WO2012108047A1 - 電気加熱式触媒 - Google Patents

電気加熱式触媒 Download PDF

Info

Publication number
WO2012108047A1
WO2012108047A1 PCT/JP2011/052922 JP2011052922W WO2012108047A1 WO 2012108047 A1 WO2012108047 A1 WO 2012108047A1 JP 2011052922 W JP2011052922 W JP 2011052922W WO 2012108047 A1 WO2012108047 A1 WO 2012108047A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
catalyst carrier
outer peripheral
electrode
electrodes
Prior art date
Application number
PCT/JP2011/052922
Other languages
English (en)
French (fr)
Inventor
▲吉▼岡 衛
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180067227.2A priority Critical patent/CN103347611B/zh
Priority to JP2012556723A priority patent/JP5655870B2/ja
Priority to PCT/JP2011/052922 priority patent/WO2012108047A1/ja
Priority to EP11858083.6A priority patent/EP2674215B1/en
Priority to US13/983,962 priority patent/US9371761B2/en
Publication of WO2012108047A1 publication Critical patent/WO2012108047A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/023Heaters of the type used for electrically heating the air blown in a vehicle compartment by the vehicle heating system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an electrically heated catalyst provided in an exhaust passage of an internal combustion engine.
  • an electrically heated catalyst (hereinafter referred to as EHC) in which the catalyst is heated by a heating element that generates heat when energized has been developed.
  • a surface electrode extending along the outer peripheral surface of the heating element is formed.
  • the electrodes When the electrodes are energized, a current flows through a portion of the heating element located between the surface electrodes (hereinafter, this portion is referred to as “interelectrode portion”). Therefore, the temperature between the electrodes rises.
  • the heating element has a portion that is outside from between the surface electrodes (that is, a portion in the vicinity of the outer peripheral surface where the surface electrode is not provided: this portion is hereinafter referred to as “interelectrode exterior”).
  • the temperature distribution in the circumferential direction (width direction orthogonal to the axial direction) of the heating element when energized is non-uniform.
  • the temperature distribution in the circumferential direction of the heating element becomes non-uniform in this way, the exhaust gas purification ability of the catalyst is not fully exhibited in the low temperature part, which leads to a decrease in the exhaust gas purification rate.
  • the thermal stress may increase, which may cause damage to the heating element.
  • the circumferential width of the heating element in the surface electrode it is possible to increase the ratio of the inter-electrode portion and decrease the ratio of the inter-electrode outside in the heating element.
  • the circumferential width of the heating element in the surface electrode is increased, the distance on the outer peripheral surface of the heating element between the surface electrodes is reduced. If the distance on the outer peripheral surface of the heating element between the surface electrodes is reduced to a certain extent, the current flowing between the surface electrodes tends to flow intensively through the outer peripheral surface of the heating element. As a result, the portion located between the surface electrodes on the outer peripheral surface may be excessively heated.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve the exhaust gas purification rate and suppress damage to the heating element by causing the heating element to generate heat more suitably in EHC.
  • the pair of surface electrodes are formed so as to extend spirally along the outer peripheral surface of the heating element from one end to the other end of the heating element and intersect each other across the heating element. ing. Furthermore, the width in the vicinity of the end portion in contact with the circumference of the end face of the heating element in the surface electrode is expanded.
  • the EHC according to the present invention is A heating element that is formed in a cylindrical shape, generates heat when energized, and heats the catalyst by generating heat;
  • the pair of electrodes has surface electrodes formed so as to extend spirally along the outer peripheral surface of the heating element from one end to the other end of the heating element and intersect each other with the heating element interposed therebetween.
  • the width in the vicinity of the end of the surface electrode in contact with the circumference of the end face of the heating element is expanded so that the shortest distance on the outer periphery of the heating element between the surface electrodes in the vicinity of the end is equal to or greater than a predetermined lower limit distance.
  • the predetermined lower limit distance is a lower limit value of the distance on the outer periphery of the heating element between the surface electrodes capable of suppressing the flow of current through the outer peripheral surface of the heating element, and is used for experiments, etc. It is a predetermined distance based on this.
  • the width of the end portion of the surface electrode it is possible to suppress the heat generation near the end portion of the heating element while suppressing current from flowing through the outer peripheral surface of the heating element during energization.
  • the temperature In the cross-sectional direction orthogonal to the axial direction of the body, the temperature can be raised in a wider range. Therefore, when viewed in the entire axial direction of the heat generating element, the portion that becomes the low temperature part when energized can be made smaller in the cross-sectional direction perpendicular to the axial direction of the heat generating element. Therefore, the exhaust gas purification rate can be improved, and damage to the heating element can be suppressed.
  • the width in the direction parallel to the circumference of the end face of the heating element near the center in the length direction of the surface electrode is on the outer periphery of the heating element between the surface electrodes near the center. May be extended in a range in which the shortest distance is equal to or greater than the predetermined lower limit distance.
  • the vicinity of the central portion in the length direction of the heating element can be raised in a wider range in the cross-sectional direction perpendicular to the axial direction.
  • the shortest distance on the outer periphery of the heating element between the surface electrodes in the portion where the width of the surface electrode is not expanded may be the predetermined lower limit distance. According to this, the width of the surface electrode can be increased as much as possible while suppressing the current from flowing through the outer peripheral surface of the heating element in the portion where the width of the surface electrode is not expanded.
  • the shortest distance on the outer periphery of the heating element between the surface electrodes in the portion where the width of the surface electrode is not expanded is on the outer periphery of the heating element between the surface electrodes in the portion where the width of the surface electrode is expanded. It may be larger than the shortest distance. According to this, in the part where the width
  • the heating element in the EHC, can generate heat more suitably.
  • the exhaust gas purification rate can be improved, and damage to the heating element can be suppressed.
  • FIG. 2A shows a perspective view of the catalyst carrier
  • FIG. 2B shows a state where the outer peripheral surface of the catalyst carrier is developed.
  • FIG. 2B shows a state where the outer peripheral surface of the catalyst carrier is developed.
  • FIG. 2B shows a state where the outer peripheral surface of the catalyst carrier is developed.
  • FIG. 2B shows a mode that the outer peripheral surface of the catalyst carrier was expand
  • FIG. 4A shows a developed view of the outer peripheral surface of the catalyst carrier when the spiral angle of the surface electrode is relatively large
  • FIG. 4B shows the catalyst when the spiral angle of the surface electrode is relatively small.
  • the development of the outer peripheral surface of the carrier is shown. It is a figure which shows the relationship between the spiral angle of a surface electrode, and the width
  • FIG. 6A shows a perspective view of the catalyst carrier, and FIG. 6B shows a state in which the outer peripheral surface of the catalyst carrier is developed.
  • FIG. 10A shows a cross-sectional view when the circumferential width of the catalyst carrier of the surface electrode is relatively small
  • FIG. 10B shows that the circumferential width of the catalyst carrier of the surface electrode is relatively small. Sectional drawing in the case of being large is shown.
  • FIG. 1 is a diagram showing a schematic configuration of an electrically heated catalyst (EHC) according to the present embodiment.
  • the EHC 1 according to the present embodiment is provided in an exhaust pipe of an internal combustion engine mounted on a vehicle.
  • the internal combustion engine may be a diesel engine or a gasoline engine.
  • the EHC 1 according to the present embodiment can also be used in a vehicle that employs a hybrid system including an electric motor.
  • FIG. 1 is a cross-sectional view of the EHC 1 cut in the longitudinal direction along the central axis A of the exhaust pipe 2 of the internal combustion engine. Since the shape of the EHC 1 is line symmetric with respect to the central axis A, only the upper part of the EHC 1 is shown in FIG. 1 for convenience.
  • the EHC 1 includes a catalyst carrier 3, a case 4, a mat 5, an inner tube 6, and an electrode 7.
  • the catalyst carrier 3 is formed in a columnar shape, and is installed so that its central axis is coaxial with the central axis A of the exhaust pipe 2.
  • An exhaust purification catalyst 15 is supported on the catalyst carrier 3. Examples of the exhaust purification catalyst 15 include an oxidation catalyst, a NOx storage reduction catalyst, a selective reduction NOx catalyst, and a three-way catalyst.
  • the catalyst carrier 3 is formed of a material that generates electric resistance when heated.
  • An example of the material of the catalyst carrier 3 is SiC.
  • the catalyst carrier 3 has a plurality of passages (cells) extending in the direction in which the exhaust flows (that is, in the direction of the central axis A) and having a cross section perpendicular to the direction in which the exhaust flows.
  • the exhaust purification catalyst 15 is carried on a partition wall forming each cell, and the exhaust gas is purified by the exhaust gas flowing through the cell.
  • the cross-sectional shape of the catalyst carrier 3 in the direction orthogonal to the central axis A may be an ellipse or the like.
  • the central axis A is a central axis common to the exhaust pipe 2, the catalyst carrier 3, the inner pipe 6, and the case 4.
  • the catalyst carrier 3 is accommodated in the case 4.
  • the case 4 is made of metal.
  • a material for forming the case 4 a stainless steel material can be exemplified.
  • the case 4 includes an accommodating portion 4a including a curved surface parallel to the central axis A, and a tapered portion 4b that connects the accommodating portion 4a and the exhaust pipe 2 on the upstream side and the downstream side of the accommodating portion 4a. 4c.
  • the passage cross-sectional area of the accommodating portion 4a is larger than the passage cross-sectional area of the exhaust pipe 2, and the catalyst carrier 3, the mat 5, and the inner pipe 6 are accommodated therein.
  • the tapered portions 4b and 4c have a tapered shape in which the passage cross-sectional area decreases as the distance from the accommodating portion 4a increases.
  • a mat 5 is sandwiched between the inner wall surface of the accommodating portion 4 a of the case 4 and the outer peripheral surface of the catalyst carrier 3. That is, the catalyst carrier 3 is supported by the mat 5 in the case 4.
  • An inner tube 6 is sandwiched between the mats 5. That is, the mat 5 is divided by the inner tube 6 into the case 4 side and the catalyst carrier 3 side.
  • the mat 5 is made of an electrical insulating material.
  • Examples of the material for forming the mat 5 include ceramic fibers mainly composed of alumina.
  • the mat 5 is wound around the outer peripheral surface of the catalyst carrier 3 and the outer peripheral surface of the inner tube 6. Since the mat 5 is sandwiched between the catalyst carrier 3 and the case 4, electricity is suppressed from flowing to the case 4 when the catalyst carrier 3 is energized.
  • the inner tube 6 is made of an electrical insulating material.
  • An example of the material for forming the inner tube 6 is alumina.
  • the inner tube 6 is formed in a tubular shape centered on the central axis A. As shown in FIG. 1, the inner tube 6 is longer than the mat 5 in the direction of the central axis A. Therefore, the upstream and downstream ends of the inner tube 6 protrude from the upstream and downstream end surfaces of the mat 5.
  • a pair of electrodes 7 are connected to the outer peripheral surface of the catalyst carrier 3 (in FIG. 1, only one side (upper side) electrode 7 is shown).
  • the electrode 7 is formed by a surface electrode 7a and a shaft electrode 7b.
  • the surface electrode 7 a is provided on the outer peripheral surface of the catalyst carrier 3. The detailed configuration of the surface electrode 7a will be described later.
  • One end of the shaft electrode 7b is connected to the surface electrode 7a.
  • the other end of the shaft electrode 7 b protrudes outside the case 4 through the electrode chamber 9.
  • the case 4 and the inner tube 6 are provided with through holes 4d and 6a for passing the shaft electrode 7b.
  • the mat 5 has a space for passing the shaft electrode 7b.
  • the electrode chamber 9 is formed by such a space that is located between the inner wall surface of the case 4 and the outer peripheral surface of the catalyst carrier 3 and in which the side wall surface is formed by the mat 5.
  • a support member 8 that supports the shaft electrode 7b is provided in the through-hole 4d opened in the case 4 (that is, the upper portion of the electrode chamber 9).
  • the support member 8 is formed of an electrical insulating material, and is provided between the case 4 and the shaft electrode 7b without a gap.
  • the other end of the shaft electrode 7b is electrically connected to a battery (not shown). Electricity is supplied to the electrode 7 from the battery. When electricity is supplied to the electrode 7, the catalyst carrier 3 is energized. When the catalyst carrier 3 generates heat by energization, the exhaust purification catalyst 15 carried on the catalyst carrier 3 is heated, and its activation is promoted.
  • the catalyst carrier 3 corresponds to the heating element according to the present invention.
  • the heating element according to the present invention is not limited to the carrier supporting the catalyst.
  • the heating element may be a structure installed on the upstream side of the catalyst.
  • FIG. 9 is a view showing a state in which an outer peripheral surface of a conventional EHC catalyst carrier is developed.
  • the hatched portion indicates the portion where the surface electrode 7a is provided.
  • two surface electrodes 7a are provided on the outer circumferential surface of the catalyst carrier 3 so as to face each other with the catalyst carrier 3 interposed therebetween and in parallel with the axial direction of the catalyst carrier 3. It has been.
  • FIG. 10 shows a cross-sectional view in a direction orthogonal to the axial direction of the catalyst carrier and the electrode catalyst carrier in the conventional EHC in which the surface electrode is provided as shown in FIG.
  • FIG. 10A shows a cross-sectional view when the circumferential width of the surface support 7a of the catalyst carrier 3 is relatively small (for example, when the width of the surface electrode 7a is 90 °)
  • FIG. (B) shows a cross-sectional view when the width of the surface electrode 7a in the circumferential direction of the catalyst carrier 3 is relatively large (for example, when the width of the surface electrode 7a is larger than 90 °).
  • FIG. 2 is a diagram illustrating a schematic configuration of the surface electrode in the EHC according to the present embodiment.
  • FIG. 2A shows a perspective view of the catalyst carrier
  • FIG. 2B shows a state where the outer peripheral surface of the catalyst carrier is developed.
  • the shaded portion indicates the surface electrode 7a.
  • the surface electrode 7 a is formed to be inclined at a predetermined angle ⁇ with respect to the axial direction of the catalyst carrier 3, and extends from one end of the catalyst carrier 3 to the other end. Extending along the outer circumferential surface of the catalyst carrier 3. The two surface electrodes 7a are formed so as to cross each other with the catalyst carrier 3 interposed therebetween.
  • the surface electrode 7a When the surface electrode 7a is formed in a spiral shape along the outer peripheral surface of the catalyst carrier 3 in this way, the electrode in a cross section in a direction orthogonal to the axial direction of the catalyst carrier 3 as the catalyst carrier 3 advances from the front end to the rear end. The position of the intermediate portion is shifted in the direction of rotation around the axis of the catalyst carrier 3. As a result, as viewed in the entire axial direction of the catalyst carrier 3, as shown in FIG. 3, the ratio between the electrodes (the portion shown in gray in FIG. 3) occupies the cross section in the direction orthogonal to the axial direction of the catalyst carrier 3. As compared with the conventional case, the surface electrode 7a is larger than the case where the surface electrode 7a is formed in parallel with the axial direction of the catalyst carrier 3. Therefore, when viewed in the entire axial direction of the catalyst carrier 3, in the cross section in the direction orthogonal to the axial direction of the catalyst carrier 3, the external part between the electrodes (the portion surrounded by the broken line in FIG. ) Can
  • the flow rate of the exhaust gas passing through the EHC 1 can be reduced without contacting the activated exhaust purification catalyst 15. Therefore, the exhaust gas purification rate can be improved. Moreover, since the dispersion
  • the inclination angle of the surface electrode 7a with respect to the axial direction of the catalyst carrier 3 (hereinafter, this inclination angle is referred to as a spiral angle). This will be described with reference to FIGS.
  • the surface electrode 7 a is formed in parallel with the axial direction of the catalyst carrier 3, the width of the surface electrode 7 a and the distance between the surface electrodes are arc lengths with the axis of the catalyst carrier 3 as the center point.
  • the width of the surface electrode 7a and the distance between the surface electrodes are arcs centered on the axis of the catalyst carrier 3 when the surface electrode 7a is assumed to be formed in parallel with the axial direction of the catalyst carrier 3. It shall be expressed as the center angle of.
  • FIG. 4 is a diagram showing a state in which the outer peripheral surface of the catalyst carrier is developed when the surface electrode is spirally formed along the outer peripheral surface of the catalyst carrier.
  • FIG. 4A shows a developed view of the outer peripheral surface of the catalyst carrier when the spiral angle of the surface electrode is relatively large
  • FIG. 4B shows the catalyst when the spiral angle of the surface electrode is relatively small.
  • the development of the outer peripheral surface of the carrier is shown. 4 (a) and 4 (b), the hatched portion indicates the surface electrode 7a.
  • the shortest outer peripheral distance is the outer peripheral surface of the catalyst carrier 3. It is necessary to ensure that current is prevented from flowing through. According to the earnest study of the inventors of the present invention, in order to suppress the flow of current through the outer peripheral surface of the catalyst carrier 3, it is necessary to set the shortest outer peripheral distance between the surface electrodes to a central angle of 90 ° or more. There was found.
  • the shortest outer peripheral distance between the surface electrodes is set to a central angle of 90 °.
  • the width of the surface electrode 7a is smaller when the spiral angle of the surface electrode 7a is large than when the spiral angle is small.
  • the width of the surface electrode 7a becomes excessively small, it is difficult to raise the temperature of the catalyst carrier 3 within a sufficient range. According to the diligent research of the inventors of the present invention, it has been found that in order to raise the temperature of the catalyst carrier 3 within a sufficient range, the width of the surface electrode 7a needs to be set to a central angle of 60 ° or more.
  • FIG. 5 is a diagram showing the relationship between the spiral angle of the surface electrode and the width of the surface electrode when the shortest outer peripheral distance between the surface electrodes is 90 °.
  • the width of the surface electrode 7a decreases as the spiral angle of the surface electrode 7a increases.
  • the width of the surface electrode 7a needs to be set to a central angle of 60 ° or more. In order to satisfy such a condition, it is necessary to set the spiral angle of the surface electrode 7a to 33 ° or less from FIG.
  • the shortest outer peripheral distance between the surface electrodes is set to a central angle of 90 °, and the temperature of the catalyst carrier 3 is increased within a sufficient range.
  • the spiral angle of the surface electrode 7a needs to be 33 ° or less. Therefore, also in the EHC according to the present embodiment, the shortest outer peripheral distance between the surface electrodes is 90 °, and the spiral angle of the surface electrode 7a (angle ⁇ shown in FIG. 2B) is 33 ° or less. It has become.
  • the configuration of the surface electrode of the EHC according to the present embodiment will be further described.
  • the shortest outer peripheral distance between the surface electrodes at the end surface portion of the catalyst carrier 3 is usually the catalyst on the outer periphery of the catalyst carrier 3 between the surface electrodes.
  • a distance in a direction parallel to the circumference of the end face of the carrier 3 hereinafter, this distance is referred to as an outer peripheral distance).
  • the surface electrode 7a is spirally formed along the outer periphery of the catalyst carrier 3, and the end portion of the surface electrode 7a that is in contact with the circumference of the end surface of the catalyst carrier 3 Extend neighborhood width. More specifically, as shown in FIG. 2B, if the width of the end portion of the surface electrode 7a is not expanded, the side that intersects the circumference of the end surface of the catalyst carrier 3 at an acute angle is expanded outward. , Expanding the width near the end.
  • the surface electrode By configuring the surface electrode as described above, the axial direction of the catalyst carrier 3 in the vicinity of the end of the catalyst carrier 3 within a range where current can be suppressed from flowing through the outer peripheral surface of the catalyst carrier 3.
  • the ratio of the inter-electrode portion in the cross section orthogonal to can be increased as much as possible. That is, the vicinity of the end of the catalyst carrier 3 can be heated in a wider range in the cross-sectional direction orthogonal to the axial direction of the catalyst carrier 3.
  • FIG. 6 is a diagram showing a schematic configuration of the surface electrode in the EHC according to the present modification.
  • FIG. 6A shows a perspective view of the catalyst carrier
  • FIG. 6B shows a state in which the outer peripheral surface of the catalyst carrier is developed.
  • the shaded portion indicates the surface electrode 7a.
  • the surface electrode 7a extends spirally along the outer peripheral surface of the catalyst carrier 3 from one end to the other end of the catalyst carrier 3 as described above.
  • the two surface electrodes 7a are formed so as to cross each other with the catalyst carrier 3 interposed therebetween.
  • the shortest outer peripheral distance in the portion other than the end portion and the central portion of the surface electrode 7a is from the vertex of the portion where the width of one surface electrode 7a is expanded to the other surface. This is the distance on the outer peripheral surface of the catalyst carrier 3 to the electrode 7a.
  • the portion that becomes the low temperature portion when energized is made smaller in the cross-sectional direction orthogonal to the axial direction of the catalyst carrier 3. Can do. Therefore, the exhaust gas purification rate can be improved, and damage to the catalyst carrier 3 can be suppressed.
  • the shortest outer circumference distance between the surface electrodes is corrected according to the linear distance between the front surface electrodes without making the shortest outer circumference distance between the surface electrodes constant at 90 °.
  • FIG. 7 is a diagram showing the linear distance between the surface electrodes at each position between the front end and the rear end of the catalyst carrier 3.
  • FIG. 8 is a diagram showing correction coefficients at each position between the front end and the rear end of the catalyst carrier 3 when correcting the shortest outer peripheral distance between the surface electrodes in the present modification. In FIG. 8, the correction is performed so that the shortest outer peripheral distance between the surface electrodes increases as the correction coefficient increases.
  • L1 indicates a value when the conventional surface electrode 7a is formed horizontally with the axial direction of the catalyst carrier 3, and L2 indicates that the surface electrode 7a is as shown in FIG. FIG.
  • the shortest outer peripheral distance between the surface electrodes is increased as the linear distance between the surface electrodes is increased.
  • the width in the direction parallel to the circumference of the end face of the catalyst carrier 3 is expanded in a part of the surface electrode 7a, the width is not expanded.
  • the width of the partial surface electrode 7a is made smaller.
  • Electric heating catalyst (EHC) 3 Electric heating catalyst (EHC) 3 .
  • Catalyst carrier 4 Case 7 .
  • Surface electrode 7b Shaft electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、電気加熱式触媒(EHC)において、発熱体をより好適に発熱させることで、排気浄化率の向上や発熱体の破損の抑制を図ることを目的とする。本発明に係るEHCにおいては、一対の表面電極7aが、円柱状に形成された発熱体3の一端から他端に向かって該発熱体3の外周面に沿って螺旋状に延び且つ発熱体3を挟んで互いに交差するように形成されている。さらに、表面電極7aにおける発熱体3の端面の円周と接する端部近傍の幅が拡張されている。

Description

電気加熱式触媒
 本発明は、内燃機関の排気通路に設けられる電気加熱式触媒に関する。
 従来、内燃機関の排気通路に設けられる排気浄化触媒として、通電されることで発熱する発熱体によって触媒が加熱される電気加熱式触媒(Electric Heating Catalyst:以下、EHCと称する)が開発されている。
 また、EHCにおいて、発熱体の側面(外周面)に、互いに対向するように一対の電極を接続した構成が知られている(例えば、特許文献1参照。)。このような構成においては、発熱体を通って電極間に電流が流れることで発熱体が発熱する。
特開平5-269387号公報
 円柱状(断面形状が楕円のものを含む)の発熱体の外周面に互いに対向するように一対の電極を設けた場合、前記発熱体の外周面に沿って延びる表面電極が形成される。該電極に通電すると、発熱体における表面電極間に位置する部分(以下、この部分を「電極間部」と称する)に電流が流れる。そのため、該電極間部が昇温する。しかしながら、発熱体には表面電極間から外側に外れている部分(即ち、表面電極が設けられていない外周面近傍部分:以下、この部分を「電極間外部」と称する)が存在する。電極に通電しても、該電極間外部には電流が流れ難いため、該電極間外部は昇温し難い。従って、通電した際の発熱体の周方向(軸方向と直交する幅方向)における温度分布は不均一となる。
 このように発熱体の周方向における温度分布が不均一となると、低温部においては触媒の排気浄化能力が十分に発揮されなくなり、排気浄化率の低下を招くこことになる。また、発熱体における温度分布のばらつきが大きくなると、熱応力が大きくなることによって、発熱体の破損を招く虞もある。
 ここで、表面電極における発熱体の周方向の幅を大きくすることで、発熱体において、電極間部が占める割合を大きくし、電極間外部が占める割合を小さくすることができる。しかしながら、表面電極における発熱体の周方向の幅を大きくすると、表面電極間の発熱体の外周面上の距離が小さくなる。この表面電極間の発熱体の外周面上の距離がある程度以上小さくなると、表面電極間を流れる電流が、発熱体の外周面を通って集中的に流れ易くなる。その結果、該外周面における表面電極間に位置する部分が過剰に昇温する虞がある。
 本発明は、上記問題に鑑みてなされたものであって、EHCにおいて、発熱体をより好適に発熱させることで、排気浄化率の向上や発熱体の破損の抑制を図ることを目的とする。
 本発明に係るEHCにおいては、一対の表面電極が、発熱体の一端から他端に向かって該発熱体の外周面に沿って螺旋状に延び且つ発熱体を挟んで互いに交差するように形成されている。さらに、表面電極における発熱体の端面の円周と接する端部近傍の幅が拡張されている。
 より詳しくは、本発明に係るEHCは、
 円柱状に形成され、通電により発熱し、発熱することで触媒を加熱する発熱体と、
 前記発熱体に電気を供給する電極であって、該発熱体を挟み込むように該発熱体の外周面に接続された一対の電極と、を備え、
 前記一対の電極が、前記発熱体の一端から他端に向かって該発熱体の外周面に沿って螺旋状に延び且つ前記発熱体を挟んで互いに交差するように形成された表面電極を有し、
 前記表面電極における前記発熱体の端面の円周と接する端部近傍の幅が、該端部近傍における表面電極間の前記発熱体の外周上の最短距離が所定の下限距離以上となる範囲で拡張されている。
 ここで、所定の下限距離とは、発熱体の外周面を通って電流が流れることを抑制することが可能な表面電極間の発熱体の外周上の距離の下限値であって、実験等に基づいて予め定められた距離である。
 本発明のように、表面電極における端部の幅を拡張することで、通電時において、発熱体の外周面を通って電流が流れることを抑制しつつ、発熱体の端部近傍を、該発熱体の軸方向と直交する断面方向において、より広い範囲で昇温させることができる。従って、発熱体の軸方向全体でみれば、該発熱体の軸方向と直交する断面方向において、通電時に低温部となる部分をより小さくすることができる。そのため、排気浄化率を向上させることができ、また、発熱体の破損を抑制することができる。
 本発明においては、さらに、さらに、表面電極における長さ方向の中央部近傍の前記発熱体の端面の円周と並行な方向の幅が、該中央部近傍における表面電極間の発熱体の外周上の最短距離が前記所定の下限距離以上となる範囲で拡張されてもよい。
 これによれば、通電時において、発熱体の外周面を通って電流が流れることを抑制しつつ、発熱体の端部近傍に加え、発熱体の長さ方向の中央部近傍も、該発熱体の軸方向と直交する断面方向において、より広い範囲で昇温させることができる。
 本発明においては、表面電極の幅が拡張されていない部分における表面電極間の発熱体の外周上の最短距離が前記所定の下限距離となっていてもよい。これによれば、表面電極における幅が拡張されていない部分において、発熱体の外周面を通って電流が流れることを抑制しつつ、表面電極の幅を可及的に大きくすることができる。
 本発明においては、表面電極の幅が拡張されていない部分における表面電極間の発熱体の外周上の最短距離が、表面電極の幅が拡張された部分における表面電極間の発熱体の外周上の最短距離よりも大きくなっていてもよい。これによれば、表面電極における幅が拡張されていない部分において、発熱体の外周面を通って電流が流れることをより高い確率で抑制することができる。
 本発明によれば、EHCにおいて、発熱体をより好適に発熱させることができる。その結果、排気浄化率を向上させることができ、また、発熱体の破損を抑制することができる。
実施例に係る電気加熱式触媒(EHC)の概略構成を示す図である。 実施例に係るEHCにおける表面電極の概略構成を示す図である。図2(a)は、触媒担体の斜視図を示しており、図2(b)は、触媒担体の外周面を展開した様子を示す図である。 実施例に係る触媒担体の軸方向と直交する方向の断面において電極間部が占める部分を示す図である。 表面電極を触媒担体の外周面に沿って螺旋状に形成した場合の触媒担体の外周面を展開した様子を示す図である。図4(a)は、表面電極の螺旋角度が比較的大きい場合の触媒担体の外周面の展開図を示しており、図4(b)は、表面電極の螺旋角度が比較的小さい場合の触媒担体の外周面の展開図を示している。 表面電極間の外周最短距離を中心角90°としたときの、表面電極の螺旋角度と表面電極の幅との関係を示す図である。 実施例の第一変形例に係るEHCにおける表面電極の概略構成を示す図である。図6(a)は、触媒担体の斜視図を示しており、図6(b)は、触媒担体の外周面を展開した様子を示す図である。 実施例の第二変形例に係る、触媒担体の前端から後端の間における各位置での表面電極間の直線距離を示す図である。 実施例の第二変形例において、表面電極間の外周最短距離を補正するときの触媒担体の前端から後端の間における各位置での補正係数を示す図である。 従来のEHCの触媒担体の外周面を展開した様子を示す図である。 従来のEHCにおける触媒担体及び電極の触媒担体の軸方向と直行する方向の断面図を示している。図10(a)は、表面電極の触媒担体の周方向の幅が比較的小さい場合の断面図を示しており、図10(b)は、表面電極の触媒担体の周方向の幅が比較的大きい場合の断面図を示している。
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。
 <実施例1>
 図1は、本実施例に係る電気加熱式触媒(EHC)の概略構成を示す図である。本実施例に係るEHC1は、車両に搭載される内燃機関の排気管に設けられる。内燃機関は、ディーゼル機関であっても、ガソリン機関であってもよい。また、電気モータを備えたハイブリッドシステムを採用した車両においても本実施例に係るEHC1を用いることができる。
 図1は、内燃機関の排気管2の中心軸Aに沿ってEHC1を縦方向に切断した断面図である。尚、EHC1の形状は中心軸Aに対して線対称のため、図1では、便宜上、EHC1の上側の部分のみを示している。
 本実施例に係るEHC1は、触媒担体3、ケース4、マット5、内管6、及び電極7を備えている。触媒担体3は、円柱状に形成されており、その中心軸が排気管2の中心軸Aと同軸となるように設置されている。触媒担体3には排気浄化触媒15が担持されている。排気浄化触媒15としては、酸化触媒、吸蔵還元型NOx触媒、選択還元型NOx触媒及び三元触媒等を例示することができる。
 触媒担体3は、通電されると電気抵抗となって発熱する材料によって形成されている。触媒担体3の材料としては、SiCを例示することができる。触媒担体3は、排気の流れる方向(すなわち、中心軸Aの方向)に伸び且つ排気の流れる方向と垂直な断面がハニカム状をなす複数の通路(セル)を有している。排気浄化触媒15は各セルを形成する隔壁に担持されており、該セルを排気が流通することで、該排気が浄化される。尚、中心軸Aと直交する方向の触媒担体3の断面形状は楕円形等であっても良い。中心軸Aは、排気管2、触媒担体3、内管6、及びケース4で共通の中心軸である。
 触媒担体3はケース4に収容されている。ケース4は、金属によって形成されている。ケース4を形成する材料としては、ステンレス鋼材を例示することができる。ケース4は、中心軸Aと平行な曲面を含んで構成される収容部4aと、該収容部4aよりも上流側及び下流側で該収容部4aと排気管2とを接続するテーパ部4b,4cと、を有している。収容部4aの通路断面積は排気管2の通路断面積よりも大きくなっており、その内側に、触媒担体3、マット5、及び内管6が収容されている。テーパ部4b,4cは、収容部4aから離れるに従って通路断面積が縮小するテーパ形状をしている。
 ケース4の収容部4aの内壁面と触媒担体3の外周面との間にはマット5が挟み込まれている。つまり、ケース4内において、触媒担体3がマット5によって支持されている。また、マット5には内管6が挟み込まれている。つまり、マット5が、内管6によってケース4側と触媒担体3側とに分割されている。
 マット5は、電気絶縁材によって形成されている。マット5を形成する材料としては、アルミナを主成分とするセラミックファイバーを例示することができる。マット5は、触媒担体3の外周面及び内管6の外周面に巻きつけられている。マット5が、触媒担体3とケース4との間に挟み込まれていることで、触媒担体3に通電したときに、ケース4へ電気が流れることが抑制される。
 内管6は、電気絶縁材によって形成されている。内管6を形成する材料としては、アルミナを例示することができる。内管6は、中心軸Aを中心とした管状に形成されている。図1に示すように、内管6は、中心軸A方向の長さがマット5より長い。そのため、内管6の上流側及び下流側の端部は、マット5の上流側及び下流側の端面から突出している。
 触媒担体3の外周面には一対の電極7が接続されている(尚、図1においては、片側(上側)の電極7のみ図示している。)。電極7は、表面電極7a及び軸電極7bによって形成されている。表面電極7aは、触媒担体3の外周面に設けられている。尚、該表面電極7aの詳細な構成については後述する。軸電極7bの一端は表面電極7aに接続されている。そして、電極室9を通って軸電極7bの他端がケース4の外側に突出している。
 ケース4及び内管6には、軸電極7bを通すために、貫通孔4d,6aが開けられている。また、マット5には、軸電極7bを通すための空間が形成されている。このような、ケース4の内壁面と触媒担体3の外周面との間に位置し、マット5によってその側壁面が形成された空間によって、電極室9が形成されている。ケース4に開けられている貫通孔4d(つまり、電極室9の上部)には、軸電極7bを支持する支持部材8が設けられている。この支持部材8は電気絶縁材によって形成されており、ケース4と軸電極7bとの間に隙間なく設けられている。
 軸電極7bの他端は、バッテリ(図示せず)に電気的に接続されている。電極7には該バッテリから電気が供給される。電極7に電気が供給されると、触媒担体3に通電される。通電によって触媒担体3が発熱すると、触媒担体3に担持された排気浄化触媒15が加熱され、その活性化が促進される。
 尚、本実施例においては、触媒担体3が本発明に係る発熱体に相当する。ただし、本発明に係る発熱体は触媒を担持する担体に限られるものではなく、例えば、発熱体は触媒の上流側に設置された構造体であってもよい。
 ここで、従来のEHCにおける、表面電極の構成及び通電時の触媒担体の発熱状態について図9及び図10に基づいて説明する。図9は、従来のEHCの触媒担体の外周面を展開した様子を示す図である。図9においては、斜線部が、表面電極7aが設けられた部分を示している。図9に示すように、従来のEHCにおいては、触媒担体3の外周面に、触媒担体3を挟んで互いに対向するように且つ触媒担体3の軸方向と平行に、二つの表面電極7aがもうけられている。
 図10は、図9に示すように表面電極がもうけられた従来のEHCにおける触媒担体及び電極の触媒担体の軸方向と直交する方向の断面図を示している。図10(a)は、表面電極7aの触媒担体3の周方向の幅が比較的小さい場合(例えば、表面電極7aの幅が中心角90°の場合)の断面図を示しており、図10(b)は、表面電極7aの触媒担体3の周方向の幅が比較的大きい場合(例えば、表面電極7aの幅が中心角90°より大きい場合)の断面図を示している。
 図10(a)に示すように表面電極7aの幅が比較的小さい場合、電極7に通電すると、触媒担体3における表面電極間に位置する部分である電極間部(図10(a)において灰色で示す部分)に電流が流れる。そのため、該電極間部が昇温する。しかしながら、触媒担体3における表面電極間から外側に外れている部分である電極間外部(図10(a)において破線で囲んだ部分)には電流が流れ難い。そのため、該電極間外部が昇温し難く、低温部となる。
 触媒担体3において、このような低温部が生じると、該低温部においては触媒の排気浄化能力が十分に発揮されなくなるため、排気浄化率の低下を招くこことになる。また、触媒担体3における温度ばらつきが大きくなると、熱応力が大きくなることによって、触媒担体3の破損を招く虞もある。
 一方、図10(b)に示すような触媒担体3における低温部の発生を抑制すべく、表面電極7aの幅を大きくすると、表面電極間の外周距離が小さくなる。そして、図10(b)に示すように、表面電極間の外周距離がある程度以上小さくなると、より集中的に触媒担体3の外周面(図10(b)において灰色で示す部分)を通って電流が流れ易くなる。その結果、該外周面の表面電極間に位置する部分が過剰に昇温する虞がある。
 そこで、本実施例に係るEHCにおいては、表面電極7aを、触媒担体3の外周面に沿って螺旋を形成するような構成とした。図2は、本実施例に係るEHCにおける表面電極の概略構成を示す図である。図2(a)は、触媒担体の斜視図を示しており、図2(b)は、触媒担体の外周面を展開した様子を示す図である。図2(b)においては、斜線部が、表面電極7aを示している。
 本実施例に係るEHCにおいては、図2に示すように、表面電極7aが、触媒担体3の軸方向に対して所定角度α傾いて形成されており、触媒担体3の一端から他端に向かって該触媒担体3の外周面に沿って螺旋状に延びている。また、二つの表面電極7aは触媒担体3を挟んで互いに交差するように形成されている。
 このように表面電極7aを触媒担体3の外周面に沿って螺旋状に形成すると、触媒担体3の前端から後端に進むに連れて、触媒担体3の軸方向と直交する方向の断面における電極間部の位置が触媒担体3の軸周りに回転する方向にずれる。その結果、触媒担体3の軸方向全体でみれば、図3に示すように、触媒担体3の軸方向と直交する方向の断面において電極間部(図3において灰色で示す部分)が占める割合が、従来のように表面電極7aを触媒担体3の軸方向と平行に形成した場合に比べて大きくなる。そのため、触媒担体3の軸方向全体でみれば、触媒担体3の軸方向と直交する方向の断面において、通電時に電流が流れずに低温部となる電極間外部(図3において破線で囲んだ部分)が占める割合を小さくすることができる。
 従って、活性化した排気浄化触媒15と接することなくEHC1を通過する排気の流量を低減することができる。そのため、排気浄化率を向上させることができる。また、通電時における触媒担体3の温度分布のばらつきが抑制されるため、触媒担体3が破損することを抑制することができる。
 ここで、表面電極7aを触媒担体3の外周面に沿って螺旋状に形成する場合における、表面電極7aの触媒担体3の軸方向に対する傾斜角度(以下、この傾斜角度を螺旋角度と称する)について図4及び5に基づいて説明する。尚、表面電極7aを触媒担体3の軸方向と平行に形成した場合、表面電極7aの幅及び表面電極間の距離は、触媒担体3の軸を中心点とする円弧の長さとなる。そこで、以下においては、表面電極7aの幅及び表面電極間の距離を、表面電極7aを触媒担体3の軸方向と平行に形成したと仮定した場合における触媒担体3の軸を中心点とする円弧の中心角として表すものとする。
 図4は、表面電極を触媒担体の外周面に沿って螺旋状に形成した場合の触媒担体の外周面を展開した様子を示す図である。図4(a)は、表面電極の螺旋角度が比較的大きい場合の触媒担体の外周面の展開図を示しており、図4(b)は、表面電極の螺旋角度が比較的小さい場合の触媒担体の外周面の展開図を示している。図4(a),(b)においては、斜線部が、表面電極7aを示している。
 図4に示すように、表面電極7aの螺旋角度を大きくすると、触媒担体3の外周面上における該表面電極7aの長さをより長くすることができる。しかしながら、表面電極7aを螺旋状に形成した場合であっても、表面電極間の触媒担体3の外周上の最短距離(以下、この距離を外周最短距離と称する)を、触媒担体3の外周面を通って電流が流れることが抑制される程度に確保する必要がある。本発明の発明者の鋭意研究によれば、触媒担体3の外周面を通って電流が流れること抑制するためには、表面電極間の外周最短距離を中心角90°以上とする必要があることが判明した。
 そこで、図4(a),(b)においては、表面電極間の外周最短距離を中心角90°としている。表面電極間の外周最短距離を中心角90°で一定とすると、表面電極7aの螺旋角度が大きいときは、該螺旋角度が小さい場合に比べて、表面電極7aの幅が小さくなる。しかしながら、表面電極7aの幅が過剰に小さくなると、触媒担体3を十分な範囲で昇温させることが困難となる。本発明の発明者の鋭意研究によれば、触媒担体3を十分な範囲で昇温させためには、表面電極7aの幅を中心角60°以上とする必要があることが判明した。
 図5は、表面電極間の外周最短距離を中心角90°としたときの、表面電極の螺旋角度と表面電極の幅との関係を示す図である。図5に示すように、表面電極7aの螺旋角度が大きくなるほど表面電極7aの幅が小さくなる。そして、上述したように、触媒担体3を十分な範囲で昇温させためには、表面電極7aの幅を中心角60°以上とする必要がある。このような条件を満たすためには、図5より、表面電極7aの螺旋角度を33°以下とする必要がある。
 つまり、触媒担体3の外周面を通って電流が流れること抑制するために表面電極間の外周最短距離を中心角90°とし、且つ触媒担体3を十分な範囲で昇温させために表面電極7aの幅を中心角60°以上としつつ、表面電極7aを触媒担体3の外周に沿って螺旋状に形成するためには、表面電極7aの螺旋角度を33°以下とする必要がある。そのため、本実施例に係るEHCおいても、表面電極間の外周最短距離は中心角90°となっており、表面電極7aの螺旋角度(図2(b)に示す角度α)は33°以下となっている。
 図2に戻って、本実施例に係るEHCの表面電極の構成についてさらに説明する。表面電極7aを触媒担体3の外周に沿って螺旋状に形成した場合、触媒担体3の端面部分における表面電極間の外周最短距離は、通常、表面電極間の触媒担体3の外周上における該触媒担体3の端面の円周と平行な方向の距離(以下、この距離を外周距離と称する)となる。これに対し、触媒担体3の端面近傍以外の部分においては、表面電極間の触媒担体3の外周上における表面電極7aと直交する方向の距離が表面電極間の外周最短距離(本実施例ではこの部分の外周最短距離を中心角90°としている)となる。従って、触媒担体3の端面近傍の外周最短距離はが、他の部分における外周最短距離(=中心角90°)よりも大きくなっている。
 そこで、本実施例では、図2に示すように、表面電極7aを触媒担体3の外周に沿って螺旋状に形成すると共に、該表面電極7aにおける触媒担体3の端面の円周と接する端部近傍の幅を拡張する。より詳しくは、図2(b)に示すように、表面電極7aの端部におけるその幅を拡張しなければ触媒担体3の端面の円周と鋭角に交わる方の側辺を外側に広げることで、該端部近傍の幅を拡張する。
 これにより、触媒担体3の端面近傍における表面電極間の外周最短距離(触媒担体3の端面部分においては表面電極間の外周距離)を触媒担体3の端面近傍以外の部分における表面電極間の外周最短距離(=中心角90°)と同一にする。つまり、一方の表面電極7aにおける外側に広げられた側辺から、該側辺と向かい合う他方の表面電極7aの側辺と触媒担体3の端面の円周との交点までの距離を中心角90°にする。
 表面電極を上記のように構成することで、触媒担体3の外周面を通って電流が流れることを抑制することが可能な範囲で、触媒担体3の端部近傍における該触媒担体3の軸方向と直交する断面において電極間部が占める割合を可及的に大きくすることができる。つまり、触媒担体3の端部近傍を、該触媒担体3の軸方向と直交する断面方向において、より広い範囲で昇温させることが可能となる。
 従って、触媒担体3の軸方向全体でみれば、該触媒担体3の軸方向と直交する断面方向において、通電時に低温部となる部分をより小さくすることができる。そのため、排気浄化率を向上させることができ、また、触媒担体3の破損を抑制することができる。
 尚、本実施例において、上記のように、表面電極7aの端部近傍の幅を拡張する場合、該幅を拡張した部分の外周最短距離は、必ずしも、他の部分における外周最短距離(=中心角90°)と同一でなくともよい。触媒担体3の端部における表面電極間の外周距離が他の部分における外周最短距離以上となる範囲で表面電極7aの端部の幅を拡張すれば、触媒担体3の外周面を通って電流が流れることを抑制することができる。
 <変形例1>
 以下、本実施例の第一変形例について説明する。図6は、本変形例に係るEHCにおける表面電極の概略構成を示す図である。図6(a)は、触媒担体の斜視図を示しており、図6(b)は、触媒担体の外周面を展開した様子を示す図である。図6(b)においては、斜線部が、表面電極7aを示している。
 本変形例においても、上記と同様、表面電極7aが、触媒担体3の一端から他端に向かって該触媒担体3の外周面に沿って螺旋状に延びている。また、二つの表面電極7aは触媒担体3を挟んで互いに交差するように形成されている。そして、本実施例では、図6に示すように、表面電極7aにおける触媒担体3の端面の円周と接する端部近傍の幅、及び表面電極7aの長さ方向の中央部近傍における触媒担体3の端面の円周と並行な方向の幅を拡張する。
 このとき、表面電極7aの端部及び中央部(即ち、触媒担体3の端面の円周と並行な方向の幅を拡張した部分)の外周距離が、他の部分における外周最短距離(=中心角90°)と同一となるようにする。尚、この場合、図6(b)に示すように、表面電極7aの端部及び中央部以外の部分における外周最短距離は、一方の表面電極7aにおける幅を拡張した部分の頂点から他方の表面電極7aまでの触媒担体3の外周面上の距離となる。
 上記によれば、触媒担体3の外周面を通って電流が流れることを抑制しつつ、触媒担体3の端部近傍及び中央部近傍における該触媒担体3の軸方向と直交する断面において電極間部が占める割合を可及的に大きくすることができる。つまり、触媒担体3の端部近傍及び中央部近傍を、該触媒担体3の軸方向と直交する断面方向において、より広い範囲で昇温させることが可能となる。
 本変形例に係る表面電極7aの構成によっても、触媒担体3の軸方向全体でみれば、該触媒担体3の軸方向と直交する断面方向において、通電時に低温部となる部分をより小さくすることができる。そのため、排気浄化率を向上させることができ、また、触媒担体3の破損を抑制することができる。
 尚、本実施例においては、上記のように、触媒担体3の端面の円周と並行な方向の幅を拡張した部分における表面電極間の外周距離は、必ずしも、他の部分における外周最短距離(=中心角90°)と同一でなくともよい。触媒担体3の端部及び中央部における表面電極間の外周距離が他の部分における外周最短距離以上となる範囲で表面電極7aの端部及び中央部の幅を拡張すれば、触媒担体3の外周面を通って電流が流れることを抑制することができる。
 <変形例2>
 以下、本実施例の第二変形例について説明する。上記実施例及び第一変形例のように表面電極7aの一部において、触媒担体3の端面の円周と並行な方向の幅を拡張すると、該幅を拡張した部分では、該幅を拡張していない部分に比べて表面電極間の直線距離が小さくなる。尚、表面電極間の直線距離とは、両表面電極7aの側端部を触媒担体3の内部を通り且つ該触媒担体3の軸方向と直交する直線で結んだときの該直線の長さである。
 表面電極間の直線距離が大きい部分は、該表面電極間の直線距離が小さい部分に比べて、通電時に触媒担体3の外周面を通って電流が流れ易い。そこで、本変形例においては、表面電極間の外周最短距離を90°で一定とせずに、表面電極間の直線距離に応じて該表面電極間の外周最短距離を補正する。
 図7は、触媒担体3の前端から後端の間における各位置での表面電極間の直線距離を示す図である。図8は、本変形例において、表面電極間の外周最短距離を補正するときの触媒担体3の前端から後端の間における各位置での補正係数を示す図である。図8において、補正係数が大きいほど、表面電極間の外周最短距離が大きくなるように補正される。また、図7及び8において、L1は、従来の表面電極7aが触媒担体3の軸方向と水平に形成された場合の値を示しており、L2は、図2に示すように表面電極7aが螺旋状に形成され且つ該表面電極7aの端部近傍の幅が拡張された場合の値を示しており、L3は、図6示すように表面電極7aが螺旋状に形成され且つ該表面電極7aの端部近傍及び中央部近傍の幅が拡張された場合の値を示している。
 図7及び8に示すように、本変形例においては、表面電極間の直線距離が大きい部分ほど該表面電極間の外周最短距離を大きくする。具体的には、図2及び図6に示すように、表面電極7aの一部において、触媒担体3の端面の円周と並行な方向の幅を拡張した場合は、該幅を拡張していない部分の表面電極7aの幅をより小さくする。
 このように、表面電極間の外周最短距離を補正することで、表面電極における幅が拡張されていない部分において、触媒担体3の外周面を通って電流が流れることをより高い確率で抑制することができる。
1・・・電気加熱式触媒(EHC)
3・・・触媒担体
4・・・ケース
7・・・電極
7a・・表面電極
7b・・軸電極

Claims (4)

  1.  円柱状に形成され、通電により発熱し、発熱することで触媒を加熱する発熱体と、
     前記発熱体に電気を供給する電極であって、該発熱体を挟み込むように該発熱体の外周面に接続された一対の電極と、を備え、
     前記一対の電極が、前記発熱体の一端から他端に向かって該発熱体の外周面に沿って螺旋状に延び且つ前記発熱体を挟んで互いに交差するように形成された表面電極を有し、
     前記表面電極における前記発熱体の端面の円周と接する端部近傍の幅が、該端部近傍における表面電極間の前記発熱体の外周上の最短距離が所定の下限距離以上となる範囲で拡張されている電気加熱式触媒。
  2.  さらに、前記表面電極における長さ方向の中央部近傍の前記発熱体の端面の円周と並行な方向の幅が、該中央部近傍における表面電極間の前記発熱体の外周上の最短距離が前記所定の下限距離以上となる範囲で拡張されている請求項1に記載の電気加熱式触媒。
  3.  前記表面電極の幅が拡張されていない部分における表面電極間の前記発熱体の外周上の最短距離が前記所定の下限距離となっている請求項1又は2に記載の電気加熱式触媒。
  4.  前記表面電極の幅が拡張されていない部分における表面電極間の前記発熱体の外周上の最短距離が、前記表面電極の幅が拡張された部分における表面電極間の前記発熱体の外周上の最短距離よりも大きくなっている請求項1又は2に記載の電気加熱式触媒。
PCT/JP2011/052922 2011-02-10 2011-02-10 電気加熱式触媒 WO2012108047A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180067227.2A CN103347611B (zh) 2011-02-10 2011-02-10 电加热式催化剂
JP2012556723A JP5655870B2 (ja) 2011-02-10 2011-02-10 電気加熱式触媒
PCT/JP2011/052922 WO2012108047A1 (ja) 2011-02-10 2011-02-10 電気加熱式触媒
EP11858083.6A EP2674215B1 (en) 2011-02-10 2011-02-10 Electric heating catalyst
US13/983,962 US9371761B2 (en) 2011-02-10 2011-02-10 Electric heating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052922 WO2012108047A1 (ja) 2011-02-10 2011-02-10 電気加熱式触媒

Publications (1)

Publication Number Publication Date
WO2012108047A1 true WO2012108047A1 (ja) 2012-08-16

Family

ID=46638286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052922 WO2012108047A1 (ja) 2011-02-10 2011-02-10 電気加熱式触媒

Country Status (5)

Country Link
US (1) US9371761B2 (ja)
EP (1) EP2674215B1 (ja)
JP (1) JP5655870B2 (ja)
CN (1) CN103347611B (ja)
WO (1) WO2012108047A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014148506A1 (ja) * 2013-03-22 2017-02-16 日本碍子株式会社 還元剤噴射装置、排ガス処理装置及び排ガス処理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018127074A1 (de) * 2018-10-30 2020-04-30 Faurecia Emissions Control Technologies, Germany Gmbh Katalysatorkörper, elektrisch beheizbarer Katalysator, Kraftfahrzeug mit Katalysator und Verfahren zur Herstellung eines Katalysators

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115796A (ja) * 1991-09-02 1993-05-14 Usui Internatl Ind Co Ltd 排気ガス浄化装置
JPH05253491A (ja) * 1992-03-12 1993-10-05 Nissan Motor Co Ltd 排気浄化用触媒コンバータ装置
JPH05269387A (ja) 1992-03-26 1993-10-19 Nissan Motor Co Ltd 排気浄化用触媒コンバータ装置
JPH07204518A (ja) * 1994-01-28 1995-08-08 Shimadzu Corp 自動車用排ガス浄化装置
JPH11347370A (ja) * 1998-06-06 1999-12-21 Isuzu Ceramics Res Inst Co Ltd 排ガス浄化装置
JP2003062470A (ja) * 2001-08-24 2003-03-04 Nippon Steel Corp 光触媒金属箔

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3412746A1 (de) * 1984-04-05 1985-10-17 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzanlage
US5569455A (en) * 1992-06-10 1996-10-29 Shimadzu Corporation Exhaust gas catalytic purifier construction
CN1680689A (zh) * 2004-04-08 2005-10-12 中国环境科学研究院 用于内燃机排气净化装置的电加热器
CN100419227C (zh) * 2005-11-14 2008-09-17 中国科学院金属研究所 一种复合结构柴油车尾气微粒过滤-再生装置
JP4732429B2 (ja) * 2007-12-18 2011-07-27 愛三工業株式会社 調圧弁及び燃料供給装置
FR2925689B1 (fr) * 2007-12-21 2010-08-13 Saint Gobain Ct Recherches Dispositif de detection de fissures radiales dans un filtre a particules
JP5293833B2 (ja) * 2009-10-30 2013-09-18 トヨタ自動車株式会社 排気浄化装置
JP5625764B2 (ja) * 2010-11-04 2014-11-19 株式会社デンソー ハニカム構造体及び電気加熱式触媒装置
CN103347610B (zh) * 2011-02-08 2015-04-08 丰田自动车株式会社 电加热式催化剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115796A (ja) * 1991-09-02 1993-05-14 Usui Internatl Ind Co Ltd 排気ガス浄化装置
JPH05253491A (ja) * 1992-03-12 1993-10-05 Nissan Motor Co Ltd 排気浄化用触媒コンバータ装置
JPH05269387A (ja) 1992-03-26 1993-10-19 Nissan Motor Co Ltd 排気浄化用触媒コンバータ装置
JPH07204518A (ja) * 1994-01-28 1995-08-08 Shimadzu Corp 自動車用排ガス浄化装置
JPH11347370A (ja) * 1998-06-06 1999-12-21 Isuzu Ceramics Res Inst Co Ltd 排ガス浄化装置
JP2003062470A (ja) * 2001-08-24 2003-03-04 Nippon Steel Corp 光触媒金属箔

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2674215A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014148506A1 (ja) * 2013-03-22 2017-02-16 日本碍子株式会社 還元剤噴射装置、排ガス処理装置及び排ガス処理方法

Also Published As

Publication number Publication date
EP2674215B1 (en) 2017-06-21
US9371761B2 (en) 2016-06-21
EP2674215A1 (en) 2013-12-18
CN103347611B (zh) 2016-01-20
JPWO2012108047A1 (ja) 2014-07-03
EP2674215A4 (en) 2016-05-04
US20130312395A1 (en) 2013-11-28
JP5655870B2 (ja) 2015-01-21
CN103347611A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5418680B2 (ja) 電気加熱式触媒
JP5664670B2 (ja) 電気加熱式触媒
JP5725187B2 (ja) 電気加熱式触媒
KR20140027485A (ko) 배기 가스 처리 장치
JP5655870B2 (ja) 電気加熱式触媒
JP5626371B2 (ja) 電気加熱式触媒
JP2017136577A (ja) 電気加熱式触媒
WO2011052020A1 (ja) 排気浄化装置
US10352213B2 (en) Electrically heated catalyst
KR102164065B1 (ko) 배기 가스의 정화를 위한 가열 정화 요소 및 그러한 정화 요소를 포함하는 정화 장치
WO2020203859A1 (ja) 排気ガス加熱装置
JP5673683B2 (ja) 電気加熱式触媒
JP2013160197A (ja) 電気加熱式触媒の制御システム
JP5626375B2 (ja) 電気加熱式触媒
JPH0719035A (ja) 部分加熱式触媒コンバータ
JP2016198735A (ja) 電気加熱式触媒
JP5397550B2 (ja) 電気加熱式触媒
JP4505802B2 (ja) 排ガス浄化装置
JP5633450B2 (ja) 触媒コンバータ装置
JP2012096191A (ja) ハニカム構造体及び電気加熱式触媒装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556723

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13983962

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011858083

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011858083

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE