WO2012105700A1 - 2,3,3,3-テトラフルオロプロペンの精製方法 - Google Patents

2,3,3,3-テトラフルオロプロペンの精製方法 Download PDF

Info

Publication number
WO2012105700A1
WO2012105700A1 PCT/JP2012/052545 JP2012052545W WO2012105700A1 WO 2012105700 A1 WO2012105700 A1 WO 2012105700A1 JP 2012052545 W JP2012052545 W JP 2012052545W WO 2012105700 A1 WO2012105700 A1 WO 2012105700A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
impurity
mixture
impurities
hydrohaloalkene
Prior art date
Application number
PCT/JP2012/052545
Other languages
English (en)
French (fr)
Inventor
和良 倉嶋
渡邉 邦夫
博志 山本
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46602900&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012105700(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012555997A priority Critical patent/JP5971123B2/ja
Priority to CN2012800062350A priority patent/CN103328424A/zh
Priority to EP12742392.9A priority patent/EP2671860B2/en
Publication of WO2012105700A1 publication Critical patent/WO2012105700A1/ja
Priority to US13/959,096 priority patent/US9126885B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives

Definitions

  • the present invention relates to a method for purifying 2,3,3,3-terafluoropropene.
  • R-1234yf Since 2,3,3,3-tetrafluoropropene (CF 3 CF ⁇ CH 2 , R-1234yf) does not contain chlorine, it is useful as a substitute for chlorofluorocarbons such as chlorofluorocarbons used in refrigerants. is there.
  • a method for producing R-1234yf for example, 1,1-dichloro-2,3,3,3-tetrafluoropropene (CF 3 CF ⁇ CCl 2 , R-1214ya) is reacted with hydrogen and reduced.
  • a method for obtaining R-1234yf is mentioned (for example, Patent Document 1).
  • the product gas reduced by reacting R-1214ya with hydrogen includes hydrohalogens such as 3,3,3-trifluoropropene (CF 3 CH ⁇ CH 2 , R-1243zf) in addition to R-1234yf.
  • Hydrohalogens such as 3,3,3-trifluoropropene (CF 3 CH ⁇ CH 2 , R-1243zf) in addition to R-1234yf.
  • Alkene impurities and hydrohaloalkane impurities such as 1,1,1,2-tetrafluoropropane (CF 3 CHFCH 3 , R-254eb) are included.
  • a method for purifying R-1234yf from the product gas a method in which the product gas is liquefied and then purified by distillation is widely used.
  • the present invention is effective even for impurities such as R-1243zf which are difficult to separate by distillation purification from a mixture containing various impurities such as a product gas obtained by reacting R-1214ya with hydrogen. It is an object of the present invention to provide a purification method of R-1234yf that can be removed in an effective manner.
  • a mixture containing 2,3,3,3-tetrafluoropropene as a main component and hydrohaloalkene impurities excluding 2,3,3,3-tetrafluoropropene, and a hydrohaloalkane impurity, R-1234yf having a step of removing at least a part of the hydrohaloalkene impurity and the hydrohaloalkane impurity by contacting with a solvent having an extraction removal index (r) represented by the following formula (1) of 6.5 or less: Purification method. r [4 ⁇ ( ⁇ D- 17.2) 2 + ( ⁇ P-8.3) 2 + ( ⁇ H-2.6) 2] 1/2 ...
  • ⁇ D, ⁇ P, and ⁇ H are a dispersion term, a polar term, and a hydrogen bond term in the Hansen solubility parameter of the solvent, respectively, and the unit is (MPa) 1/2 .
  • the hydrohaloalkane impurity contains at least one of hydrohalopropane and hydrohaloethane.
  • the hydrohaloalkene impurity is selected from the group consisting of 3,3,3-trifluoropropene, 3,3-difluoropropene and 1,2,3,3,3-pentafluoropropene
  • R-1234yf of the present invention it is difficult to separate by distillation purification from a mixture containing R-1234yf as a main component and various impurities, such as a product gas obtained by reacting R-1214ya with hydrogen. Even impurities such as R-1243zf can be efficiently removed.
  • FIG. 6 is a graph showing the relationship between the solvent removal index (r) and the R-1243zf removal rate in the present example and comparative example.
  • the method for purifying 2,3,3,3-tetrafluoropropene (R-1234yf) comprises a hydrohaloalkene impurity (hereinafter simply referred to as “hydrohaloalkene impurity”) which contains R-1234yf as a main component and excludes R-1234yf. And a mixture containing a hydrohaloalkane impurity are brought into contact with a solvent having an extraction removal index (r) of 6.5 or less (hereinafter referred to as “solvent (A)”), which will be described later. And a step of removing at least a part of the hydrohaloalkane impurities.
  • the hydrohaloalkene impurity and the hydrohaloalkane impurity may be simply referred to as “impurities”.
  • a solvent (A) having an extraction removal index (r) represented by the following formula (1) of 6.5 or less is used.
  • r [4 ⁇ ( ⁇ D- 17.2) 2 + ( ⁇ P-8.3) 2 + ( ⁇ H-2.6) 2] 1/2 ...
  • ⁇ D, ⁇ P, and ⁇ H are a dispersion term, a polar term, and a hydrogen bond term, respectively, in the Hansen solubility parameter (hereinafter referred to as “HSP”) of the solvent, and each unit is (MPa) 1/2 .
  • the impurities in the mixture are removed by bringing the mixture into contact with a solvent (A) having a specific solubility with respect to impurities such as R-1243zf having an extraction removal index (r) of 6.5 or less. It has the process of separating and removing by extracting in a solvent (A).
  • HSP is a three-dimensional space in which the solubility parameter introduced by Hildebrand is divided into three components: a dispersion term ⁇ D, a polar term ⁇ P, and a hydrogen bond term ⁇ H.
  • the dispersion term ⁇ D indicates the effect due to the dispersion force
  • the polar term ⁇ P indicates the effect due to the dipole force
  • the hydrogen bond term ⁇ H indicates the effect due to the hydrogen bond force.
  • the solvent HSP [ ⁇ D, ⁇ P, ⁇ H] can be easily estimated from its chemical structure, for example, by using the computer software Hansen Solubility Parameters in Practice (HSPiP).
  • HSPiP Hansen Solubility Parameters in Practice
  • the value is used for the solvent registered in the database of HSPiP version 3.0.38, and the value estimated by HSPiP version 3.0.38 is used for the solvent not in the database.
  • (X) A mixture containing R-1234yf as a main component and containing an arbitrary impurity is brought into contact with a plurality of solvents having known HSP [ ⁇ D, ⁇ P, ⁇ H] under specific conditions, and an arbitrary impurity in the mixture is removed.
  • the removal rate X (unit:%) of the impurity a to be removed is calculated.
  • the removal rate X (unit:%) of the impurity a to be removed in the step (x) is calculated by the following equation (2).
  • X [Y ⁇ Z] / Y ⁇ 100 (2)
  • Y is the density
  • Z is the density
  • concentration of the impurity a can be measured by gas chromatography or the like.
  • step (y) As a method of searching for a sphere in step (y), for example, a method using the Sphere function of HSPiP can be mentioned.
  • R-1243zf which has a boiling point close to that of R-1234yf and is difficult to purify by distillation
  • an impurity a to be removed is expressed as an impurity a to be removed.
  • (1) and the extraction removal index (r) were obtained.
  • step (y) a sphere in which all the coordinates of the HSP of the solvent having a removal rate X of 5% or more are included inside is searched, and the coordinates [17.2, 8.3, 2.6] of the sphere are The maximum value 6.5 of the extraction removal index (r) is obtained.
  • a solvent (A) the solvent shown in Table 1 and Table 2 is mentioned, for example.
  • a solvent (A) may be used individually by 1 type, and may use 2 or more types together.
  • a solvent having an extraction / removal index (r) of 6.0 or less is preferable, and a solvent having an extraction / removal index (r) of 5.0 or less is particularly preferable since the removal efficiency of R-1243zf is increased. More preferred.
  • the boiling point of the solvent (A) is preferably 40 ° C. or higher, more preferably 90 ° C. or higher, from the viewpoint of impurity removal efficiency.
  • anisole 4-bromo-1-butene, 2-bromobutane, butyl propionate, butyl mercaptan, 3-chloro-1-propene, 2-chloro-2-methylpropane, 1-chlorobutane, decylaldehyde , Dibutyl sebacate, dibutyl sulfide, 1,1-dichloroethane, 1,2-dichloropropane, diethyl ketone, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diisodecyl phthalate, ethylhexylamine, 3-heptanone, hexyl formate, isophorone, methyltrichlorosilane 2-methyltetrahydrofuran, paraaldehyde, piperazine, tetrahydrofuran, 1,1,1-trichloroethane, 2,3-butanedione, 2-chlor
  • dodecalactone or xylene is particularly preferred.
  • a hydrohaloalkene impurity excluding 2,3,3,3-tetrafluoropropene, and a mixture containing a hydrohaloalkane impurity It is preferable to remove 5% or more of at least one selected from the group consisting of 3,3-trifluoropropene, 3,3-difluoropropene and 1,2,3,3,3-pentafluoropropene, 10% It is more preferable to remove the above.
  • R-1234yf of the present invention it is preferable to remove 5% or more of 3,3,3-trifluoropropene as the hydrohaloalkene impurity from the mixture, and to remove 10% or more. More preferably.
  • 1,1,1,2-tetrafluoropropane, 1,1,1-trifluoropropane and 1-chloro-as the hydrohaloalkane impurity from the mixture It is preferable to remove 5% or more of one or more selected from the group consisting of 1,2,2,2-tetrafluoroethane, and it is more preferable to remove 10% or more.
  • Examples of the method of bringing the mixture into contact with the solvent (A) include the following method ( ⁇ ) or method ( ⁇ ) depending on the form of the mixture in contact with the solvent (A).
  • ( ⁇ ) A method of bringing a gaseous mixture (hereinafter referred to as “mixture gas”) into contact with the solvent (A).
  • ( ⁇ ) A method of bringing a liquid mixture (hereinafter referred to as “mixed solution”) into contact with the solvent (A).
  • Method ( ⁇ ) examples include a method of blowing the mixture gas into the solvent (A) and recovering the purified gas that has passed through the solvent (A). Purification in the method ( ⁇ ) may be a batch method or a continuous method.
  • the temperature of the solvent (A) in the method ( ⁇ ) may be from the melting point to the boiling point of the solvent (A), preferably ⁇ 30 to 70 ° C., more preferably ⁇ 30 to 40 ° C. If the temperature of the solvent (A) is equal to or higher than the lower limit, less energy is required for cooling, and facilities and the like are simplified. If the temperature of the solvent (A) is equal to or lower than the upper limit, impurities in the mixture gas are easily dissolved and extracted in the solvent (A), so that the impurity removal efficiency is improved.
  • the pressure (absolute pressure) during purification in the method ( ⁇ ) may be not more than the liquefaction pressure of R-1234yf, preferably 10 to 600 kPa, more preferably 100 to 300 kPa. If the pressure is equal to or higher than the lower limit value, the impurity removal efficiency is improved. If the pressure is less than or equal to the upper limit value, the handleability is good and the facilities and the like are simple.
  • the flow rate of blowing the mixture gas per 200 mL (milliliter) of the solvent (A) is preferably 2 to 50 mL / min, and more preferably 10 to 20 mL / min. If the flow rate of the mixture gas is not less than the lower limit value, the amount of R-1234yf obtained by refining will be larger. If the flow rate of the mixture gas is less than or equal to the upper limit value, the impurity removal efficiency is improved.
  • the contact time is preferably 0.5 seconds or more, and more preferably 1 second or more. If the contact time is long, the removal efficiency of impurities improves.
  • the total amount of impurities contained in the mixture gas is preferably 10% by mass or less and more preferably 2% by mass or less with respect to the total mass of the solvent (A) from the viewpoint of the removal efficiency of impurities. That is, in the method ( ⁇ ), it is preferable to purify by adjusting the total flow rate of the mixture gas into the solvent (A) so that the ratio of impurities to the solvent (A) is not more than the above upper limit value.
  • the reactor used in the method ( ⁇ ) is not particularly limited as long as it can recover the purified gas after containing the solvent (A) and contacting the mixture gas, and a known reactor can be adopted.
  • the material of the reactor include glass, iron, nickel, an alloy containing these as a main component, and a fluororesin such as tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA).
  • Method ( ⁇ ) examples include a method in which a mixed liquid is added to a container containing the solvent (A) and the purified gas obtained in the gas phase part of the container is recovered from the solvent (A). Purification in the method ( ⁇ ) may be batch-wise or continuous.
  • the temperature of the solvent (A) in the method ( ⁇ ) is not lower than the melting point of the solvent (A) and not higher than the boiling point.
  • the temperature of the solvent (A) is preferably ⁇ 30 to 70 ° C., more preferably ⁇ 30 to 40 ° C. If the temperature of the solvent (A) is equal to or higher than the lower limit, less energy is required for cooling, and facilities and the like are simplified. If the temperature of a solvent (A) is below an upper limit, the removal efficiency of an impurity will improve.
  • the pressure in the container is preferably ⁇ 91 to 2000 kPaG, more preferably 0 to 200 kPaG. If the pressure is equal to or higher than the lower limit value, the impurity removal efficiency is improved. If the pressure is below the upper limit, the handling is good and the equipment is simple.
  • the total amount of impurities contained in the mixed solution is preferably 10% by mass or less and more preferably 2% by mass or less with respect to the total amount of the solvent (A) from the viewpoint of the removal efficiency of impurities. That is, in the method ( ⁇ ), it is preferable to purify the total amount of the mixed solution brought into contact with the solvent (A) by adjusting the ratio of impurities to the solvent (A) to be not more than the upper limit.
  • the residence time is preferably 30 minutes or longer, and more preferably 1 hour or longer. If the residence time is long, the removal efficiency of impurities is improved.
  • the reactor used in the method ( ⁇ ) may be any reactor as long as it can recover the purified gas obtained in the gas phase after bringing the solvent (A) into contact with the mixed solution, and a known reactor can be employed.
  • a known reactor can be employed.
  • the material of the reactor include glass, iron, nickel, an alloy containing these as a main component, and a fluororesin such as tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA).
  • the method ( ⁇ ) In the step of removing impurities by bringing the mixture into contact with the solvent (A), it is preferable to employ the method ( ⁇ ) rather than the method ( ⁇ ) in terms of higher impurity removal efficiency. Further, in terms of simple equipment, it is advantageous to employ the method ( ⁇ ) when the mixture to be purified is obtained in a gaseous state, and the method ( ⁇ ) when the mixture is obtained in a liquid state.
  • the purification method of the present invention may have other steps for removing impurities that are not removed in the step of bringing the mixture into contact with the solvent (A), if necessary.
  • steps include a step of removing impurities by known distillation purification.
  • Other steps may be performed before or after the step of contacting the mixture with the solvent (A) to remove impurities.
  • the mixture to be purified by the purification method of the present invention contains R-1234yf as a main component. That the mixture is mainly composed of R-1234yf means that the content of R-1234yf in the mixture is 50% by volume or more.
  • the content of R-1234yf in the mixture is preferably 70% by volume or more and more preferably 75% by volume or more from the viewpoint that high-purity R-1234yf can be easily obtained. Further, the upper limit of the content of R-1234yf in the mixture is not particularly limited, but is practically about 90% by volume.
  • the mixture also contains hydrohaloalkene impurities and hydrohaloalkane impurities.
  • the hydrohaloalkene is an alkene other than R-1234yf having both a hydrogen atom and a halogen atom.
  • the hydrohaloalkane is an alkane having both a hydrogen atom and a halogen atom. Examples of the halogen atom include a chlorine atom and a fluorine atom.
  • the hydrohaloalkene impurity in the mixture may be only one type or two or more types.
  • it is effective to remove hydrohalopropene having a boiling point close to that of R-1234yf as a hydrohaloalkene impurity.
  • the purification method of the present invention can remove R-1243zf as a hydrohaloalkene impurity because it has a boiling point very close to that of R-1234yf and can be removed with high efficiency even by R-1243zf, which is difficult to separate by distillation purification. Is particularly effective.
  • the hydrohaloalkane impurity in the mixture may be only one type or two or more types. In the purification method of the present invention, it is effective to remove at least one of hydrohalopropane and hydrohaloethane as a hydrohaloalkane impurity.
  • hydrohalopropane examples include 1,1,1,2-tetrafluoropropane (CF 3 CHFCH 3 , R-254eb, boiling point-6 ° C.), 1,1,1-trifluoropropane (CF 3 CH 2 CH 3 , R-263fb, boiling point ⁇ 13 ° C.) and the like.
  • hydrohaloethane examples include 1-chloro-1,2,2,2-tetrafluoroethane (CF 3 CHClF, R-124, boiling point ⁇ 12 ° C.).
  • CF 3 CHClF 1-chloro-1,2,2,2-tetrafluoroethane
  • R-124 boiling point ⁇ 12 ° C.
  • the mixture containing R-1234yf as a main component and containing the hydrohaloalkene impurity and the hydrohaloalkane impurity can be obtained, for example, by reacting and reducing R-1214ya with hydrogen in the presence of a catalyst by a known method. Product etc. are mentioned.
  • the target R-1234yf such as a product obtained by hydrogen reduction of R-1214ya
  • a solvent having a high solubility of the impurity is usually selected, but separation is difficult if the solubility of the target product and the impurity in the solvent is approximately the same.
  • the HSP of R-1243zf is [14.4, 4.4, 2.7], which is close to the HSP [14.2, 3.9, 1.6] of R-1234yf, and the solubility of R-1243zf is A high solvent has a high solubility of R-1234yf.
  • the extraction removal index (r) represented by the formula (1) the impurities are removed in the solubility of impurities such as R-1243zf and the solubility of R-1234yf.
  • a specific solvent (A) that causes a possible difference can be easily found, and by using such a solvent (A), impurities such as R-1243zf that are difficult to separate by distillation purification can be efficiently removed.
  • Examples 1 to 6, 10 to 15 are examples, and examples 7 to 9 and 16 to 18 are comparative examples.
  • Example 2 to 9 Purified gas was recovered in the same manner as in Example 1 except that the type and amount of solvent used, the composition of the mixture gas used, the gas flow rate, and the gas flow rate were changed as shown in Table 3.
  • Table 3 shows the composition of the purified gas and the removal rate X of each impurity.
  • Examples 11 to 18 Purified gas was recovered in the same manner as in Example 10, except that the type and amount of the solvent used and the composition and amount of the mixture used were changed as shown in Table 4.
  • Table 4 shows the composition of the purified gas and the removal rate of each impurity.
  • FIG. 1 shows the removal rate X of R-1243zf with respect to the solvent extraction removal index (r) in Examples 1 to 18.
  • Examples 1 to 6 in which the mixture gas was brought into contact with the solvent (A) having an extraction removal index (r) of 6.5 or less by the method ( ⁇ ) are extracted and removed (r Compared with Examples 7 to 9 in which a solvent having a boiling point of more than 6.5 was used, even R-1243zf having a boiling point close to that of R-1234yf could be removed with higher efficiency.
  • Examples 10 to 15 in which the mixed solution was brought into contact with the solvent (A) having an extraction removal index (r) of 6.5 or less by the method ( ⁇ ) were extracted and removed. Compared to Examples 16 to 18 where a solvent having an index (r) exceeding 6.5 was used, even R-1243zf having a boiling point close to that of R-1234yf could be removed with high efficiency.
  • the purification method of the present invention can remove impurities such as R-1243zf having a boiling point close to that of R-1234yf, it can be suitably used for purification of a product obtained by reducing R-1214ya with hydrogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 R-1214yaを水素と反応させて得られる生成ガス等、R-1234yfを主成分とし、種々の不純物が含まれる混合物から、蒸留精製では分離困難なR-1243zf等の不純物でも効率的に除去できるR-1234yfの精製方法の提供を目的とする。 R-1234yfを主成分とし、R-1234yfを除くハイドロハロアルケン不純物、およびハイドロハロアルカン不純物を含む混合物を、式:r=[4×(δD-17.2)+(δP-8.3)+(δH-2.6)1/2で表される抽出除去指標(r)が6.5以下の溶媒に接触させて、前記ハイドロハロアルケン不純物およびハイドロハロアルカン不純物の少なくとも一部を除去する工程を有する、R-1234yfの精製方法。

Description

2,3,3,3-テトラフルオロプロペンの精製方法
 本発明は、2,3,3,3-テラフルオロプロペンの精製方法に関する。
 2,3,3,3-テトラフルオロプロペン(CFCF=CH、R-1234yf)は、塩素を含まないため、冷媒等に使用されるクロロフルオロカーボン類等のフロン類の代替化合物として有用である。
 R-1234yfの製造方法としては、例えば、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFCF=CCl、R-1214ya)を水素と反応させて還元することでR-1234yfを得る方法が挙げられる(例えば、特許文献1)。
 しかし、R-1214yaを水素と反応させて還元した生成ガスには、R-1234yfに加えて、3,3,3-トリフルオロプロペン(CFCH=CH、R-1243zf)等のハイドロハロアルケン不純物、および1,1,1,2-テトラフルオロプロパン(CFCHFCH、R-254eb)等のハイドロハロアルカン不純物が含まれている。該生成ガスからR-1234yfを精製する方法としては、生成ガスを液化した後に蒸留精製する方法が広く使用されている。しかし、前述した不純物のうち、R-1234yfと構造が似ているものは沸点が近いため、蒸留精製による分離が困難である。特にR-1243zfの沸点は-22℃であり、R-1234yfの沸点-29℃と非常に近く、蒸留精製による分離は極めて難しい。
国際公開第2008/060614号
 本発明は、R-1214yaを水素と反応させて得られる生成ガス等、R-1234yfを主成分とし、種々の不純物が含まれる混合物から、蒸留精製では分離困難なR-1243zf等の不純物でも効率的に除去できるR-1234yfの精製方法の提供を目的とする。
 本発明は、前記課題を解決するために以下の構成を採用した。
[1]2,3,3,3-テトラフルオロプロペンを主成分とし、2,3,3,3-テトラフルオロプロペンを除くハイドロハロアルケン不純物、およびハイドロハロアルカン不純物を含む混合物を、
 下式(1)で表される抽出除去指標(r)が6.5以下の溶媒に接触させて、前記ハイドロハロアルケン不純物およびハイドロハロアルカン不純物の少なくとも一部を除去する工程を有する、R-1234yfの精製方法。
 r=[4×(δD-17.2)+(δP-8.3)+(δH-2.6)1/2
 ・・・(1)
 ただし、δD、δPおよびδHは、それぞれ溶媒のハンセン溶解度パラメータにおける分散項、極性項および水素結合項であり、単位はいずれも(MPa)1/2である。[2]前記ハイドロハロアルケン不純物がハイドロハロプロペンを含む[1]に記載のR-1234yfの精製方法。[3]前記ハイドロハロアルカン不純物がハイドロハロプロパンおよびハイドロハロエタンの少なくとも一方を含む[1]または[2]に記載のR-1234yfの精製方法。[4]前記混合物から、前記ハイドロハロアルケン不純物として、3,3,3-トリフルオロプロペン、3,3-ジフルオロプロペンおよび1,2,3,3,3-ペンタフルオロプロペンからなる群から選ばれる1種以上の少なくとも一部を除去する[1]~[3]のいずれか一項に記載のR-1234yfの精製方法。[5]前記混合物から、前記ハイドロハロアルケン不純物として、3,3,3-トリフルオロプロペンの少なくとも一部を除去する[1]~[3]のいずれか一項に記載のR-1234yfの精製方法。[6]前記混合物から、前記ハイドロハロアルカン不純物として、1,1,1,2-テトラフルオロプロパン、1,1,1-トリフルオロプロパンおよび1-クロロ-1,2,2,2-テトラフルオロエタンからなる群から選ばれる1種以上の少なくとも一部を除去する[1]~[5]のいずれか一項に記載のR-1234yfの精製方法。[7]前記溶媒に接触させる混合物がガス状である[1]~[6]のいずれか一項に記載のR-1234yfの精製方法。
 本発明のR-1234yfの精製方法によれば、R-1214yaを水素と反応させて得られる生成ガス等、R-1234yfを主成分とし、種々の不純物が含まれる混合物から、蒸留精製では分離困難なR-1243zf等の不純物でも効率的に除去できる。
本実施例および比較例における溶媒の抽出除去指標(r)とR-1243zfの除去率の関係を示したグラフである。
 本発明の2,3,3,3-テトラフルオロプロペン(R-1234yf)の精製方法は、R-1234yfを主成分とし、R-1234yfを除くハイドロハロアルケン不純物(以下、単に「ハイドロハロアルケン不純物」という。)、およびハイドロハロアルカン不純物を含む混合物を、後述する抽出除去指標(r)が6.5以下の溶媒(以下、「溶媒(A)」という。)に接触させ、前記ハイドロハロアルケン不純物およびハイドロハロアルカン不純物の少なくとも一部を除去する工程を有する方法である。以下、ハイドロハロアルケン不純物およびハイドロハロアルカン不純物を合わせて単に「不純物」ということがある。
 本発明のR-1234yfの精製方法においては、下式(1)で表される抽出除去指標(r)が6.5以下の溶媒(A)を使用する。
 r=[4×(δD-17.2)+(δP-8.3)+(δH-2.6)1/2
 ・・・(1)
 ただし、δD、δPおよびδHは、それぞれ溶媒のハンセン溶解度パラメータ(以下、「HSP」という。)における分散項、極性項および水素結合項であり、単位はいずれも(MPa)1/2である。
 本発明では、前記抽出除去指標(r)が6.5以下という、R-1243zf等の不純物に対して特定の溶解性を示す溶媒(A)に混合物を接触させることで、混合物中の不純物を溶媒(A)中に抽出して分離除去する工程を有する。前記式(1)は、HSPの三次元空間における2点間の距離Raを求める式としてよく知られた式:(Ra)=4×(δD-δD+(δP-δP+(δH-δHを基にして導出した式である。
 HSPは、ヒルデブランド(Hildebrand)によって導入された溶解度パラメータを、分散項δD、極性項δP、水素結合項δHの3成分に分割し、三次元空間に表したものである。分散項δDは分散力による効果、極性項δPは双極子間力による効果、水素結合項δHは水素結合力による効果を示す。
 HSPの定義と計算は、下記の文献に記載されている。
 Charles M. Hansen著、Hansen Solubility Parameters: A Users Handbook(CRCプレス、2007年)。
 溶媒のHSP[δD、δP、δH]は、例えば、コンピュータソフトウエア Hansen Solubility Parameters in Practice(HSPiP)を用いることによって、その化学構造から簡便に推算できる。本発明では、HSPiPバージョン3.0.38のデータベースに登録されている溶媒に関してはその値を使用し、データベースに無い溶媒に関しては、HSPiPバージョン3.0.38により推算される値を使用する。
 以下、前記式(1)と、抽出除去指標(r)が6.5以下という条件の導出方法について説明する。本発明において導出したような抽出除去指標(r)は、式:(Ra)=4×(δD-δD+(δP-δP+(δH-δHを基にして、下記工程(x)および工程(y)を有する方法により導出する。
 (x)HSP[δD、δP、δH]が既知である複数の溶媒に、R-1234yfを主成分とし、任意の不純物を含む混合物を特定の条件で接触させ、該混合物中の任意の不純物のうち除去対象とする不純物aの除去率X(単位:%)を算出する。
 (y)前記除去率Xが特定の値以上の溶媒のHSPの座標がすべて内側に内包され、前記除去率Xが前記特定の値に満たない溶媒のHSPの座標がすべて外側になるような球を探し出し、該球の中心座標[δD、δP、δH]から式:r=[4×(δD-δD+(δP-δP+(δH-δH1/2を導き、該球の半径を抽出除去指標(r)の最大値とする。
 工程(x)における除去対象とする不純物aの除去率X(単位:%)は、下式(2)により算出する。
 X=[Y-Z]/Y×100 ・・・(2)
 ただし、Yは溶媒(A)と接触させる前の混合物中の除去対象の不純物aの濃度であり、Zは溶媒(A)と接触させた後の混合物中の当該不純物aの濃度である。
 不純物aの濃度は、ガスクロマトグラフィー等により測定できる。
 工程(y)における球を探し出す方法としては、例えば、HSPiPのSphere(球)ファンクションを使用する方法が挙げられる。
 具体的には、本発明では、混合物中に含まれるハイドロハロアルケン不純物およびハイドロハロアルカン不純物のなかでも、特にR-1234yfと沸点が近く蒸留精製が困難なR-1243zfを除去対象の不純物aとして式(1)と抽出除去指標(r)を求めた。そして、工程(y)において除去率Xが5%以上の溶媒のHSPの座標がすべて内側に内包される球を探し出し、該球の座標[17.2、8.3、2.6]と、抽出除去指標(r)の最大値6.5を得たものである。
 溶媒(A)としては、例えば、表1および表2に示す溶媒が挙げられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 溶媒(A)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 溶媒(A)としては、特にR-1243zfの除去効率が高くなる点から、抽出除去指標(r)が6.0以下の溶媒が好ましく、抽出除去指標(r)が5.0以下の溶媒がより好ましい。
 溶媒(A)の沸点は、不純物の除去効率の点から、40℃以上が好ましく、90℃以上がより好ましい。
 溶媒(A)としては、アニソール、4-ブロモー1-ブテン、2-ブロモブタン、プロピオン酸ブチル、ブチルメルカプタン、3-クロロ-1-プロペン、2-クロロ-2-メチルプロパン、1-クロロブタン、デシルアルデヒド、セバシン酸ジブチル、ジブチルスルフィド、1,1-ジクロロエタン、1,2-ジクロロプロパン、ジエチルケトン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、フタル酸ジイソデシル、エチルヘキシルアミン、3-ヘプタノン、ギ酸ヘキシル、イソホロン、メチルトリクロロシラン、2-メチルテトラヒドロフラン、パラアルデヒド、ピペラジン、テトラヒドロフラン、1,1,1-トリクロロエタン、2,3-ブタンジオン、2-クロロエチルエチルエーテル、1,8-シネオール、クロロシクロヘキサン、1,1-ジクロロアセトン、ジヒドロピラン、1,3-ジメトキシブタン、N-エチルモルフォリン、エチレングリコールブチルメチルエーテル、エチレングリコールジブチルエーテル、メントフラン、酢酸メンチル、2-メトキシテトラヒドロピラン、3-メチルシクロヘキサノン、2-メチル-1,3-ジオキソラン、テトラヒドロピラン、トリクロロアセトニトリル、フェニル酢酸エチル、4-メトキシトルエン、エチラール、カルボン、γ-ドデカラクトン、酢酸イソボロニル、ブチルキノリン、メトキシシクロペンタン、またはキシレンが好ましく、アニソール、2-ブロモブタン、プロピオン酸ブチル、2-クロロ-2-メチルプロパン、1,1-ジクロロエタン、1,2-ジクロロプロパン、ジエチルケトン、ジエチレングリコールジメチルエーテル、エチルヘキシルアミン、ギ酸ヘキシル、イソホロン、パラアルデヒド、テトラヒドロフラン、2,3-ブタンジオン、1,1-ジクロロアセトン、メントフラン、2-メトキシテトラヒドロピラン、3-メチルシクロヘキサノン、2-メチル-1,3-ジオキソラン、テトラヒドロピラン、トリクロロアセトニトリル、フェニル酢酸エチル、4-メトキシトルエン、エチラール、カルボン、γ-ドデカラクトン、酢酸イソボロニル、またはキシレンがより好ましく、2-ブロモブタン、2-クロロ-2-メチルプロパン、1,1-ジクロロエタン、1,2-ジクロロプロパン、ジエチルケトン、1,1-ジクロロアセトン、3-メチルシクロヘキサノン、トリクロロアセトニトリル、γ-ドデカラクトン、またはキシレンが特に好ましい。
 本発明のR-1234yfの精製方法においては、前記ハイドロハロアルケン不純物およびハイドロハロアルカン不純物の5%以上を除去するのが好ましく、10%以上を除去するのがさらに好ましい。
 さらに、本発明のR-1234yfの精製方法においては、2,3,3,3-テトラフルオロプロペンを除くハイドロハロアルケン不純物、およびハイドロハロアルカン不純物を含む混合物から、前記ハイドロハロアルケン不純物として、3,3,3-トリフルオロプロペン、3,3-ジフルオロプロペンおよび1,2,3,3,3-ペンタフルオロプロペンからなる群から選ばれる1種以上の5%以上を除去するのが好ましく、10%以上を除去するのがさらに好ましい。
 また、本発明のR-1234yfの精製方法においては、前記混合物から、前記ハイドロハロアルケン不純物として、3,3,3-トリフルオロプロペンの5%以上を除去するのが好ましく、10%以上を除去するのがさらに好ましい。
 また、本発明のR-1234yfの精製方法においては、前記混合物から、前記ハイドロハロアルカン不純物として、1,1,1,2-テトラフルオロプロパン、1,1,1-トリフルオロプロパンおよび1-クロロ-1,2,2,2-テトラフルオロエタンからなる群から選ばれる1種以上の5%以上を除去するのが好ましく、10%以上を除去するのがさらに好ましい。
 混合物を溶媒(A)に接触させる方法としては、溶媒(A)に接触させる混合物の形態の違いにより、例えば、下記方法(α)または方法(β)が挙げられる。
 (α)ガス状の混合物(以下、「混合物ガス」という。)を溶媒(A)に接触させる方法。
 (β)液状の混合物(以下、「混合液」という。)を溶媒(A)に接触させる方法。
(方法(α))
 方法(α)としては、例えば、混合物ガスを溶媒(A)中に吹き込み、溶媒(A)を通過した精製ガスを回収する方法が挙げられる。
 方法(α)における精製は、回分式でもよく、連続式でもよい。
 方法(α)における溶媒(A)の温度は、溶媒(A)の融点以上沸点以下であればよく、-30~70℃が好ましく、-30~40℃がより好ましい。溶媒(A)の温度が下限値以上であれば、冷却に要するエネルギーが少なくてすみ、設備等も簡便になる。溶媒(A)の温度が上限値以下であれば、混合物ガス中の不純物が溶媒(A)中に溶解して抽出されやすくなるので、不純物の除去効率が向上する。
 方法(α)における精製時の圧力(絶対圧)は、R-1234yfの液化圧力以下であればよく、10~600kPaが好ましく、100~300kPaがより好ましい。圧力が下限値以上であれば、不純物の除去効率が向上する。圧力が上限値以下であれば、取り扱い性がよく、設備等が簡便で済む。
 方法(α)における溶媒(A)200mL(ミリリットル)当たりへの混合物ガスの吹き込み流量は、2~50mL/分が好ましく、10~20mL/分がより好ましい。混合物ガスの吹き込み流量が下限値以上であれば、精製により得られるR-1234yfの量がより多くなる。混合物ガスの吹き込み流量が上限値以下であれば、不純物の除去効率が向上する。接触時間は、0.5秒以上が好ましく、1秒以上がより好ましい。接触時間が長いと不純物の除去効率が向上する。
 方法(α)における混合物ガス中に含まれる不純物の総量は、不純物の除去効率の点から、溶媒(A)の総質量に対して、10質量%以下が好ましく、2質量%以下がより好ましい。つまり、方法(α)においては、溶媒(A)への混合物ガスの総吹き込み流量を、溶媒(A)に対する不純物の割合が前記上限値以下となるように調節して精製することが好ましい。
 方法(α)に使用する反応器としては、溶媒(A)を収容して混合物ガスを接触させた後に精製ガスを回収できるものであれば特に限定されず、公知の反応器を採用できる。
 反応器の材質としては、例えば、ガラス、鉄、ニッケル、またはこれらを主成分とする合金、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)等のフッ素樹脂等が挙げられる。
(方法(β))
 方法(β)としては、例えば、溶媒(A)を収容した容器中に混合液を加え、溶媒(A)中から容器の気相部に得られた精製ガスを回収する方法が挙げられる。
 方法(β)における精製は、回分式でもよく、連続式でもよい。
 方法(β)における溶媒(A)の温度は、溶媒(A)の融点以上沸点以下である。溶媒(A)の温度は、-30~70℃が好ましく、-30~40℃がより好ましい。溶媒(A)の温度が下限値以上であれば、冷却に要するエネルギーがより少なくてすみ、設備等も簡便になる。溶媒(A)の温度が上限値以下であれば、不純物の除去効率が向上する。
 方法(β)における容器内の圧力(ゲージ圧)は、-91~2000kPaGが好ましく、0~200kPaGがより好ましい。圧力が下限値以上であれば、不純物の除去効率が向上する。圧力が上限値以下であれば、取り扱い性がよく、設備等が簡便ですむ。
 方法(β)における混合液中に含まれる不純物の総量は、不純物の除去効率の点から、溶媒(A)の総量に対して、10質量%以下が好ましく、2質量%以下がより好ましい。つまり、方法(β)においては、溶媒(A)と接触させる混合液の総量を、溶媒(A)に対する不純物の割合が前記上限値以下となるように調節して精製することが好ましい。滞留時間は、30分以上が好ましく、1時間以上がより好ましい。滞留時間が長いと不純物の除去効率が向上する。
 方法(β)に使用する反応器としては、溶媒(A)と混合液を接触させた後、気相に得られる精製ガスを回収できるものであればよく、公知の反応器を採用できる。
 反応器の材質としては、例えば、ガラス、鉄、ニッケル、またはこれらを主成分とする合金、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)等のフッ素樹脂等が挙げられる。
 混合物を溶媒(A)に接触させて不純物を除去する工程では、不純物の除去効率がより高い点から、方法(β)よりも方法(α)を採用することが好ましい。また、設備が簡便になる点では、精製対象となる混合物がガス状で得られる場合は方法(α)、混合物が液状で得られる場合は方法(β)を採用することが有利である。
 本発明の精製方法では、必要に応じて、混合物を溶媒(A)に接触させる工程で除去されない不純物を除去する他の工程を有してもよい。他の工程としては、例えば、公知の蒸留精製によって不純物を除去する工程等が挙げられる。他の工程は、前述した混合物を溶媒(A)に接触させて不純物を除去する工程の前に行ってもよく、後に行ってもよい。
 本発明の精製方法の精製の対象となる混合物は、R-1234yfを主成分として含む。混合物がR-1234yfを主成分とするとは、混合物中のR-1234yfの含有量が50体積%以上であることを意味する。
 混合物中のR-1234yfの含有量は、高純度なR-1234yfが得られやすい点から、70体積%以上が好ましく、75体積%以上がより好ましい。また、混合物中のR-1234yfの含有量の上限は特に限定されないが、現実的には90体積%程度である。
 また、混合物は、ハイドロハロアルケン不純物とハイドロハロアルカン不純物を含む。ハイドロハロアルケンとは、水素原子とハロゲン原子の両方を有する、R-1234yf以外のアルケンである。また、ハイドロハロアルカンとは、水素原子とハロゲン原子の両方を有するアルカンである。ハロゲン原子としては、塩素原子、フッ素原子等が挙げられる。
 混合物中のハイドロハロアルケン不純物は、1種のみであってもよく、2種以上であってもよい。
 本発明の精製方法は、ハイドロハロアルケン不純物として、R-1234yfと沸点が近いハイドロハロプロペンを除去対象とすることが有効である。具体的には、R-1243zf、1,2,3,3,3-ペンタフルオロプロペン(CFCF=CHF、R-1225ye、沸点-19℃)および3,3-ジフルオロプロペン(CHFCH=CH、R-1252zf、沸点-27℃)からなる群から選ばれる1種以上を除去対象とすることが有効である。なかでも、本発明の精製方法は、R-1234yfと沸点が非常に近く蒸留精製で分離困難なR-1243zfでも高効率に除去できるので、ハイドロハロアルケン不純物として、R-1243zfを除去対象とすることが特に有効である。
 混合物中のハイドロハロアルカン不純物は、1種のみであってもよく、2種以上であってもよい。
 本発明の精製方法は、ハイドロハロアルカン不純物として、ハイドロハロプロパンおよびハイドロハロエタンの少なくとも一方を除去対象とすることが有効である。ハイドロハロプロパンとしては、1,1,1,2-テトラフルオロプロパン(CFCHFCH、R-254eb、沸点-6℃)、1,1,1-トリフルオロプロパン(CFCHCH、R-263fb、沸点-13℃)等が挙げられる。ハイドロハロエタンとしては、1-クロロ-1,2,2,2-テトラフルオロエタン(CFCHClF、R-124、沸点-12℃)等が挙げられる。本発明の精製方法は、ハイドロハロアルカン不純物として、R-254eb、R-263fbおよびR-124からなる群から選ばれる1種以上を除去対象とすることが有効である。
 R-1234yfを主成分とし、前記ハイドロハロアルケン不純物およびハイドロハロアルカン不純物を含む混合物としては、例えば、公知の方法により、触媒の存在下、R-1214yaを水素と反応させて還元することにより得られる生成物等が挙げられる。
 R-1214yaを水素還元した生成物等、目的とするR-1234yfに、R-1243zf等の沸点がR-1234yfと近い不純物が含まれる場合、該不純物を蒸留精製で除去することは困難である。また、溶媒で不純物を抽出して除去する場合、通常は当該不純物の溶解度が高い溶媒を選択するが、目的物と不純物の溶媒に対する溶解性が同程度であると分離は困難である。例えばR-1243zfのHSPは[14.4、4.4、2.7]であり、R-1234yfのHSP[14.2、3.9、1.6]と近く、R-1243zfの溶解度が高い溶媒はR-1234yfの溶解度も高い。
 これに対し、本発明の精製方法では、式(1)で表される抽出除去指標(r)を用いることにより、R-1243zf等の不純物の溶解度とR-1234yfの溶解度に、該不純物を除去可能な差が生じる特定の溶媒(A)を容易に探し出すことができ、かかる溶媒(A)を使用することによって、蒸留精製では分離困難なR-1243zf等の不純物でも効率的に除去できる。
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。例1~6、10~15は実施例であり、例7~9、16~18は比較例である。
[ガス組成および除去率X]
 本実施例で使用した混合物ガスおよび精製ガスの組成は、ガスクロマトグラフィーにより測定した。また、各不純物の除去率X(%)は、下式により算出した。
 X=[Y-Z]/Y×100
 ただし、Yは精製前の混合物ガス中の対象とする不純物の濃度であり、Zは精製ガス中の当該不純物の濃度である。
<方法(α)>
[例1]
 玉付きコンデンサーとマグネチックスターラーを備えた三口フラスコに、溶媒(A)として2-クロロ-2-メチルプロパン(抽出除去指標(r)=3.3、温度20℃)の155.5gを仕込み、撹拌しながら、R-1234yfを主成分とする表3に示す組成の混合物ガスの9.9gを流量12.9mL/分でバブリングし、コンデンサーを通過した精製ガスを回収した。得られた精製ガスの組成、および各不純物の除去率Xを表3に示す。
[例2~9]
 使用する溶媒の種類および使用量と、使用する混合物ガスの組成、ガス流量、およびガス流通量を表3に示すとおりに変更した以外は、例1と同様にして精製ガスを回収した。得られた精製ガスの組成、および各不純物の除去率Xを表3に示す。
Figure JPOXMLDOC01-appb-T000003
 なお、表3中の略号は以下の意味を示す。
 A-1:2-クロロ-2-メチルプロパン(HSP[15.6、7.6、2.0]、抽出除去指標(r)=3.3)
 A-2:キシレン(HSP[18.4、4.4、3.1]、抽出除去指標(r)=4.6)
 A-3:(CFCHOCH(HSP[14.6、5.1、3.0]、抽出除去指標(r)=6.1)
 A-4:シネオール(HSP[16.7、6.2、2.8]、抽出除去指標(r)=3.9)
 A-5:3-クロロ-1-プロペン(HSP[17.0、6.2、2.3]、抽出除去指標(r)=2.2)
 A-6:1,2-ジクロロプロパン(HSP[17.3、7.1、2.9]、抽出除去指標(r)=1.3)
 B-1:HFE-7100(3M製、HSP[13.5、1.9、1.5]、抽出除去指標(r)=9.8)
 B-2:HFE-7200(3M製、HSP[13.7、1.8、1.5]、抽出除去指標(r)=9.6)
 B-3:HFE-7300(3M製、HSP[14.2、1.1、0.8]、抽出除去指標(r)=9.5)
 R-1234yf:2,3,3,3-テトラフルオロプロペン
 R-1243zf:3,3,3-トリフルオロプロペン
 R-1225ye:1,2,3,3,3-ペンタフルオロプロペン
 R-1252zf:3,3-ジフルオロプロペン
 R-254eb:1,1,1,2-テトラフルオロプロパン
 R-263fb:1,1,1-トリフルオロプロパン
 R-124:1-クロロ-1,2,2,2-テトラフルオロエタン
<方法(β)>
[例10]
 50mLのSUS製オートクレーブに、溶媒(A)として2-クロロ-2-メチルプロパン(抽出除去指標(r)=3.3)の21.0gを仕込み、該オートクレーブ内に、R-1234yfを主成分とする表4に示す組成の混合物ガスを液化して得た混合液の6.0gを加えた。20℃で2時間混合した後、オートクレーブ内の圧力は0.15MPa(G)となった。精製後、気相から精製ガスを回収した。得られた精製ガスの組成、および各不純物の除去率Xを表4に示す。
[例11~18]
 使用する溶媒の種類および使用量と、使用する混合液の組成および使用量を表4に示すとおりに変更した以外は、例10と同様にして精製ガスを回収した。得られた精製ガスの組成、および各不純物の除去率を表4に示す。
 また、例1~18における溶媒の抽出除去指標(r)に対するR-1243zfの除去率Xを図1に示す。
Figure JPOXMLDOC01-appb-T000004

 なお、表4における略号は、表3と同じ意味である。
 表3および図1に示すように、方法(α)により、抽出除去指標(r)が6.5以下の溶媒(A)に混合物ガスを接触させた例1~6は、抽出除去指標(r)が6.5を超える溶媒を使用した例7~9に比べて、R-1234yfと特に沸点が近いR-1243zfでも高効率で除去できた。同様に、表4および図1に示すように、方法(β)により、抽出除去指標(r)が6.5以下の溶媒(A)に混合液を接触させた例10~15は、抽出除去指標(r)が6.5を超える溶媒を使用した例16~18に比べて、R-1234yfと特に沸点が近いR-1243zfでも高効率で除去できた。
 本発明の精製方法は、R-1234yfと沸点が近いR-1243zf等の不純物も除去できるため、R-1214yaを水素還元した生成物の精製等に好適に使用できる。
 なお、2011年2月4日に出願された日本特許出願2011-022871号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (7)

  1.  2,3,3,3-テトラフルオロプロペンを主成分とし、2,3,3,3-テトラフルオロプロペンを除くハイドロハロアルケン不純物、およびハイドロハロアルカン不純物を含む混合物を、
     下式(1)で表される抽出除去指標(r)が6.5以下の溶媒に接触させて、前記ハイドロハロアルケン不純物およびハイドロハロアルカン不純物の少なくとも一部を除去する工程を有する、2,3,3,3-テトラフルオロプロペンの精製方法。
     r=[4×(δD-17.2)+(δP-8.3)+(δH-2.6)1/2
     ・・・(1)
     ただし、δD、δPおよびδHは、それぞれ溶媒のハンセン溶解度パラメータにおける分散項、極性項および水素結合項であり、単位はいずれも(MPa)1/2である。
  2.  前記ハイドロハロアルケン不純物がハイドロハロプロペンを含む請求項1に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  3.  前記ハイドロハロアルカン不純物がハイドロハロプロパンおよびハイドロハロエタンの少なくとも一方を含む請求項1または2に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  4.  前記混合物から、前記ハイドロハロアルケン不純物として、3,3,3-トリフルオロプロペン、3,3-ジフルオロプロペンおよび1,2,3,3,3-ペンタフルオロプロペンからなる群から選ばれる1種以上の少なくとも一部を除去する請求項1~3のいずれか一項に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  5.  前記混合物から、前記ハイドロハロアルケン不純物として、3,3,3-トリフルオロプロペンの少なくとも一部を除去する請求項1~3のいずれか一項に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  6.  前記混合物から、前記ハイドロハロアルカン不純物として、1,1,1,2-テトラフルオロプロパン、1,1,1-トリフルオロプロパンおよび1-クロロ-1,2,2,2-テトラフルオロエタンからなる群から選ばれる1種以上の少なくとも一部を除去する請求項1~5のいずれか一項に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  7.  前記溶媒に接触させる混合物がガス状である請求項1~6のいずれか一項に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
PCT/JP2012/052545 2011-02-04 2012-02-03 2,3,3,3-テトラフルオロプロペンの精製方法 WO2012105700A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012555997A JP5971123B2 (ja) 2011-02-04 2012-02-03 2,3,3,3−テトラフルオロプロペンの精製方法
CN2012800062350A CN103328424A (zh) 2011-02-04 2012-02-03 2,3,3,3-四氟丙烯的纯化方法
EP12742392.9A EP2671860B2 (en) 2011-02-04 2012-02-03 Method for purifying 2,3,3,3-tetrafluoropropene
US13/959,096 US9126885B2 (en) 2011-02-04 2013-08-05 Method for purifying 2,3,3,3-tetrafluoropropene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-022871 2011-02-04
JP2011022871 2011-02-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/959,096 Continuation US9126885B2 (en) 2011-02-04 2013-08-05 Method for purifying 2,3,3,3-tetrafluoropropene

Publications (1)

Publication Number Publication Date
WO2012105700A1 true WO2012105700A1 (ja) 2012-08-09

Family

ID=46602900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052545 WO2012105700A1 (ja) 2011-02-04 2012-02-03 2,3,3,3-テトラフルオロプロペンの精製方法

Country Status (5)

Country Link
US (1) US9126885B2 (ja)
EP (1) EP2671860B2 (ja)
JP (1) JP5971123B2 (ja)
CN (2) CN106146246A (ja)
WO (1) WO2012105700A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103582A1 (ja) * 2012-12-27 2014-07-03 旭硝子株式会社 テトラフルオロプロペンの精製方法
WO2015072460A1 (ja) * 2013-11-14 2015-05-21 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンと1,1,1,2-テトラフルオロエタンの分離方法および2,3,3,3-テトラフルオロプロペンの製造方法
WO2017146190A1 (ja) * 2016-02-26 2017-08-31 旭硝子株式会社 精製1-クロロ-2,3,3,3-テトラフルオロプロペンおよび精製1-クロロ-2,3,3,3-テトラフルオロプロペン(z)の製造方法
JP2019502703A (ja) * 2015-12-23 2019-01-31 アルケマ フランス 2,3,3,3−テトラフルオロ−1−プロペンの製造及び精製方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2010012148A (es) 2008-05-07 2010-12-06 Du Pont Composiciones que comprenden 2,3-dicloro-1,1,1-trifluoropropano, 2-cloro-1,1,1-trifluoropropeno, 2-cloro-1,1,1,2-tetrafluoropropano o 2,3,3,3-tetrafluoropropeno.
CN105612139B (zh) * 2013-10-09 2017-09-19 旭硝子株式会社 2,3,3,3‑四氟丙烯的纯化方法
ES2936064T3 (es) * 2014-09-26 2023-03-14 Daikin Ind Ltd Composición basada en haloolefina y uso de la misma
FR3076553B1 (fr) 2018-01-08 2020-07-31 Arkema France Procede de purification du 1,1,1,2,3-pentafluoropropane et utilisation de celui-ci pour l'obtention de 2,3,3,3-tetrafluoropropene de haute purete.
FR3077072B1 (fr) 2019-01-22 2021-08-06 Arkema France Procédé de purification du 1,1,1,2,3-pentafluoropropane et utilisation de celui-ci pour l’obtention de 2,3,3,3-tétrafluoropropène de haute pureté

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166128A (en) * 1980-04-19 1981-12-21 Hoechst Ag Separation of tetrafluoroethylene from gas mixture containing nitrogen or carbon monoxide especially as well as tetrafluoroethylene
JPH09255597A (ja) * 1996-03-22 1997-09-30 Asahi Glass Co Ltd ペンタフルオロエタンの精製方法
WO2008060614A2 (en) 2006-11-15 2008-05-22 E. I. Du Pont De Nemours And Company Process for producing 2,3,3,3-tetrafluoropropene
JP2010037343A (ja) * 2008-07-31 2010-02-18 Honeywell Internatl Inc 2,3,3,3−テトラフルオロプロペンの製造方法
JP2010509333A (ja) * 2006-11-08 2010-03-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー イオン液体を用いる二酸化炭素からのテトラフルオロエチレンの分離方法
JP2010202640A (ja) * 2009-02-03 2010-09-16 Central Glass Co Ltd (z)−1−クロロ−3,3,3−トリフルオロプロペンの精製方法
JP2012001495A (ja) * 2010-06-17 2012-01-05 Asahi Glass Co Ltd 2,3,3,3−テトラフルオロプロペンの精製方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560602B2 (en) 2005-11-03 2009-07-14 Honeywell International Inc. Process for manufacture of fluorinated olefins
GB0801209D0 (en) 2008-01-23 2008-02-27 Ineos Fluor Holdings Ltd Process
KR101946315B1 (ko) 2008-05-07 2019-02-11 이 아이 듀폰 디 네모아 앤드 캄파니 1,1,1,2,3-펜타플루오로프로판 또는 2,3,3,3-테트라플루오로프로펜을 포함하는 조성물
FR2933402B1 (fr) * 2008-07-03 2010-07-30 Arkema France Procede de purification de 2,3,3,3-tetrafluoro-1-propene (hfo1234yf)
WO2010013795A1 (en) * 2008-07-30 2010-02-04 Daikin Industries, Ltd. Process for production of 2,3,3,3-tetrafluoropropene
US8609909B2 (en) * 2009-01-30 2013-12-17 Honeywell International Inc. Process for the purification of hydrofluoroolefins
KR101374000B1 (ko) * 2009-04-23 2014-03-12 다이킨 고교 가부시키가이샤 2,3,3,3-테트라플루오로프로펜의 제조 방법
WO2012011609A1 (en) 2010-07-23 2012-01-26 Daikin Industries, Ltd. Purification method of 2,3,3,3-tetrafluoropropene

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166128A (en) * 1980-04-19 1981-12-21 Hoechst Ag Separation of tetrafluoroethylene from gas mixture containing nitrogen or carbon monoxide especially as well as tetrafluoroethylene
JPH09255597A (ja) * 1996-03-22 1997-09-30 Asahi Glass Co Ltd ペンタフルオロエタンの精製方法
JP2010509333A (ja) * 2006-11-08 2010-03-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー イオン液体を用いる二酸化炭素からのテトラフルオロエチレンの分離方法
WO2008060614A2 (en) 2006-11-15 2008-05-22 E. I. Du Pont De Nemours And Company Process for producing 2,3,3,3-tetrafluoropropene
JP2010037343A (ja) * 2008-07-31 2010-02-18 Honeywell Internatl Inc 2,3,3,3−テトラフルオロプロペンの製造方法
JP2010202640A (ja) * 2009-02-03 2010-09-16 Central Glass Co Ltd (z)−1−クロロ−3,3,3−トリフルオロプロペンの精製方法
JP2012001495A (ja) * 2010-06-17 2012-01-05 Asahi Glass Co Ltd 2,3,3,3−テトラフルオロプロペンの精製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2671860A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103582A1 (ja) * 2012-12-27 2014-07-03 旭硝子株式会社 テトラフルオロプロペンの精製方法
US9302964B2 (en) 2012-12-27 2016-04-05 Asahi Glass Company, Limited Method for purifying tetrafluoropropene
JPWO2014103582A1 (ja) * 2012-12-27 2017-01-12 旭硝子株式会社 テトラフルオロプロペンの精製方法
WO2015072460A1 (ja) * 2013-11-14 2015-05-21 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンと1,1,1,2-テトラフルオロエタンの分離方法および2,3,3,3-テトラフルオロプロペンの製造方法
JP2019502703A (ja) * 2015-12-23 2019-01-31 アルケマ フランス 2,3,3,3−テトラフルオロ−1−プロペンの製造及び精製方法
US10899688B2 (en) 2015-12-23 2021-01-26 Arkema France Method for producing and purifying 2,3,3,3-tetrafluoro-1-propene
US11299446B2 (en) 2015-12-23 2022-04-12 Arkema France Method for producing and purifying 2,3,3,3-tetrafluoro-1-propene
WO2017146190A1 (ja) * 2016-02-26 2017-08-31 旭硝子株式会社 精製1-クロロ-2,3,3,3-テトラフルオロプロペンおよび精製1-クロロ-2,3,3,3-テトラフルオロプロペン(z)の製造方法
JPWO2017146190A1 (ja) * 2016-02-26 2018-12-20 Agc株式会社 精製1−クロロ−2,3,3,3−テトラフルオロプロペンおよび精製1−クロロ−2,3,3,3−テトラフルオロプロペン(z)の製造方法
US10370313B2 (en) 2016-02-26 2019-08-06 AGC Inc. Manufacturing method of purified 1-chloro-2,3,3,3-Tetrafluoropropene and purified 1-chloro-2,3,3,3-tetrafluoropropene (Z)

Also Published As

Publication number Publication date
EP2671860B2 (en) 2024-05-29
EP2671860A4 (en) 2014-08-20
US20130317262A1 (en) 2013-11-28
US9126885B2 (en) 2015-09-08
JP5971123B2 (ja) 2016-08-17
CN103328424A (zh) 2013-09-25
JPWO2012105700A1 (ja) 2014-07-03
EP2671860A1 (en) 2013-12-11
CN106146246A (zh) 2016-11-23
EP2671860B1 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP5971123B2 (ja) 2,3,3,3−テトラフルオロプロペンの精製方法
EP2041055B1 (en) Process for separating a fluoroolefin from hf by liquid-liquid extraction
JP6102917B2 (ja) 共沸または共沸様組成物、および2,3,3,3−テトラフルオロプロペンまたはクロロメタンの製造方法
JP6168068B2 (ja) テトラフルオロプロペンの精製方法
WO2012011609A1 (en) Purification method of 2,3,3,3-tetrafluoropropene
JP2010501579A (ja) 共沸蒸留によってフッ化水素からフルオロオレフィンを分離する方法
US10836692B2 (en) Method for isolating HFC-245cb and (E)-HFO-1234ze from composition containing both compounds
CN106008141A (zh) 制备2,3-二氯-1,1,1-三氟丙烷和2,3,3,3-四氟-1-丙烯的方法
US20180029961A1 (en) Method for preparing 2,3,3,3-tetrafluoropropene using methyl magnesium chloride
JP6583360B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JPH07133240A (ja) ペンタフルオロエタンの精製方法
TWI606028B (zh) 藉由萃取蒸餾從氫氯氟烯烴中去除污染物之方法
JP5338240B2 (ja) フッ化水素の分離方法
JPWO2019230456A1 (ja) 含フッ素プロペンの製造方法
JP2018002603A (ja) クロロメタンとヘキサフルオロプロペンの分離方法およびクロロメタンの製造方法
WO2015072460A1 (ja) 2,3,3,3-テトラフルオロプロペンと1,1,1,2-テトラフルオロエタンの分離方法および2,3,3,3-テトラフルオロプロペンの製造方法
JP6904374B2 (ja) 1,1,2−トリクロロエタン、トランス−1,2−ジクロロエチレン又はシス−1,2−ジクロロエチレンと、フッ化水素とを含む共沸又は共沸様組成物
JP2017178897A (ja) クロロプロパン類の製造方法
JP2019156732A (ja) HCFC−224ca及び/又はCFO−1213yaの精製方法、HCFC−224caの製造方法、並びにCFO−1213yaの製造方法
JP2018002602A (ja) 2,3,3,3−テトラフルオロプロペンとヘキサフルオロプロペンの分離方法および2,3,3,3−テトラフルオロプロペンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012742392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012742392

Country of ref document: EP