WO2012102572A2 - 올레핀 블록 공중합체 - Google Patents

올레핀 블록 공중합체 Download PDF

Info

Publication number
WO2012102572A2
WO2012102572A2 PCT/KR2012/000632 KR2012000632W WO2012102572A2 WO 2012102572 A2 WO2012102572 A2 WO 2012102572A2 KR 2012000632 W KR2012000632 W KR 2012000632W WO 2012102572 A2 WO2012102572 A2 WO 2012102572A2
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
olefin
molecular weight
group
mole fraction
Prior art date
Application number
PCT/KR2012/000632
Other languages
English (en)
French (fr)
Other versions
WO2012102572A9 (ko
WO2012102572A3 (ko
Inventor
전만성
이기수
이용호
권헌용
조민석
김선경
임경찬
홍대식
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46581303&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012102572(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN2012800069186A priority Critical patent/CN103339162A/zh
Priority to SG2013055983A priority patent/SG192089A1/en
Priority to JP2013550416A priority patent/JP5887361B2/ja
Priority to EP12739968.1A priority patent/EP2669304B1/en
Priority to US13/980,930 priority patent/US20130296497A1/en
Publication of WO2012102572A2 publication Critical patent/WO2012102572A2/ko
Publication of WO2012102572A9 publication Critical patent/WO2012102572A9/ko
Publication of WO2012102572A3 publication Critical patent/WO2012102572A3/ko
Priority to US15/177,942 priority patent/US9644064B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers

Definitions

  • the present disclosure relates to olefin block copolymers.
  • the unspecific copolymer refers to a copolymer having a plurality of repeating unit blocks or segments, and often has superior characteristics as compared with a conventional random copolymer or blend.
  • the block copolymer may include a soft elastic block called a soft segment and a hard crystalline block called a hard segment, thereby exhibiting properties such as excellent elasticity and heat resistance. Can be.
  • the block copolymer may exhibit relatively excellent heat resistance because the block copolymer may exhibit elasticity above the glass transition temperature of the soft segment and exhibit thermoplastic behavior at a temperature higher than the melting temperature. .
  • block copolymers described above triblock copolymers of styrene and butadiene (SBS), hydrogenated forms thereof (SEBS), and the like are known to be useful in various fields due to their excellent heat resistance and elasticity.
  • SBS styrene and butadiene
  • SEBS hydrogenated forms thereof
  • olefin elastomer which is a kind of copolymer of ethylene or propylene and (alpha) -olefin is examined. More specifically, attempts are being made to apply such olefinic elastomers in various fields, for example in various applications to replace rubber based materials. In addition, in order to improve the heat resistance of the olefin-based elastomers, a random copolymer used in the past, for example, an olefin-based elastomer rather than an olefin-based elastomer in the form of an ethylene- ⁇ -olefin random copolymer is applied. Attempts have been made.
  • the present substrate is to provide an olefin block copolymer showing excellent elasticity, heat resistance and processability.
  • an olefin block copolymer including an ethylene- or propylene-based repeating unit and a plurality of blocks or segments including an ⁇ -olefin-based repeating unit at different mole fractions, per 1000 carbon atoms 20 within the support 100 branched; carbon atoms per 1000 branches values primary differential for the number Y on the molecular weight of X for each polymer, chains of the chain in, and each polymer chain comprises a polymer chain containing the (short chain branching SCB) is this point is zero between the minimum value and the maximum value of the molecular weight of X, for example, the molecular weight than the lower 10%, the X at most 90%, or about 20% or more and 70% or less, or about 25% or more and 60% or less.
  • the point where the first derivative value becomes 0 may be present in a region less than the maximum peak molecular weight (Mp) of the block copoly
  • the block copolymer of one embodiment may exhibit the characteristic that the first derivative is positive in a region where the molecular weight X is smaller than the point at which the first derivative is zero, and the first derivative is zero. In the region where the molecular weight X is larger than the point to be, the first derivative can exhibit the characteristic of becoming negative.
  • the olefin block copolymer may have a crystallization temperature (Tc) of about 95 to 120 ° C, and may have a melting point (Tm) of 110 to 135 ° C.
  • such an olefin block copolymer includes a hard segment including a first mole fraction of an ⁇ -olefin-based repeating unit as a plurality of blocks or segments, and an ⁇ -olefin-based repeating unit having a second mole fraction higher than the first mole fraction. It may include a containing soft segment.
  • the mole fraction of the ⁇ -lefin-based repeating unit included in the entire block copolymer may have a value between the first mole fraction and the second mole fraction.
  • the olefin block copolymer may include 20 to 95 mol% of the hard segment and 5 to 80 mol3 ⁇ 4 of the soft segment, and the hard segment may have one or more of the characteristics of crystallinity, density, and melting point. Can be higher.
  • olefin block copolymer as a whole it is, 'from about 80 to 98 mol% butyl-series or propylene-based repeating unit and in the, and can include the ⁇ - olefin repeating unit of the remaining amount, a density of about 0.85g / cm 3 to 0.92 g / cn) 3 .
  • such an olefin block copolymer may have a weight average molecular weight of about 5,000 to 3,000,000, and a molecular weight distribution of about 2.5 or more and 6 or less.
  • the ⁇ - olefinic repeat unit is
  • an olefin block copolymer can be provided that exhibits excellent heat resistance and elasticity, and further improved workability.
  • these olepin block copolymers can be prepared through simple process steps using a simplified catalyst system.
  • such an olefin block copolymer can greatly contribute to the commercialization of an olefin elastomer having excellent heat resistance and overall physical properties, and the olefin elastomer can be suitably used in various fields replacing rubber materials.
  • 1 and 2 are diagrams showing the molecular weight distribution curve and the number distribution of short chain branching (SCB) per 1000 carbon atoms of the urepin block copolymers of Examples 6 and 13,
  • FIG. 3 is a diagram showing the molecular weight distribution curve of the block copolymer of Comparative Example 2 and the number distribution of short chain branching (SCB) per 1000 carbon atoms.
  • (olefin) unspecific copolymer is a polymer copolymerized with ethylene or propylene and ⁇ -lephine, and is derived from physical or chemical properties such as ethylene or propylene and ⁇ -olefin, respectively.
  • a copolymer comprising a plurality of repeating unit blocks or segments which may be distinguished from each other in the polymer because one or more of the characteristic values such as content (mole fraction), crystallinity, density, or melting point of the repeating units are different from each other. May be referred to.
  • Such a plurality of blocks or segments may include, for example, ethylene-based or propylene-based repeating units and ⁇ -olefin-based repeating units, and each of these repeating units may have different contents (mole fraction).
  • the plurality of blocks or segments may be hard segments that are hard crystalline blocks including a first mole fraction of the ⁇ -olefin-based repeating unit, and a second mole fraction of the ⁇ -olefin that is higher than the first mole fraction. It may include a soft segment that is a soft elastic block including a system repeating unit.
  • the first mole fraction may be a lower mole fraction than the mole fraction of the ⁇ -olefin-based repeating unit calculated for the entire block copolymer, and the second mole fraction is ⁇ - calculated for the entire block copolymer.
  • the molar fraction may be higher than that of the olefin repeat unit.
  • the plurality of blocks or segments may be distinguished from one another by one or more of other characteristics such as crystallinity, density or melting point.
  • the hard segment as the hard crystalline block described above may have a higher value than one or more of the characteristics of crystallinity, density, and melting point as compared with the soft segment as the soft elastic block. .
  • polymer chain (s) included in the "(olefin) block copolymer” may refer to a plurality of polymer chains formed when the block copolymer is polymerized and manufactured.
  • ethylene or
  • block copolymer is prepared by polymerizing propylene with ⁇ -olefin, polymer chains having various molecular weights are formed, each containing an ethylene-based or propylene-based repeating unit and an ⁇ -olefin-based repeating unit. Can lead to block copolymers.
  • the molecular weight of such polymer chains can be confirmed through molecular weight distribution curve using gel permeation chromatography (GPC).
  • the distribution of the ⁇ -olefin-based repeating unit or branched chain derived therefrom in the polymer chain can be confirmed by analyzing the block copolymer by FT-IR.
  • the content of ⁇ -lefin-based repeating units in the polymer chain or block copolymer may be confirmed through analysis using 1H-NMR.
  • Such polymer chains may be defined as "polymer chain (s)" included in the "(olefin) block copolymer”.
  • the "maximum peak molecular weight ( ⁇ )" of the "(le-lefin) block copolymer” refers to the block air when the "polymer chain (s)” included in the block copolymer are listed in the order of molecular weight. It may refer to the molecular weight of the polymer chains contained in the largest content in the coalescence.
  • This "maximum peak molecular weight ( ⁇ )” can be identified by deriving the molecular weight distribution curve of the block copolymer using gel permeation chromatography (GPC).
  • this molecular weight distribution curve can be defined as a function of X-axis as the molecular weight of each polymer chain or its log value, and y-axis as the content of the polymer chain, at the point where the y-value of this distribution curve is maximum.
  • the molecular weight X value of ie, molecular weight X value at the vertex of the distribution curve
  • Mp maximum peak molecular weight
  • the molecular weight of the "polymer chain (s)" is "up to% or less (or above, below or above).”
  • the polymer chain having the largest molecular weight can be referred to as less than (or more than, less than or greater than) the molecular weight, based on the molecular weight of the polymer chain that the molecular weight size order is 40%.
  • short chain branching refers to the branched form of the longest main chain in each of the aforementioned polymer chain (s). It may refer to a chain.
  • the number of branched chains may be calculated by FT-IR analysis of the block copolymer and may be proportional to the mole fraction of the ⁇ -olefin-based repeating units included in the block copolymer or polymer chain (s).
  • an olefin block copolymer including a plurality of blocks or segments including an ethylene-based or propylene-based repeating unit and an ⁇ -olefin-based repeating unit at different molar fractions, having 1000 carbon atoms Polymer chains containing 20 to 100 short chain branching (SCB) chains per unit, and the first derivative of the number Y of branched chains per 1000 carbon atoms of each polymer chain with respect to the molecular weight X of each polymer chain There is provided an olepin block copolymer wherein the point at which it is zero lies between the minimum and maximum values of molecular weight X.
  • SCB short chain branching
  • the point at which the first derivative is zero is, for example, at least about 10% or more and 90% or less, or about 20% or more and 70% or less, or about 25%, of the lower molecular weight X, for example. Or more than 6 OT, and in one embodiment, it may be present in a region less than the maximum peak molecular weight (Mp) of the block copolymer.
  • the eurefin block copolymer of this embodiment includes ethylene or propylene and repeating units derived from copolymerized ⁇ -olefins, and exhibits excellent elasticity due to the ⁇ -olefin-based repeating units derived from ⁇ -olefins. Can be.
  • each polymer chain included in the block copolymer is about 20 to 100 per 1000 carbon atoms, Or about 25 to 95, or about 25 to 90, or about 25 to 85 branched chains.
  • the block copolymer increases the number of branched chains included in each polymer chain as the molecular weight of the polymer chains contained therein increases, and at a certain point, for example, the primary If the molecular weight of the polymer chain is increased beyond the point where the derivative value is zero, the number of branched chains may decrease as the molecular weight of the polymer chains increases.
  • the distribution characteristics of the branched chain may reflect that the polymer chains included in the block copolymer include a block or a segment containing a higher content of ⁇ -lefin-based repeating units.
  • block copolymers may be due to the fact that the block copolymers are blocked by including a plurality of blocks or segments having different physical or chemical properties as they are prepared using a specific catalyst system described below. That is, the block copolymers of one embodiment prepared using the specific catalyst system described below may polymerize and combine monomers containing a higher content of ethylene or propylene to form one block or segment, on the contrary, ⁇ -lefin The monomers contained in this higher content are polymerized and combined to form other blocks or . The segment can be reached. For this reason, the block copolymer of one embodiment may exhibit higher crystallinity and may exhibit distribution characteristics of the branched chain described above.
  • the block copolymer may include a plurality of blocks or segments having different mole fractions of ethylene-based or propylene-based repeating units and ⁇ -olefin-based repeating units, for example, ⁇ -olefin-based repeats having a first mole fraction.
  • the hard segment may include a hard segment that is a hard crystalline block including units and a soft segment that is a soft elastic block including an ⁇ -olefin-based repeating unit having a second mole fraction higher than the first mole fraction.
  • the mole fraction of the ⁇ -olefin repeat unit included in the entire block copolymer may have a value between the first mole fraction and the second mole fraction.
  • the first mole fraction may be a lower mole fraction than the mole fraction of the ⁇ ⁇ olefin-based repeating unit calculated for the entire block copolymer
  • the second mole fraction is the ⁇ - calculated for the entire block copolymer.
  • Olefin It can be a high mole fraction compared to the mole fraction of repeat units.
  • the olefin block copolymer of one embodiment has a blocked form identified from the branched chain distribution characteristics described above, and is, for example, a hard segment that is a hard crystalline block having a higher molar fraction of an ethylene-based or propylene-based repeating unit.
  • block copolymers may exhibit high melting points ranging from about 110 to 135 ° C., from about 115 to 130 ° C., or from about 115 to 125 ° C. This corresponds to a higher melting point compared to previously known olefinic elastomers.
  • the block copolymer of one embodiment may exhibit improved heat resistance compared to olefin-based elastomers such as ethylene- ⁇ -olepin random copolymers previously known, and may exhibit excellent elasticity as an elastomer even at higher temperatures. .
  • the block copolymer of the embodiment is a point where the first derivative of the number of branched chains per 1000 carbon atoms of each polymer chain contained in the polymer chains with respect to the molecular weight X of each polymer chain becomes 0 and the minimum value of the molecular weight X. It may indicate a property that exists between the maximum values.
  • the point at which the first derivative value becomes zero is, for example, at least about 10% or more and 90% or less, or about 20% or more and 70% or less, or black, about 25%, of the lower molecular weight X.
  • % To 603 ⁇ 4> or less may be present in the region less than the maximum peak molecular weight ( ⁇ ) of the block copolymer.
  • This distribution characterizes block copolymers by gel chromatography (GPC) to derive molecular weight distribution curves of the polymer chains contained therein, while FT-IR analysis provides branching per 1000 carbon atoms according to the molecular weight of the polymer chains. This can be confirmed by analyzing the number of chains and deriving their relationship from a distribution curve.
  • a distribution curve is shown by the red curve in FIGS. 1 and 2.
  • the block copolymer of one embodiment has a region between the minimum value and the maximum value of the molecular weight of the polymer chains included in the block copolymer at a point where the first derivative value becomes zero.
  • the block copolymers of one embodiment include polymer chains having various molecular weights.
  • polymer chains having a relatively small molecular weight a larger number of branched chains and a higher content of ⁇ -olefins with increasing molecular weight
  • polymer chains having a relatively high molecular weight which may include a reduced number of branched chains and a lower content of ⁇ -olefin-based repeat units despite an increase in molecular weight.
  • Such distribution characteristics may reflect the specific crystallization and blocked properties of the block copolymer of one embodiment, and thus, the block copolymer may be about 95 to 120 ° C., or about 100 to 115 ° C., or It may have a high crystallization temperature (Tc) of about 102 to 1 KTC.
  • Tc crystallization temperature
  • the block copolymer can be formed at a faster rate by melting after the melting in the melt processing. Therefore, the block copolymer of the embodiment can exhibit excellent processability and product formability.
  • the distribution characteristics of the branched chains described above correspond to the novel characteristics of the block copolymers newly found in the present disclosure.
  • the block copolymer of one embodiment exhibiting such novel crystalline properties has been confirmed through the following examples and the like that the crystallization and processing after melting are faster to show excellent product formability.
  • a plurality of blocks or segments included in the block copolymer of one embodiment may be distinguished from one another by one or more of characteristic values, such as crystallinity, density, or melting point.
  • the hard segment which is a hard crystalline block containing an ethylene- or propylene repeating unit at a higher mole fraction
  • the soft segment may be a soft segment that is a soft elastic block containing a relatively high mole fraction of the ⁇ -olefin-based repeating unit.
  • one or more of the properties of crystallinity, density and melting point may exhibit higher values. This may be due to the higher crystallinity and the like of the hard segment.
  • the characteristic values of each of these blocks or segments can be determined and / or differentiated by obtaining (co) polymers for each block or segment, and measuring the characteristic values for them.
  • the block copolymer of one embodiment includes a plurality of blocks or segments having different properties
  • the block copolymer may exhibit excellent heat resistance with excellent elasticity.
  • the block copolymer exhibits excellent elasticity including soft segments that are soft elastic blocks and at the same time includes hard segments that are crystalline blocks having higher melting points. Properties can be maintained. Therefore, the block copolymer may exhibit excellent heat resistance.
  • the olefin block copolymer of one embodiment may contain an ethylene- or propylene-based repeat unit in an amount (mole fraction) of about 80 to 98 moles 3 ⁇ 4>, or about 80 to 93 moles 3 ⁇ 4, or about 85 to 95 mole%. Can be.
  • the block copolymer may be combined with such mole fractions of ethylene or propylene repeating units to provide the remainder of the mole fraction, for example, 2 to 20 mole percent, or about 7 to 20 mole percent, or about 5 to 15 moles. % Of ⁇ -refinic repeat units.
  • the content of the ethylene or propylene repeating unit included in the block copolymer is determined in consideration of the content of ethylene or propylene in the monomer used in the polymerization, or is calculated by analyzing the block copolymer by 1 H-NMR or 13 C-NMR. can do.
  • the block copolymer of one embodiment includes such a mole fraction of ⁇ -lefin-based repeating units, it may have excellent elasticity as an elastomer, and the mole fraction of ethylene-based or propylene-based repeating units is also optimized to provide high melting point and excellent heat resistance. Can be represented.
  • the block copolymer of one embodiment may include about 20 to 95 mole black, about 25 to 90 mole%, or about 20 to 85 mole% hard segment, and the remaining mole fraction, for example, 5 to 80 Moles 3 ⁇ 4>, or about 10 to 75 mole%, or about 15 to 80 mole% soft segments.
  • the mole fraction of the hard segment may be calculated using a commercially available Time Domain NMR (TD NMR) device. More specifically, the TD NMR apparatus can be used to measure the free induction decay (FID) for a sample of the block copolymer, which can be expressed as a function of time and intensity.
  • TD NMR Time Domain NMR
  • FID free induction decay
  • Equation 1 a function expression closest to the graph of the FID function can be derived, and through this, A, B, T2 Fast and T2 sIow values can be determined.
  • T2 spin-spin relaxation time
  • T2 relaxation calculated therefrom appears quickly
  • T2 relaxation calculated therefrom appears slowly.
  • the smaller T2 value among the A, B, T2 fast and T2 slow values determined above may be determined as the T2 value of the hard segment, that is, the T2 fast value
  • the larger T2 value may be determined as the T2 value of the soft segment, that is, T2 slow value.
  • Hard segment (ol%) A / (A + B) x 100
  • Intensity and Time are the values calculated from the FID analysis result
  • T2 fast is the spin-spin relaxation time (T2) relaxation for the hard segment
  • T2 slow is a spin-spin relaxation time (T2) relaxation value for the soft segment.
  • a and B are constants determined by fitting, and the ratios of the hard and soft segments are respectively proportional to the content of each segment.
  • the hard segment comprises an ethylene-based or propylene-based repeating unit among a plurality of blocks or segments included in the block copolymer. It may mean a hard crystalline segment comprising a higher mole fraction, the soft segment includes an ⁇ -olefin-based repeat unit at a higher mole fraction It may mean a soft elastic segment.
  • the block copolymer of one embodiment includes such hard segments and soft segments in a constant mole fraction, the block copolymer may exhibit high elasticity according to the soft segment and high melting point and better heat resistance according to the hard segment.
  • block copolymer of one embodiment has a density of about 0.85 g / cm 3 to
  • the block copolymer may have a molecular weight distribution (MWD; Mw / Mn) of about 2.5 to 6, black of about 2.6 to 5, or about 2.5 to 3.5.
  • Mw / Mn molecular weight distribution
  • the block copolymer may exhibit suitable properties as an olefin elastomer, excellent mechanical properties and processability, and the like.
  • the block copolymer of one embodiment has a relatively high molecular weight distribution of 2.5 or more, it can exhibit excellent processability and the like.
  • the block copolymer includes an ⁇ -olefin-based repeating unit together with an ethylene-based or propylene repeating unit
  • the ⁇ -olefin-based repeating unit includes 1-butene, 1-pentene, 4-methyl-1-pentene, Repeating units derived from ⁇ -olefins such as 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-nuxadecene or 1-aitocene It may be, or may be repeating units derived from two or more selected from these.
  • the olefin block copolymer of the above-described embodiment may exhibit excellent elasticity due to the inclusion of the ⁇ -lefin-based repeating unit, and may exhibit excellent heat resistance due to blocked properties and high crystallinity.
  • the block copolymer of one embodiment may exhibit a higher crystallization temperature and crystallization characteristics identified from the branched chain distribution characteristics described above. Due to such crystal characteristics, the block copolymer of one embodiment may cause faster crystallization during melt processing, so that the melt processing speed may be faster and the processability or the product formability may be better.
  • the block copolymer of one embodiment overcomes the limitations related to the field of application of olefin elastomers, It can be applied to more various fields as required.
  • block copolymers of this embodiment can be applied to virtually any application to which elastomers have previously been applied. Furthermore, the block copolymers of one embodiment may be applied to a wider range of applications where previous olefinic elastomers have not been substantially applied due to low heat resistance and rubber based materials have been applied.
  • block copolymers of one embodiment may be used for automotive parts or interior materials, such as bumper or trim parts; Packaging materials, various electrical insulating materials; Various household articles such as shoe soles, toothbrush handles, flooring or device handles; Various adhesives such as pressure-sensitive adhesives or hot melt adhesives; hose; Or it can be used for forming a wide variety of products, such as piping, it can be applied to many other fields and uses, of course.
  • a block polymer but may be used alone or may be used in blending with other polymers, resins or other additives, and in any form, such as films, molded articles or fibers can be used.
  • the above-described olefin block copolymer may be prepared by copolymerizing L ethylene or propylene with ⁇ -olefin in the presence of a specific catalyst composition.
  • the method for preparing such olepin block copolymers is ethylene or propylene in the presence of a catalyst composition comprising a Group 4 transition metal and a metallocene catalyst having a Lewis basic functional group, and a promoter having a Lewis acidic element and an organic functional group. And, it may include copolymerizing the ⁇ -olefin at about 70 to 150 ° C.
  • the metallocene catalyst and the promoter are in a first state in which the Lewis basic functional group of the metallocene catalyst and the Lewis acidic element of the promoter are bonded to Lewis acid-base under the copolymerization temperature.
  • the Group 4 transition metal which is the central metal of the metallocene catalyst
  • the co-catalyst e.g., an organic functional group thereof
  • the metallocene catalyst and the promoter may alternately take the first state and the second state, and in the second state, the Group 4 transition metal and the promoter may not interact with each other. have.
  • the copolymer of ethylene or propylene and a monomer of an ⁇ -olefin is prepared according to the following technical principle.
  • the metallocene catalyst includes a Group 4 transition metal as a central metal element, and includes a Lewis basic functional group having a lone pair of electrons, for example, a functional group including oxygen, nitrogen, or sulfur, and a cocatalyst used therewith. Is an organic functional group together with an Lewis acidic element capable of associating with a non-covalent pair of electrons, for example, aluminum or boron.
  • these metallocene catalysts and cocatalysts are used together in the polymerization system, these catalysts and cocatalysts are combined with Lewis acid-base bonds of Lewis basic functional groups of the metallocene catalyst with Lewis acidic elements of the promoter under polymerization temperature,
  • the central metal of the metallocene catalyst can take the first state in which it interacts with the Lewis acid-base bonded promoter.
  • these catalysts and cocatalysts are selectable as another state, for example.
  • the Lewis basic functional group of the metallocene catalyst and the Lewis acidic element of the promoter are Lewis acid-base bonds
  • the interaction between the core metal of the metallocene catalyst and the promoter of the Lewis acid-base bonds It can take a second state where this does not occur.
  • the catalyst and cocatalyst can be alternately taken between these first and second states under the temperature of deposition.
  • These catalysts and cocatalysts may alternately take these states as they travel between the first and second states, such that the energy difference between the first and second states is, for example, about lOkcal / mol or less, or about It is expected to be small below 5 kcal / mol and to easily cross these energy thresholds under polymerization temperatures.
  • the energy difference can be measured by a person skilled in the art in terms of computational chemistry using a Gaussian program.
  • the Lewis acid-base bonded state in the first state means not only the case where the Lewis basic functional group and the Lewis acidic element are connected by covalent or coordinating bond, but also the van der Waals' force or equivalent sigma. It may be referred to collectively as long as it is interacting by tropic bonding or the like.
  • the interaction between the central metal (group 4 transition metal) and the Lewis acid-base-coupled promoter means that they are van der Waals' forces or equivalent sigma. It may refer to the case where they are interacting by tropic bonding or the like.
  • the interaction between the metallocene catalyst and the promoter does not occur, which means that the core metal (Group 4 transition metal) and the Lewis acid-base bond promoter (for example, May refer to a case where the organic functional groups thereof are not interacting.
  • the metallocene catalyst and the promoter take the first state, due to the influence of the interaction between the Lewis acid-base bond, the central metal of the metallocene catalyst, and the promoter of the Lewis acid-base bond, The space around the central metal element of the metallocene catalyst can be narrowed. For this reason, in the first state, ethylene or propylene can be easily polymerized by accessing the catalyst rather than a relatively large monomer? -Lepin. In comparison, the metallocene catalyst and the promoter are agent.
  • the urepin block copolymer obtained by the said manufacturing method is a hard segment containing a higher mole fraction of ethylene or a propylene repeating unit, and the soft containing a alpha-olefin type repeating unit in a higher mole fraction. It can be made by including a segment.
  • such olepin block copolymers can be easily prepared by applying a simplified catalyst system, without having to apply a complex catalyst system including two transition metal catalysts, and the like. One branched chain distribution characteristic, etc.
  • the polymerization temperature may be about 70 to 150 ° C, or about 80 to 120 ° C, or about 90 to 110 ° C, or about 90 to 10 CTC. Under this polymerization temperature, the polymerization reaction of each monomer can occur efficiently while easily crossing the energy threshold between the first and second states. Therefore, under such a polymerization temperature, an olefin block copolymer having excellent crystallinity or the like is more easily obtained with a high yield. Can be obtained.
  • a metallocene catalyst having a Lewis basic functional group for example, a functional group containing oxygen, nitrogen or sulfur having a lone pair of electrons, including a Group 4 transition metal as a central metal element
  • a metallocene catalyst having a Lewis basic functional group, for example, a functional group containing oxygen, nitrogen or sulfur having a lone pair of electrons, including a Group 4 transition metal as a central metal element
  • the type of the metallocene catalyst is not particularly limited, but the characteristics capable of appropriately alternating the above-described first and second states, ethylene or propylene in each state, and ⁇ -olefin in consideration of polymerization activity or the like, such as metallocene catalysts can be used for the metallocene compounds represented by the general formula 1 ':
  • R1 to R17 are the same as or different from each other, and each independently hydrogen, halogen, d-C 20 alkyl group, C 2 ⁇ C 20 alkenyl group, C 6 -C 20 aryl group, C 7- C 20 is an alkylaryl group or C 7 -C 20 arylalkyl group, L is a d-C 10 linear or branched alkylene group, D is -0-, -S- or -N (R)- , Wherein R is hydrogen, halogen, d-C 20 alkyl group, C 2 -C 20 alkenyl group or C 6 -C 20 aryl group, A is hydrogen, halogen, d-C 20 alkyl group, C 2 -C 20 alkenyl group, C 6 -C 20 aryl group, C 7 -C 20 alkylaryl group, C 7 -C 20 arylalkyl group; C 2 -C 20 alkoxyalkyl group, C 2 -C 20 al
  • Such a metallocene catalyst includes a Group 4 transition metal M as a central metal element, including a functional group of "A-D-" in which A is bonded to D of oxygen, sulfur or nitrogen having an unshared electron pair. Therefore, the non-covalent electron pair included in the functional group of "A-D-" may act as a Lewis base to bind an acidic base with the Lewis acidic element of the promoter, and the Group 4 transition metal M may interact with the promoter. As a result, the copolymerization of ethylene or propylene with ⁇ -olefin can proceed while the metallocene catalyst and the promoter take alternately the first and second states described above.
  • the alkyl group of d-c 20 includes a linear or branched alkyl group, specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, nuclear group, heptyl group , Or octyl group, and the like, but is not limited thereto.
  • the C 2 -C 20 alkenyl group includes a straight or branched alkenyl group, and specifically includes an allyl group, ethenyl group, propenyl group, butenyl group, or pentenyl group, but is not limited thereto. It is not.
  • the C 6 -C 20 aryl group includes a monocyclic or condensed aryl group, and specifically includes a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the c 5 - c 20 heteroaryl group include a monocyclic or fused ring heteroaryl groups include, and carbazolyl group, a pyridyl group, a quinoline group, an isoquinoline group, a thiophenyl group, furanoid group, an imidazole group, oxazolyl group a, Thiazolyl group, triazine group, tetrahydropyranyl group, or tetrahydrofuranyl group, and the like. It doesn't happen.
  • Group 4 transition metal examples include titanium, zirconium, or hafnium, but are not limited thereto.
  • R1 to R17 of Formula 1 are each independently hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert It may be a butyl group, a pentyl group, a nuclear group, a heptyl group, an octyl group, or a phenyl group, and may be various substituents.
  • L in Formula 1 may be a C 4 -C 8 linear or branched alkylene group.
  • the alkylene group may be substituted or unsubstituted with an alkyl group of d-C 20 , an alkenyl group of C 2 -C 20 , or an aryl group of C 6 -C 20 .
  • a in Formula 1 is hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, methoxymethyl group, tert-subspecific methyl group , 1-ethoxyethyl group, 1-methyl-1-methoxyethyl group, tetra hydropyranyl group, tetrahydrofuranyl group, or the like, or other various substituents.
  • metallocene compound represented by Chemical Formula 1 may include a compound represented by the following Chemical Formula 2, but is not limited thereto.
  • the Lewis acidic element for example, elements, such as aluminum or boron
  • the promoter which has an organic functional group can be used.
  • the kind of such a promoter is not particularly limited, a representative example of such a promoter includes a crude catalyst compound represented by the following Chemical Formula 3:
  • R 18 may be the same or different from each other, and each independently a hydrocarbon having 1 to 20 carbon atoms; Or a hydrocarbon having 1 to 20 carbon atoms substituted with halogen; n is an integer of 2 or more, for example, an integer of 2 to 6;
  • Such a promoter includes aluminum as a Lewis acidic element and includes an organic functional group of R18, and is appropriately combined with a Lewis acid-base bond with a metallocene catalyst such as Chemical Formula 1 described above, while Group 4 of the metallocene catalyst It can interact with transition metals.
  • a metallocene catalyst such as Chemical Formula 1 described above
  • Group 4 of the metallocene catalyst It can interact with transition metals.
  • the metallocene catalyst of Formula 1 or the like when the metallocene catalyst of Formula 1 or the like is used, the energy difference between the first state and the second state is not large, and the metallocene catalyst and the cocatalyst are in the first and second states under the aforementioned copolymerization temperature. It is possible to allow the copolymerization of ethylene or propylene and ⁇ -olefin to proceed while taking alternately.
  • such a promoter may be used together with, for example, the metallocene catalyst of formula (1), etc., to exhibit an appropriate polymerization activity with respect to ethylene or propylene and ⁇ -lephine.
  • Four with catalyst Can be obtained more easily with the olefin block copolymer of one embodiment showing high crystallinity and the like.
  • Examples of the cocatalyst compound of the formula (3) include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, or butyl aluminoxane, and among these, methyl aluminoxane may be representatively used.
  • the catalyst composition containing the metallocene catalyst and the promoter described above can be obtained by a conventional method such as bringing the promoter into contact with the metallocene catalyst.
  • all promoters may be brought into contact with the metallocene catalyst at the same time, or may be brought into sequential contact. In this case, it may be more advantageous in terms of the interaction between the metallocene catalyst and the promoter in contacting the promoter such as the chemical formula (3) having Lewis acidic element with the metallocene catalyst before other promoters.
  • the molar ratio of the metallocene catalyst and the cocatalyst may be about 1 / 5,000 to 1/2 black or about 1 / 1,000 to 1/10, or about 1/500 to 1/20.
  • the interaction between the metallocene catalyst and the promoter can be properly caused, and the activity of the metallocene catalyst can be suppressed from being excessively increased or the process cost can be increased. Can be.
  • an aliphatic hydrocarbon solvent such as pentane, nucleic acid or heptane, or an aromatic hydrocarbon solvent such as benzene or toluene may be used as the solvent.
  • the metallocene catalyst or cocatalyst may be used in a form supported on a carrier such as silica or alumina.
  • the olefin in a method comprising the step of copolymerizing a monomer of ethylene or propylene, ⁇ -olefin Block copolymers can be prepared.
  • ⁇ - olepin 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene,
  • 1-tetradecene 1-nuxadecene and 1-aitocene
  • the manufacturing method of the olefin block copolymer can be carried out according to the production conditions of the conventional olefin copolymer. Specific examples of such copolymerization conditions are described in the Examples below. In the following, some examples are presented for better understanding. However, the following examples are presented for illustrative purposes, and the scope of rights is not limited to the following examples.
  • the Grignard reagent tert-Bu-0- (C3 ⁇ 4) 6 MgCl solution l.Omole was obtained from the reaction between tert-Bu-0- (C3 ⁇ 4) 6 Cl compound and Mg (0) in THF solvent.
  • the Grignard compound prepared above was added to a flask containing MeSiCl 3 compound (176.1 mL, 1.5 mol) and THF (2.0 L) at ⁇ 30 ° C., stirred at room temperature for 8 hours or more, and the filtered solution. Drying in vacuo afforded a tert-Bu-0- (CH 2 ) 6 SiMeCl 2 compound (yield 92%).
  • Ligand was prepared in the same manner as in Preparation Example 1 except that tert-BiH)-(CH 2 ) 4 Cl was used instead of tert-Bu-0- (CH 2 ) 6 Cl. Compounds were prepared to obtain a (tert-Bu-0- (C3 ⁇ 4) 4 ) MeSi (9-C 13 H 10 ) 2 compound in a similar yield to Preparation Example 1. The structure of the ligand was confirmed by 1 H-NMR.
  • a ligand compound was prepared in the same manner as in Preparation Example 1, except that tert-BiH)-(CH 2 ) 8 Cl was used instead of tert-Bu-0- (CH 2 ) 6 Cl to prepare the ligand (tert- Bu— 0- (C3 ⁇ 4) 8 ) MeSi (9-C 13 H 10 ) 2 compound was obtained in a similar yield to Preparation Example 1 above.
  • the structure of the ligand was confirmed by 1 H-NMR.
  • the olefin block copolymer was prepared while varying the content of 1-nuxene (or 1-octene) in the total content of monomers including 1-hexene (or 1-octene) and ethylene as described in Table 1. Prepared.
  • LUCENE TM LC170 which is an olefinic elastomer (ethylene-1-octene random copolymer) of LG Chemical, was used as Comparative Example 1.
  • each copolymer was analyzed by Gel Permeation Chromatography (GPC) to derive molecular weight distribution curves of the polymer chains forming the group copolymer.
  • each copolymer was analyzed by FT-IR to derive a distribution curve of the number of branched chains per 1000 carbon atoms (right Y-axis) according to the molecular weight (X-axis) of the polymer chains.
  • the results obtained for Examples 6 and 13 and Comparative Example 2 are shown in FIGS. 1 to 3, respectively, and the same results were obtained for the remaining copolymers.
  • the number of molecular chains per 1000 carbon atoms is measured by measuring the total number of branched chains of the polymer chains included in the copolymer of each embodiment, the average value thereof, and is shown in Table 1 together with the range of branched chains .
  • the temperature was raised to 200 3 C at 20 Q C / min while maintaining the equilibration at 30 2 C, and then maintained at that temperature for 5 minutes to remove the thermal history of the copolymer samples.
  • the exothermic peak of the crystallization temperature was confirmed by decreasing the temperature to 10 e C / min until 10 Q C again. After holding at 10 2 C for 1 minute, the temperature was increased to 200 ° C. at 10 e C / min, then maintained at that temperature for 1 minute, and then lowered to 30 ° C. to complete the experiment.
  • the top of the 10 a C / min reduction section of the heat flow curve according to the temperature was the crystallization temperature (Tc), and 10 Q C / min
  • Tc crystallization temperature
  • 10 Q C / min The peak with the large area among the peaks in the increase section was the first peak, and the peak with the small area was the second peak.
  • the rate of temperature rise and fall was 10 ° C / min, and the melting point (Tm) was used as the result of the second silver rising.
  • the content (mole fraction) of the hard segment of the Example and the comparative example was computed using the commercially available Time Domain NMR (TD NMR; brand name Minspec by Bruker Optics).
  • TD NMR Time Domain NMR
  • FID Free Induction Decay
  • Equation 1 four constant values of A, B, T2 fast and T2 slow were changed to derive the function equation closest to the graph of the FID function, and through this, A, B, T2 fast and T2 slow of each sample. The value was determined.
  • the spin-spin relaxation time (T2) relaxation calculated therefrom appears to be fast, and in the case of the soft segments, the spin-spin relaxation time (T2) calculated from this is 0 or slow. Therefore, the smaller T2 value among the A, B, T2 fast and T2 slow values determined above is determined as the T2 value of the hard segment, that is, the T2 fast value, and the larger T2 value is the T2 value of the soft segment, that is, the T2 slow value. Determined. Through this, the content of the hard segment (mol 3 ⁇ 4) with the constants of A and B were calculated. For Examples and Comparative Examples, the content of the hard segment calculated as described above is summarized in Table 1:
  • T2 fast is a spin-spin relaxation time (T2) relaxation value for a hard segment
  • T2 slow is a T2 (spin_spin relaxation time) for a soft segment. ) relaxation value.
  • a and B are constants determined by fitting, and have a value proportional to the content of each segment as a relative ratio of hard and soft segments, respectively.
  • Example 1 1.8 51 (31-62) 0 22 600 73 100
  • Oc indicates that 1—octene was used instead of 1-nuxene as ⁇ -olefin
  • Comparative Example 1 As a random copolymer in which a plurality of blocks or segments cannot be defined, a hard segment content measurement result could not be obtained.
  • the block copolymers of the examples include about 20 to about 100 branched chains per 1000 carbon atoms in the total molecular weight range.
  • Comparative Example 1 is in the form of a random copolymer, a plurality of blocks or segments themselves, such as hard segments and soft segments themselves can not be defined it has a completely different form from the block copolymer of the embodiment It became.
  • block copolymer of the embodiment is a hard segment and a soft segment is defined to include each segment in a certain amount, a predetermined amount of ⁇ -olefin is a block copolymer having a certain level of density, and exhibits excellent elasticity as an elastomer It was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

본 기재는 우수한 탄성, 내열성 및 가공성을 나타내는 올레핀 블록 공중합체에 관한 것이다. 상기 올레핀 블록 공중합체는 에틸렌계 또는 프로필렌계 반복 단위와, α-올레핀계 반복 단위를 서로 다른 몰 분율로 포함한 복수의 블록 또는 세그먼트를 포함하는 올레핀 블록 공중합체로서, 탄소수 1000개당 20 내지 100개의 분지쇄(short chain branching; SCB)를 포함한 고분자 쇄들을 포함하고, 각 고분자 쇄의 탄소수 1000개당 분지쇄의 개수 Y를 각 고분자 쇄의 분자량 X에 대해 1차 미분한 값이 0으로 되는 지점이 분자량 X의 최소값과 최대값 사이에 존재하는 것이다.

Description

【명세서】
【발명의 명칭】
올레핀 블록 공증합체
【기술분야】
본 기재는 올레핀 블록 공중합체에 관한 것이다.
【배경기술】
블특 공중합체는 복수의 반복단위 블록 또는 세그먼트를 갖는 공중합 체를 지칭하는 것으로서, 통상의 랜덤 공중합체나 블렌드에 비해 우수한 특 성을 갖는 경우가 많다. 예를 들어, 블록 공중합체는 소프트세그먼트로 지 칭되는 연질의 탄성 블록과, 하드세그먼트로 지칭되는 경질의 결정성 블록 을 함께 포함할 수 있으며, 이로 인해, 우수한 탄성과 내열성 등의 물성을 함께 나타낼 수 있다. 보다 구체적으로, 이러한 블록 공중합체는 소프트세 그먼트의 유리 전이 온도 이상에서는 상기 블록 공중합체가 탄성을 나타낼 수 있으며, 용융 온도보다 높은 온도에 이르러서 열가소성 거동을 나타내기 때문에 비교적 우수한 내열성을 나타낼 수 있다.
상술한 블록 공중합체의 구체적인 일 예로서, 스티렌과 부타디엔의 삼블록 공중합체 (SBS)나 이의 수소화된 형태 (SEBS) 등은 내열성과 탄성 등 이 뛰어나 다양한 분야에 유용성을 갖는 것으로 알려져 있다.
한편, 최근 들어 에틸렌 또는 프로필렌과 α-올레핀의 공중합체의 일종인 올레핀계 엘라스토머의 사용이 검토되고 있다. 보다 구체적으로, 이 러한 올레핀계 엘라스토머를 다양한 분야, 예를 들어, 고무계 재료를 대체 하기 위한 다양한 용도에 적용하려는 시도가 검토되고 있다. 또한, 올레핀 계 엘라스토머의 내열성 등올 보다 향상시키기 위해, 이전에 사용되던 랜덤 공중합체, 예를 들어, 에틸렌 -α-올레핀 랜덤 공중합체 형태의 올레핀계 엘 라스토머가 아닌 블록 공중합체 형태의 엘라스토머를 적용하려는 시도가 이 루어진 바 있다.
그러나, 이러한 시도에도 불구하고, 내열성이 향상된 올레핀계 엘라 스토머를 상용화하고자 하는 연구는 한계에 부딪히고 있다. 또한, 이전에 알려진 블록 공증합체 형태의 올레핀계 엘라스토머 역시 융융 가공시 가공 성이 떨어지는 등 한계에 부딪히고 있다. 따라서, 보다 향상된 내열성 및 가공성 등을 갖는 올레핀계 엘라스토머가 계속적으로 요구되고 있는 실정이 다.
【발명의 내용】
【해결하려는 과제】
본 기재는 우수한 탄성, 내열성 및 가공성을 나타내는 올레핀 블록 공 중합체를 제공하는 것이다.
【과제의 해결 수단】
본 기재의 일 구현예에 따르면, 에틸렌계 또는 프로필렌계 반복 단위 와, α-올레핀계 반복 단위를 서로 다른 몰 분율로 포함한 복수의 블록 또 는 세그먼트를 포함하는 을레핀 블록 공중합체로서, 탄소수 1000개당 20 내 지 100개의 분지쇄 (short chain branching; SCB)를 포함한 고분자 쇄들을 포함하고, 각 고분자 쇄의 탄소수 1000개당 분지쇄의 개수 Y를 각 고분자 '쇄의 분자량 X에 대해 1차 미분한 값이 0으로 되는 지점이 분자량 X의 최소 값과 최대값 사이, 예를 들어, 상기 분자량 X의 하위 약 10%'이상 90% 이하, 혹은 약 20% 이상 70% 이하, 혹은 약 25% 이상 60% 이하에 존재하는 올레핀 블톡 공중합체가 제공된다. 이때 상기 1차 미분 값이 0으로 되는 지점은 상기 블록 공중합체의 최대 피크 분자량 (Mp) 미만인 영역 내에 존재할 수 있다.
또, 일 구현예의 블록 공중합체는, 상기 1차 미분 값이 0으로 되는 지점보다 분자량 X가 작은 영역에서는 상기 1차 미분 값이 양수로 되는 특 성을 나타낼 수 있고, 상기 1차 미분 값이 0으로 되는 지점보다 분자량 X가 큰 영역에서는 상기 1차 미분 값이 음수로 되는 특성을 나타낼 수 있다.
그리고, 상기 올레핀 블록 공중합체는 약 95 내지 120°C의 결정화 온 도 (Tc)를 가질 수 있고, 110 내지 135°C의 융점 (Tm)을 가질 수 있다.
또한, 이러한 올레핀 블록 공중합체는 복수의 블록 또는 세그먼트로 서, 제 1 몰 분율의 α-올레핀계 반복 단위를 포함하는 하드세그먼트와, 제 1 몰분율 보다 높은 제 2 몰분율의 α-올레핀계 반복 단위를 포함하는 소프 트세그먼트를 포함할 수 있다. 이때, 전체 블록 공중합체에 포함된 α-을레 핀계 반복 단위의 몰 분율은 제 1 몰 분율과, 제 2 몰 분율의 사이 값을 가 질 수 있다. 또, 상기 올레핀 블록 공중합체는 하드세그먼트의 20 내지 95 몰%와, 소프트세그먼트의 5 내지 80 몰¾를 포함할 수 있고, 하드세그먼트는 결정화 도, 밀도 및 융점의 특성 값 중 하나 이상이 소프트세그먼트보다 높게 될 수 있다.
상술한 올레핀 블록 공중합체는 전체적으로, '약 80 내지 98 몰 %의 에 틸렌계 또는 프로필렌계 반복 단위와, 잔량의 α-올레핀계 반복 단위를 포 함할 수 있으며, 밀도가 약 0.85g/cm3 내지 0.92g/cn) 3로 될 수 있다. 또한, 이러한 올레핀 블록 공중합체는 중량 평균 분자량이 약 5,000 내지 3,000,000이고, 분자량 분포가 약 2.5 이상 6 이하로 될 수 있다.
또한, 상기 을레핀 블록 공중합체에서, 상기 α-을레핀계 반복 단위는
1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1- 운데센, 1-도데센, 1-테트라데센, 1-핵사데센, 및 1-아이토센으로 이루어진 군에서 선택된 1종 이상의 α-올레핀에서 유래한 반복 단위로 될 수 있다. 【발명의 효과】
본 기재에 따르면, 우수한 내열성 및 탄성과 함께 보다 향상된 가공성 등을 나타내는 올레핀 블록 공중합체가 제공될 수 있다. 특히, 이러한 올레 핀 블록 공중합체는 단순화된 촉매계를 사용하는 간단한 공정 단계를 통해 제조될 수 있다.
따라서, 이러한 올레핀 블록 공중합체는 내열성 및 제반 물성이 우수 한 올레핀계 엘라스토머의 상용화에 크게 기여할 수 있고, 이러한 올레핀계 엘라스토머를 고무계 재료를 대체하는 다양한 분야에 적절히 사용할 수 있 게 된다.
【도면의 간단한 설명】
도 1 및 2는 실시예 6 및 13의 을레핀 블록 공중합체의 분자량 분포 곡선 및 탄소수 1000개 당 분지쇄 (short chain branching; SCB)의 개수 분 포를 함께 도시한 도면이고,
도 3은 비교예 2의 블록 공중합체의 분자량 분포 곡선 및 탄소수 1000개 당 분지쇄 (short chain branching; SCB)의 개수 분포를 함께 도시한 도면이다.
【발명을 실시하기 위한 구체적인 내용】 이하, 본 기재의 구현예에 따른 올레핀 블록 공중합체 및 이의 제조 방법에 대해 보다 상세히 설명하기로 한다 . 다만, 이는 하나의 예시로서 제 시되는 것으로, 이에 의해 권리범위가 한정되는 것은 아니며, 위 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
본 명세서 전체에서 특별한 언급이 없는 한 몇 가지 용어는 다음과 같 이 정의될 수 있다.
본 명세서 전체에서 "(올레핀) 블특 공중합체" 는 에틸렌 또는 프로 필렌과, α-을레핀이 공중합된 고분자로서, 물리적 또는 화학적 특성, 예를 들어, 에틸렌 또는 프로필렌과, α-올레핀에서 각각 유래한 반복 단위들의 함량 (몰 분율), 결정화도, 밀도, 또는 융점 등의 특성 중 하나 이상의 특 성 값이 서로 상이하여, 고분자 내에서 서로 구분될 수 있는 복수의 반복 단위 블록 또는 세그먼트를 포함하는 공중합체를 지칭할 수 있다.
이러한 복수의 블록 또는 세그먼트는, 예를 들어, 에틸렌계 또는 프 로필렌계 반복 단위와, α-올레핀계 반복 단위를 포함하되, 이들 각 반복 단위를 서로 다른 함량 (몰 분율)으로 포함할 수 있다. 일 예로서, 상기 복 수의 블록 또는 세그먼트는 제 1 몰 분율의 α-올레핀계 반복 단위를 포함 하는 경질 결정성 블록인 하드세그먼트와, 상기 제 1 몰 분율보다 높은 제 2 몰 분율의 α-올레핀계 반복 단위를 포함하는 연질 탄성 블록인 소프트세 그먼트를 포함할 수 있다. 이때, 제 1 몰 분율은 블록 공중합체 전체에 대 해 산출된 α-올레핀계 반복 단위의 몰 분율에 비해 낮은 몰 분율로 될 수 있고, 제 2 몰 분율은 블록 공중합체 전체에 대해 산출된 α-올레핀계 반복 단위의 몰 분율에 비해 높은 몰 분율로 될 수 있다.
또한, 상기 복수의 블록 또는 세그먼트는 결정화도, 밀도 또는 융점 등의 다른 특성들 중 하나 이상에 의해서도 서로 구분될 수 있다. 예를 들 어, 상술한 경질 결정성 블록인 하드세그먼트는 연질 탄성 블록인 소프트세 그먼트와 비교하여, 결정화도, 밀도 및 융점의 특성 중 하나 또는 둘 이상 의 특성 값이 보다 높은 값을 나타낼 수 있다.
또한, 상기 "(올레핀) 블록 공중합체" 에 포함된 "고분자 쇄 (들) " 라 함은, 상기 블록 공중합체를 중합 및 제조하였을 때, 형성되는 다수의 고분자 사슬들을 지칭할 수 있다. 예를 들어, 에틸렌 또는 프로필렌과, α-올레핀을 중합하여 상기 블록 공중합체를 제조하면, 각각이 에틸렌계 또는 프로필렌계 반복 단위와, α-올레핀계 반복 단위를 포함하면서 다양한 분자량을 갖는 고분자 사슬들이 형성되며, 이러한 고분자 사슬들이 블록 공중합체를 이를 수 있다. 이러한 고분자 사슬들의 분자량 등은 겔 투과 크로마토그래피 (GPC)를 이용한 분자량 분포곡선을 통하여 확인될 수 있다. 또한, 상기 고분자 사슬 내의 α-올레핀계 반복 단위 또는 이에서 · 유래한 분지쇄의 분포는 FT-IR로 블록 공중합체를 분석함으로서 확인할 수 있다. 그리고, 상기 고분자 사슬 또는 블록 공중합체 내의 α-을레핀계 반복 단위의 함량은 1H-NMR을 이용한 분석을 통해서 확인할 수 있다. 이러한 고분자 사슬들을 상기 "(올레핀) 블록 공중합체" 에 포함된 "고분자 쇄 (들) " 로 정의할 수 있다.
또한, 상기 "(을레핀) 블록 공중합체" 의 "최대 피크 분자량 (Μρ)" 이라 함은 이러한 블록 공중합체에 포함된 "고분자 쇄 (들) " 올 분자량 크기 순서로 나열하였을 때, 상기 블록 공중합체에 가장 큰 함량으로 포함되는 고분자 쇄들의 분자량을 지칭할 수 있다. 이러한 "최대 피크 분자량 (Μρ)" 은 겔 투과 크로마토그래피 (GPC)를 이용해 블록 공중합체의 분자량 분포 곡선을 도출함으로서 확인될 수 있다. 예를 들어, 이러한 분자량 분포 곡선은 X축을 각 고분자 쇄의 분자량 또는 이의 log값으로 하고, y축을 고분자 쇄의 함량으로 하는 함수로 정의될 수 있는데, 이러한 분포 곡선의 y 값이 최대로 되는 지점에서의 분자량 X 값 (즉, 상기 분포 곡선의 꼭지점에서의 분자량 X 값)을 "최대 피크 분자량 (Mp)" 으로 지칭할 수 있다.
또한, 상기 "고분자 쇄 (들) " 의 분자량이 "하위 A% 이하 (흑은 이상, 미만 또는 초과)" 로 된다고 함은, 상기 블록 공중합체에 포함된 "고분자 쇄 (들) " 을 분자량 크기 순서로 나열하였을 때, 가장 작은 분자량을 갖는 고분자 쇄부터 시작하여 분자량 크기 순서가 M。로 되는 고분자 쇄 (예를 들어, k = 40%라고 가정하면, 고분자 쇄 10개가 있는 경우, 4 번째로 작은 분자량을 갖는 고분자 쇄)의 분자량을 기준으로, 이러한 분자량 이하 (혹은 이상, 미만 또는 초과)로 됨을 지칭할 수 있다. 그리고, 상기 "고분자 쇄 (들) " 의 분자량이 "상위 % 이하 (혹은 이상, 미만 또는 초과)" 로 된다고 함은 , 가장 큰 분자량을 갖는 고분자 쇄부터 시작하여 분자량 크기 순서가 40%로 되는 고분자 쇄의 분자량을 기준으로, 이러한 분자량 이하 (혹은 이상, 미만 또는 초과)로 됨을 지칭할 수 있다.
그리고, 상기 "(올레핀) 블록 공중합체" 에서, "분지쇄 (short chain branching; SCB)" 라고 함은 상술한 각각의 고분자 쇄 (들)에서, 가장 긴 주쇄에 가지와 같은 형태로 분지 결합된 쇄 (chain)를 지칭할 수 있다. 이러한 분지 쇄의 개수는 상기 블록 공중합체를 FT-IR 분석함으로서 산출될 수 있으며, 상기 블록 공중합체나 고분자 쇄 (들)에 포함된 α-올레핀계 반복 단위의 몰 분율에 비례할 수 있다. 한편, 본 기재의 일 구현예에 따르면, 에틸렌계 또는 프로필렌계 반 복 단위와, α-올레핀계 반복 단위를 서로 다른 몰 분율로 포함한 복수의 블록 또는 세그먼트를 포함하는 올레핀 블록 공중합체로서, 탄소수 1000개 당 20 내지 100개의 분지쇄 (short chain branching; SCB)를 포함한 고분자 쇄들을 포함하고, 각 고분자 쇄의 탄소수 1000개당 분지쇄의 개수 Y를 각 고분자 쇄의 분자량 X에 대해 1차 미분한 값이 0으로 되는 지점이 분자량 X 의 최소값과 최대값 사이에 존재하는 을레핀 블록 공중합체가 제공된다. 이 러한 올레핀 블록 공중합체에서, 상기 1차 미분 값이 0으로 되는 지점은, 예를 들어, 상기 분자량 X의 하위 약 10% 이상 90% 이하, 혹은 약 20% 이상 70% 이하, 혹은 약 25% 이상 6OT 이하에 존재할 수 있으며, 일 구체예에서, 상기 블록 공중합체의 최대 피크 분자량 (Mp) 미만인 영역 내에 존재할 수 있다.
이러한 일 구현예의 을레핀 블록 공중합체는 에틸렌 또는 프로필렌과, α-올레핀이 공중합되어 이들로부터 유래한 반복 단위를 포함하는 것으로서, α-올레핀에서 유래한 α-올레핀계 반복 단위로 인해 우수한 탄성을 나타낼 수 있다.
또한, 이러한 올레핀 블록 공중합체는 후술하는 촉매 시스템을 이용하여 제조됨에 따라, 이에 포함된 고분자 쇄들의 분자량에 따라 소정의 분지쇄 분포 특성을 나타냄이 확인되었다. 보다 구체적으로, 상기 블록 공중합체에 포함된 각각의 고분자 쇄는 탄소수 1000개 당 약 20 내지 100개, 혹은 약 25 내지 95개 , 혹은 약 25 내지 90개, 혹은 약 25 내지 85개의 분지쇄를 포함할 수 있다. 또한, 이하에 더욱 상세히 설명하겠지만, 상기 블록 공중합체는 이에 포함된 고분자 쇄들의 분자량이 증가함에 따라 각 고분자 쇄에 포함된 분지쇄의 개수가 증가하였다가, 일정 지점, 예를 들어, 상기 1차 미분 값이 0으로 되는 지점을 지나 이보다 고분자 쇄의 분자량이 커지게 되면, 상기 고분자 쇄들의 분자량 증가에 따라 분지쇄의 개수가 감소하는 분지쇄의 분포 경향을 나타낼 수 있다. 이러한 분지쇄의 분포 특성은 상기 블록 공중합체에 포함된 고분자 쇄들이 α-을레핀계 반복 단위를 보다 높은 함량으로 포함하는 블록 또는 세그먼트를 포함함을 반영할 수 있다.
이러한 블록 공중합체의 특성은 후술하는 특정한 촉매 시스템을 이용해 제조됨에 따라 상기 블록 공중합체가 물리적 또는 화학적 특성이 서로 다른 복수의 블록 또는 세그먼트를 포함하여 블록화된 형태를 갖기 때문으로 보인다. 즉, 후술하는 특정 촉매 시스템을 이용해 제조된 일 구현예의 블록 공중합체는, 보다 높은 함량의 에틸렌 또는 프로필렌을 포함하는 단량체끼리 중합 및 결합되어 하나의 블록 또는 세그먼트를 이를 수 있으며, 반대로 α-을레핀이 보다 높은 함량으로 포함된 단량체끼리 중합 및 결합되어 다른 블록 또는.세그먼트를 이를 수 있다. 이로 인해, 일 구현예의 블록 공중합체는 보다 높은 결정화도를 나타낼 수 있고, 상술한 분지쇄의 분포 특성을 나타낼 수 있다.
보다 구체적으로, 이러한 블록 공중합체는 에틸렌계 또는 프로필렌계 반복 단위와, α-올레핀계 반복 단위의 몰 분율이 서로 상이한 복수의 블록 또는 세그먼트, 예를 들어, 제 1 몰 분율의 α-올레핀계 반복 단위를 포함하는 경질 결정성 블록인 하드세그먼트와, 상기 제 1 몰 분율보다 높은 제 2 몰 분율의 α-올레핀계 반복 단위를 포함하는 연질 탄성 블록인 소프트세그먼트를 포함할 수 있다. 이때, 전체 블록 공중합체에 포함된 α- 올레핀계 반복 단위의 몰 분율이 제 1 몰 분율과, 제 2 몰 분율의 사이 값을 갖게 될 수 있다. 다시 말해서, 제 1 몰 분율은 블록 공중합체 전체에 대해 산출된 αᅳ올레핀계 반복 단위의 몰 분율에 비해 낮은 몰 분율로 될 수 있고, 제 2 몰 분율은 블록 공중합체 전체에 대해 산출된 α-올레핀계 반복 단위의 몰 분율에 비해 높은 몰 분율로 될 수 있다.
이와 같이, 일 구현예의 올레핀 블록 공중합체가 상술한 분지쇄 분포 특성으로부터 확인되는 블록화된 형태를 가지며, 예를 들어, 에틸렌계 또는 프로필렌계 반복 단위의 몰 분율이 보다 높은 경질 결정성 블록인 하드세그 먼트를 포함함에 따라, 이러한 블록 공중합체는 약 110 내지 135°C, 약 115 내지 130°C, 혹은 약 115 내지 125°C에 이르는 높은 융점을 나타낼 수 있다. 이는 이전에 알려진 올레핀계 엘라스토머에 비해, 높은 융점에 해당하는 것 이다. 따라서, 일 구현예의 블록 공중합체는 이전에 알려진 에틸렌 -α-올레 핀 랜덤 공중합체 등의 올레핀계 엘라스토머에 비해 향상된 내열성을 나타 낼 수 있고, 보다 높은 온도에서도 엘라스토머로서의 우수한 탄성 등을 나 타낼 수 있다.
또한, 일 구현예의 블록 공중합체는 이에 포함된 각 고분자 쇄의 탄 소수 1000개당 분지쇄의 개수 Υ를 각 고분자 쇄의 분자량 X에 대해 1차 미 분한 값이 0으로 되는 지점이 분자량 X의 최소값과 최대값 사이에 존재하는 특성을 나타낼 수 있다. 이러한 을레핀 블록 공중합체에서, 상기 1차 미분 값이 0으로 되는 지점은, 예를 들어, 상기 분자량 X의 하위 약 10% 이상 90% 이하, 혹은 약 20% 이상 70% 이하, 흑은 약 25% 이상 60¾> 이하에 존재 할 수 있으며, 일 구체예에서, 상기 블록 공중합체의 최대 피크 분자량 (Μρ) 미만인 영역 내에 존재할 수 있다.
이러한 분포 특성은 블록 공중체를 겔 크로마토그래피 (GPC)로 분석하 여 이에 포함된 고분자 쇄들의 분자량 분포 곡선을 도출하는 한편, FT-IR 분석을 통해 상기 고분자 쇄들의 분자량에 따른 탄소수 1000개 당 분지쇄의 개수를 분석하고, 이들의 관계를 분포 곡선으로 도출함으로서 확인할 수 있 다. 이러한 분포 곡선의 일례는 도 1 및 도 2에 적색 곡선으로 나타나 있다. 이러한 분포 곡선의 일례에서도 확인되는 바와 같이, 일 구현예의 블 록 공중합체는 상기 1차 미분 값이 0으로 되는 지점이 상기 블록 공중합체 에 포함된 고분자 쇄들의 분자량의 최소값과 최대값 사이의 일정 영역 내에 존재하고 있다 (예를 들어, 도 1 및 2의 적색 곡선의 꼭지점의 존재). 또, 상기 1차 미분 값이 0으로 되는 지점보다 고분자 쇄의 분자량이 작은 영역 에서는, 상기 고분자 쇄의 분자량이 증가함에 따라 각 고분자 쇄에 포함된 분지쇄의 개수가 증가하여 상기 1차 미분 값이 양수로 될 수 있다. 반대로, 상기 1차 미분 값이 0으로 되는 지점보다 고분자 쇄의 분자량이 큰 영역에 서는, 상기 고분자 쇄의 분자량이 증가함에 따라 각 고분자 쇄에 포함된 분 지쇄의 개수가 감소하여 상기 1차 미분 값이 음수로 될 수 있다. 다시 말해 서, 일 구현예의 블록 공중합체는 다양한 분자량을 갖는 고분자 쇄들을 포 함하는데, 비교적 작은 분자량을 갖는 고분자 쇄들의 경우 분자량의 증가에 따라 보다 많은 개수의 분지쇄 및 보다 높은 함량의 α-올레핀계 반복 단위 를 포함하는 특성을 나타낼 수 있고, 상대적으로 큰 분자량을 갖는 고분자 쇄들의 경우 분자량의 증가에도 불구하고 보다 감소된 개수의 분지쇄 및 보 다 낮은 함량의 α-올레핀계 반복 단위를 포함할 수 있다. 그리고, 이들 각 특성을 나타내는 영역 사이에, 상기 1차 미분 값이 0으로 되는 지점이 존재 할 수 있다.
이러한 분포 특성은 일 구현예의 블록 공중합체가 갖는 특유의 결정 특성 및 블록화된 특성을 반영할 수 있으며, 이에 따라, 상기 블록 공중합 체는 약 95 내지 120°C, 혹은 약 100 내지 115°C, 혹은 약 102 내지 1KTC 의 높은 결정화 온도 (Tc)를 가질 수 있다. 이러한 특유의 결정 특성 및 비 교적 높은 결정화 온도 등을 가짐에 따라, 상기 블록 공중합체는 용융 가공 시, 용융 후에 보다 빠른 결정화가 이루어져 빠른 속도의 성형이 가능해 진 다. 따라서, 상기 일 구현예의 블록 공중합체는 우수한 가공성 및 제품 성 형성을 나타낼 수 있다. 특히, 상술한 분지쇄의 분포 특성 등은 본 기재에 서 새로이 밝혀진 블록 공중합체의 신규한 특성에 해당한다. 이러한 신규 결정 특성을 나타내는 일 구현예의 블록 공중합체는 용융 후의 결정화 및 가공이 더욱 빨라져 뛰어난 제품 성형성을 나타냄이 후술하는 실시예 등을 통해 확인되었다.
한편, 일 구현예의 블록 공중합체에 포함된 복수의 블록 또는 세그먼 트, 예를 들어 하드세그먼트 및 소프트세그먼트는 결정화도, 밀도 또는 융 점 등의 다른 특성들 중 하나 이상의 특성 값에 의해서도 서로 구분될 수 있다. 예를 들어, 에틸렌계 또는 프로필렌계 반복 단위를 보다 높은 몰 분 율로 포함하는 경질 결정성 블록인 하드세그먼트는 상대적으로 α-올레핀계 반복 단위를 높은 몰 분율로 포함하는 연질 탄성 블록인 소프트세그먼트와 비교하여, 결정화도, 밀도 및 융점의 특성 중 하나 이상의 특성 값이 보다 높은 값을 나타낼 수 있다. 이는 상기 하드세그먼트의 보다 높은 결정성 등 에 기인할 수 있다. 이러한 각 블록 또는 세그먼트의 특성 값은 각각의 블 록 또는 세그먼트에 대웅하는 (공)중합체를 얻고, 이에 대한 특성 값을 측 정하는 등의 방법으로 결정 및 /또는 구분될 수 있다.
이와 같이, 일 구현예의 블록 공중합체가 서로 다른 특성을 갖는 복 수의 블록 또는 세그먼트를 포함함에 따라, 이러한 블록 공중합체는 뛰어난 탄성과 함께 우수한 내열성을 나타낼 수 있게 된다. 예를 들어, 블록 공중 합체는 연질 탄성 블톡인 소프트세그먼트를 포함하여 우수한 탄성을 나타내 는 동시에, 보다 높은 융점 등을 갖는 결정성 블록인 하드세그먼트를 포함 하기 때문에, 이러한 높은 융점에 이르기 까지 우수한 탄성 등의 물성을 유 지할 수 있다. 따라서, 상기 블록 공중합체는 우수한 내열성을 나타낼 수 있다.
또한, 일 구현예의 올레핀 블록 공중합체는 에틸렌계 또는 프로필렌 계 반복 단위를 약 80 내지 98 몰 ¾>, 혹은 약 80 내지 93 몰¾, 혹은 약 85 내지 95 몰%의 함량 (몰 분율)으로 포함할 수 있다. 또, 상기 블록 공중합체 는 이러한 몰 분율의 에틸렌계 또는 프로필렌계 반복 단위와 함께, 나머지 몰 분율, 예를 들어, 2 내지 20 몰%, 혹은 약 7 내지 20 몰%, 혹은 약 5 내 지 15 몰%의 α-을레핀계 반복 단위를 포함할 수 있다. 이때, 블록 공중합 체에 포함된 에틸렌 또는 프로필렌계 반복 단위의 함량은 중합시 사용된 단 량체 중 에틸렌 또는 프로필렌의 함량을 고려하여 결정하거나, 블록 공중합 체를 1H-NMR또는 13C-NMR로 분석함으로서 산출할 수 있다.
일 구현예의 블록 공중합체가 이러한 몰 분율의 α-을레핀계 반복 단 위를 포함함에 따라 엘라스토머로서의 우수한 탄성을 가질 수 있으며 , 에틸 렌계 또는 프로필렌계 반복 단위의 몰 분율 또한 최적화되어 높은 융점 및 뛰어난 내열성을 나타낼 수 있다.
또한, 일 구현예의 블록 공중합체는 약 20 내지 95몰 흑은 약 25 내지 90몰%, 혹은 약 20 내지 85 몰%의 하드세그먼트를 포함할 수 있고, 나머지 몰 분율, 예를 들어, 5 내지 80 몰 ¾>, 혹은 약 10 내지 75 몰 %, 혹은 약 15 내지 80 몰 %의 소프트세그먼트를 포함할 수 있다. 이때, 하드세그먼트의 몰 분율은 상용화된 Time Domain NMR(TD NMR) 장치를 이용하여 산출할 수 있다. 보다 구체적으로, 이러한 TD NMR 장치를 사용하여 블록 공중합체의 시료에 대한 Free Induction Decay(FID)를 측정할 수 있는데, 이러한 FID는 시간과 Intensity의 함수로 나타날 수 있다. 그리고, 하기 식 1에서 A, B, T2iast 및 1 0,의 4개의 상수 값을 변화시켜가며 위 FID 함수의 그래프와 가장 가까운 함수식을 도출할 수 있으며, 이를 통해 상기 시료의 A, B, T2fast 및 T2sIow 값을 결정할 수 있다. 참고로, 하드세그먼트의 경우 이로부터 산출되는 T2(spin-spin relaxation time) relaxation이 빠르게 나타나고, 소프트세그먼트의 경우 이로부터 산출되는 T2(spin-spin relaxation time) relaxation이 느리게 나타난다. 따라서, 위에서 결정된 A, B, T2fast 및 T2slow 값 중에서 작은 T2 값을 하드세그먼트의 T2값, 즉, T2fast 값으로 결정할 수 있고, 보다 큰 T2 값을 소프트세그먼트의 T2값, 즉, T2slow 값으로 결정할 수 있다. 이를 통해, A 및 B의 상수와 함께 하드세그먼트의 함량 (몰 %)을 산출할 수 있다.
[식 1]
Intensity = A x EXP(-Time/ T2fast) + B x EXP(-Time/ T2slow)
Fitting을 통해 A, B, T2fast , T2slow값 결정
Hard segment ( ol%) = A/(A+B) x 100 상기 식 1에서, Intensity와 Time은 FID 분석 결과로부터 산출되는 값이며, T2fast 는 하드세그먼트에 대한 T2(spin-spin relaxation time) relaxation 값이고, T2slow 는 소프트세그먼트에 대한 T2(spin-spin relaxation time) relaxation 값이다. 또, A 및 B는 fitting에 의해 결정되는 상수로서 각각 하드세그먼트 및 소프트세그먼트의 상대적 비을로서 각 세그먼트의 함량에 비례하는 값을 갖는다 .
이미 상술한 바와 같이, 하드세그먼트는 블록 공중합체에 포함된 복수의 블록 또는 세그먼트 중에서, 에틸렌계 또는 프로필렌계 반복 단위를. 보다 높은 몰 분율로 포함하는 경질 결정성 세그먼트를 의미할 수 있고, 소프트세그먼트는 α-올레핀계 반복 단위를 보다 높은 몰 분율로 포함하는 연질 탄성 세그먼트를 의미할 수 있다. 일 구현예의 블록 공중합체가 이러한 하드세그먼트 및 소프트세그먼트를 일정한 몰 분율로 포함함에 따라 소프트세그먼트에 따른 우수한 탄성과 함께, 하드세그먼트에 따른 높은 융점 및 보다 향상된 내열성을 나타낼 수 있다.
그리고, 일 구현예의 블록 공중합체는 밀도가 약 0.85g/cm3 내지
0.92g/cm3, 혹은 약 0.86g/cm3 내지 0.90g/cm3, 혹은 약 0.86g/cm3 내지 0.91g/cm3로 될 수 있고, 중량 평균 분자량이 약 5,000 내지 3,000,000, 혹은 약 10,000 내지 1,000,000, 혹은 약 50,000 내지 200,000으로 될 수 있다. 또한, 상기 블록 공중합체는 분자량 분포 (MWD; Mw/Mn)가 약 2.5 내지 6, 흑은 약 2.6 내지 5 혹은 약 2.5 내지 3.5로 될 수 있다. 일 구현예와 블록 공중합체가 이러한 밀도 및 분자량 등의 특성을 가짐에 따라, 올레핀계 엘라스토머로서의 적절한 특성, 우수한 기계적 물성 및 가공성 등을 나타낼 수 있다. 특히, 일 구현예의 블록 공중합체는 2.5 이상의 비교적 높은 분자량 분포를 가짐에 따라, 우수한 가공성 등을 나타낼 수 있다.
또한, 상기 블록 공중합체는 에틸렌계 또는 프로필렌계 반복 단위와 함께 α-올레핀계 반복 단위를 포함하는데, 이러한 α-올레핀계 반복 단위는 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센 또는 1-아이토센 등의 α- 올레핀에서 유래한 반복 단위로 될 수 있으며, 이들 중에 선택된 2종 이상에서 유래한 반복 단위들로 될 수도 있다.
상술한 일 구현예의 올레핀 블록 공중합체는 α-을레핀계 반복 단위의 포함에 따른 우수한 탄성을 나타내면서, 블록화된 특성 및 높은 결정화도 등에 기인한 우수한 내열성을 나타낼 수 있다. 또한, 일 구현예의 블록 공중합체는 상술한 분지쇄 분포 특성 등으로부터 확인되는 결정 특성 및 보다 높은 결정화 온도를 나타낼 수 있다. 이러한 결정 특성 등에 기인하여, 일 구현예의 블록 공중합체는 용융 가공시 보다 빠른 결정화를 일으킬 수 있으므로, 용융 가공 속도가 보다 빠르고 가공성이나 제품 성형성이 보다 우수하게 될 수 있다. 따라서, 일 구현예의 블록 공중합체는 올레핀계 엘라스토머의 적용 분야에 관한 한계를 극복하고, 내열성이 요구되는 보다 다양한 분야에 적용될 수 있다.
이러한 일 구현예의 블록 공중합체는 이전부터 엘라스토머가 적용되던 실질적으로 모든 용도에 적용될 수 있다. 더 나아가, 일 구현예의 블록 공중합체는 이전의 올레핀계 엘라스토머가 낮은 내열성으로 인해 실질적으로 적용하지 못하고 고무계 재료 등이 적용되었던 보다 넓은 용도에 적용될 수도 있다. 예를 들어, 일 구현예의 블록 공중합체는 범퍼 또는 트림 부품과 같은 자동차용 부품 또는 내장재; 패키징 재료, 각종 전기적 절연재료; 신발 밑창, 칫솔 손잡이, 바닥재 또는 장치 손잡이 등의 각종 생활용품 ; 감압성 접착제 또는 고온 용융 접착제 등의 각종 접착제 ; 호스; 또는 배관 등의 매우 다양한 제품을 형성하기 위한 용도로 사용될 수 있으며 , 기타 여러 가지 분야 및 용도에 적용될 수 있음은 물론이다.
또한, 일 구현예의 블록 중합체는 단독으로 사용될 수도 있지만, 다른 중합체, 수지 또는 각종 첨가제와 블랜딩되어 사용될 수도 있으며, 필름, 성형품 또는 섬유 등 임의의 형태로'사용될 수 있다.
한편, 상술한 올레핀 블록 공중합체는 특정한 촉매 조성물의 존재 하 어 L 에틸렌 또는 프로필렌과, α-올레핀을 공중합함으로서 제조될 수 있다. 이러한 을레핀 블록 공중합체의 제조 방법은 4족 전이금속 및 루이스 염기 성 작용기를 갖는 메탈로센 촉매와, 루이스 산성 원소 및 유기 작용기를 갖 는 조촉매를 포함하는 촉매 조성물의 존재 하에, 에틸렌 또는 프로필렌과, α-올레핀을 약 70 내지 150°C에서 공중합하는 것을 포함할 수 있다. 특히, 이러한 제조 방법에서, 메탈로센 촉매와, 조촉매는 상기 공중합 온도 하에 서, 상기 메탈로센 촉매의 루이스 염기성 작용기 및 상기 조촉매의 루이스 산성 원소가 루이스 산 -염기 결합하고 있는 제 1 상태를 취할 수 있으며, 이러한 제 1 상태에서는 메탈로센 촉매의 중심 금속인 4족 전이금속과, 상 기 루이스 산 -염기 결합하고 있는 조촉매 (예를 들어, 이의 유기 작용기 )가 추가적으로 상호작용할 수 있다. 또한, 상기 메탈로센 촉매와, 조촉매는 상 기 제 1 상태 및 이와 다른 제 2 상태를 교번적으로 취할 수 있는데, 제 2 상태에서는 상기 4족 전이금속과 조촉매가 상호작용올 하지 않을 수 있다. 이러한 특성을 갖는 메탈로센 촉매 및 조촉매를 포함하는 촉매 조성 물의 존재 하에, 에틸렌 또는 프로필렌과, α-올레핀의 단량체를 공중합 하 는 경우, 이하의 기술적 원리로 일 구현예의 블록 공중합체가 제조되는 것 으로 예측될 수 있다.
상기 메탈로센 촉매는 4족 전이금속을 중심 금속 원소로 포함하면서., 비공유 전자쌍을 갖는 루이스 염기성 작용기, 예를 들어, 산소, 질소 또는 황을 포함하는 작용기를 포함하며, 이와 함께 사용되는 조촉매는 비공유 전 자쌍과 결합 가능한 루이스 산성 원소, 예를 들어, 알루미늄 또는 보론 등 의 원소와 함께, 유기 작용기를 포함하는 것이다. 이러한 메탈로센 촉매 및 조촉매를 중합계에서 함께 사용하는 경우, 이들 촉매 및 조촉매는 중합 온 도 하에서 메탈로센 촉매의 루이스 염기성 작용기와 조촉매의 루이스 산성 원소가 루이스 산 -염기 결합하면서, 메탈로센 촉매의 중심금속이 상기 루이 스 산 -염기 결합하고 있는 조촉매와 상호작용하고 있는 제 1 상태를 취할 수 있다. 또한, 이들 촉매 및 조촉매는 선택 가능한 다른 상태로서, 예를. 들어, 메탈로센 촉매의 루이스 염기성 작용기와 조촉매의 루이스 산성 원소 가 루이스 산 -염기 결합하고 있기는 하지만, 메탈로센 촉매의 중심금속과, 상기 루이스 산 -염기 결합하고 있는 조촉매 간의 상호작용이 일어나지 않는 제 2 상태를 취할 수 있다. 특히, 상기 촉매 및 조촉매는 증합 온도 하에서 이들 제 1 및 제 2 상태를 오가면서 교번적으로 취할 수 있다. 이들 촉매 및 조촉매가 상기 제 1 및 제 2 상태를 오가면서 교번적으로 이들 상태를 취할 수 있는 것은, 게 1 및 제 2 상태 간의 에너지 차이가, 예를 들어, 약 lOkcal/mol 이하, 혹은 약 5kcal/mol 이하로 작아서, 중합 온도 하에서 이 러한 에너지 문턱을 쉽게 오갈 수 있기 때문으로 예측된다.
이때의 에너지 차이는 Gaussian program 등을 이용하여 계산 화학적 으로 당업자에게 자명하게 측정될 수 있다. 또, 제 1 상태에서 루이스 산- 염기 결합된 상태라 함은, 상기 루이스 염기성 작용기와, 루이스 산성 원소 가 공유 결합 또는 배위 결합 등으로 연결되어 있는 경우뿐 아니라, 반데르 발스의 힘 또는 이에 준하는 시그마트로픽 결합 등에 의해 상호작용하고 있 는 경우까지 포괄하여 지칭할 수 있다. 또한, 중심금속 (4족 전이금속)과 상 기 루이스 산 -염기 결합하고 있는 조촉매 (예를 들어, 이의 유기 작용기)가 상호작용하고 있다고 함은, 이들이 반데르 발스의 힘 또는 이에 준하는 시 그마트로픽 결합 등에 의해 상호작용하고 있는 경우를 지칭할 수 있다. 그 리고, 제 2 상태에서, 메탈로센 촉매와 조촉매 간에 상호작용이 일어나지 않고 있다고 함은, 상기 중심금속 (4족 전이금속)과, 상기 루이스 산 -염기 결합하고 있는 조촉매 (예를 들어, 이의 유기 작용기)가 상호작용하고 있지 않은 경우를 지칭할 수 있다.
그런데, 상기 메탈로센 촉매 및 조촉매가 제 1 상태를 취하는 경우, 루이스 산-염기 결합과, 메탈로센 촉매의 중심 금속 및 상기 루이스 산-염 기 결합하고 있는 조촉매 간의 상호작용의 영향으로 메탈로센 촉매의 중심 금속 원소 주위의 공간이 좁아질 수 있다. 이 때문에, 제 1 상태에서는 상 대적으로 큰 단량체인 α-을레핀보다는 에틸렌 또는 프로필렌이 촉매에 쉽 게 접근하여 중합될 수 있다. 이에 비해, 메탈로센 촉매 및 조촉매가 제. 2 상태를 취하는 경우/메탈로센 촉매의 중심 금속 원소 주위의 공간이 상대 적으로 넓어지기 때문에, 상대적으로 큰 단량체인 α-을레핀이 보다 용이하 게 접근할 수 있고, 그 결과 높은 함량의 α-올레핀이 중합될 수 있다.
이와 같이 , 상기 특정한 메탈로센 촉매 및 조촉매를 사용하여, 보다 높은 함량의 에틸렌 또는 프로필렌이 중합되는 제 1 상태와, 보다 높은 함 량의 α-올레핀이 중합되는 제 2 상태를 오가면서 교번적으로 취하게 할 수 있다. 그 결과, 상기 제조 방법에 의해 얻어지는 을레핀 블록 공중합체는 에틸렌 또는 프로필렌계 반복 단위를 보다 높은 몰 분율로 포함하는 하드세 그먼트와, α-올레핀계 반복 단위를 보다 높은 몰 분율로 포함하는 소프트 세그먼트를 포함하여 제조될 수 있다. 특히, 이러한 을레핀 블록 공중합체 는 2종의 전이금속 촉매 등을 포함하는 복잡한 촉매계를 적용할 필요 없이, 보다 단순화된 촉매계를 적용해 용이하게 제조될 수 있으며, 이미 상술한 바와 같은 우수한 결정화도 및 신규한 분지쇄 분포 특성 등을 나타낼 수 있 다.
한편, 이러한 올레핀 블록 공중합체의 제조 방법에서, 중합 온도는 약 70 내지 150°C, 혹은 약 80 내지 120°C, 혹은 약 90 내지 110°C, 혹은 약 90 내지 10CTC로 될 수 있다. 이러한 중합 온도 하에서, 상기 제 1 및 제 2 상태 간의 에너지 문턱을 쉽게 넘을 수 있으면서도, 각 단량체의 중합 반웅이 효율적으로 일어날 수 있다. 따라서, 이러한 중합 온도 하에서, 우 수한 결정화도 등을 갖는 올레핀 블록 공중합체가 높은 수율로 보다 용이하 게 얻어질 수 있다.
또, 상술한 제조 방법에서는, 4족 전이금속을 중심 금속 원소로 포함 하면서, 루이스 염기성 작용기, 예를 들어, 비공유 전자쌍을 갖는 산소, 질 소 또는 황을 포함하는 작용기를 갖는 메탈로센 촉매를 사용할 수 있다. 이 러한 메탈로센 촉매의 종류는 특히 한정되지는 않지만, 상술한 제 1 및 제 2 상태를 적절히 교번적으로 취할 수 있는 특성과, 각 상태에 있어서의 에 틸렌 또는 프로필렌과, α-올레핀에 대한 중합 활성 등을 고려하여, 이러한 메탈로센 촉매로는, 하기 화학식 1로 표시되는 메탈로센 화합물을 사용할 수 '있다:
[화학식
Figure imgf000018_0001
상기 화학식 1에서, R1 내지 R17은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, d - C20의 알킬기, C2 ᅳ C20의 알케닐기, C6 - C20 의 아릴기, C7 - C20의 알킬아릴기, 또는 C7 - C20의 아릴알킬기이고, L은 d - C10의 직쇄 또는 분지쇄 알킬렌기이며, D는 -0-, -S-또는 -N(R)-이고, 여 기서 R은 수소, 할로겐, d - C20의 알킬기, C2 - C20의 알케닐기 또는 C6 - C20의 아릴기이며, A는 수소, 할로겐, d - C20의 알킬기, C2 - C20의 알케닐 기, C6 - C20의 아릴기, C7 - C20의 알킬아릴기, C7 - C20의 아릴알킬기 ; C2 - C20의 알콕시알킬기, C2 - C20의 헤테로시클로알킬기, 또는 C5 - C20의 헤테로 아릴기이고, 상기 D가 -N(R)-일 때 R은 A와 결합하여 질소를 포함하는 헤테 로고리, 예를 들어, 피페리디닐 또는 페롤리디닐과 같은 5 내지 8각환의 헤 테로고리를 이를 수 있으며, M은 4족 전이금속이며, XI 및 X2는 서로 동일 하거나 상이하고, 각각 독립적으로 할로겐, Ci - C20의 알킬기, C2 - C20의 알케닐기, C6 - C20의 아릴기, 니트로기, 아미도기; Ci - C20의 알킬실릴기, i - C20의 알콕시기, 또는 Co - C20의 술폰네이트기이다.
이러한 메탈로센 촉매는 비공유 전자쌍을 갖는 산소, 황 또는 질소의 D에, A가 결합된 "A-D- "의 작용기를 포함하면서, 4족 전이금속 M을 중심 금속 원소로 포함하는 것이다. 따라서, 상기 "A-D- "의 작용기에 포함된 비공유 전자쌍이 루이스 염기로 작용하여 조촉매의 루이스 산성 원소와 산- 염기 결합할 수 있고, 4족 전이금속 M이 조촉매와 상호작용 할 수 있다. 그 결과 메탈로센 촉매와 조촉매가 상술한 제 1 및 제 2 상태를 교번적으로 취 하면서 에틸렌 또는 프로필렌과, α-올레핀의 공중합이 진행되게 할 수 있 다.
이러한 화학식 1의 메탈로센 화합물에서 각 치환기들을 보다 구체적 으로 설명하면 하기와 같다.
상기 d - c20의 알킬기로는 직쇄 또는 분지쇄의 알킬기를 포함하고, 구체적으로 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸 기, 펜틸기, 핵실기, 헵틸기, 또는 옥틸기 등을 들 수 있으나, 이에만 한정 되는 것은 아니다.
상기 C2 - C20의 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하 고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 또는 펜테닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C6 -C20의 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 또는 플루오레닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 c5 - c20의 헤테로아릴기로는 단환 또는 축합환의 헤테로아릴기 를 포함하고, 카바졸릴기, 피리딜기, 퀴놀린기, 이소퀴놀린기, 티오페닐기, 퓨라닐기, 이미다졸기, 옥사졸릴기, 티아졸릴기, 트리아진기, 테트라하이드 로피라닐기, 또는 테트라하이드로퓨라닐기 등을 들 수 있으나, 이에만 한정 되는 것은 아니다.
상기 d - C20의 알콕시기로는 메톡시기, 에특시기, 페닐옥시기, 또는 시클로핵실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 4족 전이금속으로는 티타늄, 지르코늄, 또는 하프늄 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
또한, 상기 화학식 1의 메탈로센 화합물의 적절한 활성 및 특성 등의 측면에서, 상기 화학식 1의 R1 내지 R17은 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기, 또는 페닐기로 될 수 있으며, 이외에도 다양한 치환기로 될 수 있다.
그리고, 상기 메탈로센 화합물에 있어서, 상기 화학식 1의 L은 C4 - C8의 직쇄 또는 분지쇄 알킬렌기로 될 수 있다. 또한, 상기 알킬렌기는 d - C20의 알킬기, C2 - C20의 알케닐기, 또는 C6 - C20의 아릴기로 치환 또는 비 치환될 수 있다.
또, 상기 메탈로센 화합물에 있어서, 상기 화학식 1의 A는 수소, 메 틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메특시메 틸기, tert-부특시메틸기, 1-에톡시에틸기, 1-메틸 -1-메특시에틸기, 테트라 하이드로피라닐기, 또는 테트라하이드로퓨라닐기 등으로 될 수 있고, 기타 다양한 치환기로 될 수도 있다.
그리고, 상기 화학식 1로 표시되는 메탈로센 화합물의 구체적인 예로 는 하기 화학식 2로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것 은 아니다.
[화학식 2]
Figure imgf000021_0001
한편, 상술한 제조 방법에서는, 상술한 메탈로센 촉매와 함께, 루이 스 산성 원소, 예를 들어, 알루미늄 또는 보론 등의 원소와, 유기 작용기를 갖는 조촉매를 사용할 수 있다. 이러한 조촉매의 종류는 특히 한정되지는 않지만, 이러한 조촉매의 대표적인 예로는, 하기 화학식 3으로 표시되는 조 촉매 화합물을 들 수 있다:
[화학식 3]
-[Al(R18)-0]n- 상기 화학식 3에서, R18은 서로 동일하거나 다를 수 있으며, 각각 독 립적으로 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고; n은 2 이상의 정수, 예를 들어, 2 내지 6의 정수 이다.
이러한 조촉매는 루이스 산성 원소로서 알루미늄을 포함하고, R18의 유기 작용기를 포함하는 것으로서, 상술한 화학식 1 등의 메탈로센 촉매와 함께 적절히 루이스 산 -염기 결합하는 한편 , 메탈로센 촉매의 4족 전이금속 과 상호작용할 수 있다. 또한, 화학식 1 등의 메탈로센 촉매를 사용하였을 때, 상술한 제 1 상태 및 제 2 상태 간의 에너지 차이가 크지 않아, 상술한 공중합 온도 하에서 메탈로센 촉매와 조촉매가 제 1 및 제 2 상태를 교번적 으로 취하면서 에틸렌 또는 프로필렌과, α-올레핀의 공중합이 진행되게 할 수 있다. 또한, 이러한 조촉매는, 예를 들어, 상술한 화학식 1 등의 메탈로 센 촉매와 함께 사용되어 에틸렌 또는 프로필렌과, α-을레핀에 대해 적절 한 중합 활성을 나타낼 수 있으므로, 이를 적절한 메탈로센 촉매와 함께 사 용하여, 높은 결정화도 등을 나타내는 일 구현예의 올레핀 블록 공중합체가 보다 용이하게 얻어질 수 있다.
이러한 화학식 3의 조촉매 화합물의 예로는, 메틸알루미녹산, 에틸알 루미녹산, 이소부틸알루미녹산, 또는 부틸알루미녹산 등이 있으며, 이 중에 서도 메틸알루미녹산 등을 대표적으로 사용할 수 있다.
상술한 메탈로센 촉매 및 조촉매를 포함하는 촉매 조성물은, 메탈로 센 촉매에 조촉매를 접촉시키는 등의 통상적인 방법으로 얻을 수 있다. 또 한, 추가적인 조촉매를 사용하는 경우, 메탈로센 촉매에 모든 조촉매를 동 시에 접촉시키거나, 순차적으로 접촉시킬 수도 있다. 이때, 루이스 산성 원 소를 갖는 화학식 3 등의 조촉매를 다른 조촉매보다 먼저 메탈로센 촉매와 접촉시키는 편이 메탈로센 촉매와 조촉매의 상호작용 측면에서 보다 유리할 수 있다.
또, 상기 메탈로센 촉매와, 조촉매의 몰 비율은 약 1/5,000 내지 1/2 흑은 약 1/1,000 내지 1/10, 혹은 약 1/500 내지 1/20로 될 수 있다. 이러 한 몰 비율로 사용하여, 메탈로센 촉매와 조촉매의 상호작용을 적절히 일으 킬 수 있으면서도, 과량의 조촉매로 인해 메탈로센 촉매의 활성이 저하되거 나, 공정 단가가상승하는 것을 억제할 수 있다.
상기 촉매 조성물의 제조시에는, 용매로서 펜탄, 핵산, 또는 헵탄 등 과 같은 지방족 탄화수소계 용매, 혹은 벤젠, 또는 를루엔 등과 같은 방향 족 탄화수소계 용매가 사용될 수 있다. 또한, 메탈로센 촉매나 조촉매는 실 리카나 알루미나 등의 담체에 담지된 형태로도 사용될 수 있다.
한편, 상술한 올레핀 블록 공중합체의 제조 방법에서는, 상술한 메탈 로센 촉매 및 조촉매를 포함하는 촉매 조성물의 존재 하에서, 에틸렌 또는 프로필렌과, α-올레핀의 단량체를 공중합시키는 단계를 포함하는 방법으로 올레핀 블록 공중합체를 제조할 수 있다. 이때, α-을레핀으로는 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도 데센, 1-테트라데센, 1-핵사데센 및 1-아이토센으로 이루어진 그룹에서 선 택된 1종 이상을 사용할 수 있다.
또, 상기 올레핀 블록 공중합체의 제조 방법은, 상술한 사항을 제외 하고는 통상적인 올레핀계 공중합체의 제조 조건에 따라 진행될 수 있다. 이러한 공중합 조건의 구체적 예시는 후술하는 실시예에 기재되어 있다. 이하, 이해를 돕기 위하여 몇 가지 실시예를 제시한다. 그러나, 하기 실시예들은 예시를 위해 제시되는 것으로서, 권리범위가 하기 실시예에 한 정되는 것은 아니다.
<제조예 1>
1) 리간드 화합물의 제조
Figure imgf000023_0001
THF 용매하에서 tert-Bu-0-(C¾)6Cl 화합물과 Mg(0) 간의 반응으로부터 그리냐드 (Grignard) 시약인 tert-Bu-0-(C¾)6MgCl 용액 l.Omole을 얻었다. 상기 제조된 그리냐드 화합물을 -30°C의 상태의 MeSiCl3 화합물 (176.1mL, 1.5mol)과 THF(2.0L)가 담겨있는 플라스크에 가하고, 상온에서 8시간 이상 교반시킨 후, 걸러낸 용액을 진공 건조하여 tert-Bu- 0-(CH2)6SiMeCl2의 화합물올 얻었다 (수율 92%).
-20°C에서 반응기에 플루오렌 (3.33g, 20隱 ol)과 핵산 (lOOmL)와 MTBE(methyl tert-butyl ether, 1.2mL, lOmmol)를 넣고, ' 8ml의 n-BuLi(2.5M in Hexane)을 천천히 가하고, 상온에서 6시간 교반시켰다. 교반이 종결된 후, 반웅기 온도를 -30°C로 넁각시키고, -30°C에서 핵산 (100ml)에 녹아있는 tert-Bu-0-(CH2)6SiMeCl2(2.7g, lOmmol) 용액에 상기 제조된 플루오레닐 리튬 용액을 1시간에 걸쳐 천천히 가하였다. 상온에서 8시간 이상 교반한 후, 물을 첨가하여 추출하고, 건조 (evaporation)하여 (tert-Bu-0- (CH2)6)MeSi(9-Ci3H10)2 화합물을 얻었다 (5.3g, 수율 100%) . 리갑드의 구조는 1H-NMR을 통해 확인하였다.
1H 證 (500MHz, CDCls) : -0.35 (MeSiᅳ 3H, s), 0.26 (Si-C¾, 2H, m), 0.58 (CH2, 2H, m), 0.95 (CH2, 4H, m), 1.17(tert-BuO, 9H, s), 1.29(CH2, 2H, m), 3.21(tert-BuO-CH2, 2H, t), 4.10(Flu-9H, 2H, s), 7.25(Flu-H, 4H, m), 7.35(Flu-H, 4H, m) , 7.40(Flu-H, 氣 m), 7.85(Flu-H, 4H, d).
2) 메탈로센 화합물의 제조
Figure imgf000024_0001
-20°C에서 (tert-Bu-0-(CH2)6)MeSi(9-C13H10)2(3.18g, 6mmol)/MTBE(20mL) 용액에 4.8ml의 n-BuLi(2.5M in Hexane)을 천천히 가하고 상온으로 올리면서 8시간 이상 반웅시킨 후, _20°C에서 상기 제조된 디리튬염 (dilithium salts) 슬러리 용액을 ZrCl4(THF)2(2.26g, 6隱 ol)/헥산 (20mL)의 슬러리 용액으로 천천히 가하고 상온에서 8시간 동안 더 반웅시켰다. 침전물을 여과하고 여러 번 핵산으로 씻어내어 붉은색 고체 형태의 (tert-Bu-0-(CH2)6)MeSi(9-C13H9)2ZrCl2 화합물을 얻었다 (4.3g, 수율 94.5%).
1H NMR( 500MHz, C6D6) : 1.15(tert-BuO, 9H, s), 1.26 (MeSi , 3H, s), 1.58 (Si-CH2, 2H, m) , 1.66 (CH2, 4H, m), 1.9KCH2, 4H, m), 3.32(tert- BuO-CH2, 2H, t), 6.86 (Flu-H, 2H, t), 6.90 (Flu-H, 2H, t), 7.15 (Flu-H, 4H, m), 7.60 (Flu-H, 4H, dd), 7.64(Flu-H, 2H, d), 7.77(Flu-H, 2H, d)
<제조예 2〉
1) 리간드 화합물의 제조
리간드 제조시 tert-Bu-0-(CH2)6Cl 화합물 대신 tert-BiH)-(CH2)4Cl 화합물을 이용한 것을 제외하고는 상기 제조예 1과 동일하게 리간드 화합물올 제조하여 (tert-Bu-0-(C¾)4)MeSi(9-C13H10)2 화합물을 상기 제조예 1과 유사한 수율로 획득하였다. 리간드의 구조는 1H-NMR을 통해 확인하였다.
1H 纖 (500MHz, C6D6) : -0.40 (MeSi , 3H, s), 0.30 (CH2, 2H, m), 0.71 (C¾, 2H, m), 1.05 (tert-BuO, 9H, s), 1.20(CH2, 2H, m), 2.94 (tert-BuO-CH2> 2H, t), 4.10(Flu-9H, 2H, s), 7.16(Flu-H, 4H, m), 7.35 (Flu-H, 4H, m), 7.35 (Flu-H, 2H, d), 7.43 (Flu-H, 2H, d), 7.77 (Flu-H, 4H, d).
2) 메탈로센 화합물의 제조
( t er t -Bu-0- ( CH2 ) 6 )MeS i ( 9-C13H10 ) 2 대신 (tert-Bu_()-(CH2)4)MeSK9- Ci3H10)2 화합물을 이용한 것을 제외하고는 상기 제조예 1과 동일하게 제조하여 (tert-Bu-0-(CH2)4)MeSi(9-C13H9)2 ZrCl2 화합물을 유사한 수율로 얻었다.
Figure imgf000025_0001
1H NMR( 500MHz, C6D6) : 1.14 (tert-BuO, 9H, s), 1.26 (MeSi, 3H, s), 1.90 (CH2, 2H, m) , 1.99 (CH2, 2H, m), 2.05 (CH2, 2H, m), 3.39 (tert-BuO-CH2, 2H, t), 6.84 (Flu-H, 2H, m), 6.90 (Flu-H, 2H, m), 7.15 (Flu-H, 4H, m), 7.60 (Flu-H, 6H, d) , 7.80 (Flu-H, 2H, d) <제조예 3>
1) 리간드 화합물의 제조
리간드 제조시 tert-Bu-0-(CH2)6Cl 화합물 대신 tert-BiH)-(CH2)8Cl 화합물을 이용한 것을 제외하고는 상기 제조예 1과 동일하게 리간드 화합물을 제조하여 (tert-Bu— 0-(C¾)8)MeSi(9-C13H10)2 화합물을 상기 제조예 1과 유사한 수율로 획득하였다. 리간드의 구조는 1H-NMR을 통해 확인하였다. 1H 證 (500MHz, C6D6) : -0.40 (MeSi , 3H, s), 0.29 (CH2, 2H, m), 0.58 (CH2, 2H, m), 0.83 (CH2, 2H, m), 0.95 (CH2, 2H, m), 1.05 (CH2) 2H, m), 1.14 (tert-BuO, 9H, s), 1.30 (CH2, 2H, m), 1.64 (CH2, 2H, m), 3.27 (tert-Bu0-CH2, 2H, t), 4.13(Flu-9H, 2H, s), 7.17 (Flu-H, 4H, m), 7.26 (Flu-H, 4H, m), 7.37 (Flu-H, 2H, d), 7.43 (Flu-H, 2H, d), 7.78 (Flu-H, 氣 d).
2) 메탈로센 화합물의 제조
(tert -Bu-0- ( CH2 )6 )MeS i ( 9-C13H10 )2 대신 (tert-Bu-0-(CH2)8)MeSi (9- C13H10)2 화합물을 이용한 것을 제외하고는 상기 제조예 1과 동일하게 제조하여 (tert-Bu-0-(C¾)8)MeSi(9-C13H9)2 ZrCl2 화합물을 유사한 수율로 얻었다.
Figure imgf000026_0001
1H NMR( 500MHz, C6D6) : 1.17 (tert-BuO, 9H, s), 1.29 (MeSi , 3H, s), 1.41 (CH2, 4H, m), 1.49 (CH2, 2H, m), 1.64 (CH2, 2H, m), 1.89 (CH2 氣 m), 1.94 (CH2, 2H, m), 3.30 (tert-BuO_CH2, 2H, t), 6.81 (Flu-H, 2H m), 6.90 (Flu-H, 2H, m) , 7.14 (Flu-H, 4H, m), 7.60 (Flu-H, 4H, d) , 7.65 (Flu-H, 2H, d), 7.78 (Flu-H, 2H, d) <실시예 1 내지 13〉
500ml 유리 반웅기에 틀루엔 (toluene)을 투입하고, 1-핵센 (실시예 2에서는 1-옥텐)을 투입하고, MA0 (메틸알루미녹산)의 10wt% 를루엔 용액을 투입하였다. 이어서, 상기 제조예 1에서 제조한 화합물 ((tert-Bu-0- (CH2)6)MeSi(9-C13¾)2ZrCl2)의 ImM 를루엔 용액을 투입한 후 반응기에 에틸렌을 투입하여 중합을 개시하였다. 일정 시간 동안 교반하고, vent 하고, 반응물을 에탄올 /염산 용액에 부어주었다. 교반하고, 필터한 후, 에탄을로 씻어준 후 용매를 증발시켜서 올레핀 블록 공중합체를 얻었다. 위 실시예에서 1-헥센 (또는 1-옥텐) 및 에틸렌을 포함하는 단량체 전체 함량 중의 1-핵센 (또는 1-옥텐)의 함량을 표 1에 기재된 바와 같이 다양하게 변화시키면서, 올레핀 블록 공중합체를 제조하였다.
<비교예 1>
LG 화학의 을레핀계 엘라스토머 (에틸렌 -1-옥텐 랜덤 공중합체)인 제품명 LUCENE™ LC170을 비교예 1로 하였다.
<비교예 2〉
다우 케미칼의 올레핀계 블록 공중합체 (에틸렌 -1-옥텐 블록 공중합체; Melt Index (1902 C, 2.16 kg): 5 g/10 rain; Density: 0.866 g/cm3)인 제품명 INFUSE™ 9507을 비교예 2로 하였다. 실시예 1 내지 13, 비교예 1 및 2에서 얻어진 올레핀 -1-핵센 공중합체의 몇 가지 물성을 다음 시험예와 같은 방법으로 측정하였다.
<시험예 >
1) 고분자 쇄들의 분자량 분포 및 분지쇄 개수 분석
각 공중합체를 겔 투과 크로마토그래피 (GPC: Gel Permeation Chromatography)로 분석하여 기 공중합체를 이루는 고분자 쇄들의 분자량 분포 곡선을 도출하였다. 또한, 각 공중합체를 FT-IR로 분석하여 상기 고분자 쇄들의 분자량 (X축)에 따른 탄소수 1000 개 당 분지쇄의 개수 값 (오른쪽 Y축)의 분포 곡선을 도출하였다. 실시예 6 및 13과 비교예 2에 대해 도출된 결과는 각각 도 1 내지 3에 도시하였으며, 나머지 공중합체에 대해서도 마찬가지 결과를 도출하였다.
이러한 도출 결과로부터, 각 공중합체에 대해, 1) 고분자 쇄들에 포함된 탄소수 1000 개당 분지쇄 개수 (평균값), 2) 최대 피크 분자량 (Mp), 및 3) 각 고분자 쇄의 탄소수 1000 개당 분지쇄의 개수 Y 를 각 고분자 쇄의 분자량 X 에 대해 1 차 미분한 값이 0 으로 되는 지점의 존재 여부와 그 지점에서의 분자량 값을 각각 산출하여 하기 표 1 에 나타내었다. 이때, 상기 1) 탄소수 1000 개당 분자쇄 개수는 각 실시예의 공중합체에 포함된 고분자 쇄들의 분지쇄 개수를 전체적으로 측정해 이의 평균 값을 산출한 후, 분지쇄 개수 범위와 함께 하기 표 1에 나타내었다.
2) 밀도 (density)
상기 1)의 WAXD 분석을 위해 얻은 rectangular bar(64隱 * 12.7麵 * 3.2醒) 형태의 샘플을 사용하여, 메를러 (Mettler) 저울에서 밀도를 측정하였다. 이렇게 측정된 밀도를 하기 표 2에 정리하였다.
3) 융점 (Tm) 및 결정화 온도 (Tc)
온도를 302 C에서 equilibration을 유지한 상태에서 20QC/min으로 2003 C 까지 승온한 후, 그 온도에서 5 분간 유지시켜 공중합체 샘플의 thermal history 를 제거하였다. 다시 10 Q C 까지 10 eC/min 로 온도를 감소시켜가며 결정화 온도에 대웅하는 발열 피크를 확인하였다. 10 2C 에서 1 분간유지한후, 10eC/min로 온도를 200°C까지 증가시킨 후, 1 분 동안 그 온도에서 유지하고, 다시 30°C까지 내려 실험을 종료하였다.
DSC(Dif ferential Scanning Calorimeter, TA instruments 사 제조, DSC2920 model) 측정 결과에 따라, 온도쎄 따른 heat flow 곡선의 10aC/min 감소 구간의 꼭대기를 결정화 온도 (Tc)으로 하였고, 10QC/min 증가 구간에서의 피크 중 면적이 큰 피크를 제 1 피크, 면적이 작은 피크를 제 2피크로 하였다. 이 때, 온도의 상승과 내림의 속도는 10°C/min 였으며 , 융점 (Tm)은 두 번째 은도가 상승하는 구간에서 측정한 결과를 사용하였다. 이렇게 측정된 융점 및 결정화도를 하기 표 2에 정리하였다.
4) 하드세그먼트의 함량 분석
실시예 및 비교예의 하드세그먼트의 함량 (몰 분율)은 상용화된 Time Domain NMR(TD NMR; Bruker Optics 사제 상품명 Minspec)을 사용하여 산출하였다. 먼저, 이러한 TD NMR 장치를 사용하여 실시예 및 비교예의 시료에 대한 Free Induction Decay (FID)를 측정하였다. 이렇게 측정된 FID는 시간과 Intensity의 함수로 나타난다. 그리고, 하기 식 1에서 A, B, T2fast 및 T2slow 의 4 개의 상수 값을 변화시켜가며 FID 함수의 그래프와 가장 가까운 함수식을 도출하였으며, 이를 통해 각 시료의 A, B, T2fast 및 T2slow 값을 결정하였다.
하드세그먼트의 경우 이로부터 산출되는 T2(spin-spin relaxation time) relaxation이 빠르게 나타나고, 소프트세그먼트의 경우 이로부터 산출되는 T2(spin-spin relaxation time) relaxation0] 느리거 1 나타나는 것으로 알려져 있다. 따라서, 위에서 결정된 A, B, T2fast 및 T2slow 값 중에서 작은 T2 값을 하드세그먼트의 T2값, 즉, T2fast 값으로 결정하였고, 보다 큰 T2 값을 소프트세그먼트의 T2값, 즉, T2slow 값으로 결정하였다. 이를 통해, A 및 B의 상수와 함께 하드세그먼트의 함량 (몰 ¾)을 산출하였다. 실시예 및 비교예에 대하여, 위와 같이 산출된 하드세그먼트의 함량을 표 1에 정리하였다:
.
[식 1]
Intensity = A x EXP(-Time/ T2fast) + B x EXP (-Time/ T2slow)
Fitting을 통해 A, B, T2fast > T2slow값 결정
Hard segment (mol%) = A/(A+B) x 100
- 상기 식 1 에서, Intensity 와 Time 은 FID 분석 결과로부터 산출되는 값이며, T2fast 는 하드세그먼트에 대한 T2(spin-spin relaxation time) relaxation 값이고, T2slow 는 소프트세그먼트에 대한 T2(spin_spin relaxation time) relaxation 값이다. 또, A 및 B 는 fitting 에 의해 결정되는 상수로서 각각 하드세그먼트 및 소프트세그먼트의 상대적 비율로서 각 세그먼트의 함량에 비례하는 값을 갖는다.
5) 분자량 및 분자량 분포 (Polydispersity index: PDI)
겔 투과 크로마토그래피 (GPC: Gel Permeation Chromatography)를 이용하여 수평균분자량 (Mn), 중량평균분자량 (Mw)을 측정한 후, 중량평균분자량을 수평균분자량으로 나누어 분자량 분포를 산출하였다. 이러한 중량평균분자량 및 분자량 분포의 산출값을 하기 표 2 에 정리하였다. 상술한 방법을 산출된 각 물성치를 하기 표 1 및 2 에 정리하여 나타내었다.
[표 1]
시료 1-핵센 탄소수 1차 미분 1차 미분 Mp
(또는 1- 1000개 당 값 = 0의 값 = 0의
옥텐)의 분지쇄 개 존재 여 위치 (분자
함량 수의 평균 丁 량)
(몰 W 값 (개수
범위)
실시예 6.6 30(20-39) 0 25300 85800
1
실시예 9.9(0c) 44(23-55) 0 27200 93800
2
실시예 10.6 46(22-59) 0 24600 87900
3
실시예 11.4 49(25-61) 0 21800 75300
4
실시예 11.8 51(31-62) 0 22600 73100
5
실시예 11.8 51(30-63) 0 19100 65500
6
실시예 12.7 54(35-69) 0 23700 71800
7 실시예 12.5 53(32-70) 0 19500 69800
8
실시예 13.0 54(32-71) 0 23200 72500
9
실시예 12.9 53(31-70) 0 20000 71500
10
실시예 14.1 59(36-74) 0 19700 65700
11
실시예 15.0 62(25-76) 0 22600 68700
12
실시예 17.9 72(20-82) 0 17900 53700
13
비교예 . 16.3(0c) 53(5-59) 0 200000 62700
2
* Oc는 α-올레핀으로서 1-핵센 대신 1—옥텐을 사용하였음을 나타냄;
[표 2]
시료 이 t二 하드세그 Tm(°C) Tc(°C) Mw 분자량
(g/cm3) 먼트 함 분포 량 (몰 %)
실시예 0.898 측정값 121 107.2 119200 2.89
1
실시예 0.886 50.8 118 103.5 138000 3.10
2
실시예 0.885 47.5 120 104.3 129400 2.98 3
실시예 0.883 측정값 122 105.4 107700 2.87 4 oi으
실시예 0.880 측정값 122 105.3 101500 2.73 5 어으
Figure imgf000032_0001
* 실시예 1, 4 내지 6, 8 내지 11에 대해서는, 하드세그먼트의 함량에 대한 측정 결과 없음;
* 비교예 1의 경우, 복수의 블록 또는 세그먼트가 정의될 수 없는 랜덤 공 중합체로서, 하드세그먼트의 함량 측정 결과가 도출될 수 없었음. 상기 표 1, 도 1 및 2를 참조하면, 실시예의 블록 공중합체는 이에 포함된 고분자 쇄들이 전체 분자량 영역에서 탄소수 1000개당 약 20 내지 100개의 분지쇄를 포함함이 확인되었다. 또, 상기 고분자 쇄들의 분자량이 증가함에 따라, 탄소수 1000개당 분지쇄의 개수 값이 증가하였다가 (다시 말해서, 1차 미분 값이 양수로 되었다가), 이러한 1차 미분 값 = 0인 지점을 지나, 탄소수 1000개당 분지쇄의 개수 값이 감소하는 (다시 말해서, 1차 미분 값이 음수로 되는) 분포 경향을 나타냄이 확인되었다. 또, 상기 1차 미분 값 = 0인 지점은 고분자 쇄들의 분자량 중 하위 10% 이상 90% 이하에 해당하는 영역, 더욱 구체적으로는 최대 피크 분자량 (Mp)보다 작은 영역에 존재함이 확인되었다. ᅳ 이에 비해, 표 1, 2 및 도 3을 참조하면, 비교예의 공중합체는 이러 한 실시예의 분포 특성을 충족하지 못하거나, 실시예와는 다른 형태의 공중 합체임이 확인되었다. 보다 구체적으로, 비교예 1은 랜덤 공중합체의 형태 를 갖는 것으로서, 하드세그먼트 및 소프트세그먼트와 같은 복수의 블록 또 는 세그먼트 자체가 정의될 수 없어 실시예의 블록 공중합체와는 전혀 다른 형태를 가짐이 확인되었다. 또, 비교예 2의 올레핀 블록 공중합체는 탄소수 1000 개 당 분지쇄의 개수가 20개 미만인 영역이 존재할 뿐 아니라, 분지쇄 의 개수의 분포 경향도 도 1 및 2와는 상이하여 실시예의 분포 특성을 충족 하지 못함이 확인되었다 (특히, 1차 미분 값 = 0 이 되는 지점이 최대 피크 분자량보다 훨씬 큰 영역에 존재하여 실시예와는 분지쇄 분포 특성이 상이 함이 확인되었다 .).
또한, 상기 표 2를 참고하면, 표 1의 분포 특성을 나타내는 실시예의 블록 공중합체는 비교예 1 보다 훨씬 높고 비교예 2에 상응하는 높은 융점 및 우수한 내열성을 나타냄이 확인되었다. 또한, 실시예의 블록 공중합체는 비교예 1 및 2에 비해 높은 결정화 온도 등을 나타냄이 확인되었다. 이로부 터, 실시예의 블록 공중합체는 용융 가공시 빠른 결정화 속도를 나타내어 비교예 1 및 2에 비해 우수한 가공성 및 제품 성형성을 나타내는 것으로 확 인되었다.
또한, 실시예의 블록 공중합체는 하드세그먼트 및 소프트세그먼트가 정의되어 각 세그먼트를 일정 함량으로 포함하며, 소정 함량의 α-올레핀이 블록 공중합되어 일정 수준의 밀도를 갖는 것으로서, 엘라스토머로서의 우 수한 탄성을 나타낼 것으로 확인되었다.

Claims

【특허청구범위】
【청구항 1]
에틸렌계 또는 프로필렌계 반복 단위와, α-올레핀계 반복 단위를 서 로 다른 몰 분율로 포함한 복수의 블록 또는 세그먼트를 포함하는 올레핀 블록 공중합체로서,
탄소수 1000개당 20 내지 100개의 분지쇄 (short chain branching; SCB)를 포함한 고분자 쇄들을 포함하고, 각 고분자 쇄의 탄소수 1000개당 분지쇄의 개수 γ를 각 고분자 쇄의 분자량 X에 대해 1차 미분한 값이 0으로 되는 지점이 분자량 X의 최소값과 최대값 사이에 존재하는 올레핀 블록 공 중합체 .
【청구항 2】
제 1 항에 있어서, 상기 1차 미분 값이 0으로 되는 지점은 상기 블록 공중합체의 최대 피크 분자량 (Mp) 미만인 영역 내에 존재하는 올레핀 블록 공중합체 .
【청구항 3】
제 1 항에 있어서, 상기 1차 미분 값이 0으로 되는 지점보다 분자량 X가 작은 영역에서는 상기 1차 미분 값이 양수로 되는 올레핀 블록 공중합 체 .
【청구항 4】
제 1 항에 있어서, 상기 1차 미분 값이 0으로 되는 지점보다 분자량 X가 큰 영역에서는 상기 1차 미분 값이 음수로 되는 을레핀 블록 공중합체.
[청구항 5】
제 1 항에 있어서, 95 내지 120°C의 결정화 온도 (Tc)를 갖는 올레핀 블록 공중합체ᅳ
【청구항 6】 제 1 항에 있어서, 110 내지 135°C의 융점 (Tm)을 갖는 올레핀 블록 공중합체 .
【청구항 7】
제 1 항에 있어서, 제 1 몰 분율의 α-올레핀계 반복 단위를 포함하 는 하드세그먼트와, 제 1 몰분율 보다 높은 제 2 몰분율의 α-을레핀계 반 복 단위를 포함하는 소프트세그먼트를 포함하는 올레핀 블록 공중합체.
【청구항 8】
제 7 항에 있어서, 전체 블록 공중합체에 포함된 α-올레핀계 반복 단위의 몰 분율은 제 1 몰 분율과, 제 2 몰 분율의 사이 값을 갖는 올레핀 블록 공중합체 .
【청구항 9】
제 7 항에 있어서, 하드세그먼트의 20 내지 95 몰¾>와, 소프트세그먼 트의 5 내지 80 몰 ¾>를 포함하는 올레핀 블록 공중합체.
【청구항 10】
제 7 항에 있어서, 하드세그먼트는 결정화도, 밀도 및 융점의 특성 값 중 하나 이상이 소프트세그먼트보다 높은 올레핀 블록 공중합체.
【청구항 111
제 1 항에 있어서, 80 내지 98 몰%의 에틸렌계 또는 프로필렌계 반복 단위와, 잔량의 α-올레핀계 반복 단위를 포함하는 을레핀 블록 공중합체.
[청구항 12】
제 1 항에 있어서, 밀도가 0.85g/cm3 내지 0.92g/cm3인 올레핀 블록 공중합체 .
【청구항 13】 제 1 항에 있어서, 중량 평균 분자량이 5,000 내지 3, 000 ,000이고, 분자량 분포가 2.5 이상 6 이하인 을레핀 블록 공중합체.
【청구항 14]
제 1 항에 있어서, α-올레핀계 반복 단위는 1-부텐, 1-펜텐, 4- 메틸 -1—펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1- 테트라데센, 1-핵사데센, 및 1-아이토센으로 이루어진 군에서 선택된 1종 이상의 α-올레핀에서 유래한 반복 단위인 올레핀 블록 공중합체.
PCT/KR2012/000632 2011-01-27 2012-01-27 올레핀 블록 공중합체 WO2012102572A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2012800069186A CN103339162A (zh) 2011-01-27 2012-01-27 烯烃嵌段共聚物
SG2013055983A SG192089A1 (en) 2011-01-27 2012-01-27 Olefin block copolymer
JP2013550416A JP5887361B2 (ja) 2011-01-27 2012-01-27 オレフィンブロック共重合体
EP12739968.1A EP2669304B1 (en) 2011-01-27 2012-01-27 Olefin block copolymer
US13/980,930 US20130296497A1 (en) 2011-01-27 2012-01-27 Olefin block copolymer
US15/177,942 US9644064B2 (en) 2011-01-27 2016-06-09 Olefin block copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0008447 2011-01-27
KR20110008447 2011-01-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/980,930 A-371-Of-International US20130296497A1 (en) 2011-01-27 2012-01-27 Olefin block copolymer
US15/177,942 Division US9644064B2 (en) 2011-01-27 2016-06-09 Olefin block copolymer

Publications (3)

Publication Number Publication Date
WO2012102572A2 true WO2012102572A2 (ko) 2012-08-02
WO2012102572A9 WO2012102572A9 (ko) 2012-09-27
WO2012102572A3 WO2012102572A3 (ko) 2012-11-22

Family

ID=46581303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000632 WO2012102572A2 (ko) 2011-01-27 2012-01-27 올레핀 블록 공중합체

Country Status (7)

Country Link
US (2) US20130296497A1 (ko)
EP (1) EP2669304B1 (ko)
JP (2) JP5887361B2 (ko)
KR (1) KR101175338B1 (ko)
CN (1) CN103339162A (ko)
SG (1) SG192089A1 (ko)
WO (1) WO2012102572A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160237188A1 (en) * 2013-10-18 2016-08-18 Lg Chem, Ltd. Method for preparing hybrid supported metallocene catalyst
US20160237187A1 (en) * 2013-10-18 2016-08-18 Lg Chem, Ltd. Hybrid supported metallocene catalyst

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5887361B2 (ja) * 2011-01-27 2016-03-16 エルジー・ケム・リミテッド オレフィンブロック共重合体
KR101603016B1 (ko) 2013-09-26 2016-03-11 주식회사 엘지화학 촉매 조성물 및 이를 포함하는 중합체의 제조방법
US9376519B2 (en) 2013-09-26 2016-06-28 Lg Chem, Ltd. Transition metal compound, catalytic composition including the same, and method for preparing polymer using the same
JP5972474B2 (ja) 2013-09-26 2016-08-17 エルジー・ケム・リミテッド 遷移金属化合物、これを含む触媒組成物およびこれを用いた重合体の製造方法
KR101657680B1 (ko) * 2013-09-30 2016-09-19 주식회사 엘지화학 폴리올레핀
KR101675509B1 (ko) * 2013-11-19 2016-11-11 주식회사 엘지화학 우수한 물성을 갖는 폴리올레핀
KR101666170B1 (ko) * 2014-06-18 2016-10-13 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 폴리올레핀의 제조방법
US10421258B2 (en) 2014-08-13 2019-09-24 Performance Materials Na, Inc. Multilayer structure comprising polypropylene
KR101784463B1 (ko) 2014-10-06 2017-10-11 주식회사 엘지화학 리간드 화합물, 메탈로센 화합물 및 이를 이용하는 올레핀계 중합체의 제조방법
CN106661072B (zh) * 2015-01-28 2021-03-12 Lg化学株式会社 金属茂化合物、包含其的催化剂组合物以及使用其制备基于烯烃的聚合物的方法
JP6450393B2 (ja) * 2015-01-28 2019-01-09 エルジー・ケム・リミテッド メタロセン化合物、これを含む触媒組成物、およびこれを用いるポリオレフィンの製造方法
US11242684B2 (en) * 2015-02-06 2022-02-08 Firestone Building Products Company, Llc Thermoplastic roofing membranes for fully-adhered roofing systems
CN106589181B (zh) * 2016-11-15 2020-01-14 浙江大学 多嵌段支化聚乙烯及其制备方法
CN111526988B (zh) * 2017-09-05 2022-09-02 陶氏环球技术有限责任公司 雾度可逆的多层膜
FI130603B (en) * 2018-08-03 2023-12-08 Neste Oyj THE METHOD PRODUCES BIORENEWABLE PROPENE FROM OILS AND FATS
KR102434450B1 (ko) * 2019-01-28 2022-08-18 주식회사 엘지화학 폴리올레핀
EP3854823A4 (en) * 2018-12-21 2021-12-15 LG Chem, Ltd. POLYOLEFIN
KR102394383B1 (ko) * 2018-12-21 2022-05-04 주식회사 엘지화학 폴리올레핀
US11987655B2 (en) 2018-12-21 2024-05-21 Lg Chem, Ltd. Polyolefin
KR102434451B1 (ko) * 2019-01-28 2022-08-18 주식회사 엘지화학 폴리올레핀
US11987986B2 (en) 2019-01-14 2024-05-21 Holcim Technology Ltd Multi-layered thermoplastic roofing membranes

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133050B2 (ja) 2004-03-17 2013-01-30 ダウ グローバル テクノロジーズ エルエルシー エチレンマルチブロックコポリマーを形成するためのシャトリング剤を含む触媒組成物
US8273826B2 (en) * 2006-03-15 2012-09-25 Dow Global Technologies Llc Impact modification of thermoplastics with ethylene/α-olefin interpolymers
MX2007011349A (es) * 2005-03-17 2007-10-03 Dow Global Technologies Inc Modificacion del impacto de termoplasticos con interpolimeros de etileno/a-olefina.
KR100886681B1 (ko) * 2006-03-31 2009-03-04 주식회사 엘지화학 선형 저밀도 폴리에틸렌의 제조방법
WO2008136621A1 (en) 2007-05-02 2008-11-13 Lg Chem, Ltd. Polyolefin and preparation method thereof
EP2238186B1 (en) * 2008-01-30 2018-11-28 Dow Global Technologies LLC Ethylene/alpha-olefin block interpolymers
WO2009097560A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. ETHYLENE/α-OLEFIN BLOCK INTERPOLYMERS
JP5227075B2 (ja) * 2008-05-12 2013-07-03 アキレス株式会社 耐熱性及び貼り付け性に優れた粘着フィルム
JP5306064B2 (ja) * 2008-11-28 2013-10-02 リケンテクノス株式会社 パッキン材用熱可塑性エラストマー組成物およびパッキン材
EP2374822B1 (en) * 2008-12-11 2014-10-15 LG Chem, Ltd. Hybrid supported metallocene catalyst, method for preparing the same, and method for preparing polyolefin polymers using same
KR101288500B1 (ko) * 2009-03-12 2013-07-26 주식회사 엘지화학 낙추 충격강도와 투명도가 우수한 필름용 폴리에틸렌 및 이의 제조방법
KR20110008447A (ko) 2009-07-20 2011-01-27 현대아이티주식회사 클립 고정식 보조안경
KR101154507B1 (ko) * 2009-07-31 2012-06-13 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하여 제조된 올레핀계 중합체
JP5887361B2 (ja) * 2011-01-27 2016-03-16 エルジー・ケム・リミテッド オレフィンブロック共重合体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2669304A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160237188A1 (en) * 2013-10-18 2016-08-18 Lg Chem, Ltd. Method for preparing hybrid supported metallocene catalyst
US20160237187A1 (en) * 2013-10-18 2016-08-18 Lg Chem, Ltd. Hybrid supported metallocene catalyst
US9902789B2 (en) * 2013-10-18 2018-02-27 Lg Chem, Ltd. Method for preparing hybrid supported metallocene catalyst
US9926395B2 (en) * 2013-10-18 2018-03-27 Lg Chem, Ltd. Hybrid supported metallocene catalyst

Also Published As

Publication number Publication date
KR101175338B1 (ko) 2012-08-20
EP2669304B1 (en) 2018-03-07
EP2669304A2 (en) 2013-12-04
JP2014503026A (ja) 2014-02-06
KR20120087101A (ko) 2012-08-06
WO2012102572A9 (ko) 2012-09-27
US9644064B2 (en) 2017-05-09
US20160289365A1 (en) 2016-10-06
EP2669304A4 (en) 2016-01-06
US20130296497A1 (en) 2013-11-07
WO2012102572A3 (ko) 2012-11-22
JP2015214701A (ja) 2015-12-03
SG192089A1 (en) 2013-08-30
CN103339162A (zh) 2013-10-02
JP5887361B2 (ja) 2016-03-16

Similar Documents

Publication Publication Date Title
KR101175338B1 (ko) 올레핀 블록 공중합체
KR101210978B1 (ko) 올레핀 블록 공중합체 및 이의 제조 방법
KR101262308B1 (ko) 올레핀 블록 공중합체 및 이의 제조 방법
JP6328239B2 (ja) 加工性に優れたオレフィン系重合体
KR101170492B1 (ko) 올레핀 블록 공중합체
WO2018056655A2 (ko) 올레핀계 공중합체 및 이의 제조 방법
KR101213734B1 (ko) 올레핀 블록 공중합체
EP3398976A1 (en) Hybrid supported metallocene catalyst, method for preparing olefin polymer by using same, and olefin polymer having improved melt strength
KR101170491B1 (ko) 올레핀 블록 공중합체 및 시트상 성형체
KR20140012488A (ko) 가교 구조를 갖는 올레핀 블록 공중합체 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739968

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012739968

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013550416

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13980930

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1301004042

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE