elements that convert the output DC power into desired AC power, a control unit 6 composed of a microcomputer that controls the inverter 4 by PWM drive, and a resonance frequency of The reactor is set to 40 times or more the frequency of the phase AC power source 1 and is composed of a reactor arranged on a line connecting the inverter 4 and the single phase AC power source 1 and a capacitor connected in parallel to the input side of the inverter 4 And a motor 3 driven by the inverter 4.
  • the motor induced voltage and the motor winding resistance are adjusted in order to suppress an increase in system loss due to the influence of the regenerative current in a predetermined motor rotation speed range.
  • the motor 3 is an embedded magnet type motor (IPM motor) having a structure in which a magnet is embedded in a rotor.
  • the reactor capacitance L1 and the capacitor capacitance C1 constituting the smoothing unit 7 are designed to improve the power harmonic characteristics so that the resonance frequency fc is increased.
  • 1 / (2 ⁇ ⁇ ⁇ (L1 ⁇ C1)) is set to be 40 times or more of the frequency of the single-phase AC power supply 1, that is, 2000 Hz or more. This is because the IEC standard defines the 40th harmonic in the harmonic component of the AC power supply current.
  • FIG. 2 is a diagram showing a motor induced voltage waveform (thin line) and a full-wave rectified voltage waveform (thick line) in the motor drive device of the first embodiment.
  • the vertical axis indicates the voltage
  • the horizontal axis indicates the time axis and indicates the phase.
  • the motor 3 acts as a generator other than the single-phase AC power supply phases ⁇ 1 to ⁇ 2 and ⁇ 3 to ⁇ 4 in which the full-wave rectified voltage value of the single-phase AC power supply voltage is larger than the maximum value ( ⁇ 2 ⁇ Ve) of the motor induced voltage. To do. For this reason, the capacitor of the smoothing unit 7 is charged by the regenerative current of the motor 3.
  • FIG. 3 is a diagram showing an example of the waveform of each part in the motor drive device of the first embodiment.
  • the vertical axis represents voltage / current
  • the horizontal axis represents the time axis, indicating the phase.
  • the system loss at the time of driving the motor in such a state will be described below.
  • the system loss is the sum of loss (converter loss), inverter loss, and motor loss in the smoothing unit 7.
  • FIG. 4 is a diagram showing a change in the energization width due to the motor induced voltage in the motor drive device of the first embodiment, and shows the relationship between the induced voltage / power supply voltage ratio and the energization width ratio.
  • the energization width ⁇ becomes almost zero, and the torque cannot be supplied to the motor 3.
  • the motor induced voltage becomes higher as the rotational speed of the motor 3 becomes higher.
  • FIG. 5 is a diagram showing a change in the motor induced voltage according to the motor rotation speed in the motor drive device of the first embodiment.
  • the vertical axis represents the ratio of induced voltage / power supply voltage
  • the horizontal axis represents the motor rotation speed [rps].
  • the mark ⁇ shown in FIG. 5 shows the case where the induced voltage constant is small
  • the mark ⁇ shows the case where the induced voltage constant is medium
  • the mark ⁇ shows the case where the induced voltage constant is large. From the above characteristics, it can be understood that the energization width ⁇ tends to become narrower as the rotational speed of the motor 3 becomes higher. Therefore, in a motor drive device with variable rotation speed, it is necessary to perform motor drive with reduced system loss in a motor rotation speed range that has a large effect on the overall system efficiency.
  • FIG. 6 shows a case (b) where the necessary current (torque) is continuously applied during the period T, and a case (a) where the necessary current (torque) is applied during the half period T / 2.
  • the effective current value becomes as high as ⁇ 2 times by intermittently applying the necessary current.
  • the relationship between the motor induced voltage and the motor effective current is as shown in FIG.
  • the vertical axis represents the motor effective current value ratio
  • the horizontal axis represents the induced voltage / power supply voltage ratio.
  • the motor effective current value decreases as the motor induced voltage with respect to the single-phase AC power supply voltage increases.
  • the inverter loss with respect to the motor specification (motor induced voltage) is as shown in FIG.
  • the vertical axis represents the inverter loss ratio
  • the horizontal axis represents the induced voltage / power supply voltage ratio.
  • the inventor sets the period during which the torque supply to the motor 3 is interrupted by the regenerative current within a range of about 20% to 50% of the power cycle, that is, the torque supply period to the motor 3.
  • the motor 3 in which the motor induced voltage is adjusted so as to be within the range of 50% to 80% of the power cycle or within the range of 30% to 70% of the single-phase AC power supply voltage, Found that it can suppress the loss.
  • the period in which the maximum value of the motor induced voltage is larger than the instantaneous value of the absolute value voltage of the single-phase AC power supply voltage in the predetermined motor rotation speed range is the single-phase AC power supply.
  • the inverter loss may be reduced by using an IPM motor whose motor (winding) specification is adjusted to be less than half of the cycle.
  • the motor 3 has an IPM whose motor (winding) specifications are adjusted so that the effective voltage value of the motor-induced voltage is less than 70% of the effective voltage value of the single-phase AC power supply 1 in a predetermined motor rotation speed range.
  • a motor may be used.
  • the relationship between the number of turns and the motor-induced voltage is as shown in FIG.
  • the vertical axis is the induced voltage ratio
  • the horizontal axis is the winding ratio.
  • the vertical axis is the winding resistance ratio
  • the horizontal axis is the winding ratio.
  • the motor loss (copper loss) in the winding resistance with respect to the motor specification (motor induced voltage) is as shown in FIG. .
  • the vertical axis represents the motor loss (copper loss) ratio
  • the horizontal axis represents the induced voltage / power supply voltage ratio.
  • the inventor sets the period during which the torque supply to the motor 3 is interrupted by the regenerative current within a range of about 20% to 50% of the power cycle, that is, the torque supply period to the motor 3.
  • the motor 3 in which the motor induced voltage is adjusted so as to be within the range of 50% to 80% of the power cycle or within the range of 30% to 70% of the single-phase AC power supply voltage, It has been found that loss (copper loss) can be suppressed.
  • the period in which the maximum value of the motor induced voltage is larger than the instantaneous value of the absolute value voltage of the single-phase AC power supply voltage in the predetermined motor rotation speed range is the single-phase AC power supply.
  • the motor loss (copper loss) may be reduced by using an IPM motor whose motor (winding) specification is adjusted to be less than half of the cycle.
  • the motor 3 has an IPM whose motor (winding) specifications are adjusted so that the effective voltage value of the motor-induced voltage is less than 70% of the effective voltage value of the single-phase AC power supply 1 in a predetermined motor rotation speed range.
  • a motor may be used.
  • the system loss is a value obtained by adding the converter loss to the inverter loss and the motor loss, but by adjusting so that the sum of the inverter loss and the motor loss is substantially minimized.
  • the loss in the converter can also be minimized. Therefore, the sum of the inverter loss and the motor loss shown in FIG. 13 can be considered as the system loss.
  • the vertical axis indicates the sum of inverter loss and motor loss (loss ratio), and the horizontal axis indicates the ratio of induced voltage / power supply voltage.
  • the inventor sets the period during which the torque supply to the motor 3 is interrupted by the regenerative current within a range of about 20% to 50% of the power supply cycle, that is, the torque supply period to the motor 3 is 50% of the power supply cycle.
  • % To 80%, or 30% to 70% of the single-phase AC power supply voltage, and the product of the square of the motor effective current value and the winding resistance of the motor 3 (motor loss) )
  • the inverter loss are minimum, preferably less than 1.1 times the minimum value, by using the motor 3 whose motor specifications (motor induced voltage) are adjusted, the inverter loss and the motor loss are suppressed. System loss can be substantially minimized.
  • the motor is driven by the bidirectional switch group 8 that directly switches the single-phase AC power source 1 to obtain an AC voltage of an arbitrary amplitude and frequency.
  • the same can be applied to the motor driving apparatus.
  • the energization width ⁇ in this case is as shown in FIG. 15 from the induced voltage waveform of the motor 3 and the single-phase AC power supply voltage waveform when the motor is driven.
  • the system loss can be reduced by using the motor 3 in consideration of the regenerative current suppression.
  • the effect can be obtained even with a normal IPM motor, but the motor 3 using an inexpensive ferrite magnet with a low induced voltage constant that easily suppresses the regenerative current, or a magnet that does not use a magnet or is only an auxiliary magnet.
  • a synchronous reluctance motor By using a synchronous reluctance motor using the above, it becomes possible to realize a cheaper motor driving device while suppressing an increase in system loss.
  • a ferrite magnet is used as the magnet used for the rotor.
  • a ferrite magnet as the magnet used for the rotor in this way, an inexpensive magnet with a weak magnetic force is used without using a strong magnet with a strong magnetic force composed of rare metals, etc.
  • the interruption period of torque supply from the AC power source to the motor can be reduced, and motor loss can be suppressed.
  • by suppressing the regenerative current it is possible to suppress a loss in the inverter that occurs when the regenerative current passes through the inverter.
  • the present invention uses an inexpensive motor that does not use rare earths such as rare earths as compared with the conventional motor driving device, and achieves downsizing by increasing the motor rotation frequency and improving system efficiency. Therefore, it can be applied to various motor driving devices such as compressor driving of air conditioners and refrigerators.

Abstract

 モータ駆動装置においては、所定のモータ回転数域において、単相交流電源1のゼロクロス付近で発生する回生期間の長短により変化するモータ実効電流値の2乗とモータ3のモータ巻線抵抗の積と、インバータ4あるいは双方向スイッチ群8における損失の和が最小、好ましくは最小値の1.1倍未満となるようにモータ(巻線)仕様が調整されたモータ3を用いることにより、回生電流によるシステム損失の増加を抑制できる構成となる。

Description

モータ駆動装置
 本発明は、単相交流電源を入力として全波整流した出力、あるいは単相交流電源を直接スイッチングすることにより得られる可変電圧・可変周波数の交流出力にてモータを駆動するモータ駆動装置に関する。
 従来のモータ駆動装置の概略構成を図16に示す。図16に示すように、従来のモータ駆動装置は、単相交流電源101の出力を全波整流する整流回路102と、この整流回路102による整流出力をスイッチングして得た可変電圧・可変周波数の交流出力によりモータ103を駆動するインバータ104とを備えている。また、モータ駆動装置は、電圧指令値に基づいて前記インバータ104のスイッチング素子をオン・オフさせるためのPWM信号を発生させる信号発生手段105と、前記PWM信号のパルス幅の増大制御では前記電圧指令値に相当したインバータ出力電圧が得られない飽和状態となったときに、そのPWM信号の出力タイミングを早めてインバータ出力電圧の位相を進ませる制御を行う制御手段106と、を備えている。
 このように整流回路102からの脈動電圧をインバータ104によりスイッチング動作により形成された交流出力により、モータ103の駆動を行う場合、その脈動電圧の瞬時電圧値が所定レベルより低くなる期間には、PWM信号のパルス幅を増大させる制御を行ったとしても、電圧指令値に相当したインバータ出力電圧が得られない飽和状態となる。このような飽和状態となったとき、つまり、インバータ出力電圧よりモータ誘起電圧が高くなったときには、制御手段106が、前記PWM信号の出力タイミングを早めてインバータ出力電圧の位相を進ませる位相進み制御を行っている(例えば、特許文献1参照。)。
 このような位相進み制御が行われたときには、モータ103の端子電圧が下がるという現象が引き起こされる。このようにモータ103の端子電圧が下がった期間には、当該モータ103にインバータ104からの出力電流が流れ込むようになる。この結果、このモータ駆動装置においてはトルク発生する期間が拡大することになる。この結果、モータ103のトルク脈動が抑制されると共に、効率が改善されることになる。
特開平10-150795号公報
 従来技術のモータ駆動装置では、インバータ印加電圧が所定レベルより低くなると、回生電流により単相交流電源101からモータ103へのトルク供給が遮断される期間において、インバータ104の出力電圧位相を進めて、インバータ出力からモータ103に強制的に電流が流れるように構成されている。このため電源半周期毎にインバータ出力からモータ103へ強制的に電流が流れることになり、モータ103の実効電流値が増加して、モータ損失が増加する。特に、モータ駆動装置の小型化のためにモータ回転数を高く設定してモータ出力を得る装置においては、モータへ強制的に電流を流す量が増加するため、著しくモータ損失が増加することが課題であった。
 本発明は、モータ損失を含むシステム損失が抑制された、効率の高いモータ駆動装置を提供することを目的とする。
 上記課題を解決するために、本発明は、単相交流電源を入力として全波整流した出力、あるいは単相交流電源を直接スイッチングすることにより得られる可変電圧・可変周波数の交流出力によりモータを駆動するモータ駆動装置が、所定のモータ回転数域において、単相交流電源電圧の絶対値電圧の瞬時値より前記モータの誘起電圧の最大値が大きくなる期間が単相交流電源の一周期の期間における概ね半分未満となるモータ仕様(巻線仕様)を有するよう調整されたモータ、あるいは前記モータの誘起電圧の実効電圧値が前記単相交流電源の実効電圧値の概ね70%未満となるモータ仕様(巻線仕様)を有するよう調整されたモータを用いるように構成されている。これにより、モータ損失を含むシステム損失が抑制され、効率の高いモータ駆動装置を提供することができる。
 発明の新規な特徴は添付の請求の範囲に特に記載したものに他ならないが、構成及び内容の双方に関して本発明は、他の目的や特徴と合わせて図面と共に以下の詳細な説明を読むことにより、より良く理解され評価されるであろう。
 本発明によれば、回生電流によるモータ損失を含むシステム損失を抑制することができ、効率の高いモータ駆動装置を提供することができる。
本発明に係る実施の形態1のモータ駆動装置の概略構成を示す図 実施の形態1のモータ駆動装置におけるモータ誘起電圧波形(細線)と全波整流電圧波形(太線)を示す図 実施の形態1のモータ駆動装置における各部の波形を示す図 実施の形態1のモータ駆動装置における誘起電圧/電源電圧の比と通電幅比との関係を示す図 実施の形態1のモータ駆動装置におけるモータ回転数によるモータ誘起電圧の変化を示す図 実施の形態1のモータ駆動装置における間欠トルク供給と連続トルク供給を示す波形図 モータ駆動装置におけるモータ誘起電圧に対するモータ電流の変化を示す図 モータ駆動装置におけるインバータへの電圧供給の概略構成を示す図 実施の形態1のモータ駆動装置におけるモータ誘起電圧に対するインバータ損失の変化を示す図 実施の形態1のモータ駆動装置におけるモータ巻数に対するモータ誘起電圧の変化を示す図 実施の形態1のモータ駆動装置におけるモータ巻数に対するモータ巻線抵抗の変化を示す図 実施の形態1のモータ駆動装置におけるモータ誘起電圧に対するモータ損失(銅損)の変化を示す図 実施の形態1のモータ駆動装置におけるモータ誘起電圧に対するシステム損失の変化を示す図 本発明に係る別の実施の形態のモータ駆動装置の概略構成を示す図 図14に示した構成の本発明のモータ駆動装置における各部の波形を示す図 従来技術のモータ駆動装置の概略構成を示す図
 第1の発明は、単相交流電源を入力とする全波整流回路と、前記全波整流回路の出力直流電力を交流電力に変換するインバータと、前記インバータをPWM駆動制御する制御部と、共振周波数が前記単相交流電源周波数の40倍以上に設定され、前記インバータと単相交流電源とのライン上に配置されたリアクタと前記インバータの入力側に並列接続されたコンデンサとで構成される平滑部と、前記インバータにより駆動されるモータと、を具備するモータ駆動装置であり、
 前記モータは、所定のモータ回転数域において、回生電流による前記単相交流電源から前記モータへのトルク供給の遮断期間を低減するよう、前記モータの誘起電圧および巻線抵抗が調整された仕様を有するIPMモータである。
 このように構成された第1の発明のモータ駆動装置は、モータ損失が抑制され、効率の高いモータ駆動装置となる。
 第2の発明は、特に第1の発明における前記モータが、所定のモータ回転数域において、単相交流電源電圧の絶対値電圧の瞬時値より前記モータの誘起電圧の最大値が大きくなる期間が、単相交流電源周期の半分未満となるよう調整された巻線仕様を有してもよい。このように構成された第2の発明のモータ駆動装置においては、回生電流による単相交流電源からモータへのトルク供給の遮断期間を短くし、モータ損失を抑制することができる。更に、第2の発明のモータ駆動装置は、回生電流を抑制することにより、回生電流がインバータを通過することで発生するインバータにおける損失分を抑制することができる。
 第3の発明は、特に第1の発明における前記モータが、所定のモータ回転数域において、前記モータの誘起電圧の実効電圧値が前記単相交流電源の実効電圧値の70%未満となるよう調整された巻線仕様を有してもよい。このように構成された第3の発明のモータ駆動装置においては、回生電流による単相交流電源からモータへのトルク供給の遮断期間を短くし、モータ損失を抑制することができる。更に、第3の発明のモータ駆動装置は、回生電流を抑制することにより、回生電流がインバータを通過することで発生するインバータにおける損失分を抑制することができる。
 第4の発明は、特に第1の発明における前記モータが、所定のモータ回転数域において、単相交流電源のゼロクロス付近で発生する回生期間の長短により変化するモータ実効電流値の2乗と前記モータの巻線銅量を一定にした場合の巻数および巻線径により変化するモータ巻線抵抗との積(モータ損失)と、インバータ損失との和が最小となるよう調整された巻線仕様を有してもよい。このように構成された第4の発明のモータ駆動装置においては、回生電流による単相交流電源からモータへのトルク供給の遮断期間を短くし、システム全体の損失を抑制することができる。
 第5の発明は、特に第1の発明における前記モータが、所定のモータ回転数域において、単相交流電源のゼロクロス付近で発生する回生期間の長短により変化するモータ実効電流値の2乗と前記モータの巻線銅量を一定にした場合の巻数および巻線径により変化するモータ巻線抵抗との積(モータ損失)と、インバータ損失との和が最小値の1.1倍未満となるよう調整された巻線仕様を有してもよい。このように構成された第5の発明のモータ駆動装置においては、回生電流による単相交流電源からモータへのトルク供給の遮断期間を短くし、システム全体の損失を抑制することができる。
 第6の発明は、単相交流電源と、モータと、前記単相交流電源と前記モータとの間に配置され交流電圧を直接スイッチングする双方向スイッチ群と、前記双方向スイッチ群を構成する双方向スイッチをPWM駆動制御する制御部と、を具備するモータ駆動装置であって、
 前記モータは、所定のモータ回転数域において、回生電流による前記単相交流電源から前記モータへのトルク供給の遮断期間を低減するよう、前記モータの誘起電圧および巻線抵抗が調整された仕様を有するIPMモータである。このように構成された第6の発明のモータ駆動装置は、回生電流による単相交流電源からモータへのトルク供給の遮断期間を概ねなしとすることができる。更に、第6の発明のモータ駆動装置は、回生電流を抑制することにより、回生電流がインバータを通過することで発生するインバータにおける損失分を抑制することができる。
 第7の発明は、特に第6の発明における前記モータが、所定のモータ回転数域において、単相交流電源電圧の絶対値電圧の瞬時値より前記モータの誘起電圧の最大値が大きくなる期間が、単相交流電源周期の半分未満となるよう調整された巻線仕様を有してもよい。このように構成された第7の発明のモータ駆動装置は、回生電流による単相交流電源からモータへのトルク供給の遮断期間を短くし、モータ損失を抑制することができる。更に、第7の発明のモータ駆動装置は、回生電流を抑制することにより、回生電流がインバータを通過することで発生するインバータにおける損失分を抑制することができる。
 第8の発明は、特に第6の発明における前記モータが、所定のモータ回転数域において、前記モータの誘起電圧の実効電圧値が前記単相交流電源の実効電圧値の70%未満となるよう調整された巻線仕様を有してもよい。このように構成された第8の発明のモータ駆動装置は、回生電流による単相交流電源からモータへのトルク供給の遮断期間を短くし、モータ損失を抑制することができる。更に、第8の発明のモータ駆動装置は、回生電流を抑制することにより、回生電流がインバータを通過することで発生するインバータにおける損失分を抑制することができる。
 第9の発明は、特に第6の発明における前記モータが、所定のモータ回転数域において、単相交流電源のゼロクロス付近で発生する回生期間の長短により変化するモータ実効電流値の2乗と前記モータの巻線銅量を一定にした場合の巻数および巻線径により変化するモータ巻線抵抗との積(モータ損失)と、双方向スイッチ群における損失との和が最小となるよう調整された巻線仕様を有してもよい。このように構成された第9の発明のモータ駆動装置は、回生電流による単相交流電源からモータへのトルク供給の遮断期間を短くし、システム全体の損失を抑制することができる。
 第10の発明は、特に第6の発明における前記モータが、所定のモータ回転数域において、単相交流電源のゼロクロス付近で発生する回生期間の長短により変化するモータ実効電流値の2乗と前記モータの巻線銅量を一定にした場合の巻数および巻線径により変化するモータ巻線抵抗との積(モータ損失)と、双方向スイッチ群における損失との和が最小値の1.1倍未満となるよう調整された巻線仕様を有してもよい。このように構成された第10の発明のモータ駆動装置は、回生電流による単相交流電源からモータへのトルク供給の遮断期間を短くし、システム全体の損失を抑制することができる。
 第11の発明は、特に第6の発明における前記モータが、回転子に永久磁石を用いない、もしくは永久磁石を補助的に用いたシンクロナスリラクタンスモータを用いた構成としてもよい。このように構成された第11の発明のモータ駆動装置は、回生電流による単相交流電源からモータへのトルク供給の遮断期間を概ねなしとすることができる。更に、第11の発明のモータ駆動装置は、回生電流を抑制することにより、回生電流がインバータを通過することで発生するインバータにおける損失分を抑制することができる。
 第12の発明は、特に第1乃至第10の発明における前記モータが、当該モータにおける回転子に用いられる磁石として、フェライト磁石を用いて構成してもよい。このように構成された第12の発明のモータ駆動装置においては、回転子に用いられる磁石としてフェライト磁石を用いることにより、レアメタルなどで構成される磁力が強く高価な磁石を用いることなく、磁力の弱い安価な磁石を用いることが可能となる。このように、第12の発明のモータ駆動装置は、フェライト磁石を用いることにより、回生電流による単相交流電源からモータへのトルク供給の遮断期間を短くし、モータ損失を抑制することができる。更に、第12の発明のモータ駆動装置は、回生電流を抑制することにより、回生電流がインバータを通過することで発生するインバータにおける損失分を抑制することができる。
 以下、本発明のモータ駆動装置に係る好適な実施の形態について、添付の図面を参照しつつ説明する。以下の実施の形態においては、モータ駆動装置の具体的な構成について説明するが、本発明は以下の実施の形態の構成に限定されるものではなく、同様の技術的思想に基づく構成を含む。
 (実施の形態1)
 図1は本発明に係る実施の形態1のモータ駆動装置の概略構成を示す図である。
 図1に示すように、実施の形態1のモータ駆動装置は、単相交流電源1からの交流電力が入力されるダイオードブリッジなどで構成される全波整流回路21と、前記全波整流回路21の出力直流電力を所望の交流電力に変換する複数の半導体スイッチ素子で構成されたインバータ4と、前記インバータ4をPWM駆動制御するマイクロコンピュータなどで構成される制御部6と、共振周波数が前記単相交流電源1の周波数の40倍以上に設定され、前記インバータ4と単相交流電源1とを接続するライン上に配置されたリアクタと前記インバータ4の入力側に並列接続されたコンデンサとで構成される平滑部7と、前記インバータ4により駆動されるモータ3と、を具備している。前記モータ3は、所定のモータ回転数域において、回生電流の影響によるシステム損失増大を抑制するため、モータ誘起電圧、モータ巻線抵抗が調整されている。前記モータ3は、回転子の内部に磁石を埋め込んだ構造を有する埋込磁石型モータ(IPMモータ)である。
 以上のように構成された実施の形態1のモータ駆動装置において、その動作、作用について以下に説明する。
 まず、単相交流電源1に周波数50Hzの電源を用いた場合、平滑部7を構成するリアクタの容量L1とコンデンサの容量C1は、電源高調波特性の高性能化を図るため、共振周波数fc=1/(2π×√(L1×C1))が単相交流電源1の周波数の40倍以上、すなわち2000Hz以上になるように設定されている。これは、IEC規格では交流電源電流の高調波成分において第40次高調波まで規定されているためである。以上のようにコンデンサおよびリアクタの組み合わせを決定することにより、交流電源電流の高調波成分を抑制して、IEC規格をクリアすることが可能となる。
 このため、例えば、リアクタンス値L1=0.5mH、キャパシタンス値C1=10μFのリアクタとコンデンサを用いることにより、共振周波数fc(≒2250Hz)>(40×単相交流電源周波数)(=2000Hz)とする。平滑部7を構成するリアクタとコンデンサがこのような値に設定された場合、モータ駆動時におけるモータ3の誘起電圧波形と単相交流電源1の全波整流電圧波形は、図2に示すような関係になる。図2は実施の形態1のモータ駆動装置におけるモータ誘起電圧波形(細線)と全波整流電圧波形(太線)を示す図である。図2において、縦軸が電圧を示しており、横軸が時間軸であり位相を示している。
 ここで、単相交流電源電圧の実効値をVg、モータ誘起電圧の実効値をVeとすると、モータ駆動範囲内(モータ回転数域)において、単相交流電源1から駆動するモータ3にトルクを供給するために、その大小関係はVg>Veとなるようにモータ仕様は調整される。また、モータ誘起電圧の最大値(√2×Ve)より単相交流電源電圧の全波整流電圧値が大きくなる単相交流電源位相θ1からθ2、θ3からθ4以外ではモータ3が発電機として作用する。このため、モータ3の回生電流により平滑部7のコンデンサが充電されることになる。したがって、モータ駆動時の単相交流電源1の電圧波形Vrs、単相交流電源1の電流波形Ir、インバータ印加電圧波形Vdcは、それぞれ、例えば図3に示す波形のようになる。図3は実施の形態1のモータ駆動装置における各部の波形の一例を示す図である。図3において、縦軸が電圧/電流を示しており、横軸が時間軸であり位相を示している。
 平滑部7のコンデンサ容量が、例えば10μFと小さい場合、モータ3へは連続的にトルクが供給されず、通電幅Δθ(=Δθ12+Δθ34(図3参照))において単相交流電源1よりモータ3へ間欠的にトルクが供給されることになる。このような状態におけるモータ駆動時のシステム損失について以下で説明する。ここでシステム損失とは平滑部7における損失(コンバータ損失)、インバータ損失、モータ損失の総和のことである。
 まず、モータ誘起電圧と通電幅△θの関係は、図4に示すように、単相交流電源電圧に対してモータ誘起電圧が高くなるほど通電幅△θは狭くなる。図4は、実施の形態1のモータ駆動装置におけるモータ誘起電圧による通電幅の変化を示す図であり、誘起電圧/電源電圧の比と通電幅比との関係を示している。計算上では単相交流電源電圧の実効値Vgよりモータ誘起電圧の実効値Veが高くなると通電幅△θはほぼゼロとなりモータ3へのトルク供給ができなくなる。また、モータ誘起電圧は図5に示すようにモータ3の回転数が高くなるほど高くなる。
 図5は、実施の形態1のモータ駆動装置におけるモータ回転数によるモータ誘起電圧の変化を示す図である。図5において、縦軸が誘起電圧/電源電圧の比であり、横軸がモータ回転数[rps]である。図5に示すマーク◆は誘起電圧定数が小の場合であり、マーク■は誘起電圧定数が中の場合であり、マーク▲は誘起電圧定数が大の場合を示している。以上の特性からモータ3の回転数が高くなるほど通電幅△θは狭くなる傾向にあることが理解できる。したがって、回転数可変のモータ駆動装置では、全体のシステム効率に与える影響が大きくなるモータ回転数域において、システム損失を抑制したモータ駆動を行うことが必要になる。
 ここで、モータ駆動に必要なトルク、つまり必要電流を連続的に供給する場合と間欠的に与える場合とを比較すると、その実効値は間欠的に必要電流を与えた方が高くなる。図6に周期T期間に連続的に必要電流(トルク)を与えた場合(b)と、半分の周期T/2期間に必要電流(トルク)を与えた場合(a)を示す。この場合は間欠的に必要電流を与えることにより電流実効値は√2倍と高くなる。このように間欠的に必要電流を与えると、その実効値は高くなる。
 以上のことを考慮すると、モータ誘起電圧とモータ実効電流の関係は図7に示すようになる。図7において、縦軸がモータ実効電流値比率であり、横軸が誘起電圧/電源電圧の比である。図7において実線で示すように、図8の(b)に示すような一般的なモータ駆動装置では、単相交流電源電圧に対するモータ誘起電圧が高くなるにつれてモータ実効電流値は減少する。しかし、図8の(a)に示すように単相交流電源1の全波整流波形がインバータ4に印加される場合は、図7の破線で示すように、モータ誘起電圧を高くすると回生電流による通電幅△θの影響により、モータ実効電流値が増加する領域が存在する。そのため、モータ仕様(モータ誘起電圧)に対するインバータ損失は図9に示すようになる。図9において、縦軸がインバータ損失比率であり、横軸が誘起電圧/電源電圧の比である。
 実施の形態1のモータ駆動装置において、発明者は、回生電流によりモータ3へのトルク供給が遮断される期間を電源周期の20%から50%程度の範囲内、つまりモータ3へのトルク供給期間を電源周期の50%から80%程度の範囲内、あるいは、単相交流電源電圧の30%から70%の範囲内になるように、モータ誘起電圧が調整されたモータ3を用いることにより、インバータ損失を抑制することができることを見つけた。
 したがって、実施の形態1のモータ駆動装置においては、所定のモータ回転数域において、単相交流電源電圧の絶対値電圧の瞬時値よりモータ誘起電圧の最大値が大きくなる期間が、単相交流電源周期の半分未満となるようモータ(巻線)仕様が調整されたIPMモータが用いることにより、インバータ損失の低減を図ってもよい。なお、モータ3としては、所定のモータ回転数域において、モータ誘起電圧の実効電圧値が単相交流電源1の実効電圧値の70%未満となるようモータ(巻線)仕様が調整されたIPMモータを用いてもよい。
 次に、モータ損失について説明する。モータ3は磁石量および巻線材料の量を一定とすると、巻数とモータ誘起電圧の関係は図10に示すようになる。図10において、縦軸が誘起電圧比であり、横軸が巻線比である。図10に示すように、巻数を多くすると鎖交磁束が多くなるため、それに応じてモータ誘起電圧は高くなる。また、巻数と巻線抵抗の関係は図11に示すようになる。図11において、縦軸が巻線抵抗比であり、横軸が巻線比である。図11に示すように、巻数を多くすると巻線の線径は小さく、巻線長は長くなるため、それに応じて巻線抵抗は高くなる。モータ誘起電圧に対するモータ電流実効値は図7において破線で示した曲線のように変化するため、モータ仕様(モータ誘起電圧)に対する巻線抵抗におけるモータ損失(銅損)は図12に示すようになる。図12において、縦軸がモータ損失(銅損)比であり、横軸が誘起電圧/電源電圧の比である。
 実施の形態1のモータ駆動装置において、発明者は、回生電流によりモータ3へのトルク供給が遮断される期間を電源周期の20%から50%程度の範囲内、つまりモータ3へのトルク供給期間を電源周期の50%から80%程度の範囲内、あるいは、単相交流電源電圧の30%から70%の範囲内になるように、モータ誘起電圧が調整されたモータ3を用いることにより、モータ損失(銅損)を抑制することができることを見つけた。
 したがって、実施の形態1のモータ駆動装置においては、所定のモータ回転数域において、単相交流電源電圧の絶対値電圧の瞬時値よりモータ誘起電圧の最大値が大きくなる期間が、単相交流電源周期の半分未満となるようモータ(巻線)仕様が調整されたIPMモータが用いることにより、モータ損失(銅損)の低減を図ってもよい。なお、モータ3としては、所定のモータ回転数域において、モータ誘起電圧の実効電圧値が単相交流電源1の実効電圧値の70%未満となるようモータ(巻線)仕様が調整されたIPMモータを用いてもよい。
 実施の形態1のモータ駆動装置において、システム損失は、インバータ損失、モータ損失にコンバータ損失を加えた値になるが、実質的にインバータ損失とモータ損失の和が最小になるように調整することにより、コンバータにおける損失もほぼ最小にすることができる。このため、図13に示すインバータ損失とモータ損失の和をシステム損失と考えることができる。図13において、縦軸がインバータ損失とモータ損失の和(損失比率)を示しており、横軸が誘起電圧/電源電圧の比を示している。
 上記のように、発明者は、回生電流によりモータ3へのトルク供給が遮断される期間を電源周期の20%から50%程度の範囲内、つまりモータ3へのトルク供給期間を電源周期の50%から80%程度の範囲内、あるいは、単相交流電源電圧の30%から70%の範囲内になるようにし、更にモータ実効電流値の2乗とモータ3の巻線抵抗の積(モータ損失)とインバータ損失の和が最小、好ましくは最小値の1.1倍未満となるように、モータ仕様(モータ誘起電圧)が調整されたモータ3を用いることにより、インバータ損失およびモータ損失を抑制して、システム損失をほぼ最小にすることができる。
 なお、実施の形態1では図1に示す単相交流電源1を全波整流回路21にて全波整流した出力をスイッチングして任意の振幅および周波数の交流電圧を得るインバータ4によるモータ駆動装置について説明を行ったが、図14に示すような、全波整流回路21がなく、単相交流電源1を直接スイッチングして任意の振幅および周波数の交流電圧を得る双方向スイッチ群8によりモータ駆動を行うモータ駆動装置においても同様に考えることができる。この場合の通電幅△θは、モータ駆動時におけるモータ3の誘起電圧波形と単相交流電源電圧波形より図15に示すようになる。
 以上のように、回生電流抑制を考慮したモータ3を用いることにより、システム損失の低減を図ることができる。また、通常のIPMモータであってももちろん効果が得られるが、回生電流を抑制しやすい誘起電圧定数の低い安価なフェライト磁石を用いたモータ3や、磁石を用いない、あるいは補助的にのみ磁石を用いるシンクロナスリラクタンスモータを用いることにより、システム損失増大を抑制しつつ、より安価なモータ駆動装置を実現することが可能になる。
 なお、実施の形態1におけるモータでは回転子に用いられる磁石として、フェライト磁石が用いられている。このように回転子に用いられる磁石にフェライト磁石を用いることにより、レアメタルなどで構成される磁力が強く高価な磁石を用いることなく、磁力の弱い安価な磁石を用いることで、回生電流による単相交流電源からモータへのトルク供給の遮断期間を低減し、モータ損失を抑制することができる。また、回生電流を抑制することにより、回生電流がインバータを通過することで発生するインバータにおける損失分を抑制することができる。
 このように本発明では、回生電流による通電幅△θを考慮した仕様のモータ3を用いることにより、モータ3の磁石量、巻線材料の量が定められた制約条件下でより効率の良いシステムを実現することができる。
 発明をある程度の詳細さをもって好適な形態について説明したが、この好適形態の現開示内容は構成の細部において変化してしかるべきものであり、各要素の組合せや順序の変化は請求された発明の範囲及び思想を逸脱することなく実現し得るものである。
 以上のように、本発明は従来のモータ駆動装置と比較して、希土類などのレアアースを用いない安価なモータを用いて、モータ回転数の高周波化による小型化と、システム効率の向上を実現することができるため、エアコンや冷蔵庫の圧縮機駆動をはじめ様々なモータ駆動装置への応用が可能である。
 1 単相交流電源
 2 整流回路
 3 モータ
 4 インバータ
 6 制御部
 7 平滑部
 8 双方向スイッチ群
 21 全波整流回路

Claims (12)

  1.  単相交流電源を入力とする全波整流回路と、前記全波整流回路の出力直流電力を交流電力に変換するインバータと、前記インバータをPWM駆動制御する制御部と、共振周波数が前記単相交流電源周波数の40倍以上に設定され、前記インバータと単相交流電源とのライン上に配置されたリアクタと前記インバータの入力側に並列接続されたコンデンサとで構成される平滑部と、前記インバータにより駆動されるモータと、を具備し、
     前記モータは、所定のモータ回転数域において、回生電流による前記単相交流電源から前記モータへのトルク供給の遮断期間を低減するよう、前記モータの誘起電圧および巻線抵抗が調整された仕様を有するIPMモータであるモータ駆動装置。
  2.  前記モータは、所定のモータ回転数域において、単相交流電源電圧の絶対値電圧の瞬時値より前記モータの誘起電圧の最大値が大きくなる期間が、単相交流電源周期の半分未満となるよう調整された巻線仕様を有する請求項1に記載のモータ駆動装置。
  3.  前記モータは、所定のモータ回転数域において、前記モータの誘起電圧の実効電圧値が前記単相交流電源の実効電圧値の70%未満となるよう調整された巻線仕様を有する請求項1に記載のモータ駆動装置。
  4.  前記モータは、所定のモータ回転数域において、単相交流電源のゼロクロス付近で発生する回生期間の長短により変化するモータ実効電流値の2乗と前記モータの巻線銅量を一定にした場合の巻数および巻線径により変化するモータ巻線抵抗との積(モータ損失)と、インバータ損失との和が最小となるよう調整された巻線仕様を有する請求項1に記載のモータ駆動装置。
  5.  前記モータは、所定のモータ回転数域において、単相交流電源のゼロクロス付近で発生する回生期間の長短により変化するモータ実効電流値の2乗と前記モータの巻線銅量を一定にした場合の巻数および巻線径により変化するモータ巻線抵抗との積(モータ損失)と、インバータ損失との和が最小値の1.1倍未満となるよう調整された巻線仕様を有する請求項1に記載のモータ駆動装置。
  6.  単相交流電源と、モータと、前記単相交流電源と前記モータとの間に配置され交流電圧を直接スイッチングする双方向スイッチ群と、前記双方向スイッチ群を構成する双方向スイッチをPWM駆動制御する制御部と、を具備し、
     前記モータは、所定のモータ回転数域において、回生電流による前記単相交流電源から前記モータへのトルク供給の遮断期間を低減するよう、前記モータの誘起電圧および巻線抵抗が調整された仕様を有するIPMモータであるモータ駆動装置。
  7.  前記モータは、所定のモータ回転数域において、単相交流電源電圧の絶対値電圧の瞬時値より前記モータの誘起電圧の最大値が大きくなる期間が、単相交流電源周期の半分未満となるよう調整された巻線仕様を有する請求項6に記載のモータ駆動装置。
  8.  前記モータは、所定のモータ回転数域において、前記モータの誘起電圧の実効電圧値が前記単相交流電源の実効電圧値の70%未満となるよう調整された巻線仕様を有する請求項6に記載のモータ駆動装置。
  9.  前記モータは、所定のモータ回転数域において、単相交流電源のゼロクロス付近で発生する回生期間の長短により変化するモータ実効電流値の2乗と前記モータの巻線銅量を一定にした場合の巻数および巻線径により変化するモータ巻線抵抗との積(モータ損失)と、双方向スイッチ群における損失との和が最小となるよう調整された巻線仕様を有する請求項6に記載のモータ駆動装置。
  10.  前記モータは、所定のモータ回転数域において、単相交流電源のゼロクロス付近で発生する回生期間の長短により変化するモータ実効電流値の2乗と前記モータの巻線銅量を一定にした場合の巻数および巻線径により変化するモータ巻線抵抗との積(モータ損失)と、双方向スイッチ群における損失との和が最小値の1.1倍未満となるよう調整された巻線仕様を有する請求項6に記載のモータ駆動装置。
  11.  前記モータは、回転子に永久磁石を用いない、もしくは永久磁石を補助的に用いたシンクロナスリラクタンスモータを用いて構成された請求項1又は6に記載のモータ駆動装置。
  12.  前記モータは、当該モータにおける回転子に用いられる磁石として、フェライト磁石を用いて構成した請求項1乃至10のいずれか1項に記載のモータ駆動装置。
PCT/JP2012/000736 2011-02-08 2012-02-03 モータ駆動装置 WO2012108158A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12744746.4A EP2675061B1 (en) 2011-02-08 2012-02-03 Motor drive device
CN201280002262.0A CN103053110B (zh) 2011-02-08 2012-02-03 电动机驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-024914 2011-02-08
JP2011024914A JP2012165594A (ja) 2011-02-08 2011-02-08 モータ駆動装置

Publications (1)

Publication Number Publication Date
WO2012108158A1 true WO2012108158A1 (ja) 2012-08-16

Family

ID=46638385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000736 WO2012108158A1 (ja) 2011-02-08 2012-02-03 モータ駆動装置

Country Status (4)

Country Link
EP (1) EP2675061B1 (ja)
JP (1) JP2012165594A (ja)
CN (1) CN103053110B (ja)
WO (1) WO2012108158A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181181A1 (ja) * 2022-03-23 2023-09-28 三菱電機株式会社 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6329066B2 (ja) * 2014-12-26 2018-05-23 株式会社マキタ 電動機械器具
CN105216580B (zh) * 2015-09-30 2018-08-07 北京航天发射技术研究所 越野车载高集成双路变频空调设备
CN107453677B (zh) * 2017-07-28 2023-06-16 广东美芝制冷设备有限公司 一种压缩机及空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214452A (ja) * 1989-02-14 1990-08-27 Tomotoshi Tokuno 3相高効率発電機
JPH0591787A (ja) * 1991-09-26 1993-04-09 Meidensha Corp ブラシレス直流モータの制御装置
JPH10150795A (ja) 1996-11-15 1998-06-02 Toshiba Corp インバータ装置
JP2009089462A (ja) * 2007-09-27 2009-04-23 Ihi Corp 電動機付ターボチャージャ制御システム
JP2009100558A (ja) * 2007-10-17 2009-05-07 Panasonic Corp モータ駆動用インバータ制御装置
JP2010193537A (ja) * 2009-02-16 2010-09-02 Panasonic Corp モータ駆動制御装置および空気調和機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026270A1 (fr) * 2006-08-31 2008-03-06 Mitsubishi Electric Corporation Dispositif de commande de moteur électrique, et dispositif de commande de compresseur
CN101051784B (zh) * 2007-05-11 2010-05-26 哈尔滨工业大学 一种宽调速范围永磁磁阻式同步电机及其调速方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214452A (ja) * 1989-02-14 1990-08-27 Tomotoshi Tokuno 3相高効率発電機
JPH0591787A (ja) * 1991-09-26 1993-04-09 Meidensha Corp ブラシレス直流モータの制御装置
JPH10150795A (ja) 1996-11-15 1998-06-02 Toshiba Corp インバータ装置
JP2009089462A (ja) * 2007-09-27 2009-04-23 Ihi Corp 電動機付ターボチャージャ制御システム
JP2009100558A (ja) * 2007-10-17 2009-05-07 Panasonic Corp モータ駆動用インバータ制御装置
JP2010193537A (ja) * 2009-02-16 2010-09-02 Panasonic Corp モータ駆動制御装置および空気調和機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181181A1 (ja) * 2022-03-23 2023-09-28 三菱電機株式会社 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ

Also Published As

Publication number Publication date
EP2675061B1 (en) 2019-05-01
EP2675061A1 (en) 2013-12-18
CN103053110A (zh) 2013-04-17
JP2012165594A (ja) 2012-08-30
CN103053110B (zh) 2016-02-10
EP2675061A4 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP4969653B2 (ja) 交流直流変換装置及びその装置を用いた圧縮機駆動装置並びに空気調和機
JP5195444B2 (ja) ブラシレスdcモータの駆動装置並びにこれを用いた冷蔵庫及び空気調和機
JP6072937B2 (ja) 直流電源装置、およびそれを備えた冷凍サイクル適用機器
JP2008061409A (ja) モータ制御装置
JP5624873B2 (ja) 空気調和機
EP3182574B1 (en) Converter unit, drive controller, motor, and compressor
JP4340518B2 (ja) 負荷駆動装置
WO2013099203A1 (ja) モータインバータ装置
CN105322838A (zh) 一种实现快速退磁的三电平电机功率变换器
WO2012108158A1 (ja) モータ駆動装置
JP5402311B2 (ja) モータ駆動装置およびこれを用いた電気機器
JP5045622B2 (ja) 電力変換装置
JP2016167901A (ja) 同期機用制御装置、圧縮機、電気機器およびプログラム
WO2013179771A1 (ja) コンバータ装置及び、これを用いたモータ駆動装置
JP5521405B2 (ja) モータ駆動装置およびこれを用いた電気機器
JP2015065754A (ja) モータシステム
KR20110077801A (ko) 직류전원 공급장치 및 직류전원 공급방법
JP2015091186A (ja) モータインバータ装置
CN111034011B (zh) 电动机驱动装置和使用它的冷藏库
KR20000050410A (ko) 비엘디씨 모터의 토크리플 저감방법
JP2016005348A (ja) モータインバータ装置
JP5168931B2 (ja) 電動機制御装置
JP2016059085A (ja) モータの駆動装置およびこれを用いた電気機器
JP2004248395A (ja) モータ駆動装置
JP2014233105A (ja) モータインバータ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002262.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744746

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012744746

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE