WO2012108146A1 - 空調用複合機能ドア及び車両用空調装置 - Google Patents

空調用複合機能ドア及び車両用空調装置 Download PDF

Info

Publication number
WO2012108146A1
WO2012108146A1 PCT/JP2012/000657 JP2012000657W WO2012108146A1 WO 2012108146 A1 WO2012108146 A1 WO 2012108146A1 JP 2012000657 W JP2012000657 W JP 2012000657W WO 2012108146 A1 WO2012108146 A1 WO 2012108146A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
air
door
wall surface
heat exchanger
Prior art date
Application number
PCT/JP2012/000657
Other languages
English (en)
French (fr)
Inventor
荒木 大助
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Priority to CN201280004901.7A priority Critical patent/CN103298633B/zh
Priority to BR112013018266-0A priority patent/BR112013018266A2/pt
Priority to JP2012556774A priority patent/JP5980692B2/ja
Publication of WO2012108146A1 publication Critical patent/WO2012108146A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H1/00671Damper doors moved by rotation; Grilles
    • B60H1/00685Damper doors moved by rotation; Grilles the door being a rotating disc or cylinder or part thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00857Damper doors, e.g. position control characterised by the means connecting the initiating means, e.g. control lever, to the damper door

Definitions

  • the present invention is, for example, used in an HVAC unit mounted on a vehicle and has a configuration of an air conditioning door having a composite function, and an air conditioning composite function door and an operation unit for adjusting a rotation ratio of the air conditioning composite function door.
  • the present invention relates to a configuration of a vehicle air conditioner including at least.
  • the HVAC unit mounted on the vehicle is required to reduce the manufacturing cost, and accordingly, a cylindrical rotary door having both an air mix function and a blowing mode switching function is accommodated.
  • the HVAC unit having the configuration is already known from Patent Document 1 which is a patent application filed by the applicant of the present application and Patent Document 2 which is a patent application of another company.
  • the HVAC unit shown in Patent Document 1 includes a blow mode switching dial disposed in the operation unit.
  • the blow mode switching dial is picked with a finger and appropriately rotated, thereby rotating the vent mode and the bi-directional mode. Switching between level mode, foot mode, differential foot mode and differential mode can be performed at the same time as adjusting the ratio of cold air and hot air sent to the downstream side of the air flow path It has become.
  • the rotary door shown in Patent Document 2 is not specifically shown as to how it is manufactured, and the rotary door is also rotated through the control means for the operation on the touch panel. Since it is disclosed to control, the rotary door shown in Patent Document 2 also has room for reduction in the number of parts.
  • the present invention includes an air conditioning composite function door, an air conditioning composite function door, and an operation unit that adjusts the rotation rate of the air conditioning composite function door in order to further reduce costs by reducing the number of parts.
  • An object is to provide a vehicle air conditioner.
  • the air-conditioning composite function door according to the present invention is supplied to the vehicle interior and a temperature adjustment function that adjusts the ratio of cooling air and heating air obtained by air-conditioning means for air introduced from inside or outside the vehicle.
  • the peripheral surface portion that is configured in a cylindrical shape having a space inside and forms the outer shape of the airconditioning composite function door is provided.
  • the peripheral surface portion includes three opening portions and three wall surface portions disposed between the opening portions, and the three opening portions include a central axis of the peripheral surface portion.
  • the opening edge of the first opening is A wall surface between the second opening and the third opening is located within a range shifted to be symmetrical with the other side of the quasi-plane (Claim 1). .
  • “Cylindrical” means that the peripheral surface part is “cylindrical” with the same diameter diameter from end to end in the axial direction, and the diameter of the middle part in the axial direction relative to the closed parts on both sides in the axial direction. Also included are “barrels” in which the dimensions are expanded, and “drums” in which the diameter dimension of the axial middle part is smaller than the closed parts on both sides in the axial direction.
  • “Within range” means a wall surface portion between the second opening and the third opening on the opening edge where the first opening edge is moved to be symmetrical with respect to the other side of the reference plane. It also includes the case where the edge of is located.
  • an opening portion having a size of 1/8 when the circumference of the peripheral surface portion is divided into eight, and 1/4 when the circumference of the peripheral surface portion is divided into eight equal portions.
  • Wall surface portion first large wall surface portion having a size of 1/8
  • an opening portion second opening portion having a size of 1/8 when the circumference of the peripheral surface portion is equally divided into eight, and the circumference of the peripheral surface portion.
  • these arrangements are in order of the first opening, the first large wall surface, the second opening, the small wall, the third opening, and the second large wall. Return to the opening.
  • the inner side surface of the third opening on the small wall surface side has a planar shape along two parallel surfaces connecting the opening edge of the first opening and the edge of the small wall surface. Further, the inner surface of the second and third openings on the large wall surface side and the inner surfaces of the first and second wall surfaces are planar so as to follow the two parallel surfaces.
  • the outer surface and inner surface of the peripheral surface portion and the opening forming the outer shape of the door body of the air conditioning composite function door are formed by injecting a material such as a resin material into a gap that is formed by combining at least two mold materials. Since the mold can be moved by moving it away from the mold material, it is possible to integrally form the air conditioning composite function door, and the relative number of parts constituting the air conditioning composite function door can be reduced. It is done.
  • the composite function door for air conditioning according to the present invention may be provided with a side opening that communicates with the internal space in a closed portion that closes both sides in the axial direction of the peripheral surface portion (Claim 2). .
  • a side opening that communicates with the internal space in a closed portion that closes both sides in the axial direction of the peripheral surface portion (Claim 2).
  • the air conditioning composite function door according to the present invention may be configured such that the internal space is partitioned by a partition portion that expands in the radial direction of the central axis (claim 3).
  • a partition inside the air-conditioning multifunction door air in different temperature and humidity conditions can be blown into the vehicle compartment from multiple adjacent outlets, such as left and right independent temperature control and zone air conditioning. Can be divided so as to flow in separate flow paths for the air toward each outlet.
  • the area of the partition part may be smaller than the area of the blocking part.
  • the composite function door for air conditioning according to the present invention may be provided with a notch continuous with the opening or a through hole not continuous with the opening in the wall surface (Claim 5).
  • the design for forming such side openings, notches, and through holes in air-conditioning composite function doors can be formed secondary to the wall surface during the die-cutting process using the mold material. It has become.
  • the vehicle air conditioner according to the present invention can heat a cooling heat exchanger capable of cooling air introduced from inside or outside the vehicle, and a part or all of the air that has passed through the cooling heat exchanger.
  • a functional door is accommodated, and the temperature control of the air blown out from each outlet and the switching of the blowing mode are simultaneously performed by displacing the rotational position of the air conditioning composite function door (claim 6). Thereby, the number of parts of the vehicle air conditioner can be reduced.
  • the vehicle air conditioner according to the present invention further includes an intake door, an intake door drive mechanism that drives the intake door, a composite function door drive mechanism that drives the composite function door for air conditioning, and an operation unit.
  • the intake door drive mechanism and the multifunction door drive mechanism are interlocked, and one operation at the operation section is transmitted to both the intake door drive mechanism and the multifunction door drive mechanism. You may comprise (Claim 7).
  • switching of the blowing mode, temperature control of the air blown out from each outlet, and switching of the inside air introduction mode, the outside air introduction mode, and both the inside and outside air introduction modes are performed by an operation such as a rotation operation of one operation unit.
  • the transmission of rotational power from the operation unit to the drive mechanism of the multifunction door for air conditioning and the intake door can be handled by only one set of wire cables. Furthermore, the number of parts can be reduced.
  • the opening edge of the first opening on the circumference of the peripheral surface is moved to the other side of the reference surface so as to be plane-symmetric. Since the wall surface portion between the second opening and the third opening is located within the range, the second opening and the third opening are inserted through the first opening.
  • the mold that reaches the wall surface in the middle can be moved in a direction orthogonal to the reference surface, and is inserted from the first opening to the wall surface between the first opening and the second opening.
  • the reaching mold and the mold inserted from the third opening and reaching the wall surface between the third opening and the first opening can also move in the direction perpendicular to the reference plane.
  • the side opening, the notch, and the through hole are formed of the mold material.
  • the degree of freedom in designing the HVAC unit can be improved while preventing an increase in the manufacturing cost of the functional door, and thus the vehicle air conditioner that uses this air conditioning composite function door.
  • the HVAC unit by using the HVAC unit with an air conditioning composite function door having a relatively small number of parts, the number of parts of the vehicle air conditioner can be reduced and the manufacturing cost can be reduced. it can.
  • the seventh aspect of the present invention switching between the blowing mode, temperature control of the air blown out from each outlet, switching between the introduction of the inside air, the introduction of only the outside air, and the introduction of both the inside and outside air, one dial, etc. It is possible to perform the operation by the operation unit, and it is possible to transmit the power of each door from the operation unit to the air-conditioning composite function door and the intake door drive mechanism with only one set of wire cables. Therefore, since the number of operation units and the number of wire cables can be relatively reduced, the number of parts can be further reduced as a whole of the vehicle air conditioner, and the manufacturing cost of the vehicle air conditioner can be further reduced. Can do.
  • FIG. 1 is a cross-sectional view showing an internal configuration of an HVAC unit of a vehicle air conditioner according to the present invention.
  • FIG. 2 is an external view and operation of the HVAC unit for showing the configuration of the drive mechanism for driving the multifunction door and intake door of the vehicle air conditioner and the configuration for interlocking the dial of the operation unit and the drive mechanism.
  • FIG. FIG. 3 is an explanatory diagram for illustrating a display mode arranged around the dial of the operation unit.
  • FIG. 4 shows a vent mode in the above vehicle air conditioner
  • FIG. 4 (a) shows the position of the dial in this vent mode
  • FIG. 4 (b) shows the intake door and the composite in this vent mode. The location of the functional door and the air flow are shown.
  • FIG. 5 shows the bi-level mode in the above vehicle air conditioner
  • FIG. 5 (a) shows the position of the dial in this bi-level mode
  • FIG. 5 (b) shows the intake in this bi-level mode.
  • the location of the door and the multifunction door and the air flow are shown.
  • FIG. 6 shows the foot mode in the above vehicle air conditioner
  • FIG. 6 (a) shows the position of the dial in this foot mode
  • FIG. 6 (b) shows the intake door and the composite in this foot mode.
  • FIG. 7 shows the differential foot mode in the above vehicle air conditioner
  • FIG. 7 (a) shows the position of the dial in this differential foot mode
  • FIG. 7 (b) shows the intake in this differential foot mode.
  • FIG. 8 shows the differential mode in the above vehicle air conditioner
  • FIG. 8 (a) shows the position of the dial in this differential mode
  • FIG. 8 (b) shows the intake door and the composite function door in this differential mode. Location and airflow are shown.
  • FIG. 9 shows a stage in which the composite function door is formed in a gap formed by combining the mold materials in the process of forming the composite function door of the first embodiment constituting the vehicle air conditioner using the two mold materials.
  • FIG. 10 shows a stage in which the composite function door appears by sliding the mold material in the process of forming the composite function door of the first embodiment, which constitutes the vehicle air conditioner of the above, with two mold materials.
  • FIG. 11 illustrates a configuration of a modified example in which a partition portion is formed in the internal space, a notch is formed in the opening portion, and a through hole is formed in the closing portion with respect to the multifunction door described above.
  • FIG. 12 shows a composite function door that is configured by sliding the structure of the composite function door of the second embodiment that constitutes the vehicle air conditioner and the mold for integrally forming the composite function door of the second embodiment. It is explanatory drawing shown in the state.
  • FIG. 13 shows the structure of the multifunction door according to the third embodiment of the above-described vehicle air conditioner and the mold for integrally molding the multifunction door of the third embodiment, and the multifunction door appears. It is explanatory drawing shown in the state.
  • FIG. 14 shows the configuration of the composite function door of the fourth embodiment that constitutes the above vehicle air conditioner and the mold for integrally molding the composite function door of the fourth embodiment. It is explanatory drawing shown in the state.
  • Example 1 as an example of an embodiment of a vehicle air conditioner of the present invention and Example 2, Example 3 and Example 4 which are modified examples of the multifunctional door among Example 1 are attached. Each will be described with reference to the drawings.
  • HVAC unit 2 that constitutes the main configuration of the vehicle air conditioner 1.
  • the HVAC unit 2 corresponds to an example of the embodiment of the present invention.
  • the HVAC unit 2 is of a vertical center-placed fully integrated type mounted on a center console portion of a vehicle.
  • the HVAC unit 2 is disposed closer to the vehicle compartment side than the partition plate that partitions the engine room and the vehicle compartment, and basically includes the intake portion 3 and the unit main body 8.
  • the intake portion 3 is disposed on one side of the vehicle in the left-right direction with respect to the unit main body 8, and the outside air introduction port 4 and the inside air introduction port 5 are open to the intake case 6,
  • An intake door 7 for appropriately selecting / introducing inside / outside air from the inside / outside air introduction ports 4, 5 is accommodated in the intake case 6.
  • the unit body 8 includes a blower 11 for sending the air introduced from the inside / outside air introduction ports 4 and 5 of the intake portion 3 to the downstream side in a case 10 in which an air flow path 9 is formed.
  • a cooling heat exchanger 12 such as an evaporator that cools the air that has been sent, and a heating heat exchanger 13 such as a heater core that heats the air cooled by the cooling heat exchanger 12 are housed.
  • the case 10 of the unit main body 8 may be a separate body from the intake case 6 of the intake section 3 or may be integrally formed.
  • the air blower 11 is comprised in this embodiment from the fan called a centrifugal multiblade fan (sirocco fan), and the motor which drives this fan, and as FIG. 1 shows,
  • the intake case 6 is provided with an opening that opens in the left-right direction of a vehicle such as an automobile, and is inserted and arranged in a lying state so that the drive shaft of the motor follows the opening in the left-right direction of the vehicle.
  • the cooling heat exchanger 12 is erected so that all the air introduced in the air flow path 9 passes through.
  • the cooling heat exchanger 12 is formed by alternately corrugated fins and tubes, for example.
  • the heating heat exchanger 13 is formed by alternately laminating a plurality of corrugated fins and tubes, for example, and has a tank at the longitudinal end of the tube.
  • the heating heat exchanger 13 includes a pipe 17a, Warm water such as cooling water of the traveling engine circulates through 17b.
  • the unit body 8 includes a first flow path 18 in which the cooling air cooled by the cooling heat exchanger 12 in the air flow path 9 is heated by the heating heat exchanger 13 to become heated air,
  • the cooling air cooled by the cooling heat exchanger 12 has a second flow path 19 that remains as the cooling air by bypassing the heating heat exchanger 13.
  • the unit main body 8 has a differential blowout opening 20, a vent blowout opening 21, and a foot blowout opening 22 in the case 10 on the downstream side of a door storage area 29 described below of the air flow path 9. Open appropriately.
  • the side vent blowing opening may be further opened at a predetermined position with respect to the case 10.
  • the air flow path 9 has the differential blowout opening 20, the vent blowout opening 21, and the foot blowout opening 22 at one end (leeward side), and a multi-function door 30 described later is rotatably housed. Further, it has a differential blowing passage 23, a vent blowing passage 24, and a foot blowing passage 25 with the door storage area 29 as the other end (windward side).
  • the differential blowing passage 23 and the vent blowing passage 24 are partitioned by an inner wall portion 26a extending substantially in the vertical direction of the vehicle, and the door storage area 29 of the differential blowing passage 23 and the vent blowing passage 24 is provided.
  • the opening on the side is arranged in the front-rear direction of the vehicle across the inner wall portion 26a, and the opening on the door storage area 29 side of the vent blowing passage 24 and the foot blowing passage 25 is centered on the boundary point 27. It is arranged side by side in a substantially longitudinal direction and a substantially vertical direction of the vehicle.
  • the case continues on the air downstream side of the cooling heat exchanger 12 of the case 10 and the opening on the opposite side of the differential blowing passage 23 from the differential blowing opening 20.
  • the portion 10a is formed in an arc shape along the circumference of a certain circle, and the inner wall portion 26b extending from the side surface of the heat exchanger 13 for heating to the substantially upper side of the vehicle along the vertical direction of the vehicle has an upper end thereof. Extends to the circumference of the circle. Further, the lower end of the inner wall 26a that divides the differential blow passage 23 and the vent blow passage 24 extends to the circumference of the circle, and the boundary point 27 is located on the circumference of the circle. Yes.
  • the inner wall 28 that divides the heat exchanger 13 for heating and the foot blowing passage 25 extends to the circumference of the circle substantially along the upper and lower directions of the vehicle, and then follows the circumference of the circle.
  • an opening on the side opposite to the foot blowing opening 22 of the foot blowing passage 25 is formed between the end of the vehicle and the boundary point 27.
  • a cylindrical door storage area 29 is defined on the upstream side, and the door storage area 29 is substantially the same as the circumference of the circle (slightly so as to be slidable with respect to the case portion 10a, the inner wall portion 28, etc.). The dimension is small.)
  • the multifunctional door 30 which makes a circle an outer peripheral surface is accommodated.
  • This multi-function door 30 is also referred to as a rotary door, for example, and is a blow mode switching function for switching the blow mode between the vent mode, the bi-level mode, the foot mode, the differential foot mode, and the foot mode, And a temperature adjusting function for adjusting the ratio of the air that has passed through the heat exchanger 13 and the air that has bypassed the heating heat exchanger 13.
  • the multifunction door 30 includes a door body 33 including a peripheral surface portion 31 and closed portions 32 and 32 that close both sides of the peripheral surface portion 31 in the axial direction. ing.
  • the peripheral surface portion 31 basically has three openings 34, 35, 36, a first large wall surface portion 37, a small wall surface portion 38, as shown in FIGS.
  • the second large wall surface portion 39 is included.
  • each opening part 34,35,36 is a range from I line to II line at the time of dividing the circumference of the peripheral surface part 31 into 8 parts by VIII line, as shown in FIG. 10, IV line
  • the range from the V line to the V line and the range from the VI line to the VII line are each 1/8 of the circumference.
  • the first and second large wall surface portions 37 and 39 are in a range from the II line to the IV line when the circumference of the peripheral surface portion 31 is equally divided into 8 lines from the I line.
  • the range from the VII line to the I line is each 1/4 of the circumference.
  • the small wall surface portion 38 is a range from the V line to the VI line when the circumference of the peripheral surface portion 31 is divided into 8 equal parts from the I line to the VIII line.
  • the size is 8. That is, the first opening 34, 35, 36 and the wall surfaces 37, 38, 39 are the first opening 34, the first large wall surface when the first opening 34 is used as a starting point and an ending point.
  • the portion 37, the second opening 35, the small wall surface portion 38, the third opening portion 36, the second large wall surface portion 39, and the first opening portion 34 are arranged in this order.
  • the drive mechanism 40 basically includes a gear 41 formed on the multifunction door 30, and a main cam 42 and a relay cam 48 disposed on the outer surface of the case 10.
  • the gear 41 is formed at the center point of a circle of the outer surface of at least one closing part 32 of the multifunction door 30 and has a predetermined number of teeth.
  • the rotation of the gear 41 is transmitted as it is to the closing portion 32 and thus to the multifunction door 30 by being molded integrally with the closing portion 32 or the like.
  • the main cam 42 is fixed to a rotating shaft 43 that is pivotally supported by the case 10 so as to be rotatable integrally with the rotating shaft 43, and a gear 44 is formed at a peripheral portion in the radial direction of the rotating shaft 43. .
  • the gear 44 is engaged with the gear 41 so that the rotation of the main cam 42 can be transmitted to the gear 41.
  • the main cam 42 is slidably engaged with a pin sliding portion 49 of the relay cam 48 via a pin 45.
  • the main cam 42 has an extending portion extending in two forks, a pin 45 is provided at the tip of one of the extending portions, and a wire cable 53 to be described later is provided at the tip of the other extending portion.
  • a holding portion 46 for holding is provided.
  • the relay cam 48 has a linear plate shape, and is connected to the rotary shaft 47 of the intake door 7 on one side in the longitudinal direction thereof, and can rotate integrally with the rotary shaft 47 and thus the intake door 7. It is like that.
  • the relay cam 48 is formed with a pin sliding portion 49.
  • the pin sliding portion 49 is on the side of the rotating shaft 47 from the other side in the longitudinal direction which is opposite to the side connected to the rotating shaft 47. It has been extended to.
  • the pin sliding portion 49 may be a through-hole or a depression, and the width in the short direction is that the pin 45 engages without rattling while moving in the pin sliding portion 49. Therefore, the outer diameter of the pin 45 is the same as or slightly larger than the outer diameter of the pin 45.
  • the main cam 42 rotates about the rotation shaft 43 to rotate the multifunction door 30 via the gear 44 and the gear 41, and at the same time, the pin 45 moves within the pin sliding portion 49 of the relay cam 48.
  • the relay cam 48 is moved while being in sliding contact with the inner edge of the pin sliding portion 49, and the relay cam 48 can be rotated around the rotation shaft 47, so that the intake door 7 can be rotated.
  • the holding portion 46 holds the tip portion of the wire cable 53 drawn from the dial 52 constituting the operation portion 51, so that the rotation of the dial 52 acts as a pulling or pushing action on the holding portion 46. It has become.
  • the main cam 42 when shifting from the vent mode to the bi-level mode, the main cam 42 is moved forward of the vehicle by the wire cable 53 as shown in the arrangement change from FIG. 4B to FIG. 5B.
  • the multi-function door 30 is rotated clockwise, and the pin 45 slides in the pin sliding portion 49 while pushing the inner edge surface of the pin sliding portion 49 of the relay cam 48 toward the rear of the vehicle.
  • the intake door 7 connected to the relay cam 48 is rotated counterclockwise.
  • the transmission of rotational power by the drive mechanism 40 to the multifunction door 30 and the intake door 7 is substantially the same even when shifting from the bi-level mode to the foot mode, from the foot mode to the differential foot mode, and from the differential foot mode to the differential mode. is there.
  • the main cam 42 is pulled to the rear of the vehicle by the wire cable 53 as shown in the layout change from FIG. 5 (b) to FIG. 4 (b).
  • the multi-function door 30 is rotated counterclockwise, and the pin 45 slides in the pin sliding portion 49 while pushing the inner edge surface of the pin sliding portion 49 of the relay cam 48 forward of the vehicle.
  • the intake door 7 connected to is rotated clockwise. The transmission of rotational power by the drive mechanism 40 to the multifunction door 30 and the intake door 7 is substantially the same even when shifting from the foot mode to the bi-level mode, from the differential foot mode to the foot mode, and from the differential mode to the differential foot mode. is there.
  • the display around the dial 52 includes a plurality of display portions 55, 56, 57, 58, 59, 60, 61, 62, and 63 arranged in a superimposed manner with the dial 52 as the center. It has become.
  • display units 55, 56, 57, 58, and 59 indicating the set mode among the blowing modes are arranged in the vicinity of the dial 52 in accordance with the switching order of the blowing modes.
  • the display unit 55 displays the vent mode
  • the display unit 56 displays the bi-level mode
  • the display unit 57 displays the foot mode
  • the display unit 58 displays the differential foot mode
  • the display unit 59 displays the differential mode. is doing.
  • an arc-shaped strip-shaped display section 60 having a predetermined width is disposed at a position farther from the dial 52 than these display sections 55 to 59.
  • This display unit 60 shows the temperature setting status and temperature controllable region of the blown air by the air mix from full cool to full hot, and is cooled by the cooling heat exchanger 12 and heated by the heat exchanger 13.
  • the display portion 60a indicating the presence of the cooling air that bypasses the air and the display portion 60b indicating the presence of the heated air heated by the heating heat exchanger 13 are separately applied. For example, blue is used for the display unit 60a, and red is used for the display unit 60b. As shown in FIG.
  • the display unit 60 a has the same width as the display unit 60 at a portion on the reference line X ⁇ b> 1 located on the left side of the dial 52 (the display unit 55 side in the vent mode). However, as it goes toward the reference line X3 located on the upper side of the dial 52 in the drawing (foot mode display unit 57 side), it gradually becomes thinner toward the outer peripheral side of the display unit 60, and at a position beyond the reference line X3. It is gone.
  • the range from the reference line X1 to the reference line X3 is an area in which the temperature of the blown air can be controlled, and the reference line located on the right side of the dial 52 in the figure (the differential mode display 59 side) from the reference line X3.
  • the range up to X4 indicates a full hot region.
  • a display unit 61 made of REC characters is arranged at a position on the axis of the reference line X1 at a position farther from the dial 52 than the display unit 60, and FRESH is positioned at a position on the axis of the reference line X3.
  • a display unit 62 made up of characters is arranged, and a display unit 63 having an arc shape connecting the display unit 61 and the display unit 62 and having arrows on both sides is arranged.
  • the display unit 61 shows that it is in the inside air introduction (rec) mode in which only the inside air is introduced, and the display unit 62 shows that it is in the outside air introduction (fresh) mode in which only outside air is introduced.
  • the display units 61 and 62 may be displayed with symbols and other symbols instead of characters.
  • the range of the reference line X2 arranged between the reference line X1 and the display unit 55 and the display unit 56 is an AC-on region
  • the dial 52 is between the reference line X1 and the reference line X2.
  • an AC-on switch may be provided separately from the dial 52 in the operation unit 51.
  • the dial 52 it is possible to switch the blowing mode, control the temperature of the blowing air, and switch between the REC mode, the fresh mode, and the inside / outside air introduction mode.
  • the number of wire cables 53 extending from the operation unit 51 to the drive mechanism 40 can be reduced to one (one set) corresponding to the number of dials 52, so that the entire vehicle air conditioner As a result, it is possible to delete the number of component parts.
  • FIG. 4 shows the vent mode, which also indicates that the blown air temperature setting is the full cool mode, and the inside / outside air selection is the REC mode. That is, when the dial 52 is rotated to the position shown in FIG. 4A, the intake door 7 closes all the outside air introduction ports 4 and all the inside air introduction ports 5 as shown in FIG. 4B. Open. Further, in the multifunction door 30, the first large wall surface portion 37 closes all the downstream sides of the heat exchanger 13 for heating of the first flow path 18, and the first opening 34 is the second flow path 19. And the second large wall surface portion 39 blocks all the windward side of the differential blowing passage 23, and the small wall surface portion 38 blocks all the windward side of the foot blowing passage 25, and the third opening.
  • the part 36 is connected to the windward side of the vent blowing passage 24 in a fully opened state.
  • all of the air introduced into the air flow path 9 from the inside air introduction port 5 passes through the cooling heat exchanger 12, and then all of the air is used for heating. Without being heated by the heat exchanger 13, it flows into the multi-function door 30 from the first opening 34, enters the vent blowing passage 24 through the third opening 36, and enters the vent blowing opening 21. It is blown out into the passenger compartment through a duct (not shown).
  • the refrigeration cycle may be operated, and the air introduced into the air flow path 9 may be cooled by the cooling heat exchanger 12.
  • the bi-level mode is shown, which indicates that the blowout air temperature setting is an air mix mode in which both cooling air and heated air are taken in, and that the inside / outside air selection mode is an inside / outside air introduction mode. It has become. That is, when the dial 52 is rotated to the position shown in FIG. 5A, as shown in FIG. 5B, the intake door 7 opens the inside air introduction port 5 relatively large, and the outside air introduction port. 4 is opened relatively small. Further, the multifunction door 30 has a first large wall surface portion 37 with a part on the leeward side of the first flow path 18 from the heat exchanger 13 for heating and a part of the second flow path 19 on the leeward side.
  • the first opening 34 is connected to a part of the second flow path 19 on the leeward side, and the second opening 35 is more than the heating heat exchanger 13 of the first flow path 18.
  • the second large wall surface portion 39 is connected to a part on the leeward side, blocks the entire windward side of the differential blowing passage 23 and covers a part of the windward side of the vent blowing passage 24.
  • the third opening 36 is connected to both the part on the windward side of the vent blowing passage 24 and the part on the windward side of the foot blowing path 25 over a part of the blowing passage 25.
  • FIG. 6 shows the foot mode, which also indicates that the blown air temperature setting is the full hot mode, and the inside / outside air selection mode is the both inside / outside air introduction mode. That is, when the dial 52 is rotated to the position shown in FIG. 6A, the intake door 7 opens the inside air introduction port 5 and the outside air introduction port 4 in a substantially half-open state as shown in FIG. 6B. Release at. Further, in the multifunction door 30, the first large wall surface portion 37 blocks all the leeward side of the second flow path 19, and the second opening 35 is the heat exchanger 13 for heating the first flow path 18. The second large wall surface portion 39 is connected to the leeward side of the differential blowing passage 23 and the leeward side of the vent blowing passage 24, so that the third opening 36 is fully open.
  • FIG. 7 shows the differential foot mode, which also indicates that the blown air temperature setting is the full hot mode and the inside / outside air selection mode is the both inside / outside air introduction mode. That is, when the dial 52 is rotated to the position shown in FIG. 7A, as shown in FIG. 7B, the intake door 7 opens the outside air introduction port 4 relatively large and introduces the inside air. Open the mouth 5 relatively small. Further, in the multifunction door 30, the first large wall surface portion 37 blocks all the leeward side of the second flow path 19, and the second opening 35 is the heat exchanger 13 for heating the first flow path 18.
  • the vent blowing passage 24 is connected to the leeward side of the defleeting passage 23 while the second large wall surface portion 39 is applied to a part of the leeward side of the differential blowing passage 23 and a part of the leeward side of the foot blowing passage 25.
  • the first opening 34 is connected to a part of the windward side of the differential blowing passage 23, and the third opening 36 is connected to a part of the windward side of the foot blowing path 25. Is done. Thereby, as shown by the arrow in FIG. 7B, all of the air introduced into the air flow path 9 from both the outside air introduction port 4 and the inside air introduction port 5 passes through the cooling heat exchanger 12.
  • FIG. 8 shows the differential mode, which also indicates that the blown air temperature setting is the full hot mode and the inside / outside air selection is the fresh mode. That is, when the dial 52 is rotated to the position shown in FIG. 8A, the intake door 7 closes all the inside air introduction ports 5 and all the outside air introduction ports 4 as shown in FIG. 8B. Open. Further, in the multifunction door 30, the first large wall surface portion 37 blocks all the downstream side of the second flow path 19, and the second opening portion 35 is in a fully open state with the windward side of the first flow path 18. The second large wall portion 39 is connected to block all the windward side of the vent blowing passage 24 and the windward side of the foot blowing passage 25, and the first opening 34 is connected to the windward side of the differential blowing passage 23.
  • the second opening 35 is used for the air that has passed through the first flow path 18 to flow into the multifunction door 30, and the third opening 36 is a multifunction function.
  • the first opening 34 is used as an outlet for the air from the inside of the door 30, and the air that has passed through the second flow path 19 according to the position of the multifunction door 30 is the first opening 34. It is used to flow into the inside or to let out air from the inside of the multifunction door 30.
  • the composite function door 30 is integrally molded as shown in FIGS. 9 and 10, and is formed by a technique such as injection molding using at least the molds 65, 66, 67 and 68, for example. It has a shape.
  • the first opening 34 includes the central axis P of the peripheral surface portion 31 and is orthogonal to the reference surfaces S1 to S4 according to the arrangement configuration of the wall surface portions 37, 38, and 39 and the ratio of the peripheral surface portion 31.
  • the reference plane L extending in the direction is taken, the reference plane L is arranged on one side of the reference plane L, and the reference plane L is positioned on the second and third openings 35 and 36 side with respect to the first opening 34.
  • the first opening 34 and the second and third openings 35 and 36 are arranged so as to draw a series of arcs.
  • the inner side surfaces 70 and 71 of the first opening 34 on the first large wall surface 37 side and the second large wall surface 39 side are the opening outer edge of the first opening 34 and the second opening 35.
  • the reference surfaces S1 and S2 connecting the opening outer edge of the third opening 36 are taken, the reference surfaces S1 and S2 become part of the reference surface S1 and S2 and the inner side surface 70 of the first opening 34 is provided.
  • the inner surface 72 connected to both the inner surface 71 and the inner surface 71 is a flat surface extending in parallel with the reference surfaces S1 and S2.
  • the inner side surface 73 of the second opening 35 on the side of the small wall surface 38 and the inner side surface 74 of the third opening 36 on the side of the small wall surface 38 are part of the reference surfaces S1 and S2. Further, the inner surface 75 of the second opening 35 on the first large wall surface 37 side passes through the outer edge of the opening on the first large wall surface 37 side and extends in parallel with the reference surfaces S1 and S2.
  • the inner side surface 76 that is a part of the reference surface S3 and that is connected to both the inner side surface 73 and the inner side surface 75 of the second opening 35 is referred to as the reference surfaces S1 and S3. It is a plane extending in parallel.
  • the inner side surface 77 on the second large wall surface 39 side of the third opening 36 passes through the outer edge of the opening on the second large wall surface 39 side and extends in parallel with the reference surfaces S1 and S2.
  • the inner side surface 78 which is a part of the reference surface S4 and is connected to both the inner side surface 74 and the inner side surface 77 of the third opening 36 is the reference surfaces S2, S4. It is a plane extending in parallel with the.
  • the first large wall surface portion 37 is a part of the reference surface S3 with respect to the inner surface 80 connected to the inner surface 75 of the second opening 35.
  • the second large wall surface 39 is a part of the reference surface S4 with respect to the inner surface 81 connected to the inner surface 77 of the third opening 36.
  • the inner surface 80 of the large wall surface portion 37 and the inner surface 81 of the second large wall surface portion 39 extend in a direction orthogonal to the reference surface L.
  • the inner surface 80 of the first large wall surface portion 37 and the inner surfaces 70 and 75 of the openings 34 and 35 located on both sides of the first large wall surface portion 37 are the second Of the opening edge on the periphery of the peripheral surface portion 31 of the second opening 35 when projected in the direction orthogonal to the reference plane L onto the opening edge on the periphery of the peripheral surface portion 31 of the opening portion 35 of the second opening 35. It is also within the range. Further, the inner surface 81 of the second large wall surface portion 39 and the inner surfaces 71 and 77 of the openings 34 and 36 located on both sides of the second large wall surface portion 39 are the peripheral surface portion 31 of the third opening portion 36.
  • the inner surface 73 and 74 of the opening part 35 and 36 located in the both sides of this small wall part 38 and the inner surface 73 and 74 of the small wall part 38 are the opening edges on the circumference of the peripheral surface part 31 which the 1st opening part 34 has.
  • the first opening 34 falls within the range of the opening edge on the periphery of the peripheral surface 31.
  • the mold 65 includes a first opening 34, most of the outer surface of the first large wall surface portion 37, most of the outer surface of the second large wall surface portion 39, the inner surface of the small wall surface portion 38, and the internal space of the door body 33. And a protrusion 83 having the same cross-sectional shape as the opening shape of the first opening 34 is provided.
  • the mold 66 includes the second opening 35, the third opening 36, the inner surface 80 of the first large wall surface portion 37, the inner surface 81 of the second large wall surface portion 39, and the first large wall surface portion 37.
  • the protrusion 84 and the third opening have the same cross-sectional shape as the opening shape of the second opening 35, and the remaining portion of the outer surface of the second large wall surface 39.
  • the mold 65 extends to the opposite side of the projecting portion 83 from a portion for forming most of the outer surface of the first large wall surface portion 37 and most of the outer surface of the second large wall surface portion 39.
  • the mold 66 has a portion projecting outward in the width direction from the two projecting portions 84 and 85.
  • the mold 65 and the mold 66 are combined, and after injecting a resin material such as plastic or other material into the gap space formed between the mold 65 and the mold 66,
  • a resin material such as plastic or other material
  • the protruding portion 83 of the mold 65 is smoothly removed from the first opening 34, and the protruding portion 84 of the mold 66, 85 smoothly exits from the second and third openings 35 and 36, respectively.
  • the composite function door 30 can be easily manufactured as a single member, so that the number of parts is relatively reduced, and the manufacturing cost of the composite function door 30, the HVAC unit 2, and the vehicle air conditioner 1 as a whole is reduced. Can be reduced.
  • the multifunctional door 30 is good also as what divided the interior space by the 1 or 2 or more partition part 87, as FIG. 11 shows.
  • the partition portion 87 is formed by changing the projecting portion 83 of the mold 65 into a plurality of projecting portions 83a, 83b, and 83c by forming notches 86 and 86 having a predetermined width. Can do.
  • the dimension (extension direction dimension) L1 of the partition part 87 can be varied by adjusting the length L2 of the cut 86, for example.
  • the protrusions 84 and 85 of the mold 66 are not shown in the figure, the partition part 87 can be formed by making a cut and dividing the protrusions into a plurality of protrusions.
  • the multifunction door 30 may have a notch 88 formed on the circumference of the peripheral surface portion 31 (extending in the circumferential direction) with respect to the first opening 34. good.
  • a part of air can be supplied to the differential opening (diff bleed), and the temperature difference between the vent blowing air and the foot blowing air can be adjusted to a desired value. It is possible to improve the design freedom of the HVAC unit 2.
  • the notch 88 is formed, for example, with respect to the protruding portion 83 of the mold 65 with respect to the thickness L3 of a part of the protruding portion 83 when viewed from the axial direction of the peripheral surface portion 31.
  • the other openings 35 and 36 can be formed in the same manner as the notch 88 of the first opening 34 by changing the mold 66 in the same manner.
  • Each opening 34, 35, 36 is not shown, but forms an opening independent of these openings 34, 35, 36 on the circumference of the peripheral surface portion 31 (circumferential direction).
  • the formation of the opening can be dealt with by changing the protrusion 83 of the mold 65 and the protrusions 84 and 85 of the mold 66.
  • the multifunction door 30 may be formed with one or more through holes 89 communicating with the internal space in the closed portion 32.
  • the formation of the through-hole 89 in the blocking portion 32 can also be dealt with by changing the protrusions at predetermined locations of the mold for forming the blocking portion 32.
  • the composite function door 30 is manufactured by the integral molding method using the mold shown in FIGS. 9 and 10, thereby forming the partition portion 87, the notch 88, the through-hole 89, etc. Since it can be performed in the process of integrally forming the door 30 and by changing the mold, the manufacture of the multifunction door 30 having the partition portion 87, the notch 88, and the through-hole 89 can be performed easily and at low cost. Can do.
  • peripheral surface portion 31 of the multifunction door 30 has been shown as a cylindrical shape, the present invention is not limited to this, and although not shown, the diameter of the middle portion of the cylinder is inflated with respect to the blocking portions on both sides in the axial direction (barrel shape). ), The diameter dimension may be reduced (in the form of a drum), and in this respect, the present invention secures the design freedom of the multifunction door 30.
  • the design of the structure of the multifunction door 30 can be appropriately changed without departing from the gist thereof.
  • the three openings 34, 35, 36, the first large wall surface portion 37, the small wall surface portion 38, and the second large wall surface that constitute the peripheral surface portion 31 of the multifunction door 30 are illustrated as being divided into eight equal to VIII line from the I line to be 1/4 or 1/8 of the circumference. It is not limited.
  • Example 2 The modified example of the multifunction door 30 will be described as Example 2, Example 3, and Example 4 below.
  • the multifunction door 30 shown in FIG. 12 has a first opening 34, a second opening 35, a third opening 36, a first opening 34 and a second opening 35 with respect to the peripheral surface portion 31.
  • the third opening 36 is common to the first embodiment in that it is arranged separately on both sides of the reference plane L.
  • the reference surface S3 that is in contact with the inner surface 80 of the first large wall surface portion 37 and the inner surface 75 of the second opening portion 35 or the inner surface 81 of the second large wall surface portion 39 and the inner surface 77 of the third opening portion 36.
  • S4 are orthogonal to the reference plane L as in the first embodiment.
  • the first opening 34, the second opening 35, and the third opening 36 have the second opening so that the first opening 34 is symmetrical with respect to the reference plane L as an axis.
  • 35 and the third opening 36, the first opening 34, the second opening 35, and the third opening 36 are arranged so as to form a series of arcs overlapping with each other.
  • the dimension along the circumferential direction of the circumferential surface portion 31 of the small wall surface portion 38 is relatively smaller than the dimension along the circumferential direction of the first opening 34.
  • a surface S2 ′ connecting the large wall surface 39 side opening edge of the third opening 36 and the small wall surface 38 side opening edge of the third opening 36 is not orthogonal to the reference plane L and is small from the first opening 34 side. As it goes to the wall surface 38 side, it is inclined toward the central axis P side. That is, the inner side surfaces 70 and 71 of the first opening portion 34, the inner side surface 73 of the second opening portion 35, and the inner side surface 74 of the third opening portion 36 are more than a straight line orthogonal to the reference plane L.
  • the inclined surface is inclined to the central axis P side.
  • the inner surface 80 of the first large wall surface portion 37 and the inner surfaces 70 and 75 of the openings 34 and 35 located on both sides of the first large wall surface portion 37 Means that when projected in the direction orthogonal to the reference plane L onto the opening edge on the periphery of the peripheral surface portion 31 of the second opening 35, it is on the periphery of the peripheral surface portion 31 of the second opening 35. It is also within the range of the opening edge.
  • the inner surface 81 of the second large wall surface portion 39 and the inner surfaces 71 and 77 of the openings 34 and 36 located on both sides of the second large wall surface portion 39 are the peripheral surface portion 31 of the third opening portion 36.
  • the inner surface 73 and 74 of the opening part 35 and 36 located in the both sides of this small wall part 38 and the inner surface 73 and 74 of the small wall part 38 are the opening edges on the periphery of the peripheral surface part 31 which the 1st opening part 34 has.
  • the first opening 34 falls within the range of the opening edge on the periphery of the peripheral surface 31.
  • the protrusion 83 of the mold 65 has a dimension along the reference surface L smaller than the inner diameter dimension of the first opening 34 in the entire range.
  • the protrusions 84 of the mold 65 are within the range of the opening from end to end of the first opening 34, and the protrusion 84 of the mold 65 is in a reference range rather than the inner diameter dimension of the second opening 35.
  • the dimension along the surface L is small and fits within the range of the opening from end to end of the second opening 35, and the protrusion 85 of the mold 65 has a reference plane in the entire range.
  • the mold 65 Since the dimension along L is smaller than the inner diameter dimension of the third opening 36 and is within the range of the opening from end to end of the third opening 36, the mold 65 is placed on the reference surface. By moving in a direction perpendicular to L, the protrusion 83 is moved to the first position. It can be extracted from the opening 34 to the outside of the peripheral surface portion 31, and by moving the mold 66 in a direction orthogonal to the reference surface L, the protrusion 84 is extracted from the second opening 35 to the outside of the peripheral surface portion 31, The protruding portion 85 can be pulled out of the peripheral surface portion 31 from the third opening portion 35.
  • the multifunction door 30 shown in the second embodiment has a smaller wall surface portion 38 relative to the multifunction door 30 shown in the first embodiment without changing the size of the first opening 34.
  • the second opening 35 and the third opening 36 are made relatively large (or the first opening 34 is made relatively large without changing the size of the small wall surface portion 38).
  • the first large wall portion 37 and the second large wall portion 39 are made relatively small), and can be formed by integral molding.
  • the multifunction door 30 shown in FIG. 13 has three openings 34, 35, an opening 36, two large wall surfaces 37, 39, and one small wall surface 38 on the peripheral surface portion 31.
  • the first opening 34, the second opening 35, and the third opening 36 are arranged separately on both sides of the reference plane L. This is common to the first and second embodiments.
  • the reference surfaces S1 and S2 in contact with the inner side surfaces 73 and 74 of the small wall portion 38 are orthogonal to the reference surface L similarly to the first embodiment, and accordingly, the shape of the mold 65 is also the same as that of the first embodiment. It is the same.
  • first opening 34, the second opening 35, and the third opening 36 are symmetrical with respect to the first opening 34 with respect to the reference plane L as the reference position.
  • first opening 34 is moved toward the third opening 36, the first opening 34, the second opening 35, and the third opening 36 do not overlap with each other and are arranged in a series of arcs. ing.
  • a surface S4 ′ connecting the second large wall surface 39 side opening edge of the portion 34 and the second large wall surface 39 side opening edge of the third opening 36 is not orthogonal to the reference surface L, and 1 is inclined toward the side opposite to the central axis P side from the opening 34 side toward the small wall surface 38 side. That is, the inner surface 70 of the first opening 34, the inner surface 80 of the first large wall surface portion 37, and the inner surface 75 of the second opening 35 are on the side of the central axis P with respect to the straight line orthogonal to the reference plane L.
  • the inner side surface 77 is a series of linear inclined surfaces that are inclined to the side opposite to the central axis P side with respect to a straight line orthogonal to the reference plane L.
  • the inner surface 80 of the first large wall surface portion 37 and the inner surfaces 70 of the openings 34 and 35 located on both sides of the first large wall surface portion 37, 75 is the circumference of the peripheral surface portion 31 of the second opening 35 when projected onto the opening edge on the periphery of the peripheral surface portion 31 of the second opening 35 in the direction orthogonal to the reference surface L. It is also within the range of the opening edge of. Further, the inner surface 81 of the second large wall surface portion 39 and the inner surfaces 71 and 77 of the openings 34 and 36 located on both sides of the second large wall surface portion 39 are the peripheral surface portion 31 of the third opening portion 36.
  • the inner surface 82 of the small wall surface 38 and the inner surfaces 73 and 74 of the openings 35 and 36 located on both sides of the small wall surface 38 are the opening edges on the circumference of the peripheral surface portion 31 of the first opening 34.
  • the first opening 34 falls within the range of the opening edge on the periphery of the peripheral surface 31.
  • the protrusion 83 of the mold 65 has a reference surface L that is larger than the inner diameter of the first opening 34 in the entire range as in the first embodiment. Is slightly smaller and is within the range from end to end of the first opening 34, and the protrusion 84 of the mold 65 has an inner diameter of the second opening 35 over the entire range.
  • the dimension along the reference plane L is smaller than that of the second opening 35 and is within the range from end to end. Further, the protruding portion 85 of the mold 65 extends to the reference plane L in the entire range.
  • the mold 65 Since the dimension along the inside is smaller than the inner diameter dimension of the third opening 36 and within the range from end to end of the third opening 36, the mold 65 is moved in the direction orthogonal to the reference plane L. Thus, the protruding portion 83 is connected to the outside of the peripheral surface portion 31 from the first opening 34. By moving the mold 66 in a direction perpendicular to the reference plane L, the protruding portion 84 can be extracted from the second opening 35 to the outside of the peripheral surface portion 31, and the protruding portion 85 can be removed from the third opening 35. It is possible to pull out from the peripheral surface portion 31 to the outside.
  • the multifunction door 30 shown in the third embodiment is relatively thicker than the multifunction door 30 shown in the first embodiment, and the two large wall surfaces 37 and 39 are relatively thick.
  • the inner surfaces 80 and 81 of the portions 37 and 39 are all linearly inclined surfaces extending toward the first opening portion 34, so that the second opening portion 35 and the third opening portion 36 enter the peripheral surface portion 31. It can be formed by integral molding while allowing the flow of the inflowing air to easily flow toward the first opening 34 side.
  • the multifunction door 30 shown in FIG. 14 also has three openings 34 and 35, an opening 36, two large wall surfaces 37 and 39, and one small wall surface 38 with respect to the peripheral surface portion 31.
  • the first opening 34, the second opening 35, and the third opening 36 are arranged separately on both sides of the reference plane L. This is common to the first to third embodiments.
  • the reference surfaces S1 and S2 in contact with the inner side surfaces 73 and 74 of the small wall portion 38 are orthogonal to the reference surface L similarly to the first embodiment, and accordingly, the shape of the mold 65 is also the same as that of the first embodiment. It is the same as Example 3 also in the point which becomes similar.
  • first opening 34, the second opening 35, and the third opening 36 are symmetrical with respect to the first opening 34 with respect to the reference plane L as the reference position.
  • first opening 34, the second opening 35, and the third opening 36 do not overlap with each other and are arranged in a series of arcs. This is the same as the third embodiment.
  • the surface R2 connecting the second large wall surface 39 side opening edge of 34 and the second large wall surface 39 side opening edge of the third opening 36 is different from the surfaces S3 ′ and S4 ′ of the third embodiment.
  • the curve is further curved in a circular arc shape while being inclined toward the central axis P side. That is, the inner surface 70 of the first opening 34, the inner surface 80 of the first large wall surface portion 37, and the inner surface 75 of the second opening 35 are on the side of the central axis P with respect to the straight line orthogonal to the reference plane L.
  • the inner side surface 77 is a series of curved inclined surfaces that are inclined to the side opposite to the central axis P side with respect to a straight line orthogonal to the reference plane L.
  • the inner surface 80 of the first large wall surface portion 37 and the inner surfaces 70 of the openings 34 and 35 located on both sides of the first large wall surface portion 37, 75 is the circumference of the peripheral surface portion 31 of the second opening 35 when projected onto the opening edge on the periphery of the peripheral surface portion 31 of the second opening 35 in the direction orthogonal to the reference surface L. It is also within the range of the opening edge of. Further, the inner surface 81 of the second large wall surface portion 39 and the inner surfaces 71 and 77 of the openings 34 and 36 located on both sides of the second large wall surface portion 39 are the peripheral surface portion 31 of the third opening portion 36.
  • the inner surface 73 and 74 of the opening part 35 and 36 located in the both sides of this small wall part 38 and the inner surface 73 and 74 of the small wall part 38 are the opening edges on the periphery of the peripheral surface part 31 which the 1st opening part 34 has.
  • the first opening 34 falls within the range of the opening edge on the periphery of the peripheral surface 31.
  • the protrusion 83 of the mold 65 has a reference surface L that is larger than the inner diameter of the first opening 34 in the entire range as in the first embodiment. Is slightly smaller and is within the range from end to end of the first opening 34, and the protrusion 84 of the mold 65 has an inner diameter of the second opening 35 over the entire range.
  • the dimension along the reference plane L is smaller than that of the second opening 35 and is within the range from end to end. Further, the protruding portion 85 of the mold 65 extends to the reference plane L in the entire range.
  • the mold 65 Since the dimension along the inside is smaller than the inner diameter dimension of the third opening 36 and within the range from end to end of the third opening 36, the mold 65 is moved in the direction orthogonal to the reference plane L. Thus, the protruding portion 83 is connected to the outside of the peripheral surface portion 31 from the first opening 34. By moving the mold 66 in a direction perpendicular to the reference plane L, the protruding portion 84 can be extracted from the second opening 35 to the outside of the peripheral surface portion 31, and the protruding portion 85 can be removed from the third opening 35. It is possible to pull out from the peripheral surface portion 31 to the outside.
  • the composite function door 30 shown in the fourth embodiment is relatively thicker than the composite function door 30 shown in the first embodiment, and the wall thicknesses of the two large wall surface portions 37 and 39 are relatively increased.
  • the inner surfaces 80, 81 of the large wall surfaces 37, 39 are all curved surfaces, so that the second opening 35, the third opening 36 It can be formed by integral molding while making it easier for the air flowing into the peripheral surface portion 31 to flow toward the first opening 34 side.
  • the present invention includes those obtained by appropriately combining the first to fourth embodiments.
  • the opening shape on the door storage area 29 side of the differential blowout passage 23, the vent blowout passage 24, and the foot blowout passage 25 formed in the HVAC unit 2, the case portion 10a, the inner wall The degree of freedom in designing the multifunction door 30 is ensured so that the area of each opening or wall surface of the multifunction door 30 can be changed to be applied to the shape and positional relationship of the portion 28. Accordingly, the design freedom of the HVAC unit 2 can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】複合機能ドアの部品点数の削減による車両用空調装置の製造コスト削減を図るべく、複合機能ドアの周面部の形態を工夫する。 【解決手段】複合機能ドア30を構成する周面部31の周面に設けられる第1の開口部34、35、36の配置及び大きさ並びに周面部の第1の開口部34、第2の開口部35、第3の開口部36の内側面70乃至77及び第1の大壁面部37、第2の大壁面部39の内面80、81に対して、基準面S1、S2、S3、S4と同一方向に延びる平面に形成して金型66、67による型抜きを可能にして、複合機能ドア30を一体形成し、これにより、複合機能ドア30を構成する部品の数を相対的に削減する。

Description

空調用複合機能ドア及び車両用空調装置
 この発明は、例えば車両に搭載されるHVACユニットに使用されるもので複合機能を有する空調ドアの構成、並びに、この空調用複合機能ドア及びこの空調用複合機能ドアの回転割合を調整する操作部を少なくとも備えた車両用空調装置の構成に関する。
 車両に搭載されるHVACユニットは、その製造コストの削減が求められており、これに伴い、エアミックス機能と吹出モード切換機能との双方を複合的に備えた円筒状のロータリードアが収納された構成のHVACユニットについて、本願の出願人によりなされた特許出願である特許文献1や他社の特許出願である特許文献2により、既に公知となっている。
 そして、この特許文献1に示されるHVACユニットは、操作部に配置される吹出モード切換用ダイヤルを備え、この吹出モード切換用ダイヤルは、指で摘んで適宜に回転させることにより、ベントモード、バイレベルモード、フットモード、デフフットモード及びデフモードの各吹出モード間の切り換えを行うと同時に空気流路の下流側に送られる冷風と温風との割合を調整して温度制御を行うことができるものとなっている。
特開2008-296596号公報 特開2002-293127号公報
 もっとも、車両に搭載されるHVACユニットに対する製造コストの削減は昨今においてより強く求められており、上記特許文献1に示されるHVACユニットの構成では、2つの略半円筒状の部材を組み合わせてロータリードアの本体が構成されていること等から、部品点数の削減の余地が未だあり、HVACユニットに対する製造コストの削減に十分に応えられているとは必ずしも言えない。
 また、特許文献2に示されるロータリードアは、どのように製造されるのかについて具体的に示されておらず、ロータリードアの回転の操作についても、タッチパネル上での操作について制御手段を介して回転制御するように開示されているので、かかる特許文献2に示されるロータリードアについても部品点数の削減の余地がある。
 そこで、本発明は、部品点数の削減による更なるコスト削減を図るべく、空調用複合機能ドアと、この空調用複合機能ドア及びこの空調用複合機能ドアの回転割合を調整する操作部を備えた車両用空調装置とを提供することを目的とする。
 この発明に係る空調用複合機能ドアは、車両の車内又は車外から導入された空気を空調手段により空調して得る冷却空気及び加熱空気の割合を調整する温度調整機能と、車室内に供給される空気の吹出モードを切り換える吹出モード切換機能との双方の機能を有する空調用複合機能ドアにおいて、内部に空間を有する筒状に構成されて、この空調用複合機能ドアの外形を形成する周面部を有し、この周面部は、3つの開口部とこれらの開口部の間に配置された3つの壁面部とで成るもので、前記3つの開口部は、前記周面部の中心軸を含むように基準面を採った場合に、この基準面の一方側に位置する第1の開口部と他方側に位置する第2の開口部及び第3の開口部とによりなり、前記周面部の周上にある前記第1の開口部の開口縁を前記基準面の他方側に面対称となるように移した範囲以内に、前記第2の開口部と前記第3の開口部との間の壁面部が位置することを特徴としている(請求項1)。周面部が「筒状」であるとは、軸方向の端から端まで同じ直径径寸法の「円筒状」である以外にも、軸方向両側の閉塞部に対して軸方向の中腹部の直径寸法を膨らませた「樽状」や、軸方向両側の閉塞部に対して軸方向の中腹部の直径寸法を小さくした「鼓状」も含まれる。「範囲以内」とは、第1の開口縁を前記基準面の他方側に面対称となるように移した当該開口縁上に第2の開口部と第3の開口部との間の壁面部の縁が位置する場合も含んでいる。
 より具体的には、周面部の円周を8等分した際の1/8の大きさの開口部(第1の開口部)、周面部の円周を8等分した際の1/4の大きさの壁面部分(第1の大壁面部)、周面部の円周を8等分した際の1/8の大きさの開口部(第2の開口部)、周面部の円周を8等分した際の1/8の大きさの壁面部分(小壁面部)、周面部の円周を8等分した際の1/8の大きさの開口部(第3の開口部)、周面部の円周を8等分した際の1/4の大きさの壁面部分(第2の大壁面部)となったものが挙げられる。しかも、これらの配列は、第1の開口部、第1の大壁面部、第2の開口部、小壁面部、第3の開口部、第2の大壁面部の順になっており第1の開口部に戻るものとなっている。そして、第1の開口部の第1の大壁面部側の内側面、第1の開口部の第2の大壁面部側の内側面、第2の開口部の小壁面部側の内側面、第3の開口部の小壁面部側の内側面は、第1の開口部の開口縁と小壁面部の縁とを結ぶ2つの平行な面に沿うような平面状になっている。更に、第2及び第3の開口部の大壁面部側の内側面及び第1及び第2の壁面部の内面は、前記2つの平行な面に沿うような平面状になっている。
 このように、空調用複合機能ドアのドア本体の外形を構成する周面部の外面及び内面並びに開口部の形成は、少なくとも2つの型材を組み合わせて出きる隙間に樹脂材等の素材を注入した後、型材を相対的に離れる方向に可動させる型抜きで行うことができるので、空調用複合機能ドアを一体成形することが可能となり、空調用複合機能ドアを構成する部品点数の相対的削減が図られる。
 ここで、この発明に係る空調用複合機能ドアは、前記周面部の軸方向の両側を閉塞する閉塞部に前記内部の空間と連通するサイド開口部を設けたものとしても良い(請求項2)。これにより、周面部だけでなく閉塞部でも空調和空気の流通を制御することが可能となり、HVACユニットの設計自由度を向上させることができる。
 また、この発明に係る空調用複合機能ドアは、前記内部の空間を前記中心軸の径方向に拡がる仕切り部により仕切ったものとしても良い(請求項3)。このように、空調用複合機能ドアの内部に仕切り部を設けることにより、左右独立温調やゾーン空調など、隣接する複数の吹出口からそれぞれ異なる温湿度状態の空気を車室内に吹き出せたい場合には、各吹出口に向かう空気について別個の流路を流れるように分けることができる。さらに、この発明に係る空調用複合機能ドアは、前記仕切り部の面積を前記閉塞部の面積より小さくしても良い(請求項4)。これにより、空調用複合機能ドアの内部での温風と冷風との混合割合や風量配分を、要請に応じ適宜変更することができる。
 更に、この発明に係る空調用複合機能ドアは、前記壁面部に、前記開口部と連続した切欠き又は前記開口部と連続しない通孔を設けたものとしても良い(請求項5)。このような切欠き又は通孔を設けることを可能とすることによって、HVACユニットの設計の自由度を向上させることができる。
 更にまた、空調用複合機能ドアのこのようなサイド開口部や切欠き、通孔を形成する設計は、型材による型抜きの工程の中で壁面部に対して副次的に形成することが可能となっている。
 この発明に係る車両用空調装置は、車両の車内又は車外から適宜導入された空気を冷却可能なる冷却用熱交換器と、この冷却用熱交換器を通過した空気の一部又は全部を加熱可能な加熱用熱交換器と、前記冷却用熱交換器と前記加熱用熱交換器とを配置した空気流路と、前記空気流路の空気の最下流側に車室内に空気を供給する空気吹出口を形成した車両用空調装置であって、前記空気流路内の前記冷却用熱交換器および前記加熱用熱交換器の下流に請求項1から請求項5のいずれかに記載の空調用複合機能ドアが収納され、前記空調用複合機能ドアの回転位置を変位することにより各吹出口から吹き出す空気の温度制御と吹出モードの切換えとを同時に行うことを特徴としている(請求項6)。これにより、車両用空調装置の部品点数を削減することができる。
 そして、この発明に係る車両用空調装置は、インテークドアと、該インテークドアを駆動するインテークドア駆動機構と、前記空調用複合機能ドアを駆動する複合機能ドア駆動機構と、操作部と、を更に備え、前記インテークドア駆動機構と前記複合機能ドア駆動機構とが連動すると共に、前記操作部での1つの操作が前記インテークドア駆動機構と前記複合機能ドア駆動機構との双方に伝達されるように構成しても良い(請求項7)。
 これにより、吹出モードの切り換えと、各吹出口から吹き出す空気の温度制御と、内気導入モード、外気導入モード及び内外気双方導入モードの切り換えとについて、1つの操作部の回転操作等の操作により行うことが可能となり、且つ操作部から空調用複合機能ドア及びインテークドアの駆動機構への回転動力の伝達も1組のワイヤーケーブルのみで対応することが可能となるので、車両用空調装置全体としてもさらに部品点数を削減することができる。
 以上のように、請求項1から請求項5に記載の発明によれば、前記周面部の周上にある第1の開口部の開口縁を基準面の他方側に面対称となるように移した範囲内に、第2の開口部と前記第3の開口部との間の壁面部が位置するので、第1の開口部から挿入されて第2の開口部と第3の開口部との間の壁面部に到達する成形型を基準面に直交する方向に移動可能となるとともに、第1の開口部から挿入されて第1の開口部と第2の開口部との間の壁面部に到達する成形型、および第3の開口部から挿入されて第3の開口部と第1の開口部との間の壁面部に到達する成形型も基準面に直交する方向に移動可能となる。よって、少なくとも2つの型材を組み合わせて出きる隙間に樹脂材等の素材を注入した後、型材を相対的に離れる方向に可動させる型抜きを行うことができるので、空調用複合機能ドアを一体成形することができ、空調用複合機能ドアを構成する部品点数の相対的削減を図ることが可能であることから、空調用複合機能ドアひいてはこの空調用複合機能ドアを使用する車両用空調装置の製造コストを低減することができる。
 請求項2から請求項5に記載の発明に示されるように、壁面部にサイド開口部や切欠き、通孔を設けるようにしても、これらのサイド開口部や切欠き、通孔は、型材を利用して周面部を形成する工程の中で、型材の構造を工夫することにより周面部の一部である壁面部に対して副次的に形成することが可能であるので、空調用複合機能ドアひいてはこの空調用複合機能ドアを使用する車両用空調装置の製造コストの増大を防止したままHVACユニットの設計自由度を向上させることができる。
 請求項6に記載の発明によれば、部品点数が相対的に少ない空調用複合機能ドアをHVACユニットに利用することで、車両用空調装置の部品点数を削減し、製造コストを低減することができる。
 請求項7に記載の発明によれば、吹出モードの切り換えと、各吹出口から吹き出す空気の温度制御と、内気導入のみ、外気導入のみ及び内外気双方導入の切り換えとを1つのダイヤルなど1つの操作部での操作により行うことが可能となり、且つ操作部から空調用複合機能ドア及びインテークドアの駆動機構への各ドアの動力の伝達も1組のワイヤーケーブルのみで対応することが可能となるため、操作部の数やワイヤーケーブルの数を相対的に削減することができるので、車両用空調装置全体としてもより部品点数の削減が図られ、車両用空調装置の製造コストをさらに低減することができる。
図1は、この発明に係る車両用空調装置のHVACユニットの内部の構成を示すための断面図である。 図2は、同上の車両用空調装置の複合機能ドア及びインテークドアを駆動する駆動機構の構成及び操作部のダイヤルと駆動機構とを連動させるための構成を示すためのHVACユニットの外観図及び操作部の簡略図である。 図3は、同上の操作部のダイヤルの周囲に配置された表示の態様を示すための説明図である。 図4は、同上の車両用空調装置におけるベントモードが示されており、図4(a)はこのベントモードにおけるダイヤルの位置が示され、図4(b)はこのベントモードにおけるインテークドア及び複合機能ドアの位置と空気の流れとが示されている。 図5は、同上の車両用空調装置におけるバイレベルモードが示されており、図5(a)はこのバイレベルモードにおけるダイヤルの位置が示され、図5(b)はこのバイレベルモードにおけるインテークドア及び複合機能ドアの位置と空気の流れとが示されている。 図6は、同上の車両用空調装置におけるフットモードが示されており、図6(a)はこのフットモードにおけるダイヤルの位置が示され、図6(b)はこのフットモードにおけるインテークドア及び複合機能ドアの位置と空気の流れとが示されている。 図7は、同上の車両用空調装置におけるデフフットモードが示されており、図7(a)はこのデフフットモードにおけるダイヤルの位置が示され、図7(b)はこのデフフットモードにおけるインテークドア及び複合機能ドアの位置と空気の流れとが示されている。 図8は、同上の車両用空調装置におけるデフモードが示されており、図8(a)はこのデフモードにおけるダイヤルの位置が示され、図8(b)はこのデフモードにおけるインテークドア及び複合機能ドアの位置と空気の流れとが示されている。 図9は、同上の車両用空調装置を構成する実施例1の複合機能ドアについて2つの型材を利用して形成する工程のうち複合機能ドアが型材を組み合わせて成る隙間に形成された段階が示されている。 図10は、同上の車両用空調装置を構成する実施例1の複合機能ドアについて2つの型材で形成する工程のうち型材をスライド動作させて複合機能ドアが現れた段階が示されている。 図11は、同上の複合機能ドアについて内部空間に仕切り部を形成し、開口部に切欠きを形成し、更に閉塞部に通孔を形成した変形例の構成を説明すると共に、仕切り部と切欠きを形成することを可能とした型材の一例を示す説明図である。 図12は、同上の車両用空調装置を構成する複合機能ドアの実施例2の構成及び、この実施例2の複合機能ドアを一体成形するための型材を、スライド動作させて複合機能ドアが現れた状態で示した説明図である。 図13は、同上の車両用空調装置を構成する複合機能ドアの実施例3の構成及び、この実施例3の複合機能ドアを一体成形するための型材を、スライド動作させて複合機能ドアが現れた状態で示した説明図である。 図14は、同上の車両用空調装置を構成する複合機能ドアの実施例4の構成及び、この実施例4の複合機能ドアを一体成形するための型材を、スライド動作させて複合機能ドアが現れた状態で示した説明図である。
 以下、この発明の車両用空調装置の実施形態の一例である実施例1とかかる実施例1のうち複合機能ドアの変形例である実施例2、実施例3、及び実施例4とについて、添付図面を参照しながら、それぞれ説明する。
 図1及び図2において、この車両用空調装置1の主たる構成をなすHVACユニット2が示されている。このHVACユニット2は、この発明の実施形態の一例に当たるもので、例えば車両のセンターコンソール部に搭載される縦型センター置きフル一体形式のものである。更に、このHVACユニット2は、エンジンルームと車室とを区画する仕切板よりも車室側に配されているもので、インテーク部3とユニット本体8とで基本的に構成されている。
 このうち、インテーク部3は、ユニット本体8に対して車両の左右方向の一方側に配置されているもので、外気導入口4と内気導入口5とがインテークケース6に開口していると共に、これらの内外気導入口4、5から内外気を適宜選択・導入するためのインテークドア7がこのインテークケース6内に収納されている。
 ユニット本体8は、内部に空気流路9が形成されたケース10内に、インテーク部3の内外気導入口4、5から導入された空気を下流側に送るための送風機11、この送風機11により送られてきた空気を冷却するエバポレータ等の冷却用熱交換器12、この冷却用熱交換器12で冷却された空気を加熱するヒータコア等の加熱用熱交換器13を収納している。尚、ユニット本体8のケース10は、インテーク部3のインテークケース6とは別体のものであっても、一体成形されたものであっても良い。
 そして、送風機11は、この実施形態では、遠心式多翼ファン(シロッコファン)と称されるファンと、このファンを駆動するモータとから構成されているもので、図1に示されるように、インテークケース6に対し自動車等の車両の左右方向に開口した開口部を設けて、この開口部から車両の左右方向にモータの駆動軸が沿うように横倒し状態で挿入配置されている。
 冷却用熱交換器12は、空気流路9内において導入される全ての空気が通過するように立設されており、この冷却用熱交換器12は例えばコルゲート状のフィンとチューブとを交互に複数段積層して形成されチューブの長手方向端にタンクを有するもので、膨張弁14等の他の空調機器と配管15a、15b等を介して接合されて冷凍サイクルを構成している。送風機11と冷却用熱交換器12とは相対的に近接して、送風機11が冷却用熱交換器12の直近上方に配置されている。
 加熱用熱交換器13は、例えばコルゲート状のフィンとチューブとを交互に複数段積層して形成されチューブの長手方向端にタンクを有するものであり、かかる加熱用熱交換器13は配管17a、17bを介して例えば走行エンジンの冷却水等の温水が循環している。
 これに伴い、ユニット本体8は、空気流路9において、冷却用熱交換器12で冷却された冷却空気が加熱用熱交換器13で加熱されて加熱空気となる第1の流路18と、冷却用熱交換器12で冷却された冷却空気が加熱用熱交換器13をバイパスすることで冷却空気のままとなる第2の流路19とを有したものとなっている。
 また、ユニット本体8は、空気流路9の下記するドア収納領域29よりも更に下流側において、デフ吹出用開口部20、ベント吹出用開口部21、フット吹出用開口部22が、ケース10に適宜開口している。尚、図示しないがサイドベント吹出用開口部をケース10に対し所定の位置に更に開口させても良い。そして、空気流路9は、このデフ吹出用開口部20、ベント吹出用開口部21、フット吹出用開口部22を一方端(風下側)とし、後述する複合機能ドア30が回転可能に収納されたドア収納領域29を他方端(風上側)とするデフ吹出用通路23、ベント吹出用通路24、フット吹出用通路25を有している。この実施例では、デフ吹出用通路23とベント吹出用通路24とは車両の略上下方向に延びる内壁部26aにより仕切られており、デフ吹出用通路23、ベント吹出用通路24のドア収納領域29側の開口は内壁部26aを挟んで車両の前後方向に並んだ配置となっていると共に、ベント吹出用通路24とフット吹出用通路25のドア収納領域29側の開口は境界点27を中心に車両の略前後方向兼略上下方向に並んだ配置となっている。
 そして、この実施例では、図1に示されるように、ケース10の冷却用熱交換器12よりも空気下流側でデフ吹出用通路23のデフ吹出用開口部20とは反対側開口に続くケース部位10aは、ある円の円周に沿うように円弧状に形成されており、加熱用熱交換器13の側面から車両の上下方向に沿って車両の略上側に延びる内壁部26bは、その上端が前記円の円周まで延びている。更に、デフ吹出用通路23とベント吹出用通路24とを仕切る内壁部26aの車両の下方側端は前記円の円周まで延び、また、境界点27は前記円の円周上に位置している。更にまた、加熱用熱交換器13とフット吹出用通路25とを仕切る内壁部28は、車両の上下方向の上方に略沿って前記円の円周まで延びた後、この円の円周に沿って車両の前後方向の後方に略沿って延び、その端部と前記境界点27との間でフット吹出用通路25のフット吹出用開口部22とは反対側の開口部が形成されている。
 これにより、ケース10の冷却用熱交換器12及び加熱用熱交換器13の下流側で、且つ各吹出用通路23、24、25の開口部20、21、22とは反対側の開口部よりも上流側において円筒状のドア収納領域29が画成され、このドア収納領域29に前記円の円周と略同じ(ケース部位10a、内壁部28等に対して摺動可能なように若干径寸法が小さい。)円を外周面とする複合機能ドア30が収納されている。
 この複合機能ドア30は、例えばロータリードア等とも称されるもので、ベントモード、バイレベルモード、フットモード、デフフットモード、及びフットモードの各吹出モードの切り換えを行う吹出モード切換機能と、加熱用熱交換器13を通過した空気と加熱用熱交換器13をバイパスした空気との割合を調整する温度調整機能とを有したものである。そして、この複合機能ドア30は、図11に示されるように、周面部31とこの周面部31の軸方向の両側を閉塞する閉塞部32、32とで成るドア本体33を有して構成されている。
 周面部31は、この実施例では図1や図10等に示されるように基本的には3つの開口部34、35、36と、第1の大壁面部37と、小壁面部38と、第2の大壁面部39とを有して構成されている。そして、各開口部34、35、36は、図10に示されるように、周面部31の円周をI線からVIII線で8等分した際のI線からII線までの範囲、IV線からV線までの範囲、VI線からVII線までの範囲というように、それぞれ円周の1/8の大きさをなしている。第1及び第2の大壁面部37、39は、図10に示されるように、周面部31の円周をI線からVIII線で8等分した際のII線からIV線までの範囲、VII線からI線までの範囲というように、それぞれ円周の1/4の大きさをなしている。小壁面部38は、図10に示されるように、周面部31の円周をI線からVIII線で8等分した際のV線からVI線までの範囲というように、円周の1/8の大きさをなしている。すなわち、第1の開口部34、35、36及び壁面部37、38、39は、第1の開口部34を起点及び終点とした場合には、第1の開口部34、第1の大壁面部37、第2の開口部35、小壁面部38、第3の開口部36、第2の大壁面部39、第1の開口部34の順となっている。
 そして、複合機能ドア30とインテークドア7とは、駆動機構40により連動するようになっている。この駆動機構40は、図2に示されるように、複合機能ドア30に形成されたギア41と、ケース10の外面に配置されたメインカム42及び中継カム48とで基本的に構成されている。
 ギア41は、図11にも示されるように、複合機能ドア30の少なくとも一方の閉塞部32の外面のうち円の中心点に形成されているもので、所定の歯数を有しており、閉塞部32と一体成形される等によりギア41の回転がそのまま閉塞部32ひいては複合機能ドア30に伝達されるようになっている。
 メインカム42は、ケース10に軸支された回転軸43に固着されて回転軸43と一体的に回転可能となっていると共に回転軸43の径方向の周縁部分にはギア44が形成されている。このギア44は、ギア41と噛合されることにより、メインカム42の回転をギア41に伝達することが可能となっている。また、メインカム42は、ピン45を介して中継カム48のピン摺動部49と摺動可能に係合されている。尚、メインカム42は、この実施例では、2股に延びる延出部を有し、一方の延出部の先端にピン45が設けられ、他方の延出部の先端に後述するワイヤーケーブル53を保持する保持部46が設けられている。
 中継カム48は、この実施例では直線状の板形状をなし、その長手方向の一方側でインテークドア7の回転軸47と連結されて回転軸47ひいてはインテークドア7と一体に回転することができるようになっている。そして、中継カム48は、ピン摺動部49が形成されており、このピン摺動部49は、回転軸47と連結された側とは反対側となる長手方向の他方側から回転軸47側に延びたものとなっている。ここで、ピン摺動部49は、貫通孔であっても窪みであっても良く、その短手方向の幅は、ピン45がピン摺動部49内を移動しつつガタツキなく係合することが可能なように、ピン45の外径寸法と同じか当該ピン45の外径寸法より僅かに大きくなっている。
 これにより、メインカム42が回転軸43を中心として回転することにより、ギア44及びギア41を介して複合機能ドア30を回転させると同時に、ピン45が中継カム48のピン摺動部49内を当該ピン摺動部49の内縁に摺接しつつ移動して、中継カム48について回転軸47を中心に回転させ、ひいてはインテークドア7を回転させることが可能となる。
 そして、メインカム42は、保持部46が操作部51を構成するダイヤル52から引き出されたワイヤーケーブル53の先端部分を保持することにより、ダイヤル52の回転が保持部46に対する引っ張りや押し出し作用として働くようになっている。
 このような構成により、例えばベントモードからバイレベルモードに移行する際には、図4(b)から図5(b)となる配置変化に示されるように、メインカム42がワイヤーケーブル53により車両前方に押されて、複合機能ドア30を時計回りに回転させると共に、ピン45が中継カム48のピン摺動部49の内縁面を車両後方に押しつつピン摺動部49内を摺動するので、中継カム48と連結されたインテークドア7を反時計回りに回転させる。このような駆動機構40による複合機能ドア30及びインテークドア7への回転動力の伝達は、バイレベルモードからフットモード、フットモードからデフフットモード、デフフットモードからデフモードに移行する場合でも略同様である。
 一方で、バイレベルモードからベントモードに移行する場合には、図5(b)から図4(b)となる配置変化に示されるように、メインカム42がワイヤーケーブル53により車両後方に引っ張られて、複合機能ドア30を反時計回りに回転させると共に、ピン45が中継カム48のピン摺動部49の内縁面を車両前方に押しつつピン摺動部49内を摺動するので、中継カム48と連結されたインテークドア7を時計回りに回転させる。このような駆動機構40による複合機能ドア30及びインテークドア7への回転動力の伝達は、フットモードからバイレベルモード、デフフットモードからフットモード、デフモードからデフフットモードに移行する場合でも略同様である。
 ダイヤル52の周囲の表示は、図3に示されるように複数の表示部55、56、57、58、59、60、61、62、63がダイヤル52を中心として重畳的に配置されたものとなっている。
 まず、ダイヤル52に最も近い周囲には、吹出モードのうち設定されたモードを示す表示部55、56、57、58、59が吹出モードの切り換え順に従って並んでいる。表示部55はベントモードを表示し、表示部56はバイレベルモードを表示し、表示部57はフットモードを表示し、表示部58はデフフットモードを表示すると共に、表示部59はデフモードを表示している。
 更に、これらの表示部55乃至59よりもダイヤル52から離れた位置に所定の幅の円弧状の帯状の表示部60が配置されている。この表示部60は、フルクールからフルホットまでのエアミックスによる吹出空気の温度設定状況及び温度制御可能領域を示しているもので、冷却用熱交換器12で冷却されて加熱用熱交換器13をバイパスした冷却空気の存在を示す表示部60aと、加熱用熱交換器13で加熱された加熱空気の存在を示す表示部60bとに塗り分けられている。例えば、表示部60aには青色が使用され、表示部60bには赤色が使用されている。そして、表示部60aは、図3に示されるように、ダイヤル52の図中左側(ベントモードの表示部55側)に位置する基準線X1上にある部位では表示部60の幅と同じになっているが、ダイヤル52の図中上側(フットモードの表示部57側)に位置する基準線X3に向かうに従い徐々に表示部60の外周縁側に向かって細くなり、基準線X3を越えた位置ではなくなっている。このことは、基準線X1から基準線X3までの範囲が吹出空気の温度制御が可能な領域であり、基準線X3からダイヤル52の図中右側(デフモードの表示部59側)に位置する基準線X4までの範囲はフルホット領域であることを示すものとなっている。
 更にまた、表示部60よりもダイヤル52から離れた位置において、基準線X1の軸線上となる位置にRECの文字から成る表示部61が配置され、基準線X3の軸線上となる位置にFRESHの文字から成る表示部62が配置されていると共に、この表示部61と表示部62とを結ぶ円弧状で且つ双方に矢印を有する表示部63が配置されている。表示部61は内気のみが導入される内気導入(レック)モードになっていることを示し、表示部62は外気のみが導入される外気導入(フレッシュ)モードになっていることを示し、表示部63は内気導入モードと外気導入モードとの切り換えを案内していると共にこの表示部63の中間範囲にダイヤル52が向いている場合には内気・外気の双方が導入されている内外気双方導入モードになっていることを示している。尚、表示部61、62は、図示しないが文字で表示する代わりにアイコン等の図柄で表示するようにしても良い。
 そして、この実施例では、基準線X1から表示部55と表示部56との間に配置された基準線X2の範囲をACオン領域とし、ダイヤル52が基準線X1と基準線X2との間に位置した場合に冷凍サイクルを稼動するように構成している。もっとも、図示しないが、ACオンのスイッチを操作部51においてダイヤル52とは別個に設けるようにしても良い。
 しかるに、ダイヤル52を回転させる操作で、吹出モードの切り換えと、吹出空気の温度制御と、レックモード、フレッシュモード及び内外気双方導入モードの切り換えとを行うことが可能であり、ダイヤル52を1つに集約することができ、且つ、操作部51から駆動機構40に延びるワイヤーケーブル53の数もダイヤル52の数に対応して1つ(1組)にすることができるので、車両用空調装置全体として構成部品の部品点数の削除を図ることができる。
 次に、この車両用空調装置1のベントモード、バイレベルモード、フットモード、デフフットモード、デフモードの各吹出モードにおけるインテークドア7及び複合機能ドア30の状態について、図4から図8を用いて説明する。
 図4ではベントモードが示されており、このことは吹出空気温度設定がフルクールモード、内外気選択がレックモードであることも示したものとなっている。すなわち、図4(a)に示される位置にダイヤル52を回転させると、図4(b)に示されるように、インテークドア7は、外気導入口4を全て閉塞し、内気導入口5を全て開放する。また、複合機能ドア30は、第1の大壁面部37が第1の流路18の加熱用熱交換器13より下流側を全て閉塞し、第1の開口部34が第2の流路19と全開状態で接続され、第2の大壁面部39がデフ吹出用通路23の風上側を全て閉塞し、小壁面部38がフット吹出用通路25の風上側を全て閉塞し、第3の開口部36がベント吹出用通路24の風上側と全開状態にて接続される。これにより、図4(b)の矢印に示されるように、全て内気導入口5から空気流路9内に導入された空気は、冷却用熱交換器12を通過した後、その全てが加熱用熱交換器13で加熱されずに、複合機能ドア30内に第1の開口部34から流入して、第3の開口部36からベント吹出用通路24内に入り、ベント吹出用開口部21から図示しないダクト等を介して車室内に吹き出される。なお、このモードにおいて冷凍サイクルを稼動し、空気流路9内に導入された空気を冷却用熱交換器12で冷却してもよい。以下、段落〔0049〕乃至〔0051〕における他のモードの説明についても同様である。
 図5ではバイレベルモードが示されており、このことは吹出空気温度設定が冷却空気と加熱空気との双方を取り込むエアミックスモード、内外気選択が内外気双方導入モードであることも示したものとなっている。すなわち、図5(a)に示される位置にダイヤル52を回転させると、図5(b)に示されるように、インテークドア7は、内気導入口5を相対的に大きく開放し、外気導入口4を相対的に小さく開放する。また、複合機能ドア30は、第1の大壁面部37が第1の流路18の加熱用熱交換器13よりも風下側の一部と第2の流路19の風下側の一部との双方にかかり、第1の開口部34が第2の流路19の風下側の一部と接続され、第2の開口部35が第1の流路18の加熱用熱交換器13よりも風下側の一部と接続され、第2の大壁面部39がデフ吹出用通路23の風上側を全て閉塞すると共にベント吹出用通路24の風上側の一部にかかり、小壁面部38がフット吹出用通路25の一部にかかり、第3の開口部36がベント吹出用通路24の風上側の一部及びフット吹出用通路25の風上側の一部の双方と接続される。これにより、図5(b)の矢印に示されるように、内気導入口5と外気導入口4の双方から空気流路9内に導入された空気は、第2の流路19を流れる空気については、冷却用熱交換器12を通過した後、加熱用熱交換器13をバイパスして第1の開口部34から複合機能ドア30内に流入されると共に第1の流路18を流れる空気については冷却用熱交換器12を通過した後、加熱用熱交換器13で加熱されて加熱空気となって第2の開口部35から複合機能ドア30内に流入される。そして、加熱用熱交換器13をバイパスした空気と加熱空気とは、複合機能ドア30内で混合され又はそのままの状態で、第3の開口部36からベント吹出用通路24又はフット吹出用通路25に入り、ベント吹出用開口部21又はフット吹出用開口部22から図示しないダクトを介し、或いは直接的に車室内に吹き出される。
 図6ではフットモードが示されており、このことは吹出空気温度設定がフルホットモード、内外気選択が内外気双方導入モードであることも示したものとなっている。すなわち、図6(a)に示される位置にダイヤル52を回転させると、図6(b)に示されるように、インテークドア7は、内気導入口5と外気導入口4とを略半開きの状態にて開放する。また、複合機能ドア30は、第1の大壁面部37が第2の流路19の風下側を全て閉塞し、第2の開口部35が第1の流路18の加熱用熱交換器13よりも風下側と全開状態で接続され、第2の大壁面部39がデフ吹出用通路23の風上側とベント吹出用通路24の風上側との双方を全て閉塞し、第3の開口部36がフット吹出用通路25の風上側と全開状態で接続される。これにより、図6(b)の矢印に示されるように、内気導入口5と外気導入口4の双方から空気流路9内に導入された空気は、その全てが冷却用熱交換器12を通過した後、加熱用熱交換器13で加熱されて加熱空気となるもので、この加熱空気は、複合機能ドア30内に第2の開口部35から流入して、第3の開口部36からフット吹出用通路25内に入り、フット吹出用開口部22から例えば直接的に車室内に吹き出される。
 図7はデフフットモードが示されており、このことは吹出空気温度設定がフルホットモード、内外気選択が内外気双方導入モードであることも示したものとなっている。なわち、図7(a)に示される位置にダイヤル52を回転させると、図7(b)に示されるように、インテークドア7は、外気導入口4を相対的に大きく開放し、内気導入口5を相対的に小さく開放する。また、複合機能ドア30は、第1の大壁面部37が第2の流路19の風下側を全て閉塞し、第2の開口部35が第1の流路18の加熱用熱交換器13よりも風下側と全開状態で接続され、第2の大壁面部39がデフ吹出用通路23の風上側の一部及びフット吹出用通路25の風上側の一部にかかりつつベント吹出用通路24の風上側を全て閉塞し、第1の開口部34がデフ吹出用通路23の風上側の一部と接続され、第3の開口部36がフット吹出用通路25の風上側の一部と接続される。これにより、図7(b)の矢印に示されるように、外気導入口4と内気導入口5の双方から空気流路9内に導入された空気は、その全てが冷却用熱交換器12を通過した後、加熱用熱交換器13で加熱されて加熱空気となるもので、この加熱空気は、複合機能ドア30内に第2の開口部35から流入して、第1の開口部34からデフ吹出用通路23に入り又は第3の開口部36からフット吹出用通路25に入り、ベント吹出用開口部21又はフット吹出用開口部22から図示しないダクトを介し、或いは直接的に車室内に吹き出される。
 図8はデフモードが示されており、このことは吹出空気温度設定がフルホットモード、内外気選択がフレッシュモードであることも示したものとなっている。すなわち、図8(a)に示される位置にダイヤル52を回転させると、図8(b)に示されるように、インテークドア7は、内気導入口5を全て閉塞し、外気導入口4を全て開放する。また、複合機能ドア30は、第1の大壁面部37が第2の流路19の下流側を全て閉塞し、第2の開口部35が第1の流路18の風上側と全開状態で接続され、第2の大壁面部39がベント吹出用通路24の風上側とフット吹出用通路25の風上側とを全て閉塞し、第1の開口部34がデフ吹出用通路23の風上側と全開状態で接続される。これにより、図8(b)の矢印に示されるように、外気導入口4のみから空気流路9内に導入された空気は、その全てが冷却用熱交換器12を通過した後、加熱用熱交換器13で加熱されて加熱空気となるもので、この加熱空気は、複合機能ドア30に第2の開口部35から流入して、第1の開口部34からデフ吹出用通路23内に入り、デフ吹出用開口部20から図示しないダクト等を介して車室内に吹き出される。
 以上で説明したように、第2の開口部35は第1の流路18を通過した空気が複合機能ドア30の内部に流入するためのものとして使用され、第3の開口部36は複合機能ドア30の内部から空気を流出するためのものとして使用されると共に、第1の開口部34は複合機能ドア30の位置に応じて第2の流路19を通過した空気が複合機能ドア30の内部に流入するため、もしくは複合機能ドア30の内部から空気を流出するためのものとして使用される。
 ところで、複合機能ドア30は、図9及び図10に示されるように一体成形されているものであり、例えば金型65、66、67及び68を少なくとも用いて射出成形等の手法によって形成される形状となっている。
 すなわち、第1の開口部34は、上記した壁面部37、38、39の配置構成や周面部31における割合に伴い、周面部31の中心軸Pを含むと共に基準面S1乃至S4と直交する方向に延びる基準面Lを採った場合にこの基準面Lの一方側に配置されていると共に、第1の開口部34について第2及び第3の開口部35、36側に基準面Lを基準位置として面対称となるように移した場合に、第1の開口部34と第2及び第3の開口部35、36とで一連の円弧を描くように配置されている。
 しかも、第1の開口部34の第1の大壁面部37側と第2の大壁面部39側の内側面70、71は、第1の開口部34の開口外縁と第2の開口部35及び第3の開口部36の開口外縁とを結んだ基準面S1、S2を採った場合に、この基準面S1、S2の一部となっていると共に、第1の開口部34の内側面70と内側面71との双方に連接する内側面72は基準面S1、S2と平行に延びる平面となっている。また、第2の開口部35の小壁面部38側の内側面73と第3の開口部36の小壁面部38側の内側面74とは基準面S1、S2の一部となっている、更に、第2の開口部35の第1の大壁面部37側の内側面75は、当該第1の大壁面部37側の開口外縁を通り、且つ基準面S1、S2と平行に延びる基準面S3を採った場合に、この基準面S3の一部となっていると共に、第2の開口部35の内側面73と内側面75との双方に連接する内側面76は基準面S1、S3と平行に延びる平面となっている。更にまた、第3の開口部36の第2の大壁面部39側の内側面77は、当該第2の大壁面部39側の開口外縁を通り、且つ基準面S1、S2と平行に延びる基準面S4を採った場合に、この基準面S4の一部となっていると共に、第3の開口部36の内側面74と内側面77との双方に連接する内側面78は基準面S2、S4と平行に延びる平面となっている。更にまた、第1の大壁面部37は、第2の開口部35の内側面75に連接する内面80について、基準面S3の一部となっている。そして、第2の大壁面部39は、第3の開口部36の内側面77に連接する内面81について、基準面S4の一部となっている。換言すると、第1の開口部34の内側面70、71、72、第2の開口部35の内側面73、75、76、第3の開口部36の内側面74、77、78、第1の大壁面部37の内面80及び第2の大壁面部39の内面81は、基準面Lと直交する方向に延びている。
 そして、図10に示されるように、第1の大壁面部37の内面80とこの第1の大壁面部37の両側に位置する開口部34、35の内側面70、75とは、第2の開口部35が有する周面部31の周上にある開口縁に基準面Lと直交する方向にて投影した場合に、第2の開口部35が有する周面部31の周上にある開口縁の範囲以内に収まるものともなっている。また、第2の大壁面部39の内面81とこの第2の大壁面部39の両側に位置する開口部34、36の内側面71、77は、第3の開口部36が有する周面部31の周上にある開口縁に基準面Lと直交する方向にて投影した場合に、この第3の開口部36が有する周面部31の周上にある開口縁の範囲以内に収まるものともなっている。更に、小壁面部38の内面とこの小壁面部38の両側に位置する開口部35、36の内側面73、74は、第1の開口部34が有する周面部31の周上にある開口縁に基準面Lと直交する方向にて投影した場合に、この第1の開口部34が有する周面部31の周上にある開口縁の範囲以内に収まるものともなっている。
 金型65は、第1の開口部34、第1の大壁面部37の外面の大部分、第2の大壁面部39の外面の大部分、小壁面部38の内面並びにドア本体33内部空間を形成するためのもので、第1の開口部34の開口形状と同じ断面形状を有する突出部83を備えている。また、金型66は、第2の開口部35、第3の開口部36、第1の大壁面部37の内面80、第2の大壁面部39の内面81、第1の大壁面部37の外面の残り部分、及び第2の大壁面部39の外面の残り部分を形成するためのもので、第2の開口部35の開口形状と同じ断面形状を有する突出部84と第3の開口部36の開口形状と同じ断面形状を有する突出部85とを備えている。尚、金型65は、第1の大壁面部37の外面の大部分及び第2の大壁面部39の外面の大部分を形成するための部位よりも突出部83とは反対側に延びた部位を有し、金型66は、2つの突出部84、85よりも幅方向の外側に張り出した部位を有している。
 これにより、図9に示されるように、金型65と金型66とを組み合わせて、その間に形成された隙間空間にプラスチック等の樹脂材、その他の素材を注入した後、金型65と金型66とを基準面S1乃至S4に沿って相対的に離れる方向に可動することで、金型65の突出部83が第1の開口部34からスムーズに抜け、金型66の突出部84、85が第2及び第3の開口部35、36からそれぞれスムーズに抜ける。
 よって、複合機能ドア30は単一の部材として簡易に製造することが可能となるので、部品点数が相対的に削減され、複合機能ドア30、HVACユニット2ひいては車両用空調装置1全体の製造コストの低減を図ることができる。
 そして、複合機能ドア30は、図11に示されるように、その内部空間を1又は2以上の仕切り部87により仕切られたものとしても良い。この仕切り部87の形成は、例えば金型65の突出部83に対して、所定幅の切り込み86、86を形成して複数の突出部83a、83b、83cに分ける変更をすることで対応することができる。しかも、仕切り部87の拡がり方向寸法(延出方向寸法)L1は、例えば切り込み86の長さL2を調整することで可変することができる。尚、金型66の突出部84、85も図示しないが同様に切り込みを入れて複数の突出部に分ける変更をして仕切り部87の形成を図ることができる。
 また、複合機能ドア30は、図11に示されるように、第1の開口部34に対し周面部31の円周上にある(円周方向に延びる)切欠き88が形成されたものとしても良い。このようにすることで、例えばバイレベルモードにおいて、一部の空気をデフ開口に供給すること(デフブリード)や、ベント吹出空気とフット吹出空気の温度差を所望する値に調整することができ、HVACユニット2の設計自由度を向上させることが可能である。そして、この切欠き88の形成は、例えば金型65の突出部83に対して、突出部83の一部について周面部31の軸方向から見た際の厚みL3を他の突出部83の部位よりも大きくなるように変更することで対応することができる。他の開口部35、36も、図示しないが金型66を同様に変更することで第1の開口部34の切欠き88と同じように切欠きを形成することができる。そして、各開口部34、35、36は、図示しないが、周面部31の円周上(円周方向)においてこれらの開口部34、35、36とは独立した開口部を形成するようにしても良く、この開口部の形成も金型65の突出部83や金型66の突出部84、85の変更で対応することができる。
 更に、複合機能ドア30は、図11に示されるように、閉塞部32に内部空間と連通する通孔89を1又は2以上形成しても良い。この閉塞部32への通孔89の形成も、閉塞部32を形成するための金型の所定の箇所に突起部を形成する変更で対応することができる。
 しかるに、複合機能ドア30は、図9及び図10に示される金型による一体成形の方法で製造するようにすることにより、仕切り部87、切欠き88、通孔89等の形成を、複合機能ドア30を一体成形する工程の中で且つ金型の変更により行うことができるので、仕切り部87、切欠き88、通孔89を有する複合機能ドア30の製造についても簡易且つ低コストで行うことができる。
 なお、複合機能ドア30の周面部31を円筒状として示してきたがこれに限定されず、図示しないが、軸方向両側の閉塞部に対して円筒の中腹部の直径寸法を膨らませたり(樽状とする)、直径寸法を小さくしたり(鼓状とする)してもよいものであり、この点で、本件発明は複合機能ドア30の設計自由度が担保されている。
 また、本件発明について、型抜きにより複合機能ドア30を一体成形することが可能であれば、複合機能ドア30の構成について、その主旨を逸脱しない範囲で適宜設計変更できることは勿論である。例えば、段落〔0033〕では、複合機能ドア30の周面部31を構成する3つの開口部34、35、36と、第1の大壁面部37と、小壁面部38と、第2の大壁面部39とを、図10に示すように、周面部31の円周をI線からVIII線で8等分し、円周の1/4または1/8とするものとして例示したが必ずしもこれに限定されない。
 その複合機能ドア30の変形例について、以下において実施例2、実施例3、実施例4として説明する。
 図12に示される複合機能ドア30は、周面部31について、第1の開口部34、第2の開口部35、第3の開口部36、第1の開口部34と第2の開口部35との間に存する第1の大壁面部37、第2の開口部35と第3の開口部36との間に存する小壁面部38、及び、第2の開口部35と第3の開口部36との間に存する第2の大壁面部39を有する点、周面部31の中心軸Pを含む基準面Lを採った場合に、第1の開口部34と第2の開口部35、第3の開口部36とは基準面Lの両側に分かれて配置されている点では実施例1と共通している。そして、第1の大壁面部37の内面80及び第2の開口部35の内側面75又は第2の大壁面部39の内面81及び第3の開口部36の内側面77と接する基準面S3、S4は、実施例1と同様に基準面Lと直交している。
 その一方で、第1の開口部34、第2の開口部35及び第3の開口部36は、第1の開口部34について基準面Lを軸として面対称となるように第2の開口部35及び第3の開口部36側に移動させた場合に、第1の開口部34と第2の開口部35、及び第3の開口部36とが重複しつつ一連の円弧となるように配置されている。すなわち、小壁面部38の周面部31の円周方向に沿った寸法は、第1の開口部34の円周方向に沿った寸法よりも相対的に小さくなっている。そして、第1の開口部34の第1の大壁面部37側開口縁と第2の開口部35の小壁面部38側開口縁とを結ぶ面S1’並びに第1の開口部34の第2の大壁面部39側開口縁と第3の開口部36の小壁面部38側開口縁とを結ぶ面S2’は、基準面Lと直交しておらず、第1の開口部34側から小壁面部38側に向かうに従い中心軸P側に傾斜したものとなっている。すなわち、第1の開口部34の内側面70、71と、第2の開口部35の内側面73と、第3の開口部36の内側面74とは、基準面Lと直交する直線よりも中心軸P側に傾斜した傾斜面となっている。
 そして、実施例2でも、図12に示されるように、第1の大壁面部37の内面80とこの第1の大壁面部37の両側に位置する開口部34、35の内側面70、75とは、第2の開口部35が有する周面部31の周上の開口縁に基準面Lと直交する方向にて投影した場合に、第2の開口部35が有する周面部31の周上の開口縁の範囲以内に収まるものともなっている。また、第2の大壁面部39の内面81とこの第2の大壁面部39の両側に位置する開口部34、36の内側面71、77は、第3の開口部36が有する周面部31の周上の開口縁に基準面Lと直交する方向にて投影した場合に、この第3の開口部36が有する周面部31の周上の開口縁の範囲以内に収まるものともなっている。更に、小壁面部38の内面とこの小壁面部38の両側に位置する開口部35、36の内側面73、74は、第1の開口部34が有する周面部31の周上の開口縁に基準面Lと直交する方向にて投影した場合に、この第1の開口部34が有する周面部31の周上の開口縁の範囲以内に収まるものともなっている。
 このような複合機能ドア30の周面部31の形態としても、金型65の突出部83はその全ての範囲において第1の開口部34の内径寸法よりも基準面Lに沿った寸法が小さく且つ第1の開口部34の端から端までの開口の範囲内に収まるものとなっており、金型65の突出部84は、その全ての範囲において第2の開口部35の内径寸法よりも基準面Lに沿った寸法が小さく且つ第2の開口部35の端から端までの開口の範囲内に収まるとなっており、更に、金型65の突出部85は、その全ての範囲において基準面Lに沿った寸法が第3の開口部36の内径寸法よりも小さく且つ第3の開口部36の端から端までの開口の範囲以内に収まるものとなっているので、金型65を基準面Lと直交する方向に動かすことで、突出部83を第1の開口部34から周面部31の外部に抜くことができ、金型66を基準面Lと直交する方向に動かすことで、突出部84を第2の開口部35から周面部31の外部に抜き、突出部85を第3の開口部35から周面部31の外部に抜くことが可能である。
 よって、実施例2に示される複合機能ドア30は、実施例1に示される複合機能ドア30と比較して、第1の開口部34の大きさを変更せず小壁面部38を相対的に小さくすることで、第2の開口部35、第3の開口部36を相対的に大きくしつつ(あるいは小壁面部38の大きさを変更せずに第1の開口部34を相対的に大きくすることで、第1の大壁部37、第2の大壁部39を相対的に小さくしつつ)、一体成形により形成されるものとすることができる。
 図13に示される複合機能ドア30は、周面部31について、3つの開口部34、35、開口部36と、2つの大壁面部37、39、1つの小壁面部38を有する点、周面部31の中心軸Pを含む基準面Lを採った場合に、第1の開口部34と第2の開口部35、第3の開口部36とは基準面Lの両側に分かれて配置されている点では実施例1、実施例2と共通している。また、小壁面部38の内側面73、74と接する基準面S1、S2は、実施例1と同様に基準面Lと直交しており、これに伴い、金型65の形状も実施例1と同様となっている。更に、第1の開口部34、第2の開口部35及び第3の開口部36は、第1の開口部34について基準面Lを基準位置として面対称となるように第2の開口部35及び第3の開口部36側に移動させた場合には、第1の開口部34と第2の開口部35、第3の開口部36とは重ならず一連の円弧になるように配置されている。
 その一方で、第1の開口部34の第1の大壁面部37側開口縁と第2の開口部35の第1の大壁面部37側開口縁とを結ぶ面S3’並びに第1の開口部34の第2の大壁面部39側開口縁と第3の開口部36の第2の大壁面部39側開口縁とを結ぶ面S4’は、基準面Lと直交しておらず、第1の開口部34側から小壁面部38側に向かうに従い中心軸P側とは反対側に傾斜したものとなっている。すなわち、第1の開口部34の内側面70、第1の大壁面部37の内面80及び、第2の開口部35の内側面75は、基準面Lと直交する直線よりも中心軸P側とは反対側に傾斜した一連の直線的な傾斜面となっていると共に、第1の開口部34の内側面71、第2の大壁面部39の内面81及び、第3の開口部36の内側面77は、基準面Lと直交する直線よりも中心軸P側とは反対側に傾斜した一連の直線的な傾斜面となっている。
 そして、実施例3においても、図13に示されるように、第1の大壁面部37の内面80とこの第1の大壁面部37の両側に位置する開口部34、35の内側面70、75とは、第2の開口部35が有する周面部31の周上の開口縁に基準面Lと直交する方向にて投影した場合に、第2の開口部35が有する周面部31の周上の開口縁の範囲以内に収まるものともなっている。また、第2の大壁面部39の内面81とこの第2の大壁面部39の両側に位置する開口部34、36の内側面71、77は、第3の開口部36が有する周面部31の周上の開口縁に基準面Lと直交する方向にて投影した場合に、この第3の開口部36が有する周面部31の周上の開口縁の範囲以内に収まるものともなっている。更に、小壁面部38の内面82とこの小壁面部38の両側に位置する開口部35、36の内側面73、74は、第1の開口部34が有する周面部31の周上の開口縁に基準面Lと直交する方向にて投影した場合に、この第1の開口部34が有する周面部31の周上の開口縁の範囲以内に収まるものともなっている。
 このような複合機能ドア30の周面部31の形態としても、金型65の突出部83は、その全ての範囲において実施例1と同様に第1の開口部34の内径寸法よりも基準面Lに沿った寸法が若干小さく且つ第1の開口部34の端から端までの範囲内となっており、金型65の突出部84は、その全ての範囲において第2の開口部35の内径寸法よりも基準面Lに沿った寸法が小さく且つ第2の開口部35の端から端までの範囲内となっており、更に、金型65の突出部85はその全ての範囲において基準面Lに沿った寸法が第3の開口部36の内径寸法よりも小さく且つ第3の開口部36の端から端までの範囲内となっているので、金型65を基準面Lと直交する方向に動かすことで、突出部83を第1の開口部34から周面部31の外部に抜くことができ、金型66を基準面Lと直交する方向に動かすことで、突出部84を第2の開口部35から周面部31の外部に抜き、突出部85を第3の開口部35から周面部31の外部に抜くことが可能である。
 よって、実施例3に示される複合機能ドア30は、実施例1に示される複合機能ドア30と比較して、2つの大壁面部37、39の肉厚を相対的に大きくし、且つ大壁面部37、39の内面80、81を全て第1の開口部34に向けて延びる直線的な傾斜面とすることで、第2の開口部35、第3の開口部36から周面部31内に流入した空気の流れを第1の開口部34側に向けて流れやすくすることを可能としつつ、一体成形により形成されるものとすることができる。
 図14に示される複合機能ドア30も、周面部31について、3つの開口部34、35、開口部36と、2つの大壁面部37、39、1つの小壁面部38を有する点、周面部31の中心軸Pを含む基準面Lを採った場合に、第1の開口部34と第2の開口部35、第3の開口部36とは基準面Lの両側に分かれて配置されている点で実施例1乃至実施例3と共通している。また、小壁面部38の内側面73、74と接する基準面S1、S2は、実施例1と同様に基準面Lと直交しており、これに伴い、金型65の形状も実施例1と同様となっている点でも、実施例3と同じである。更に、第1の開口部34、第2の開口部35及び第3の開口部36は、第1の開口部34について基準面Lを基準位置として面対称となるように第2の開口部35及び第3の開口部36側に移動させた場合には、第1の開口部34と第2の開口部35、第3の開口部36とは重ならず一連の円弧になるように配置されている点でも、実施例3と同じである。
 その一方で、第1の開口部34の第1の大壁面部37側開口縁と第2の開口部35の第1の大壁面部37側開口縁とを結ぶ面R1並びに第1の開口部34の第2の大壁面部39側開口縁と第3の開口部36の第2の大壁面部39側開口縁とを結ぶ面R2は、実施例3の面S3’、S4’とは異なり、中心軸P側に傾斜しつつ更に円弧状に膨らむ曲線となっている。すなわち、第1の開口部34の内側面70、第1の大壁面部37の内面80及び、第2の開口部35の内側面75は、基準面Lと直交する直線よりも中心軸P側とは反対側に傾斜した一連の曲線状の傾斜面となっていると共に、第1の開口部34の内側面71、第2の大壁面部39の内面81及び、第3の開口部36の内側面77は、基準面Lと直交する直線よりも中心軸P側とは反対側に傾斜した一連の曲線状の傾斜面となっている。
 そして、実施例4においても、図14に示されるように、第1の大壁面部37の内面80とこの第1の大壁面部37の両側に位置する開口部34、35の内側面70、75とは、第2の開口部35が有する周面部31の周上の開口縁に基準面Lと直交する方向にて投影した場合に、第2の開口部35が有する周面部31の周上の開口縁の範囲以内に収まるものともなっている。また、第2の大壁面部39の内面81とこの第2の大壁面部39の両側に位置する開口部34、36の内側面71、77は、第3の開口部36が有する周面部31の周上の開口縁に基準面Lと直交する方向にて投影した場合に、この第3の開口部36が有する周面部31の周上の開口縁の範囲以内に収まるものともなっている。更に、小壁面部38の内面とこの小壁面部38の両側に位置する開口部35、36の内側面73、74は、第1の開口部34が有する周面部31の周上の開口縁に基準面Lと直交する方向にて投影した場合に、この第1の開口部34が有する周面部31の周上の開口縁の範囲以内に収まるものともなっている。
 このような複合機能ドア30の周面部31の形態としても、金型65の突出部83は、その全ての範囲において実施例1と同様に第1の開口部34の内径寸法よりも基準面Lに沿った寸法が若干小さく且つ第1の開口部34の端から端までの範囲内となっており、金型65の突出部84は、その全ての範囲において第2の開口部35の内径寸法よりも基準面Lに沿った寸法が小さく且つ第2の開口部35の端から端までの範囲内となっており、更に、金型65の突出部85はその全ての範囲において基準面Lに沿った寸法が第3の開口部36の内径寸法よりも小さく且つ第3の開口部36の端から端までの範囲内となっているので、金型65を基準面Lと直交する方向に動かすことで、突出部83を第1の開口部34から周面部31の外部に抜くことができ、金型66を基準面Lと直交する方向に動かすことで、突出部84を第2の開口部35から周面部31の外部に抜き、突出部85を第3の開口部35から周面部31の外部に抜くことが可能である。
 よって、実施例4に示される複合機能ドア30は、実施例1に示される複合機能ドア30と比較して、2つの大壁面部37、39の肉厚を相対的に大きくし、そして、実施例3に示される複合機能ドア30と比較して、大壁面部37、39の内面80、81を全て曲線状の面とすることで、第2の開口部35、第3の開口部36から周面部31内に流入した空気の流れを第1の開口部34側に向けてより一層流れやすくすることを可能としつつ、一体成形により形成されるものとすることができる。
 尚、本件発明は、これらの実施例1乃至実施例4を適宜組み合わせたものも含まれることは勿論である。また、実施例1乃至実施例4以外でも、HVACユニット2に形成するデフ吹出用通路23、ベント吹出用通路24、フット吹出用通路25のドア収納領域29側の開口形状やケース部位10a、内壁部28の形状や位置関係に適用させるべく、複合機能ドア30の各開口部や壁面部の面積を変更することができるように、複合機能ドア30の設計自由度が担保されている。これに伴い、HVACユニット2の設計自由度も向上させることができる。
 1 車両用空調装置
 2 HVACユニット
 3 インテーク部
 4 外気導入口
 5 内気導入口
 7 インテークドア
 9 空気流路
 10 ケース
 11 送風機
 12 冷却用熱交換器
 13 加熱用熱交換器
 20 デフ吹出用開口部
 21 ベント吹出用開口部
 22 フット吹出用開口部
 30 複合機能ドア
 31 周面部
 32 閉塞部
 33 ドア本体
 34 第1の開口部
 35 第2の開口部
 36 第3の開口部
 37 第1の大壁面部
 38 小壁面部
 39 第2の大壁面部
 40 駆動機構
 53 ワイヤーケーブル
 65、66 金型(型材)
 70乃至78 開口部の内側面
 80、81 大壁面部の内面
 82 小壁面部の内面
 87 仕切り部
 88 切欠き
 89 通孔
 S1乃至S4 基準面
 S3’ S4’ 面
 P 周面部の中心軸
 L 基準面
 R1、R2 面
 

Claims (7)

  1.  車両の車内又は車外から導入された空気を空調手段により空調して得る冷却空気及び加熱空気の割合を調整する温度調整機能と、車室内に供給される空気の吹出モードを切り換える吹出モード切換機能との双方の機能を有する空調用複合機能ドアにおいて、
     内部に空間を有する筒状に構成されて、この空調用複合機能ドアの外形を形成する周面部を有し、この周面部は、3つの開口部とこれらの開口部の間に配置された3つの壁面部とで成るもので、
     前記3つの開口部は、前記周面部の中心軸を含むように基準面を採った場合に、この基準面の一方側に位置する第1の開口部と他方側に位置する第2の開口部及び第3の開口部とによりなり、
     前記周面部の周上にある前記第1の開口部の開口縁を前記基準面の他方側に面対称となるように移した範囲以内に、前記第2の開口部と前記第3の開口部との間の壁面部が位置することを特徴とする空調用複合機能ドア。
  2.  前記周面部の軸方向の両側を閉塞する閉塞部に前記内部の空間と連通するサイド開口部を設けたことを特徴とする請求項1に記載の空調用複合機能ドア。
  3.  前記内部の空間を前記中心軸の径方向に拡がる仕切り部により仕切ったことを特徴とする請求項1又は2に記載の空調用複合機能ドア。
  4.  前記仕切り部の面積を前記閉塞部の面積より小さくしたことを特徴とする請求項3に記載の空調用複合機能ドア。
  5.  前記壁面部に、前記開口部と連続した切欠き又は前記開口部と連続しない通孔を設けたことを特徴とする請求項1、2、3又は4のいずれかに記載の空調用複合機能ドア。
  6.  車両の車内又は車外から適宜導入された空気を冷却可能な冷却用熱交換器と、この冷却用熱交換器を通過した空気の一部又は全部を加熱可能な加熱用熱交換器と、前記冷却用熱交換器と前記加熱用熱交換器とを配置した空気流路と、前記空気流路の空気の最下流側に車室内に空気を供給する空気吹出口を形成した車両用空調装置であって、
     前記空気流路内の前記冷却用熱交換器および前記加熱用熱交換器の下流に請求項1から請求項5のいずれかに記載の空調用複合機能ドアが収納され、
     前記空調用複合機能ドアの回転位置を変位することにより各吹出口から吹き出す空気の温度制御と吹出モードの切換えとを同時に行うことを特徴とする車両用空調装置。
  7.  インテークドアと、該インテークドアを駆動するインテークドア駆動機構と、前記空調用複合機能ドアを駆動する複合機能ドア駆動機構と、操作部と、を更に備え、
     前記インテークドア駆動機構と前記複合機能ドア駆動機構とが連動すると共に、前記操作部での1つの操作が前記インテークドア駆動機構と前記複合機能ドア駆動機構との双方に伝達されることを特徴とする請求項6に記載の車両用空調装置。
     
PCT/JP2012/000657 2011-02-09 2012-02-01 空調用複合機能ドア及び車両用空調装置 WO2012108146A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280004901.7A CN103298633B (zh) 2011-02-09 2012-02-01 空调用复合功能风门及车辆用空调装置
BR112013018266-0A BR112013018266A2 (pt) 2011-02-09 2012-02-01 porta multifuncional para ar condicionado e dispositivo para ar condicionado para veículo
JP2012556774A JP5980692B2 (ja) 2011-02-09 2012-02-01 空調用複合機能ドア及び車両用空調装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011025626 2011-02-09
JP2011-025626 2011-02-09

Publications (1)

Publication Number Publication Date
WO2012108146A1 true WO2012108146A1 (ja) 2012-08-16

Family

ID=46638373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000657 WO2012108146A1 (ja) 2011-02-09 2012-02-01 空調用複合機能ドア及び車両用空調装置

Country Status (4)

Country Link
JP (1) JP5980692B2 (ja)
CN (1) CN103298633B (ja)
BR (1) BR112013018266A2 (ja)
WO (1) WO2012108146A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156061A1 (ja) * 2013-03-27 2014-10-02 株式会社デンソー 車両用空調装置
KR20150025962A (ko) * 2013-08-30 2015-03-11 한라비스테온공조 주식회사 차량용 공조장치
CN105197034A (zh) * 2015-09-08 2015-12-30 石家庄国祥运输设备有限公司 高速列车适用的精控新风调节阀
US11491844B2 (en) * 2016-12-15 2022-11-08 Bayerische Motoren Werke Aktiengesellschaft Air vent for a motor vehicle and motor vehicle equipped therewith

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237328B2 (ja) * 2014-02-26 2017-11-29 株式会社デンソー 車両用空調装置
CN107074063B (zh) * 2014-12-02 2019-07-26 翰昂汽车零部件有限公司 车用左/右独立的空调装置
CN105216812B (zh) * 2015-09-08 2017-08-01 石家庄国祥运输设备有限公司 高速列车适用的精控新风调节阀的控制方法
JP2018203217A (ja) * 2017-06-09 2018-12-27 株式会社ヴァレオジャパン 車両用空調装置及びそれに適用される枠体
CN108981133A (zh) * 2018-06-05 2018-12-11 广东美的暖通设备有限公司 换热器组件和具有其的空调室内机
CN108638801A (zh) * 2018-06-07 2018-10-12 浙江智动汽车部件有限公司 空调出风结构
EP3862200B1 (en) * 2020-02-04 2022-12-28 Ningbo Geely Automobile Research & Development Co., Ltd. An air conditioning system and a method for operating an air conditioning system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568414A (en) * 1978-11-14 1980-05-23 Jidosha Denki Kogyo Co Ltd Rotary shutter of automobile air conditioner
GB2168786A (en) * 1984-12-20 1986-06-25 Austin Rover Group An air distribution valve for an air heater
US5062352A (en) * 1990-07-16 1991-11-05 General Motors Corporation Motor vehicle heating, ventilating and air conditioning system with combined mode/temperature door
FR2720693A1 (fr) * 1994-06-01 1995-12-08 Valeo Thermique Habitacle Dispositif de chauffage et/ou d'aération de l'habitacle d'un véhicule.
JPH08175153A (ja) * 1994-10-28 1996-07-09 Nippondenso Co Ltd 空調装置
JPH1035250A (ja) * 1996-07-19 1998-02-10 Mitsubishi Heavy Ind Ltd 車両用空気調和装置
JPH10315747A (ja) * 1997-04-25 1998-12-02 Micro Compact Car Ag 車輛の車室の換気装置
DE19837338C1 (de) * 1998-08-18 1999-09-23 Mc Micro Compact Car Ag Steuerorgan für eine Luftverteilungsvorrichtung für Fahrgastzellen
JP2002293127A (ja) * 2001-03-30 2002-10-09 Calsonic Kansei Corp 車両用空調装置
JP2007506600A (ja) * 2003-06-30 2007-03-22 ベール ゲーエムベーハー ウント コー カーゲー 自動車空調装置の空気案内ハウジング用ドア
JP2007153235A (ja) * 2005-12-07 2007-06-21 Denso Corp 車両用空調装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2866215Y (zh) * 2005-12-20 2007-02-07 比亚迪股份有限公司 汽车空调旋转风门密封装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568414A (en) * 1978-11-14 1980-05-23 Jidosha Denki Kogyo Co Ltd Rotary shutter of automobile air conditioner
GB2168786A (en) * 1984-12-20 1986-06-25 Austin Rover Group An air distribution valve for an air heater
US5062352A (en) * 1990-07-16 1991-11-05 General Motors Corporation Motor vehicle heating, ventilating and air conditioning system with combined mode/temperature door
FR2720693A1 (fr) * 1994-06-01 1995-12-08 Valeo Thermique Habitacle Dispositif de chauffage et/ou d'aération de l'habitacle d'un véhicule.
JPH08175153A (ja) * 1994-10-28 1996-07-09 Nippondenso Co Ltd 空調装置
JPH1035250A (ja) * 1996-07-19 1998-02-10 Mitsubishi Heavy Ind Ltd 車両用空気調和装置
JPH10315747A (ja) * 1997-04-25 1998-12-02 Micro Compact Car Ag 車輛の車室の換気装置
DE19837338C1 (de) * 1998-08-18 1999-09-23 Mc Micro Compact Car Ag Steuerorgan für eine Luftverteilungsvorrichtung für Fahrgastzellen
JP2002293127A (ja) * 2001-03-30 2002-10-09 Calsonic Kansei Corp 車両用空調装置
JP2007506600A (ja) * 2003-06-30 2007-03-22 ベール ゲーエムベーハー ウント コー カーゲー 自動車空調装置の空気案内ハウジング用ドア
JP2007153235A (ja) * 2005-12-07 2007-06-21 Denso Corp 車両用空調装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156061A1 (ja) * 2013-03-27 2014-10-02 株式会社デンソー 車両用空調装置
JP2014189176A (ja) * 2013-03-27 2014-10-06 Denso Corp 車両用空調装置
CN105189158B (zh) * 2013-03-27 2017-03-15 株式会社电装 车辆用空调装置
KR20150025962A (ko) * 2013-08-30 2015-03-11 한라비스테온공조 주식회사 차량용 공조장치
KR102024071B1 (ko) * 2013-08-30 2019-09-24 한온시스템 주식회사 차량용 공조장치
CN105197034A (zh) * 2015-09-08 2015-12-30 石家庄国祥运输设备有限公司 高速列车适用的精控新风调节阀
US11491844B2 (en) * 2016-12-15 2022-11-08 Bayerische Motoren Werke Aktiengesellschaft Air vent for a motor vehicle and motor vehicle equipped therewith

Also Published As

Publication number Publication date
JPWO2012108146A1 (ja) 2014-07-03
BR112013018266A2 (pt) 2021-03-23
CN103298633B (zh) 2016-01-20
CN103298633A (zh) 2013-09-11
JP5980692B2 (ja) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5980692B2 (ja) 空調用複合機能ドア及び車両用空調装置
US20040093885A1 (en) Vehicle air conditioner with main blower and sub-blower
US20110284183A1 (en) Vehicle air conditioning apparatus
US10543732B2 (en) Vehicle air-conditioning unit
JP6101065B2 (ja) 車両用空調装置
US20090215379A1 (en) Vehicular air-conditioning system
WO2014058009A1 (ja) 車両用空調装置
WO2014156061A1 (ja) 車両用空調装置
JP6269432B2 (ja) 車両用空調装置
JP6265303B2 (ja) 車両用空調ユニット
JP2017171125A (ja) 車両用空調装置
JP2004122813A (ja) 車両用空調装置
JP2008087575A (ja) 車両用空調装置
JP4063096B2 (ja) 車両用空調装置
JP2004136772A (ja) 車両用空調装置
JP2007055370A (ja) 車両用空調装置
JP2005324588A (ja) 車両用空調装置
WO2015129216A1 (ja) 車両用空調装置
JP2008265447A (ja) 車両用空調装置
JP2008143513A (ja) 車両用空調装置
JP2005319914A (ja) 車両用空調装置
JP6592964B2 (ja) 車両用空調ユニット
JP5293590B2 (ja) 車両用空調装置
WO2020170753A1 (ja) 車両用空調ユニット
JP2007276547A (ja) 空気流通路切替え装置およびこれを備えた車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556774

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013018266

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12744323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112013018266

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130717