WO2012105362A1 - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
WO2012105362A1
WO2012105362A1 PCT/JP2012/051397 JP2012051397W WO2012105362A1 WO 2012105362 A1 WO2012105362 A1 WO 2012105362A1 JP 2012051397 W JP2012051397 W JP 2012051397W WO 2012105362 A1 WO2012105362 A1 WO 2012105362A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrolyte secondary
current collecting
secondary battery
collecting tab
Prior art date
Application number
PCT/JP2012/051397
Other languages
English (en)
French (fr)
Inventor
弘光 諏訪
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2012555805A priority Critical patent/JP6058400B2/ja
Priority to US13/981,192 priority patent/US9350042B2/en
Publication of WO2012105362A1 publication Critical patent/WO2012105362A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, and in particular, by reviewing the structure of the current collecting tab of one electrode plate, it has a high capacity and is excellent in safety and reliability even though it does not have a center pin.
  • the present invention relates to a non-aqueous electrolyte secondary battery including a cylindrical one having characteristics.
  • sealed batteries secondary batteries that can be charged and discharged, such as nickel metal hydride storage batteries and lithium ion secondary batteries, are often used from the viewpoint of economy.
  • non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are more frequently used because they are lighter and have higher energy density than other secondary batteries.
  • rechargeable batteries are in an overcharged state in which current is supplied for longer than usual during charging, when exposed to high temperatures, or when a large current flows due to misuse or failure of equipment used, causing a short circuit. If this occurs, the electrolytic solution decomposes and gas is generated, and the internal pressure of the battery increases due to the generation of this gas. If such overcharge, high temperature exposure, or short circuit condition continues, the battery internal pressure may further increase and become dangerous. For this reason, particularly in the case of non-aqueous electrolyte secondary batteries, a battery having an explosion-proof safety valve has been used in the past.
  • a positive electrode plate and a negative electrode plate that are opposed to each other with a separator sandwiched in a battery outer can are mainly used.
  • a spirally wound electrode body formed in a shape having a hollow part is disposed, and a cylindrical center pin is disposed in the hollow part of this spirally wound electrode body, which occurs due to an abnormal state such as overcharge.
  • the gas is guided to the safety valve through a center pin disposed in the hollow portion of the wound electrode body.
  • the pressure generated by the gas generated inside the cylindrical non-aqueous electrolyte secondary battery is applied in the overlapping direction of the positive electrode plate, negative electrode plate, and separator, so the hollow part collapses and blocks the gas passage. It is provided in order not to exist.
  • the center pin in a cylindrical non-aqueous electrolyte secondary battery, can be secured in the hollow part of the wound electrode body to ensure safety and reliability during abnormal conditions such as overcharge. If provided, the number of parts increases, resulting in disadvantages in productivity and cost. In addition, in recent years, further increase in battery capacity has been demanded. However, if a center pin is provided, the space for the center pin becomes a dead space, and it is difficult to increase the battery capacity.
  • the negative electrode current collector tab is provided as a negative electrode core.
  • a cylindrical non-aqueous electrolyte secondary battery having two windings on the winding start side and winding end side is disclosed.
  • the current collecting tab provided on the winding end side after the winding electrode body is produced is bent toward the winding center, and the battery outer can
  • the three layers of the current collecting tab on the winding start side, the current collecting tab on the winding end side and the battery outer can are welded and electrically connected to each other at the bottom of the inner side
  • the example which formed the shape part which has elasticity in the junction part with the battery exterior can of the current collection tab of this is shown.
  • Patent Document 2 According to the cylindrical non-aqueous electrolyte secondary battery disclosed in Patent Document 2, the contact area between the innermost electrode and the current collecting tab can be increased. A step of forming the same into the same radius of curvature as the core rod used in the production of the wound electrode body is required. In addition, Patent Document 2 does not suggest any electrical connection by connecting the current collecting tab to the inner bottom portion of the battery outer can.
  • the current collecting tab is connected to the core body on both the winding start side and the winding end side of the wound electrode body. Therefore, even if the current collecting tab width is the same as that of the conventional example, two conductive paths between the winding start side of the core body and the battery outer can and between the winding end side of the core body and the battery outer can are secured. Therefore, a cylindrical non-aqueous electrolyte secondary battery with low internal resistance is obtained.
  • a shape portion having elasticity is formed at the joining portion of the current collecting tab on the winding start side with the battery outer can, it is used for an electric vehicle (EV), a hybrid electric vehicle (HEV) or a power tool. Even when exposed to shock or vibration, as in the case, it is difficult to cause metal fatigue in the welded part, and it is suppressed that the current collecting tab is detached from the welded part and the internal resistance is increased. Excellent effect.
  • the present invention has been made to solve the problems of the prior art as described above. That is, the present invention is to review the structure of the current collecting tab of the wound electrode body, so that it has a high capacity, a cylindrical shape having excellent safety and reliability, although it does not have a center pin. It aims at providing the nonaqueous electrolyte secondary battery containing.
  • the non-aqueous electrolyte secondary battery of the present invention is: A positive electrode plate having a positive electrode mixture layer formed on both sides of the positive electrode core and a negative electrode plate having a negative electrode mixture layer formed on both sides of the negative electrode core are wound with a separator interposed therebetween, and the center of the winding shaft Comprising a wound electrode body in which a gap is formed, A core exposed portion is formed on the winding start side of one of the positive electrode plate and the negative electrode plate, and a first current collecting tab is joined to the core exposed portion on the winding start side,
  • the wound electrode body is enclosed in a battery outer can together with a non-aqueous electrolyte, and the battery outer can is sealed by a sealing plate,
  • the first current collecting tab is bent and joined so as to contact the inner bottom portion of the battery outer can at a position corresponding to the gap portion of the wound electrode body,
  • the wound electrode body is formed in a shape in which the gap portion has an arc-shaped portion and a chord portion in plan view
  • the first current collecting tab has a linear shape along the string portion of the core exposed portion on the winding start side in a plan view, and is joined to the core exposed portion at the string portion.
  • the first current collecting tab joined to the core body exposed portion on one winding start side of the positive electrode plate or the negative electrode plate is on the gap portion side in a plan view. Since it is linear along the string part and joined at this string part, it is placed in the gap even if the wound electrode body is deformed in the radial direction due to gas generation inside the battery. Due to the three-dimensional support of the first current collecting tab, the gap portion can be prevented from being blocked. Therefore, according to the nonaqueous electrolyte secondary battery of the present invention, when the battery is overcharged or exposed to a high temperature, the wound electrode body undergoes a radial change due to gas generation inside the battery.
  • the gap portion is not easily blocked, a gas flow path to the safety valve means provided in the non-aqueous electrolyte secondary battery can be secured, so that the non-aqueous electrolyte secondary battery with high safety and reliability can be secured. Can be obtained.
  • the non-aqueous electrolyte secondary battery of the present invention since the center pin is not provided in the gap, the battery capacity can be increased accordingly.
  • the “plan view” in the present invention refers to a state in which the wound electrode body is viewed from the extending direction of the winding axis of the wound electrode body. It is equivalent to a cross-sectional view cut along a plane perpendicular to
  • a safety valve when a safety valve is provided, either a direct formation on the sealing plate, a formation inside the terminal fixed to the sealing plate, or a direct formation on the battery outer can is adopted. can do.
  • the nonaqueous electrolyte secondary battery of the present invention can be employed for both a cylindrical type and an elliptical cylindrical type.
  • the core rod used when forming the wound electrode body is not a cylindrical one. It can be easily formed by using a columnar body having a shape in which a string is formed in the cross section.
  • “joining” in the present invention includes not only “welding” but also “pressure welding”, and “welding” includes resistance welding, ultrasonic welding, laser welding, and electron beam welding.
  • the core body exposed portion is formed on the winding start side of the negative electrode plate.
  • the negative electrode tab (first current collecting tab) to be joined to the negative electrode core exposed portion one made of nickel or a nickel alloy, a copper-nickel two-layer clad material or a nickel-copper-nickel three-layer clad material should be used.
  • the positive electrode current collecting tab (second current collecting tab) is preferably made of aluminum.
  • a carbonaceous material such as graphite or amorphous carbon
  • a lithium transition metal represented by Li x MO 2 (wherein M is at least one of Co, Ni, and Mn) capable of reversibly occluding and releasing lithium ions.
  • a part of the transition metal may be substituted with Zr, Mg, Al or the like.
  • examples of the negative electrode active material that can be used in the non-aqueous electrolyte secondary battery of the present invention include carbon raw materials such as graphite, non-graphitizable carbon, and graphitizable carbon, LiTiO 2 , and spinel-type Li 4 Ti 5.
  • examples thereof include titanium oxides such as O 12 and TiO 2 , metalloid elements such as silicon and tin, or Sn—Co alloys.
  • nonaqueous solvent examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC), and fluorinated cyclic esters.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC)
  • fluorinated cyclic esters examples include fluorinated cyclic esters.
  • Carbonic acid esters such as ⁇ -butyllactone (BL) and ⁇ -valerolactone (VL), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl propyl carbonate (MPC) , Chain carbonates such as dibutyl carbonate (DBC), fluorinated chain carbonates, chain carboxylates such as methyl pivalate, ethyl pivalate, methyl isobutyrate, methyl propionate, N, N '-Dimethylformamide, N- Amide compounds such as chill oxazolidinone, sulfur compounds such as sulfolane, etc.
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • MPC methyl propyl carbonate
  • Chain carbonates such as dibutyl carbonate (DBC), fluorinated chain carbonates, chain carboxylates such as methyl pivalate
  • the non-aqueous electrolyte secondary battery of the present invention is not limited to a liquid one but may be a gelled one.
  • a separator used in the non-aqueous electrolyte secondary battery of the present invention a separator made of a microporous film formed from a polyolefin material such as polypropylene or polyethylene can be selected.
  • a resin having a low melting point may be mixed, and further, a laminate with a high melting point resin or a resin carrying inorganic particles may be used to obtain heat resistance.
  • vinylene carbonate (VC), vinylethyl carbonate (VEC), and succinic anhydride (SUCAH) are further used as a compound for stabilizing the electrode.
  • a lithium salt generally used as an electrolyte salt in the nonaqueous electrolyte secondary battery can be used.
  • Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and mixtures thereof Illustrated.
  • LiPF 6 lithium hexafluorophosphate
  • the amount of electrolyte salt dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.
  • the first current collecting tab has a shape portion having elasticity between the first current collecting tab and the joint portion to the battery outer can.
  • the wound electrode is generated by gas generation inside the battery when exposed to overcharge or high temperature. Even when the body changes in the radial direction, not only is the gap not easily blocked, but also the impact when a shock due to dropping, vibration, or the like is applied can be absorbed.
  • the non-aqueous electrolyte secondary battery of the present invention since it can withstand the impact applied in the direction of the central axis of the wound electrode body, even if it receives a drop impact, the first The possibility of separation of the joint between the current collecting tab and the battery outer can is greatly reduced and the internal resistance of the battery is difficult to increase, and the non-aqueous electrolyte secondary solution is safer and more reliable. A battery can be obtained.
  • shapes such as a bow shape, circular arc shape, a waveform shape, are employable.
  • the first current collecting tab is formed of a metal having at least a hardness of HV100 or more.
  • the first current collecting tab is formed of a metal having a hardness of HV100 or more, the physical strength of the first current collecting tab is extremely high. It can withstand the change in the radial direction of the wound electrode body and the impact applied in the central axis direction, so that a non-aqueous electrolyte secondary battery with higher safety and reliability can be obtained. Be able to. Note that when the HV is less than 100, the void portion when the wound electrode body undergoes a radial change due to gas generation inside the battery, such as when it is exposed to overcharge or high temperature. This is not preferable because the shape retention ability is lowered.
  • a core body exposed portion is also formed on the winding end side of the one electrode plate, and a core body exposed portion on the winding end side of the one electrode plate is 3 current collecting tabs are joined, and the third current collecting tab is bent so as to contact the inner bottom of the battery outer can at a position corresponding to the gap of the wound electrode body, It is preferable that the current collecting tab and the inner bottom portion of the battery outer can are integrally joined together.
  • the first current collecting tab is used to place the core exposed portion at the start of winding and the battery outer can.
  • the third current collecting tab a total of two conductive paths are secured between the core exposed portion at the end of winding and the battery outer can, so that the non-aqueous electrolyte secondary battery having a smaller internal resistance can be obtained. can get.
  • FIG. 1A is a development view of a positive electrode plate used in the nonaqueous electrolyte secondary battery of each example and comparative example
  • FIG. 1B is a development view of the negative electrode plate
  • FIG. 1C is used in each example.
  • FIG. 1D is a plan view of the core rod used in each comparative example.
  • 2A is a longitudinal sectional view of the nonaqueous electrolyte secondary battery of Example 1
  • FIG. 2B is a sectional view taken along the line IIB-IIB in FIG. 2A
  • 3A is a longitudinal sectional view of the nonaqueous electrolyte secondary battery of Example 2
  • FIG. 3B is a sectional view taken along line IIIB-IIIB in FIG. 3A.
  • FIG. 4A is a longitudinal sectional view of the nonaqueous electrolyte secondary battery of Comparative Example 1
  • FIG. 4B is a sectional view taken along the line IVB-IVB of FIG. 4A
  • 5A is a longitudinal sectional view of the nonaqueous electrolyte secondary battery of Comparative Example 2
  • FIG. 5B is a sectional view taken along the line VB-VB of FIG. 5A.
  • FIG. 1A is a development view of the positive electrode plate used in the non-aqueous electrolyte secondary battery of each example and comparative example
  • FIG. 1B is a development view of the negative electrode plate
  • FIG. 1C is each example.
  • FIG. 1D is a plan view of a core rod used in each comparative example.
  • the positive electrode plate 11 was produced as follows. First, 90 parts by mass of a positive electrode active material in which nickel cobalt lithium manganate (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and a spinel type lithium manganate as a positive electrode active material were mixed at a mass ratio of 1: 1. Then, 5 parts by mass of graphite as a conductive agent and 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder were dispersed in N-methyl-2-pyrrolidone to prepare a positive electrode mixture slurry.
  • a positive electrode active material in which nickel cobalt lithium manganate (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and a spinel type lithium manganate as a positive electrode active material were mixed at a mass ratio of 1: 1. Then, 5 parts by mass of graphite as a conductive agent and 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder were dispersed in
  • the positive electrode mixture slurry is applied to both surfaces of the positive electrode core body 11a made of aluminum foil having a thickness of 20 ⁇ m so that the central portion and the winding end side end portion of the positive electrode core body 11a are exposed. Then, after removing the organic solvent, the roll was pressed so that the thickness of the portion where the positive electrode mixture layer 11d was formed was 100 ⁇ m. Next, a positive electrode current collector tab 11e made of aluminum metal having a width of 3 mm and a thickness of 0.15 mm was attached to the central positive electrode core exposed portion 11b of the positive electrode core 11a by ultrasonic welding to obtain a positive electrode plate 11 (FIG. 1A).
  • the negative electrode plate 12 was produced as follows. First, 98% by mass of artificial graphite powder as a negative electrode active material and 1% by mass of carboxymethylcellulose (CMC) and styrene-butadiene rubber (SBR) as binders were mixed, kneaded by adding water, A mixture slurry was prepared. Next, the negative electrode mixture slurry is applied to both surfaces of the negative electrode core 12a made of copper foil having a thickness of 15 ⁇ m so that both the winding start side end and the winding end side end of the negative electrode core 12a are exposed. Then, it was passed through a dryer and dried, and then rolled using a roll press so that the thickness of the negative electrode mixture layer 12d was 100 ⁇ m.
  • CMC carboxymethylcellulose
  • SBR styrene-butadiene rubber
  • FIG. 1C The shape of the core rod 13A used in Examples 1 and 2 in plan view is shown in FIG. 1C, and the shape of the core rod 13B used in Comparative Examples 1 and 2 in plan view is shown in FIG. 1D.
  • the winding was performed such that the negative electrode current collecting tab 12e 1 on the winding start side was in contact with the flat portion 13b of the core bar 13A. That is, the cylindrical wound electrode body 14 of Examples 1 and 2 is formed in a shape in which the gap 18 has an arcuate portion and a chord portion in plan view, and the negative electrode current collecting tab 12e 1 on the winding start side is In a plan view, it is linear along the string portion of the winding start side negative electrode core exposed portion 12b, and is joined to the winding start side negative electrode core exposed portion 12b at the string portion. Further, in both Examples 1 and 2 and Comparative Examples 1 and 2, the length of the winding start side negative electrode core exposed portion 12b located on the innermost peripheral side was set to be one or more rounds of the outer periphery of the gap portion 18. .
  • a non-aqueous mixed solvent was prepared so as to be 15% by volume of ethylene carbonate (EC), 10% by volume of propylene carbonate (PC) and 75% by volume of dimethyl carbonate (DMC), and a ratio of 1.0 mol / L of LiPF 6 was added thereto. What was melt
  • Insulating plates 15 and 16 having a hole in the center are arranged above and below the wound electrode body 14 produced as described above, and the negative electrode current collecting tab 12e 2 on the winding end side of the negative electrode plate 12 is placed at the tip.
  • the negative electrode current collecting tab 12e 1 on the winding start side of the negative electrode plate 12 is attached to the winding inner side surface of the winding start side negative electrode core exposed portion 12b so as to be linear in a plan view, and the tip is attached to the battery exterior. It was bent so as to be parallel to the bottom of the can 17 and overlapped with the tip of the current collecting tab 12e 2 on the winding end side.
  • the wound electrode body 14 provided with the negative electrode current collecting tabs 12e 1 and 12e 2 bent in this manner was inserted into the cylindrical battery outer can 17 as shown in FIG. 2A.
  • the negative electrode current collecting tabs 12e 1 and 12e 2 were fixed to the inside of the bottom of the battery outer can 17 by resistance welding at the same time.
  • the tip of the positive electrode current collecting tab 11e is ultrasonically welded to the positive electrode terminal 20 attached to the insulating sealing plate 19, and the nonaqueous electrolyte is injected into the battery outer can and vacuum-impregnated.
  • the nonaqueous electrolyte secondary battery 10A of Example 1 was manufactured by sandwiching the periphery of the plate 19 with the gasket 21 and crimping and fixing the opening end of the battery outer can 17.
  • the nonaqueous electrolyte secondary battery 10A of Example 1 had a diameter of 18 mm, a length of 65 mm, and a design capacity of 1250 mAh.
  • the non-aqueous electrolyte secondary battery 10B of Example 2 is configured such that the negative electrode current collecting tab 12e 1 on the winding start side used in Example 1 has a bow-shaped portion 12f when the battery is sealed. Is formed by ultrasonic welding to the outer surface of the negative electrode core exposed portion 12b of the innermost negative electrode plate 12, and the other configuration is the non-aqueous electrolyte of the first embodiment. It was produced in the same manner as in the case of the secondary battery 10A.
  • the nonaqueous electrolyte secondary battery 10C of Comparative Example 1 has the negative electrode current collecting tab 12e 1 in the negative electrode current collecting tab 12e 1 on the winding start side used in Example 1.
  • the contact area between the innermost negative electrode plate 12 and the negative electrode current collecting tab 12e 1 is molded to the same radius of curvature as the core rod 13B (see FIG. 1D) used when the wound electrode body 14 is manufactured. Is made by ultrasonic welding to the wound outer surface of the negative electrode core exposed portion 12b of the innermost negative electrode plate 12, and the other configuration is the non-aqueous electrolyte secondary of Example 1
  • the battery 10A was manufactured in the same manner.
  • the nonaqueous electrolyte secondary battery 10D of Comparative Example 2 has a length of 60 mm and an outer diameter in the gap 18 of the nonaqueous electrolyte secondary battery 10C of Comparative Example 1.
  • a center pin 22 made of a stainless steel hollow pipe having a thickness of 3 mm and a thickness of 0.15 mm was inserted, and other configurations were made in the same manner as in the case of the nonaqueous electrolyte secondary battery 10C of Comparative Example 1.
  • the spirally wound electrode body 14 expands in the same direction as the heating direction, that is, acts to reduce the gap 18, but for heating from a direction parallel to the negative electrode current collecting tab 12 e 1 , because they act as a pressing force in the width direction of the anode current collector 12e 1, since it is difficult bending the anode current collector 12e 1, indicates that exhibits an excellent withstand voltage effect, from the direction perpendicular to the negative electrode current collector tabs 12e 1 This shows that the negative electrode current collecting tab 12e 1 is easily bent into a curved shape, so that the improvement of the pressure resistance effect was not observed.
  • the non-aqueous electrolyte secondary battery 10B of the second embodiment and also exerts an excellent effect in any of the heating from the heating and perpendicular from a direction parallel to the negative electrode current collector tab 12e 1.
  • the negative electrode current collecting tab 12e 1 is formed with a bow-shaped portion 12f, so that the negative electrode current collecting tab 12e 1 bends in a curved shape even when heated from a direction perpendicular to the negative electrode current collecting tab 12e 1. Since it becomes difficult, it seems that the above effect was produced.
  • the elastic shape of the current collecting tab is a bowed shape 12f
  • an arc shape, a corrugated shape, or the like may be used.
  • the negative electrode current collector tab is formed on the winding start side of the negative electrode plate so that the negative electrode plate is on the innermost peripheral side.
  • the arrangement of the electrode plates may be reversed, and the positive electrode current collecting tab may be formed on the positive electrode plate so that the winding start side of the positive electrode plate is the innermost peripheral side.
  • the charge capacity ratio (negative electrode charge capacity / positive electrode charge capacity) at a portion where the positive electrode plate and the negative electrode plate face each other is generally 1 Since the negative electrode plate is positioned on the innermost peripheral side, the negative electrode plate can be wound so that it is also positioned on the outermost peripheral side. Therefore, the charge capacity ratio of the negative electrode plate can be easily made larger than the charge capacity ratio of the positive electrode plate.
  • Nonaqueous electrolyte secondary battery 11 Positive electrode plate 11a: Positive electrode core body 11b: Central side positive electrode core exposed part 11c: End of winding side positive electrode core exposed part 11d: Positive electrode mixture layer 11e: Positive electrode collection collector tabs 12: negative electrode plate 12a: negative electrode substrate 12b: winding start-side negative electrode substrate exposed portion 12c: winding end-side negative electrode substrate exposed portion 12d: the negative electrode mixture layer 12e 1, 12e 2: negative electrode current collector tab 12f: Arc-shaped portion 13: Core rod 14: Winding electrode body 15, 16: Insulating plate 17: Battery outer can 18: Gap portion 19: Sealing plate 20: Positive electrode terminal 21: Gasket 22: Center pin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】高容量で安全性および信頼性に優れた特性を有する円筒形非水電解液二次電池を提供すること。 【解決手段】本発明の円筒形非水電解液二次電池10Aは、正極極板11と負極極板12とがセパレータ13を挟んで巻回され、巻回軸の中心に空隙部18が形成された巻回電極体14を備え、負極極板12の巻き始め側の芯体露出部には負極集電タブ12eが接合され、この負極集電タブ12eは、巻回電極体14の空隙部18に対応する位置で電池外装缶17の内側底部に当接するように折り曲げられて電池外装缶17の内側底部に接合されており、巻回電極体14は平面視で空隙部18が円弧状部分と弦部分とを有する形状に形成され、負極集電タブ12eは、平面視で巻き始め側の芯体露出部の弦部分に沿った直線状とされ、この弦部分で芯体露出部に接合されていることを特徴とする。

Description

非水電解液二次電池
 本発明は、非水電解液二次電池に関し、特に一方の極板の集電タブの構造を見直すことにより、センターピンを備えていないながらも、高容量で、安全性及び信頼性に優れた特性を有する円筒形のものを含む非水電解液二次電池に関する。
 近年の携帯用機器の普及に伴い、これらの携帯機器の電源として小型、軽量かつ高エネルギー密度の密閉型電池が求められている。密閉型電池の中でも、経済性の観点から、ニッケル水素蓄電池やリチウムイオン二次電池等の充放電が可能な二次電池が多く使用されるようになっている。特にリチウムイオン二次電池に代表される非水電解液二次電池は、他の二次電池よりも軽量かつ高エネルギー密度であるということから、多く使用されるようになっている。
 しかしながら、二次電池は、充電時に通常よりも長く電流が供給される過充電状態になったり、高温に曝された場合や、誤使用や使用する機器の故障などにより大電流が流れて短絡状態になったりすると、電解液が分解してガスが発生し、このガスの発生によって電池内圧が上昇してしまう。このような過充電、高温暴露あるいは短絡状態が継続されると、電池内圧が更に上昇して危険な状態となることがある。そのため、特に非水電解液二次電池の場合には、従来から防爆用の安全弁を備えたものが多く使用されている。
 この安全弁は、機器の破損防止、火災事故防止等の観点から確実に作動させる必要がある。そのため、円筒形非水電解液二次電池の場合には、例えば下記特許文献1に示されているように、電池外装缶内にセパレータを挟んで対向配置された正極板及び負極板が中心に中空部を有する形状に渦巻状に巻回して形成された巻回電極体を配置すると共に、この巻回電極体の中空部に円筒状のセンターピンを配置し、過充電などの異常状態によって発生したガスを巻回電極体の中空部に配置されたセンターピンを介して安全弁に導くようにしている。このセンターピンは、円筒形非水電解液二次電池の内部で発生したガスによる圧力が正極板、負極板及びセパレータの重ね合せ方向に加わるため、中空部がつぶれてガスの通路を塞いでしまわないようにするために設けられているものである。
 このように、円筒形非水電解液二次電池においては、巻回電極体の中空部にセンターピンを設けることにより過充電等の異常時の安全性及び信頼性を確保できるが、センターピンを設けると、部品数が多くなり、生産性及びコスト面でのデメリットが生じる。加えて、近年、更なる電池容量の増大化が要望されているが、センターピンを設けると、そのセンターピン用のスペースはデッドスペースととなり、電池容量の増大化をはかることが困難となる。
 一方、従来の非水電解液二次電池における電池内部の電力損失を防止して発熱を低下させるため、集電タブの幅を広くして極板の芯体への取付け面積を大きくすることにより、極板の芯体からの集電効率を上げるようになされている。しかしながら、円筒形非水電解液二次電池においては、単純に集電タブの幅を広くするという構成は、集電タブの取付面が曲面状となっているため、円筒状の電池外装缶内への組み込みが困難となるので、そのまま採用することはできない。そのため、下記特許文献2に開示された円筒形非水電解液二次電池の発明では、最内周側の電極の集電タブとして巻回電極体の作製時に使用される芯棒と同じ曲率半径に成形加工したものを使用している。
 また、下記特許文献3には、特に集電タブを幅広としなくても負極集電タブと電池外装缶との間の接触抵抗を低減化できるようにするため、負極集電タブを負極芯体の巻き始め側と巻き終わり側の2本とした円筒形非水電解液二次電池が開示されている。そして、下記特許文献3に開示されている円筒形非水電解液二次電池では、巻回電極体の作製後に巻き終わり側に設けた集電タブを巻き取り中心に向けて折り曲げ、電池外装缶の内側底部において巻き始め側の集電タブ、巻き終わり側の集電タブ及び電池外装缶の3層を溶接して電気的に接続すると共に、衝撃及び振動に耐えるようにするため、巻き始め側の集電タブの電池外装缶との接合部分に弾性を有する形状部分を形成した例が示されている。
特開平 6-196138号公報 特開2006-310283号公報 特開2009-170365号公報
 上記特許文献2に開示されている円筒形非水電解液二次電池によれば、一応最内周側の電極と集電タブとの間の接触面積を大きくすることができるが、集電タブを巻回電極体の作製時に使用される芯棒と同じ曲率半径に成形加工する工程が別途必要となる。加えて、上記特許文献2には集電タブを電池外装缶の内側底部と接合することによって電気的に接続することについては何も示唆されていない。
 また、上記特許文献3に開示されている円筒形非水電解液二次電池では、集電タブは巻回電極体の巻き始め側及び巻き終わり側の両方で芯体と接続されている。そのため、集電タブの幅を従来例のものと同等としても、芯体の巻き始め側と電池外装缶の間及び芯体の巻き終わり側と電池外装缶の間の2通りの導電路が確保されるので、内部抵抗が小さい円筒形非水電解液二次電池が得られる。しかも、巻き始め側の集電タブの電池外装缶との接合部分に弾性を有する形状部分が形成されているので、電気自動車(EV)用、ハイブリッド電気自動車(HEV)用ないし電動工具用として使用された場合のように、衝撃や振動に曝された場合においても、溶接部分に金属疲労が生じ難く、溶接部分から集電タブが外れたり、内部抵抗が大きくなったりすることが抑制されるという優れた効果を奏する。
 しかしながら、上記引用文献2及び3に示されている円筒形非水電解液二次電池においては、センターピンを備えていないので、過充電、高温暴露あるいは短絡状態等の異常状態が継続した場合における安全性及び信頼性を確保が不充分である。
 本発明は上述のような従来技術の問題点を解決すべくなされたものである。すなわち、本発明は、巻回電極体の集電タブの構造を見直すことにより、センターピンを備えていないながらも、高容量で、安全性及び信頼性に優れた特性を有する円筒形のものを含む非水電解液二次電池を提供することを目的とする。
 上記目的を達成するため、本発明の非水電解液二次電池は、
 正極芯体の両面に正極合剤層が形成された正極極板と負極芯体の両面に負極合剤層が形成された負極極板とがセパレータを挟んで巻回され、巻回軸の中心に空隙部が形成された巻回電極体を備え、
 前記正極極板及び負極極板の一方の極板の巻き始め側には芯体露出部が形成され、前記巻き始め側の芯体露出部に第1の集電タブが接合され、
 前記巻回電極体は非水電解液と共に電池外装缶内に封入され、前記電池外装缶は封口板によって封止され、
 前記第1の集電タブが前記巻回電極体の前記空隙部に対応する位置で電池外装缶の内側底部に当接するように折り曲げられて接合され、
 前記正極極板及び負極極板の他方の極板に形成された芯体露出部に接合された第2の集電タブが前記封口板に固定された端子に電気的に接続されている非水電解液二次電池において、
 前記巻回電極体は平面視で前記空隙部が円弧状部分と弦部分とを有する形状に形成され、
 前記第1の集電タブは、平面視で前記巻き始め側の芯体露出部の前記弦部分に沿った直線状とされ、前記弦部分で前記芯体露出部に接合されていることを特徴とする。
 本発明の非水電解液二次電池においては、正極極板又は負極極板の一方の巻き始め側の芯体露出部に接合された第1の集電タブは、平面視で空隙部側における弦部分に沿った直線状とされて、この弦部分で接合されているので、たとえ電池内部におけるガスの発生によって巻回電極体に径方向に変形が生じる状態となっても、空隙部に配置されている第1の集電タブの立体的な支えのため、空隙部が塞がれることを抑制することができるようになる。そのため、本発明の非水電解液二次電池によれば、過充電や高温に曝された場合等、電池内部でのガス発生によって巻回電極体に径方向の変化が生じるような状態となっても、空隙部が塞がれ難いので、非水電解液二次電池に設けられている安全弁手段へのガス流路が確保できるため、安全性及び信頼性の高い非水電解液二次電池が得られるようになる。しかも、本発明の非水電解液二次電池によれば、空隙部にセンターピンを備えていないので、その分だけ電池容量を増大化させることができるようになる。
 なお、本発明における「平面視」とは、巻回電極体の巻回軸の延在方向から巻回電極体を視認した状態を示すものであり、実質的に巻回電極体を巻回軸に垂直な平面で切断した横断面図と等価である。また、本発明の非水電解液二次電池においては、安全弁を設ける場合には、封口板に直接形成、封口板に固定された端子内に形成及び電池外装缶に直接形成の何れをも採用することができる。更に、本発明の非水電解質二次電池は、円筒型のもの及び楕円筒状型のものの何れにも採用することができる。
 また、巻回電極体として、平面視で空隙部が円弧状部分と弦部分とを有する形状に形成するには、巻回電極体を形成する際に用いる芯棒として、円柱状のものではなく、横断面に弦が形成されている形状の柱状体を用いれば容易に形成できる。また、本発明における「接合」とは、「溶接」だけではなく「圧接」も含み、更に、「溶接」には抵抗溶接、超音波溶接、レーザー溶接、電子ビーム溶接を含む。
 なお、非水電解液二次電池の正極芯体としてはアルミニウム箔が、負極芯体としては銅箔が汎用的に使用され、また、電池外装缶や端子としてはステンレススチール等の鉄系の合金が汎用的に使用される。そのため、本発明の非水電解液二次電池においては、接合のし易さ、接合強度、集電タブの強度等を勘案すると、負極極板の巻き始め側に芯体露出部を形成し、この負極芯体露出部に接合する負極タブ(第1の集電タブ)としてニッケル又はニッケル合金、銅-ニッケルの2層クラッド材ないしニッケル-銅-ニッケルの3層クラッド材からなるものを用いることが好ましく、正極集電タブ(第2の集電タブ)としてはアルミニウムからなるものを用いることが好ましい。
 なお、本発明の非水電解液二次電池における負極活物質としては、黒鉛、非晶質炭素などの炭素質材料を用いることができる。また、正極活物質としては、リチウムイオンを可逆的に吸蔵・放出することが可能なLiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO、LiNiO、LiNiCo1-y(y=0.01~0.99)、LiMnO、LiMn、LiCoMnNi(x+y+z=1)、又はLiFePOなどが一種単独もしくは複数種を混合して用いることができる。なお、遷移金属の一部をZr、Mg、Al等で置換してもよい。
 また、本発明の非水電解液二次電池で使用し得る負極活物質としては、黒鉛、難黒鉛化性炭素及び易黒鉛化性炭素などの炭素原料、LiTiO、スピネル型のLiTi12、TiOなどのチタン酸化物、ケイ素及びスズなどの半金属元素、又はSn-Co合金等が挙げられる。
 また、本発明の非水電解液二次電池において使用し得る非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)などの環状炭酸エステル、フッ素化された環状炭酸エステル、γ-ブチルラクトン(BL)、γ-バレロラクトン(VL)などの環状カルボン酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、ジブチルカーボネート(DBC)などの鎖状炭酸エステル、フッ素化された鎖状炭酸エステル、ピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート、メチルプロピオネートなどの鎖状カルボン酸エステル、N、N'-ジメチルホルムアミド、N-メチルオキサゾリジノンなどのアミド化合物、スルホランなどの硫黄化合物、テトラフルオロ硼酸1-エチル-3-メチルイミダゾリウムなどの常温溶融塩などが例示できる。これらは2種以上混合して用いることが望ましい。これらの中では、特に誘電率が大きく、非水電解液のイオン伝導度が大きい環状炭酸エステル及び鎖状炭酸エステルが好ましい。なお、本発明の非水電解液二次電池においては、非水電解質は液状のものだけでなく、ゲル化されているものであってもよい。
 また、本発明の非水電解液二次電池で使用するセパレータとしては、ポリプロピレンやポリエチレンなどのポリオレフィン材料から形成された微多孔膜からなるセパレータが選択できる。セパレータのシャットダウン応答性を確保するために、融点の低い樹脂を混合してもよく、更には、耐熱性を得るために高融点樹脂との積層体や無機粒子を担持させた樹脂としてもよい。
 なお、本発明の非水電解液二次電池で使用する非水電解質中には、電極の安定化用化合物として、更に、ビニレンカーボネート(VC)、ビニルエチルカーボネート(VEC)、無水コハク酸(SUCAH)、無水マイレン酸(MAAH)、グリコール酸無水物、エチレンサルファイト(ES)、ジビニルスルホン(VS)、ビニルアセテート(VA)、ビニルピバレート(VP)、カテコールカーボネート、ビフェニル(BP)などを添加してもよい。これらの化合物は、2種以上を適宜に混合して用いることもできる。
 また、本発明の非水電解液二次電池で使用する非水溶媒中に溶解させる電解質塩としては、非水電解液二次電池において一般に電解質塩として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF(ヘキサフルオロリン酸リチウム)が特に好ましい。前記非水溶媒に対する電解質塩の溶解量は、0.5~2.0mol/Lとするのが好ましい。
 また、本発明の非水電解液二次電池においては、前記第1の集電タブは、前記電池外装缶への接合部分との間に弾性を有する形状部分を備えていることが好ましい。
 第1の集電タブが電池外装缶への接合部分との間に弾性を有する形状部分を備えていると、過充電や高温に曝された場合等、電池内部でのガス発生によって巻回電極体に径方向の変化が生じるような状態となっても、空隙部が塞がれ難くなるだけでなく、落下、振動等による衝撃が加わった際の衝撃を吸収することができるようになる。そのため、本発明の非水電解液二次電池によれば、巻回電極体の中心軸方向に加えられた衝撃にも耐えられるようになるため、例え落下衝撃を受けた場合においても、第1の集電タブと電池外装缶との間の接合部分が剥離する可能性が大きく減少すると共に電池の内部抵抗が増加し難くなり、しかも、より安全性及び信頼性の高い非水電解液二次電池が得られるようになる。なお、本発明の非水電解液二次電池における第1の集電タブの弾性を有する形状部分としては、弓なり形状、円弧形状、波形形状等の形状を採用することができる。
 また、本発明の非水電解液二次電池においては、前記第1の集電タブは、少なくとも硬度がHV100以上の金属によって形成されていることが好ましい。
 本発明の非水電解液二次電池によれば、第1の集電タブとして硬度がHV100以上の金属によって形成されているものを使用したので、第1の集電タブの物理的強度が非常に強くなり、より巻回電極体の径方向の変化及び中心軸方向に加えられた衝撃にも耐えられるようになるため、より安全性及び信頼性に優れた非水電解液二次電池が得られるようになる。なお、HVが100未満であると、過充電や高温に曝された場合等、電池内部でのガス発生によって巻回電極体に径方向の変化が生じるような状態となった際の空隙部の形状保持能力が低下するので、好ましくない。
 また、本発明の非水電解液二次電池においては、前記一方の極板の巻き終わり側にも芯体露出部が形成され、前記一方の極板の巻き終わり側の芯体露出部に第3の集電タブが接合され、前記第3の集電タブは前記巻回電極体の前記空隙部に対応する位置で前記電池外装缶の内側底部に当接するように折り曲げられ、前記第1の集電タブ及び前記電池外装缶の内側底部と共に一体に接合されていることが好ましい。
 本発明の非水電解液二次電池によれば、集電タブの幅を従来例のものと同等としても、第1の集電タブによって巻き始め部の芯体露出部と電池外装缶の間で、第3の集電タブによって巻き終わり部の芯体露出部と電池外装缶の間で、計2通りの導電路が確保されるので、より内部抵抗が小さい非水電解液二次電池が得られる。
図1Aは各実施例及び比較例の非水電解液二次電池で使用した正極極板の展開図であり、図1Bは同じく負極極極板の展開図であり、図1Cは各実施例で用いた芯棒の平面図であり、図1Dは各比較例で用いた芯棒の平面図である。 図2Aは実施例1の非水電解液二次電池の縦断面図であり、図2Bは図2AのIIB-IIB線に沿った断面図である。 図3Aは実施例2の非水電解液二次電池の縦断面図であり、図3Bは図3AのIIIB-IIIB線に沿った断面図である。 図4Aは比較例1の非水電解液二次電池の縦断面図であり、図4Bは図4AのIVB-IVB線に沿った断面図である。 図5Aは比較例2の非水電解液二次電池の縦断面図であり、図5Bは図5AのVB-VB線に沿った断面図である。
 以下、本発明を実施するための形態を各実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解液二次電池として円筒形非水電解液二次電池を例示するものであって、本発明をこの円筒形非水電解液二次電池に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。なお、この明細書における説明のために用いられた各図面においては、各部材を図面上で認識可能な程度の大きさとするため、各部材毎に適宜縮尺を異ならせて表示しており、必ずしも実際の寸法に比例して表示されているものではない。
 最初に、図1を用いて、実施例1、2及び比較例1、2に共通する正極極板、負極極板及び非水電解液の構成について説明する。なお、図1Aは各実施例及び比較例の非水電解液二次電池で使用した正極極板の展開図であり、図1Bは同じく負極極板の展開図であり、図1Cは各実施例で用いた芯棒の平面図であり、図1Dは各比較例で用いた芯棒の平面図である。
[正極極板の作製]
 正極極板11は次のようにして作製した。まず、正極活物質としてのニッケルコバルトマンガン酸リチウム(LiNi1/3Co1/3Mn1/3)とスピネル型マンガン酸リチウムを質量比1:1で混合した正極活物質90質量部と、導電剤としての黒鉛5質量部と結着剤としてのポリビニリデンフルオライド(PVdF)5質量部とをN-メチル-2-ピロリドンに分散させ、正極合剤スラリーを調製した。次に、厚さ20μmのアルミニウム箔からなる正極芯体11aの両面に、正極芯体11aの中央部及び巻き終わり側端部が露出するように、正極合剤スラリーを塗工し、乾燥機内に通して上記有機溶剤を除去した後、ロールプレス機を用いて正極合剤層11dが形成された部分の厚さが100μmとなるように圧延した。次いで、正極芯体11aの中央側正極芯体露出部11bに、幅3mm、厚み0.15mmのアルミニウム金属製の正極集電タブ11eを超音波溶接により取り付け、正極極板11を得た(図1A参照)。
[負極極板の作製]
 負極極板12は次のようにして作製した。まず、負極活物質としての人造黒鉛粉末98質量%と、結着剤としてのカルボキシメチルセルロース(CMC)及びスチレン-ブタジエンゴム(SBR)をそれぞれ1質量%ずつ混合し、水を加えて混練して負極合剤スラリーを調製した。次に、厚さが15μmの銅箔からなる負極芯体12aの両面に、負極芯体12aの巻き始め側端部及び巻き終わり側端部の両面が露出するように、負極合剤スラリーを塗工し、次いで乾燥機内に通して乾燥した後、ロールプレス機を用いて負極合剤層12dの厚さが100μmとなるように圧延した。
 次いで、負極芯体12aの巻き始め側負極芯体露出部12b及び巻き終わり側負極芯体露出部12cに、幅3mm、厚み0.15mmの銅-ニッケルクラッド材(硬度HVは、銅=80、Ni=140である。)からなる負極集電タブ12e(本発明の「第1の集電タブ」に対応)及び12e(本発明の「第3の集電タブ」に対応)を、銅同士が対向するようにして、超音波溶接により取り付け、負極極板12を得た(図1B参照)。
 なお、比較例1及び2については、負極集電タブ12eを溶接する前に、予め負極集電タブ12eを芯棒13Bと同じ曲率半径に成形加工し、最内周側の負極極板12と負極集電タブ12eとの間の接触面積が大きくなるようにして、最内周側の負極極板12の負極芯体露出部12bの巻き外側面に超音波溶接した。また、負極合剤の塗布量は、設計基準となる充電電圧(4.2V)において、正極極板11と負極極板12の対向する部分での充電容量比(負極充電容量/正極充電容量)が1.1となるように調整した。
[巻回電極体の作製]
 実施例1及び2で用いた芯棒13Aの平面視の形状を図1Cに、比較例1及び2で用いた芯棒13Bの平面視の形状を図1Dに示す。上記のようにして作製された正極極板11と負極極板12と例えばポリエチレン樹脂からなる厚さ22μmの微多孔性セパレータ(図示省略)とを、それぞれ巻き始め側を巻き取り機(図示省略)に取り付けられた芯棒13A又は13Bのスリット13aに差し込んで、芯棒13A又は13Bの回りに巻き付けて巻回し、巻き終わり部に絶縁性の巻き止めテープを取り付けて固定した後、芯棒13A及び13Bを取り除いて、実施例1、2及び比較例1、2の非水電解液二次電池10A~10Dで使用する円筒状巻回電極体14を完成させた。
 また、実施例1及び2では、巻き始め側の負極集電タブ12eが芯棒13Aの平坦部13bに当接するようにして巻回した。すなわち、実施例1及び2の円筒状巻回電極体14は、平面視で空隙部18が円弧状部分と弦部分とを有する形状に形成され、巻き始め側の負極集電タブ12eは、平面視で巻き始め側負極芯体露出部12bの弦部分に沿った直線状とされ、かつ弦部分で巻き始め側負極芯体露出部12bに接合された状態となっている。更に、実施例1、2及び比較例1及び2共に、最内周側に位置する巻き始め側負極芯体露出部12bの長さは、空隙部18の外周の1周以上となるようにした。
 [非水電解質の調製]
 エチレンカーボネート(EC)15体積%、プロピレンカーボネート(PC)10体積%及びジメチルカーボネート(DMC)75体積%となるように非水混合溶媒を調製し、これにLiPFを1.0mol/Lの割合となるように溶解したものを非水電解液とした。
[実施例1の電池の作製]
 上記のようにして作製された巻回電極体14の上下に中央に穴が開けられた絶縁板15及び16を配置し、負極極板12の巻き終わり側の負極集電タブ12eを先端部が電池外装缶17の底部に平行になるように適切な位置で折り曲げた。また、負極極板12の巻き始め側の負極集電タブ12eは、巻き始め側負極芯体露出部12bの巻き内側面に平面視で直線状になるように取り付けられ、先端部を電池外装缶17の底部に平行になるようにかつ巻き終わり側の集電タブ12eの先端部に重畳するように折り曲げた。このように折り曲げられた負極集電タブ12e及び12eを備えた巻回電極体14を、図2Aに示したように、円筒状の電池外装缶17内に挿入した。次いで、電池外装缶17の底部の内側に負極集電タブ12e及び12eを同時に抵抗溶接することによって固定した。
 更に、正極集電タブ11eの先端部を絶縁性の封口板19に取り付けられた正極端子20に超音波溶接し、電池外装缶内に上述の非水電解液を注入、真空含浸した後、封口板19の周囲をガスケット21で挟んで、電池外装缶17の開口端部をカシメて固定することにより実施例1の非水電解液二次電池10Aを作製した。この実施例1の非水電解液二次電池10Aは、直径が18mm、長さが65mmであり、設計容量は1250mAhであった。
[実施例2の電池の作製]
 実施例2の非水電解液二次電池10Bは、図3A及び図3Bに示すように、実施例1で使用した巻き始め側の負極集電タブ12eを、電池の封口時に弓なり形状部分12fが形成されるように折り曲げて、最内周側の負極極板12の負極芯体露出部12bの巻き外側面に超音波溶接したものであり、その他の構成は実施例1の非水電解液二次電池10Aの場合と同様にして作製した。
[比較例1の電池の作製]
 比較例1の非水電解液二次電池10Cは、図4A及び図4Bに示したように、実施例1で使用した巻き始め側の負極集電タブ12eにおいて、負極集電タブ12eを巻回電極体14の作製時に使用される芯棒13B(図1D参照)と同じ曲率半径に成形加工し、最内周側の負極極板12と負極集電タブ12eとの間の接触面積が大きくなるようにして、最内周側の負極極板12の負極芯体露出部12bの巻き外側面に超音波溶接したものであり、その他の構成は実施例1の非水電解液二次電池10Aの場合と同様にして作製した。
[比較例2の電池の作製]
 比較例2の非水電解液二次電池10Dは、図5A及び図5Bに示したように、比較例1の非水電解液二次電池10Cの空隙部18内に、長さ60mm、外径3mm、厚さ0.15mmのステンレススチール製の中空パイプからなるセンターピン22を挿入し、その他の構成は比較例1の非水電解液二次電池10Cの場合と同様にして作製した。
[加熱試験]
 上述のようにして作製された実施例1、2及び比較例1、2の非水電解液二次電池10A~10Dのそれぞれ20個ずつ、過充電状態を模するために、充電電流1It=1250mAの低電流で電池電圧が4.25Vとなるまで充電し、電池電圧が4.25Vに達した後は4.25Vの定電圧で電流が1/50It=25mAに成るまで充電した。このように過充電状態とされた各電池の側面に対し、図2Bに示したように、負極集電タブに対して、それぞれ10個については平行な方向から、また、それぞれ10個について垂直な方向から、ブンゼンバーナーを用いて10分間加熱した。そして、それぞれの電池について、破裂状態の有無を視認することにより測定した。結果をまとめて表1に示した。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示した結果から以下のことが分かる。すなわち、実施例1の非水電解液二次電池10Aでは、負極集電タブ12eに平行な方向からの加熱に対しては良好な耐圧効果が発揮されているが、負極集電タブ12eに垂直な方向からの加熱に対しては比較例1に対する改善効果は見られなかった。このことは、巻回電極体14は加熱方向と同方向に膨張、すなわち、空隙部18が小さくなるように作用するが、負極集電タブ12eに平行な方向からの加熱に対しては、負極集電体12eの幅方向への押圧力として作用するので、負極集電体12eが曲がり難いため、良好な耐圧効果を奏することを示し、負極集電タブ12eに垂直な方向からの加熱に対しては、負極集電タブ12eが曲面状に曲がり易いために、耐圧効果の向上が見られなかったことを示している。
 また、実施例2の非水電解液二次電池10Bでは、負極集電タブ12eに平行な方向からの加熱及び垂直な方向からの加熱のいずれにおいても良好な効果を奏している。このことは、負極集電タブ12eに弓なり形状部分12fが形成されているため、負極集電タブ12eに垂直な方向からの加熱に対しても負極集電タブ12eが曲面状に曲がり難くなるので、上記のような効果を生じたものと思われる。
 これに対し、比較例1の非水電解液二次電池10Cでは、負極集電タブ12eに平行な方向からの加熱に対しても、負極集電タブ12eに垂直な方向からの加熱に対しても、実施例2の非水電解液二次電池10Bよりも劣る結果しか得られなかった。なお、比較例1の非水電解液二次電池10Cに対してセンターピン28を追加した比較例2の非水電解液二次電池10Dでは、実施例2の非水電解液二次電池10Bの場合と同様の良好な効果を奏している。
 以上述べた結果から、本発明の非水電解液二次電池によれば、負極集電タブに弓なり形状を形成しなくても、センターピンを備えていない従来例に対応する比較例1の場合よりも、良好な耐熱試験結果が得られることがわかる。なお、本発明の巻回電極体の構成を備えていなくても、比較例2のようにセンターピンを用いると良好な加熱試験結果が得られるが、本発明の非水電解液二次電池によれば、センターピンを用いなくても、特に負極集電タブに弓なり形状を形成した場合にはセンターピンを設けた場合と同様の良好な加熱試験結果が得られるため、センターピンを省略した分、電池容量を増大させることができるようになる。
 なお、上記実施例2では、集電タブの弾性を有する形状部分を弓なり形状12fとした例を示したが、円弧形状、波形形状等とすることも可能である。また、上記実施例1及び2では、負極極板が最内周側になるようにして、負極極板の巻き始め側に負極集電タブを形成した例を示したが、負極極板及び正極極板の配置を逆にし、正極極板の巻き始め側が最内周側になるようにして正極極板に正極集電タブを形成するようにしてもよい。しかしながら、リチウムイオン二次電池に代表される非水電解液二次電池においては、一般に正極極板と負極極板の対向する部分での充電容量比(負極充電容量/正極充電容量)を1よりも大きく、例えば1.1程度とすることが行われているので、負極極板が最内周側に位置するようにすると、この負極極板が最外周側にも位置するように巻回できるため、容易に負極極板の充電容量比を正極極板の充電容量比よりも大きくできるようになる。
 10A~10D:非水電解液二次電池 11:正極極板 11a:正極芯体 11b:中央側正極芯体露出部 11c:巻き終わり側正極芯体露出部 11d:正極合剤層 11e:正極集電タブ 12:負極極板 12a:負極芯体 12b:巻き始め側負極芯体露出部 12c:巻き終わり側負極芯体露出部 12d:負極合剤層 12e、12e:負極集電タブ 12f:弧形状部分 13:芯棒 14:巻回電極体 15、16:絶縁板 17:電池外装缶 18:空隙部 19:封口板 20:正極端子 21:ガスケット 22:センターピン

Claims (4)

  1.  正極芯体の両面に正極合剤層が形成された正極極板と負極芯体の両面に負極合剤層が形成された負極極板とがセパレータを挟んで巻回され、巻回軸の中心に空隙部が形成された巻回電極体を備え、
     前記正極極板及び負極極板の一方の極板の巻き始め側には芯体露出部が形成され、前記巻き始め側の芯体露出部に第1の集電タブが接合され、
     前記巻回電極体は非水電解液と共に電池外装缶内に封入され、前記電池外装缶は封口板によって封止され、
     前記第1の集電タブが前記巻回電極体の前記空隙部に対応する位置で電池外装缶の内側底部に当接するように折り曲げられて接合され、
     前記正極極板及び負極極板の他方の極板に形成された芯体露出部に接合された第2の集電タブが前記封口板に固定された端子に電気的に接続されている非水電解液二次電池において、
     前記巻回電極体は平面視で前記空隙部が円弧状部分と弦部分とを有する形状に形成され、
     前記第1の集電タブは、平面視で前記巻き始め側の芯体露出部の前記弦部分に沿った直線状とされ、前記弦部分で前記芯体露出部に接合されていることを特徴とする非水電解液二次電池。
  2.  前記第1の集電タブは、前記電池外装缶への接合部分との間に弾性を有する形状部分を備えていることを特徴とする請求項1に記載の非水電解液二次電池。
  3.  前記第1の集電タブは、少なくとも硬度がHV100以上の金属によって形成されていることを特徴とする請求項1に記載の非水電解液二次電池。
  4.  前記一方の極板の巻き終わり側にも芯体露出部が形成され、前記一方の極板の巻き終わり側の芯体露出部に第3の集電タブが接合され、前記第3の集電タブは前記巻回電極体の前記空隙部に対応する位置で前記電池外装缶の内側底部に当接するように折り曲げられ、前記第1の集電タブ及び前記電池外装缶の内側底部と共に一体に接合されていることを特徴とする請求項1~3のいずれかに記載の非水電解液二次電池。
PCT/JP2012/051397 2011-02-03 2012-01-24 非水電解液二次電池 WO2012105362A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012555805A JP6058400B2 (ja) 2011-02-03 2012-01-24 非水電解液二次電池
US13/981,192 US9350042B2 (en) 2011-02-03 2012-01-24 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-022152 2011-02-03
JP2011022152 2011-02-03

Publications (1)

Publication Number Publication Date
WO2012105362A1 true WO2012105362A1 (ja) 2012-08-09

Family

ID=46602581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051397 WO2012105362A1 (ja) 2011-02-03 2012-01-24 非水電解液二次電池

Country Status (3)

Country Link
US (1) US9350042B2 (ja)
JP (1) JP6058400B2 (ja)
WO (1) WO2012105362A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017281A (ja) * 2013-07-08 2015-01-29 日本発條株式会社 導電部材および導電部材の製造方法
JP2015017282A (ja) * 2013-07-08 2015-01-29 日本発條株式会社 積層体および積層体の製造方法
KR20160050702A (ko) * 2014-10-30 2016-05-11 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2016098291A1 (ja) * 2014-12-16 2016-06-23 三洋電機株式会社 円筒形電池
US10347897B2 (en) * 2013-09-27 2019-07-09 Lg Chem, Ltd. Secondary battery with electrode tab made of copper-nickel alloy
WO2023163139A1 (ja) * 2022-02-28 2023-08-31 パナソニックエナジ-株式会社 円筒形の非水電解質二次電池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849234B2 (ja) * 2011-09-14 2016-01-27 パナソニックIpマネジメント株式会社 非水電解質二次電池
KR20140139181A (ko) * 2013-05-27 2014-12-05 삼성에스디아이 주식회사 이차 전지
KR102234292B1 (ko) * 2014-04-09 2021-03-31 삼성에스디아이 주식회사 전극 조립체 및 이를 구비한 이차 전지
USD772806S1 (en) 2014-11-26 2016-11-29 Techtronic Industries Co. Ltd. Battery
JP6631626B2 (ja) * 2015-04-27 2020-01-15 三洋電機株式会社 円筒形電池、並びにそれに用いる集電部材及びその製造方法
WO2017219345A1 (zh) * 2016-06-24 2017-12-28 宁德新能源科技有限公司 卷绕式电芯
KR102355109B1 (ko) 2017-12-21 2022-01-25 주식회사 엘지에너지솔루션 용접용 기둥을 포함하는 원통형 이차전지
CN110364768B (zh) * 2019-06-11 2021-05-21 温州大学新材料与产业技术研究院 一种多卷芯电池制作方法
KR20210041454A (ko) * 2019-10-07 2021-04-15 주식회사 엘지화학 전극조립체 및 그 제조방법
CN114447443A (zh) * 2022-02-11 2022-05-06 宁德新能源科技有限公司 电化学装置、电化学装置的制造方法及用电设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134758A (ja) * 2004-11-08 2006-05-25 Sony Corp 二次電池
JP2006310283A (ja) * 2005-04-25 2006-11-09 Samsung Sdi Co Ltd 円筒状のリチウム二次電池及びその製造方法
JP2009170365A (ja) * 2008-01-18 2009-07-30 Sanyo Electric Co Ltd 密閉電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786265U (ja) * 1980-11-14 1982-05-27
JPS6059667A (ja) * 1983-09-08 1985-04-06 Sanyo Electric Co Ltd 渦巻電極体の製造方法
US5017442A (en) * 1988-03-19 1991-05-21 Hitachi Maxell, Ltd. Coiled lithium battery
JP2764958B2 (ja) * 1988-11-11 1998-06-11 松下電器産業株式会社 円筒形二次電池
US4975095A (en) * 1989-07-28 1990-12-04 Gates Energy Products, Inc. Method of winding an electrochemical cell and cell produced by the method
JP3259995B2 (ja) 1992-12-24 2002-02-25 東芝電池株式会社 非水電解液電池の製造方法
JP3536391B2 (ja) * 1994-12-19 2004-06-07 ソニー株式会社 巻回電極素子体及びその製造方法並びに巻回電極素子体を用いた電池の製造方法
JP3379282B2 (ja) * 1995-05-22 2003-02-24 松下電器産業株式会社 電池用電極体の製造装置および製造方法
JP4580620B2 (ja) * 2002-03-13 2010-11-17 パナソニック株式会社 電池に用いる渦巻状電極群の製造方法
JP2004349141A (ja) * 2003-05-23 2004-12-09 Sanyo Electric Co Ltd 扁平巻回電極体を備えた電池及びその製造方法
TWI291778B (en) 2004-11-08 2007-12-21 Sony Corp Secondary battery
JP2006139918A (ja) 2004-11-10 2006-06-01 Hitachi Maxell Ltd 筒形非水電解液電池
KR100731452B1 (ko) * 2005-12-29 2007-06-21 삼성에스디아이 주식회사 원통형 전지의 극판 권취장치 및 권취방법
JP4968768B2 (ja) 2006-03-17 2012-07-04 日立マクセルエナジー株式会社 筒形非水電解液電池
JP5054419B2 (ja) * 2006-07-06 2012-10-24 エナックス株式会社 シート状二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134758A (ja) * 2004-11-08 2006-05-25 Sony Corp 二次電池
JP2006310283A (ja) * 2005-04-25 2006-11-09 Samsung Sdi Co Ltd 円筒状のリチウム二次電池及びその製造方法
JP2009170365A (ja) * 2008-01-18 2009-07-30 Sanyo Electric Co Ltd 密閉電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017281A (ja) * 2013-07-08 2015-01-29 日本発條株式会社 導電部材および導電部材の製造方法
JP2015017282A (ja) * 2013-07-08 2015-01-29 日本発條株式会社 積層体および積層体の製造方法
US10347897B2 (en) * 2013-09-27 2019-07-09 Lg Chem, Ltd. Secondary battery with electrode tab made of copper-nickel alloy
KR20160050702A (ko) * 2014-10-30 2016-05-11 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR102307979B1 (ko) 2014-10-30 2021-09-30 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2016098291A1 (ja) * 2014-12-16 2016-06-23 三洋電機株式会社 円筒形電池
JPWO2016098291A1 (ja) * 2014-12-16 2017-09-28 三洋電機株式会社 円筒形電池
US10461304B2 (en) 2014-12-16 2019-10-29 Sanyo Electric Co., Ltd. Cylindrical battery
WO2023163139A1 (ja) * 2022-02-28 2023-08-31 パナソニックエナジ-株式会社 円筒形の非水電解質二次電池

Also Published As

Publication number Publication date
US20130316207A1 (en) 2013-11-28
JP6058400B2 (ja) 2017-01-11
JPWO2012105362A1 (ja) 2014-07-03
US9350042B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
JP6058400B2 (ja) 非水電解液二次電池
JP6439838B2 (ja) 非水電解質二次電池
JP4495994B2 (ja) 非水電解質二次電池
US10403872B2 (en) Cylindrical batteries
WO2014045569A1 (ja) 密閉型二次電池
EP2639876B1 (en) Nonaqueous electrolyte secondary battery
JP6208239B2 (ja) 非水電解質二次電池
JP6114515B2 (ja) 非水電解質二次電池及びその製造方法
JP2011171079A (ja) 電池
US9559382B2 (en) Nonaqueous electrolyte secondary battery
JP2014035939A (ja) 非水電解質二次電池
JP6097030B2 (ja) 非水電解質二次電池及びその製造方法
JP2014035925A (ja) 非水電解質二次電池
JP6239222B2 (ja) 非水電解液二次電池
JP2014035929A (ja) 非水電解質二次電池
JP6346178B2 (ja) 非水電解質二次電池
JP5161421B2 (ja) 非水電解質電池
JP6241529B2 (ja) 非水電解質二次電池の製造方法
JP6037713B2 (ja) 非水電解質二次電池
JP5294641B2 (ja) 密閉電池
JP6213615B2 (ja) 非水電解質二次電池の製造方法
JP5503882B2 (ja) リチウムイオン電池
JP2014035940A (ja) 非水電解質二次電池
JP2012004141A (ja) 非水電解質電池
JP2012195122A (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555805

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13981192

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12742764

Country of ref document: EP

Kind code of ref document: A1