WO2012102345A1 - 防音材及びその製造方法、並びに防音成形体及び防音方法 - Google Patents

防音材及びその製造方法、並びに防音成形体及び防音方法 Download PDF

Info

Publication number
WO2012102345A1
WO2012102345A1 PCT/JP2012/051691 JP2012051691W WO2012102345A1 WO 2012102345 A1 WO2012102345 A1 WO 2012102345A1 JP 2012051691 W JP2012051691 W JP 2012051691W WO 2012102345 A1 WO2012102345 A1 WO 2012102345A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
absorbing material
soft
soundproofing
jis
Prior art date
Application number
PCT/JP2012/051691
Other languages
English (en)
French (fr)
Inventor
森 正
隆弘 丹羽
正貴 吉原
源典 近藤
要 有水
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Priority to US13/982,110 priority Critical patent/US9093060B2/en
Priority to CN201280006688.3A priority patent/CN103339669B/zh
Priority to JP2012554840A priority patent/JP5715163B2/ja
Priority to KR1020137019855A priority patent/KR101898747B1/ko
Priority to EP12739765.1A priority patent/EP2669888B1/en
Publication of WO2012102345A1 publication Critical patent/WO2012102345A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina

Definitions

  • the present invention relates to a soundproofing material to be mounted on an automobile engine, a wall surface of a building, a manufacturing method thereof, a soundproofing molded body, and a soundproofing method.
  • noise reduction measures for the engine body as a main noise generation source in the engine room and the inherent sound source such as the transmission are indispensable.
  • various soundproof parts such as an engine top cover on the upper surface side of the engine have been used, but further improvement in performance has been sought.
  • weight reduction has been demanded from the viewpoint of reducing fuel consumption.
  • Conventional soundproof covers are designed with the main aim of insulating direct noise radiated from a specific sound source, and the specific sound source side or a part of a rigid cover molded from a resin such as metal, polyamide, or polypropylene. It has a structure in which a sound-absorbing material is post-applied to (see Patent Document 1).
  • the sound insulation performance of such a soundproof cover follows the law of mass, depends on the weight of the rigid cover, and cannot meet the needs for weight reduction.
  • the rigid body cover is not easily deformed by vibration and the effect of attenuating it as kinetic energy cannot be obtained.
  • secondary radiation occurs from the rigid sound-insulating layer, which worsens the noise level.
  • the noise inside and outside the car is evaluated by the logarithm compression of the observed sound pressure, using the loudness as a criterion that is close to the amount of sound that humans feel because the noise itself is the amount of human perception.
  • a sound pressure level (dB) is used.
  • dB sound pressure level
  • a soundproof cover (see Patent Document 2) is proposed in which a soft sound insulation layer made of a nonwoven fabric coated with a resin is provided on the surface of the sound absorbing material opposite to the inherent sound source.
  • an object of the present invention is to produce a light-weight soundproofing material that is superior in soundproofing performance and has a high productivity.
  • the present invention provides the following. (1) a first sound absorbing material disposed to face the sound source; A first soft sound insulation layer that is laminated on the surface opposite to the sound source of the first sound absorbing material and has an air permeability measured by JIS L1018 of 10 cc / cm 2 ⁇ sec or less; A second sound absorbing material laminated on the first soft sound insulation layer; A second layer laminated on the second sound-absorbing material, the air permeability measured by JIS L1018 is 10 cc / cm 2 ⁇ sec or less, and the Young's modulus measured by JIS K7127 is 5 times or more larger than that of the first soft sound insulation layer.
  • the total weight per unit area of the first sound absorbing material, the first soft sound insulating layer, the second sound absorbing material, and the second soft sound insulating layer is 2000 g / m 2. Soundproofing material that is the following.
  • a soundproof molded article obtained by molding the soundproofing material according to any one of (1) to (4) above into a three-dimensional shape.
  • (6) A first soft sound-insulating film made of a thermoplastic resin and having an air permeability measured by JIS L1018 of 10 cc / cm 2 ⁇ sec or less on the first sound-absorbing material, and a second sound-absorbing material And a second resin having an air permeability measured by JIS L1018 of 10 cc / cm 2 ⁇ sec or less and a Young's modulus measured by JIS K7127 of 5 or more times that of the first soft sound insulation film.
  • a lamination process of laminating a soft sound insulation film to obtain a laminate A method for producing a soundproofing material, comprising: heat-treating the obtained laminate, and adhering at least the second soft sound insulating layer and the second sound absorbing material partially or entirely.
  • a first soft sound-insulating film made of a thermoplastic resin and having an air permeability measured by JIS L1018 of 10 cc / cm 2 ⁇ sec or less on the first sound-absorbing material, and a second sound-absorbing material
  • a second resin having an air permeability measured by JIS L1018 of 10 cc / cm 2 ⁇ sec or less and a Young's modulus measured by JIS K7127 of 5 or more times that of the first soft sound insulation film.
  • a lamination process of laminating a soft sound insulation film to obtain a laminate A soundproofing material, comprising: heat-compressing the obtained laminate to form a three-dimensional shape, and an adhesion step of bonding at least the second soft sound insulation layer and the second sound absorbing material partially or entirely. Manufacturing method. (9) A soundproofing method in which the soundproofing material according to any one of the above (1) to (5) is disposed by bringing the first sound absorbing material into contact with a sound source.
  • the soundproofing material of the present invention attenuates the vibration of the sound incident on the first sound absorbing material disposed opposite to the sound source by the first soft sound insulating layer having a low Young's modulus and being susceptible to vibration deformation. Further, the vibration of the sound that could not be attenuated by the first soft sound insulation layer is attenuated when passing through the second sound absorbing material, and then the vibration of the sound that has not been attenuated more than the first soft sound insulation layer. Sound insulation is provided by the second soft sound insulation layer having high rigidity. Accordingly, the soundproofing performance is improved. Moreover, it is also lighter than a soundproof material provided with a metal or resin soundproof cover.
  • the manufacturing method is simple as long as the first sound absorbing material, the first soft sound insulating film, the second sound absorbing material, and the second soft sound insulating film are laminated, heat-treated and bonded.
  • the first sound-absorbing material, the first soft sound-insulating film, the second sound-absorbing material, and the second soft sound-insulating film can be made long, and can be laminated while being sent out continuously, thereby increasing productivity.
  • FIG. 1 is a cross-sectional view showing an example of a soundproofing material of the present invention.
  • FIG. 2 is a cross-sectional view showing another example of the soundproofing material of the present invention.
  • FIG. 3 is a cross-sectional view showing still another example of the soundproofing material of the present invention.
  • FIG. 4 is a schematic diagram for explaining an example of the production process of the soundproofing material of the present invention.
  • FIG. 5 is a graph showing the results of Test 1.
  • FIG. 6 is a graph showing the results of Example 3, Example 8, and Comparative Example 2 in Test 2.
  • FIG. 7 is a graph showing the results of Example 4, Example 9, and Comparative Example 3 in Test 2.
  • FIG. 8 is a graph showing the results of Example 5, Example 10, and Comparative Example 4 in Test 2.
  • FIG. 9 is a graph showing the results of Example 5, Example 6, and Example 7 in Test 2.
  • FIG. 10 is a graph showing the results of Comparative Example 5, Comparative Example 6 and Comparative Example 7 in Test 2.
  • FIG. 1 is a cross-sectional view showing an example of the soundproofing material of the present invention.
  • a first sound absorbing material 1 is arranged facing a sound source (lower side in the figure), and a first soft sound insulating material is sequentially disposed on a surface of the first sound absorbing material 1 opposite to the sound source.
  • the layer 10, the second sound absorbing material 20, and the second soft sound insulation layer 30 are laminated.
  • a porous material is used for the first sound absorbing material 1.
  • the porous material include glass wool, rock wool, rock wool long fiber (“Cassault Fiber” manufactured by Chubu Kogyo Co., Ltd.), polyurethane foam, polyethylene foam, polypropylene foam, phenol foam, melamine foam; nitrile butadiene rubber, chloro Gren rubber, styrene rubber, silicone rubber, urethane rubber, EPDM, etc., foamed in open cell form, or foamed with crushing after foaming to form cells to form open cells Polyester fiber felt such as polyethylene terephthalate, nylon fiber felt, polyethylene fiber felt, polypropylene fiber felt, acrylic fiber felt, silica-alumina ceramic fiber felt, silica fiber felt General porous materials such as felt (such as “Siltex” manufactured by NICHIAS Corporation), cotton, wool, wood wool, scrap fibers, etc. added in a felt shape with thermosetting resin (generic name: resin felt) Examples include sound absorbing
  • polyethylene long fibers polypropylene long fibers, nylon long fibers, tetron long fibers, acrylic long fibers, rayon long fibers, vinylon long fibers, polyvinylidene fluoride long fibers, poly Fluorine resin long fibers such as tetrafluoroethylene long fibers, polyester long fibers such as polyethylene terephthalate, mature plastic resin long fibers such as two-layered long fibers coated with polyethylene resin on polyester long fibers, and their blends
  • a flexible non-woven fabric molded into a thin sheet by the method can be attached to the surface on the sound source side (the lower surface in the figure).
  • the first soft sound insulation layer is preferably composed of a soft and air-impermeable film.
  • Non-breathability can be defined by air permeability and is 10 cc / cm 2 ⁇ sec or less, preferably 0.001 to 10 cc / cm 2 ⁇ sec, more preferably 0.01 to 1 cc / cm 2 ⁇ sec.
  • the air permeability is a value measured according to JIS L1018-1999.
  • Flexibility can be defined by Young's modulus, preferably 0.01 to 0.5 GPa, more preferably 0.02 to 0.12 GPa.
  • the Young's modulus is a value measured according to JIS K7127-1999.
  • the first soft sound insulation layer is required to be more flexible because the first soft sound insulation layer is deformed and attenuates the vibration of the sound transmitted through the first sound absorbing material 1, and preferably has the above Young's modulus.
  • the material is not limited, and the nonwoven fabric, cloth, laminate film, rubber sheet, resin film, vibration damping resin, vibration damping rubber, or A laminate in which these are appropriately combined, or a nonwoven fabric or cloth coated with a damping resin can be used.
  • a material that can be fused by heat is preferable, and a thermoplastic resin film that is used as a hot-melt material is preferable.
  • ethylene-vinyl acetate-based, urethane-based, polyester-based, polyamide-based, and polyolefin-based hot melt resin films are suitable. More specifically, a polyolefin hot melt film obtained by stretching low molecular weight polypropylene or the like is particularly suitable.
  • the second sound absorbing material 20 is preferably selected from the same porous material as the first sound absorbing material 1, and may be the same as or different from the first sound absorbing material 1.
  • the second soft sound insulation layer 30 is made of a soft and non-breathable film.
  • the non-air permeability is 10 cc / cm 2 ⁇ sec or less, preferably 0.001 to 10 cc / cm 2 ⁇ sec, more preferably 0.01 to 1 cc / cm 2 ⁇ sec as measured by JIS L1018-1999. is there.
  • the second soft sound insulation layer 30 needs to have a Young's modulus measured by JIS K7127-1999 that is 5 times or more, preferably 10 times or more larger than that of the first soft sound insulation layer. Since the second soft sound insulation layer 30 is soft, it has an action of attenuating the vibration of the sound transmitted through the second sound absorbing material 20. Further, within the range that can be vibrated and deformed integrally with the sound-absorbing material 20, the Young's modulus is increased to combine rigidity, and the ratio of the Young's modulus to the first sound-insulating layer is increased to provide sound insulation performance. Is done.
  • the second soft sound insulation layer 30 is bonded to the second sound absorbing material partially or entirely. Although both may be adhered using an appropriate adhesive, it is preferable that the second soft sound insulation layer 30 has adhesiveness. In addition, when adhesion
  • the second soft sound insulation layer 30 is preferably a thermoplastic elastomer film, and particularly preferably a thermoplastic urethane elastomer film.
  • the thermoplastic urethane elastomer mention may be made with mixed soft segments consisting of a hard segment and R 1 composed of an aromatic ring (ester group-containing aliphatic hydrocarbon), those represented by the following structural formula (1) .
  • R 1 represents an ester group-containing aliphatic hydrocarbon
  • R 2 represents a short-chain hydrocarbon (having 1 to 4 carbon atoms).
  • M and n are integers of 1 or more.
  • the second soft sound insulation layer 30 may be replaced with a material having the above air permeability and Young's modulus by coating a sheet material such as a non-woven fabric and sealing.
  • a sheet material such as a non-woven fabric and sealing.
  • a non-woven fabric made of organic fibers such as polyester, polyamide, or polypropylene and coated with a resin such as urethane, acrylic, or silicone can be used.
  • the soundproofing material of the present invention is formed by laminating the first sound absorbing material 1, the first soft sound insulating layer 10, the second sound absorbing material 20, and the second soft sound insulating layer 30, but ensures good soundproofing performance.
  • the total weight per unit area is 2000 g / m 2 or less. If the total basis weight is 2000 g / m 2 or less, the individual basis weight is not limited, but the first acoustical material 1 has a basis weight of 250 to 1,000 g / m 2 , and the first soft sound insulation layer.
  • the basis weight of 10 is 30 to 100 g / m 2
  • the basis weight of the second sound absorbing material 30 is 150 to 500 g / m 2
  • the basis weight of the second soft sound insulation layer 30 is 30 to 1,000 g / m 2
  • the total is preferably 2000 g / m 2 or less.
  • a skin material 40 may be adhered on the second soft soundproofing layer 30 as shown in FIG.
  • the skin material 40 preferably has an action of enhancing the shape retention of the soundproofing material and imparts sound insulation properties, and preferably has a non-woven fabric adhered thereto.
  • stacked the base fabric produced by chemically bonding the polyethylene terephthalate short fiber with vinyl acetate resin, and the cloth which welded the polyester fiber by the spunbond method is mentioned.
  • the air permeability, Young's modulus, and basis weight of the composite material are within the range of the second soft sound insulation layer 30 described above.
  • the soundproofing material of the present invention has its peripheral edge sealed.
  • the peripheral ends 50, 50 of the laminate can be bonded by hot pressing.
  • Such a peripheral edge may be compressed with a width of 3 to 20 mm and a thickness of 0.5 to 2.5 mm, for example.
  • a polyamide hot melt film may be thermally welded at 170 ° C. to seal the end face of the laminate.
  • the soundproofing material of the present invention may be laminated as shown in the figure, but it can also be a soundproofing molded body having a three-dimensional shape (see FIG. 4).
  • the laminated body may be heated while being held in a desired shape. Thereafter, the laminated body deformed by heating hardens at room temperature, and its shape is fixed.
  • a film 1a that forms the long first sound absorbing material 1 a film 10a that forms the first soft sound insulating layer 10
  • a film 20a that forms the second sound absorbing material 20 a first film
  • the film 30a for forming the second soft sound insulation layer 30 and, if necessary, the sheet 40a for forming the skin material 40 are supplied from each roll and put into the oven 100 in a laminated state. While passing through the oven 100, at least the film 20a forming the second sound absorbing material 20 and the film 30a forming the second soft sound insulation layer are heat-sealed.
  • the elongate laminated body 200 used as a soundproof material is manufactured. And the laminated body 200 is cut
  • a pair of upper and lower conveyors 110a and 110b are disposed in the oven 100.
  • the film 1a forms the first sound absorbing material 1
  • the film 10a forms the first soft sound insulating layer 10, and the second sound absorbing material 20.
  • the film 20a that forms the film, the film 30a that forms the second soft sound insulation layer 30, and the sheet 40a that forms the skin material 40 are drawn into the oven from the respective rolls.
  • the conveyor speed, oven temperature, length, etc. are not particularly limited, but may be, for example, a conveyor speed of 1 to 3 m / min, a temperature of 190 to 220 ° C., and an oven length of 5 to 20 m.
  • the heat-compressed portion 210 can be a flat portion, the other portions are not heat-compressed, and the portion 220 that is still stacked can have a three-dimensional shape such as an arc shape. Then, by cutting the heat-compressed portion 210, a soundproof molded body having a circular cross section and a peripheral end sealed by heat compression is obtained. Depending on the desired shape and the thickness of the laminate, such thermal compression can be performed, for example, at a temperature of 180 to 200 ° C. for 10 to 30 seconds.
  • the molds 300a and 300b can be formed into a three-dimensional shape at the same time as the bonding by using the molding dies 300a and 300b without using the oven 100.
  • the soundproofing material of the present invention When used in a state where it is not molded into a three-dimensional shape as shown in FIGS. 1 to 3, it is suitable for use in a building, for example, interposed between an inner wall material and an outer wall material. Let it be used. It can also be attached to sound sources such as engines, transmissions, motors, etc. of automobiles, motorcycles, ships and the like. At that time, for example, a sound-insulating material thicker than the gap between the engine and the engine cover is used, the first sound-absorbing material is placed on the engine, and when the engine cover is mounted, the gap between the engine and the engine cover is reduced. Can be filled.
  • the soundproof molded body molded into a three-dimensional shape can be molded, for example, in conformity with the outer shape of the engine, and can be mounted in contact with the first sound absorbing material. With such a configuration, airtight sound insulation from the engine surface and insulation of solid propagation sound (vibration) are realized, and further improvement of the soundproofing effect is expected.
  • the air permeability was measured according to JIS L1018, and the Young's modulus was measured according to JIS K7127-1999.
  • the basis weight is a mass per 1 m ⁇ 1 m.
  • Example 1 A polyethylene terephthalate felt having a thickness of 10 mm (weight per unit area: 500 g / m 2 ) as a first sound absorbing material and a second sound absorbing material, and a hot melt film having a thickness of 30 ⁇ m (air permeability: 0.01 cc / cm) as a first soft sound insulating layer 2 ⁇ sec, Young's modulus 80 MPa, basis weight 80 g / m 2 : polyolefin hot melt film obtained by stretching low molecular weight polypropylene or the like, and a thermoplastic urethane elastomer film having a thickness of 30 ⁇ m as the second soft sound insulation layer (air permeability 0) 0.001 cc / cm 2 ⁇ sec, Young's modulus 1,000 MPa, weight per unit area 36 g / m 2 : hard segment composed of aromatic ring and R 1 (ester group-containing aliphatic carbonization) whose structural formula is shown in the above
  • the first soft sound insulating layer, the second sound absorbing material, the second soft sound insulating layer, and the skin material are laminated in this order on one surface of the first sound absorbing material, and the whole is heated in an oven. All the interfaces were bonded to produce a soundproof material.
  • the adhesion state of the interface is whole surface adhesion (adhesion area 100%).
  • Example 2 A soundproof material was produced in the same manner as in Example 1 except that a polyester nonwoven fabric coated with urethane was used as the second soft sound insulation layer.
  • Example 1 The same material as in Example 1 was used, and the soundproofing material was produced by laminating each interface without bonding.
  • the sound transmission loss of the soundproofing materials of Examples 1 and 2 and Comparative Example 1 was measured by a small reverberation box (diffuse sound field), anechoic room (free sound field), and sound intensity method.
  • the measurement system consists of (1) sound source side (small reverberation box: diffuse sound field), (2) test body, (3) sound receiving side (anechoic chamber: free sound field), ( From the incident sound energy (A) from 1) to (2), (2) the intensity of transmitted sound radiated from the surface to (3) is the intensity microphone (directional microphone) composed of a pair of microphones.
  • the sound transmission loss was determined by subtracting the value (B) measured by (1). The results are shown in FIG. 5, and it can be seen that the soundproofing performance is enhanced by bonding to each interface.
  • Example 2 (Examples 3 to 10, Comparative Examples 2 to 7)
  • the first sound-absorbing material, the first soft sound-insulating layer, the second sound-absorbing material, the second soft sound-insulating layer and the skin material shown in Tables 1 to 3 were laminated and heated in an oven to produce a sound-insulating material.
  • the second sound absorbing material and the second soft sound insulation layer are not bonded.
  • the peripheral edge of the soundproofing material was hot-pressed and sealed. Then, sound transmission loss was measured in the same manner as in Test 1.
  • the materials of each sound absorbing material, soft sound insulation layer, and skin material in Tables 1 to 3 are the same as those used in Example 1 unless otherwise specified.
  • “Yes” regarding the adhesion between the members means the entire surface adhesion state.
  • the adhesion of (2) the first soft sound insulation layer / (3) the second sound absorbing material is the entire surface adhesion.
  • the results are shown in FIGS. 6 to 10.
  • the first sound absorbing material, the first soft sound insulating layer, the second sound absorbing material, and the second soft sound insulating layer are laminated, and at least the second sound absorbing material. It can be seen that the soundproof material obtained by bonding the second soft sound insulation layer and the second soft soundproof layer has excellent soundproofing performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Laminated Bodies (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)

Abstract

 本発明は、音源に対向して配置される第1の吸音材と、第1の吸音材の音源とは反対側の面に積層され、JIS L1018で測定した通気率が10cc/cm・sec以下である第1の軟質遮音層と、第1の軟質遮音層に積層される第2の吸音材と、第2の吸音材に積層され、JIS L1018で測定した通気率が10cc/cm・sec以下で、かつJIS K7127で測定したヤング率が前記第1の軟質遮音層よりも5倍以上大きい第2の軟質遮音層とを備え、少なくとも第2の軟質遮音層と第2の吸音材とが、部分的に、もしくは全面で接着されている、防音材に関する。

Description

防音材及びその製造方法、並びに防音成形体及び防音方法
 本発明は、自動車のエンジンや、建築物の壁面等に装着される防音材及びその製造方法、並びに防音成形体及び防音方法に関する。
 自動車内には多くの音源があり、車内及び車外における騒音からの静粛性が要求される観点から様々な防音対策が取られている。特にエンジン、トランスミッション、駆動系のような大きな音を発生する部分(固有音源)については、発生源に近い位置で防音対策が必要なため、吸遮音性能に優れる専用の防音カバーが使用されている。自動車における低騒音化部品の要求は、相次ぐ法改正での車外騒音レベル規制の強化及び、車内騒音の静粛化が車の価値(高級感)に直結する点も相まって非常に高い。特に2013年度に欧州連合で導入される予定の車外騒音規制は、最終的に従来規制値に対し-3dB(音圧エネルギーとして1/2に低減が必要)と厳しいものとなっている。これにはエンジンルーム内の主騒音発生源としてのエンジン本体及びトランスミッション等固有音源への騒音低減対策が不可欠である。従来からエンジン上面側のエンジントップカバー等の様々な防音部品が使用されているが、更なる性能の向上がもとめられておいる。また低燃費化の観点からの軽量化が求められてきている。
 従来の防音カバーは、固有音源から放射される直接騒音を遮音することに主眼をおいて設計されており、金属又はポリアミド、ポリプロピレン等の樹脂を成形した剛体カバーの固有音源側、またはその一部に吸音材を後貼り施工した構造となっている(特許文献1参照)。しかし、このような防音カバーの遮音性能は質量則に従っており、剛体カバーの重量に依存しており、軽量化のニーズに対応できるものではない。また、固有音源が振動を伴う場合には、防音カバーをエンジン等に取り付けるための固定点等から振動が伝達しても、剛体カバーが振動変形しにくく運動エネルギーとして減衰させる効果が得られないため、剛性遮音層から2次放射が起こり、かえって騒音レベルを悪化させるケースもある。
 また、自動車の車内外の騒音の評価には、騒音自体が人間の感覚量であることから、音の大きさを人が音を感じる量に近い基準として、観測された音圧を対数圧縮した音圧レベル(dB)が使用されている。しかし、総合的な防音効果(音圧レベルの増減)を評価する場合に一般的に用いられる4(多)方向平均(合音)をとった場合、dB和計算の性格上、測定された一番大きな音の影響を大きく受ける。そのため、防音対策を取った1方向のみでレベルが低くても全体として防音効果が得られず、人間の感覚量である音圧レベルが下がらないケースがあり、各方向の音圧レベルを揃えてまんべんなく低減することが必要である。
 しかし、特許文献1に記載された剛体カバーに吸音材を貼り付けた構造の防音カバーでは、固有音源が振動を伴う場合には振動伝達(個体伝搬音)により、剛体カバーが共鳴しそれ自体が騒音を発生する、所謂「2次放射」を起こすことがある。そのため、通常はゴムブッシュ等の振動絶縁材を介して固有音源に固定する必要がある。そのため、必然的に防音カバー周縁端部と固有音源の間に隙間が生じ、この部分から内面反響音(定在波)が漏洩して騒音レベル低減が達成できない場合がある。
 このような背景から本出願人は先に、固有音源が振動を伴う場合の固体伝搬音や防音カバーの内面反響音(定在波)対策の目的で、剛体カバーの代わりに、制振性を持った樹脂をコーティングした不織布からなる軟質遮音層を、吸音材の固有音源とは反対側の面に設けた防音カバー(特許文献2参照)を提案している。
 しかしながら、特許文献2に記載された防音カバーでは、軟質遮音層の製造上の問題からその質量に限界があり、高質量の剛体カバーと比較して4kHz以上の高周波数域の遮音性能が劣る場合がある。
日本国特開平10-205352号公報 日本国特開2006-98966号公報
 そこで本発明は、これまでよりも防音性能に優れ、軽量の防音材を生産性よく製造することを目的とする。
 上記の目的を達成するために、本発明は下記を提供する。
(1)音源に対向して配置される第1の吸音材と、
 第1の吸音材の音源とは反対側の面に積層され、JIS L1018で測定した通気率が10cc/cm・sec以下である第1の軟質遮音層と、
 第1の軟質遮音層に積層される第2の吸音材と、
 第2の吸音材に積層され、JIS L1018で測定した通気率が10cc/cm・sec以下で、かつJIS K7127で測定したヤング率が前記第1の軟質遮音層よりも5倍以上大きい第2の軟質遮音層とを備え、
 少なくとも第2の軟質遮音層と第2の吸音材とが、部分的に、もしくは全面で接着されている、防音材。
(2)上記(1)に記載の防音材において、第1の吸音材、第1の軟質遮音層、第2の吸音材及び第2の軟質遮音層の各目付量の合計が2000g/m以下である、防音材。
(3)上記(1)または(2)に記載の防音材において、前記第2の軟質遮音層は、熱可塑性エラストマーフィルムである、防音材。
(4)上記(1)~(3)の何れか一つに記載の防音材において、周端がシールされている、防音材。
(5)上記(1)~(4)の何れか一つに記載の防音材を3次元形状に成形してなる、防音成形体。
(6)第1の吸音材の上に、順に、熱可塑性樹脂からなり、JIS L1018で測定した通気率が10cc/cm・sec以下である第1の軟質遮音フィルムと、第2の吸音材と、熱可塑性樹脂からなり、JIS L1018で測定した通気率が10cc/cm・sec以下で、かつJIS K7127で測定したヤング率が前記第1の軟質遮音フィルムよりも5倍以上大きい第2の軟質遮音フィルムとを積層して積層体を得る積層工程と、
 得られた積層体を熱処理して、少なくとも第2の軟質遮音層と第2の吸音材とを部分的に、もしくは全面で接着する接着工程とを備える、防音材の製造方法。
(7)上記(6)に記載の防音材の製造方法において、接着工程後、積層体を3次元形状に成形する成形工程を備える、防音材の製造方法。
(8)第1の吸音材の上に、順に、熱可塑性樹脂からなり、JIS L1018で測定した通気率が10cc/cm・sec以下である第1の軟質遮音フィルムと、第2の吸音材と、熱可塑性樹脂からなり、JIS L1018で測定した通気率が10cc/cm・sec以下で、かつJIS K7127で測定したヤング率が前記第1の軟質遮音フィルムよりも5倍以上大きい第2の軟質遮音フィルムとを積層して積層体を得る積層工程と、
 得られた積層体を熱圧縮して3次元形状に成形するとともに、少なくとも第2の軟質遮音層と第2の吸音材とを部分的に、もしくは全面で接着する接着工程とを備える、防音材の製造方法。
(9)上記(1)~(5)の何れか一つに記載の防音材を、前記第1の吸音材を音源に接触させて配置する、防音方法。
 本発明の防音材は、音源と対向配置された第1の吸音材に入射する音の振動を、ヤング率が低く振動変形を受け易い第1の軟質遮音層により減衰させる。更に、第1の軟質遮音層で減衰しきれなかった音の振動を第2の吸音材を透過する際に減衰させ、次いで減衰しきれなった音の振動を、第1の軟質遮音層よりは剛性が高い第2の軟質遮音層で遮音する。従って、防音性能により優れたものとなる。また、金属や樹脂の防音カバーを備える防音材に比べて軽量でもある。
 また、製造方法も、第1の吸音材、第1の軟質遮音フィルム、第2の吸音材及び第2の軟質遮音フィルムを積層し、熱処理して接着するだけでよく簡便である。しかも、第1の吸音材、第1の軟質遮音フィルム、第2の吸音材及び第2の軟質遮音フィルムをそれぞれ長尺物とし、連続的に送り出しながら積層することができ、生産性も高まる。
図1は、本発明の防音材の一例を示す断面図である。 図2は、本発明の防音材の他の例を示す断面図である。 図3は、本発明の防音材の更に他の例を示す断面図である。 図4は、本発明の防音材の製造工程の一例を説明する模式図である。 図5は、試験1の結果を示すグラフである。 図6は、試験2における実施例3、実施例8及び比較例2の結果を示すグラフである。 図7は、試験2における実施例4、実施例9及び比較例3の結果を示すグラフである。 図8は、試験2における実施例5、実施例10及び比較例4の結果を示すグラフである。 図9は、試験2における実施例5、実施例6及び実施例7の結果を示すグラフである。 図10は、試験2における比較例5、比較例6及び比較例7の結果を示すグラフである。
 以下、本発明に関して図面を参照して詳細に説明する。
 図1は、本発明の防音材の一例を示す断面図である。図示されるように、音源(図中下側)と対向して第1の吸音材1が配置され、第1の吸音材1の音源とは反対側の面に、順に、第1の軟質遮音層10、第2の吸音材20、第2の軟質遮音層30が積層されている。
 第1の吸音材1には、多孔質材料が用いられることが好ましい。多孔質材料としては、例えば、グラスウール、ロックウール、岩綿長繊維(中部工業株式会社製「パサルトファイバー」等)、ポリウレタンフォーム、ポリエチレンフォーム、ポリプロピレンフォーム、フェノールフォーム、メラミンフォーム;ニトリルブタジエンラバー、クロログレンラパー、スチレンラバー、シリコーンゴム、ウレタンゴム、EPDM等のゴムを連通気泡状に発泡させたもの、あるいはこれらを発泡後にクラッシング加工等を施しフォ-ムセルに孔を明けて連通気泡化したもの;ポリエチレンテレフタレート等のポリエステル繊維フェルト、ナイロン繊維フェルト、ポリエチレン繊維フェルト、ポリプロピレン繊維フェルト、アクリル繊維フェルト、シリカ-アルミナセラミックスファイバーフェルト、シリカ繊維フェルト(ニチアス株式会社製「シルテックス」等)、綿、羊毛、木毛、クズ繊維等を熱硬化性樹脂でフェルト状に加エしたもの(一般名:レジンフェルト)等の一般的な多孔質吸音材が挙げられる。
 また、繊維類の飛散防止や製品外観向上の目的で、ポリエチレン長繊維、ポリプロピレン長繊維、ナイロン長繊維、テトロン長繊維、アクリル長繊維、レーヨン長繊維、ビニロン長繊維、ポリフッ化ピニリデン長繊維、ポリテトラフルオロエチレン長繊維等のフッ素樹脂長繊維、ポリエチレンテレフタレート等のポリエステル長繊維、ポリエステル長繊維にポリエチレン樹脂をコーティングした2層構造長繊維等の熟可塑性樹脂長繊維単体及びこれらを混抄したものをスバンボンドエ法で薄いシート状に成型した柔軟性の不織布を音源側の面(図中下面)に貼りつけることもできる。
 第1の軟質遮音層は、軟質で、かつ、非通気性のフィルムから構成されることが好ましい。非通気性は通気率で規定することができ、10cc/cm・sec以下、好ましくは0.001~10cc/cm・sec、より好ましくは0.01~1cc/cm・secである。尚、通気率は、JIS L1018-1999で測定した値である。
 柔軟性はヤング率で規定することができ、0.01~0.5GPaであることが好ましく、0.02~0.12GPaであることがより好ましい。尚、ヤング率はJIS K7127-1999で測定した値である。第1の軟質遮音層は、自身が変形して第1の吸音材1を透過した音の振動を減衰させるため、より柔軟であることが必要であり、上記のヤング率であることが好ましい。
 また、第1の軟質遮音層10は、上記の通気率を満足する限り、その材質には制限はなく、不織布、クロス、ラミネートフィルム、ゴムシート、樹脂フィルム、制振樹脂、制振ゴム、またはこれらを適宜組み合わせた積層体や、制振樹脂をコーティングした不織布またはクロスを使用することができる。但し、後述する製造方法を実施する上で、熱による融着が可能な材料が好ましく、ホットメルト系材料として使用されている熱可塑性樹脂フィルムが好ましい。具体的には、エチレン-酢酸ビニル系、ウレタン系、ポリエステル系、ポリアミド系及びポリオレフィン系のホットメルト樹脂フィルム等が好適である。より具体的には、低分子量ポリプロピレン等を延伸成形したポリオレフィン系ホットメルトフィルムが特に好適である。
 第2の吸音材20は、第1の吸音材1と同様の多孔質材料から選ばれることが好ましく、第1の吸音材1と同一でも、異なっていてもよい。
 第2の軟質遮音層30は、軟質で、かつ、非通気性のフィルムから構成される。非通気性は、JIS L1018-1999で測定した通気率で10cc/cm・sec以下、好ましくは0.001~10cc/cm・sec、より好ましくは0.01~1cc/cm・secである。
 また、第2の軟質遮音層30は、JIS K7127-1999で測定したヤング率が第1の軟質遮音層よりも5倍以上、好ましくは10倍以上大きい必要がある。第2の軟質遮音層30は軟質であることから、第2の吸音材20を透過した音の振動を減衰させる作用がある。また、吸音材20と一体となって振動変形できる範囲で、ヤング率を高めて剛性を兼備することにより、また上記第1の遮音層とのヤング率の比を大きくとることで遮音性能が付与される。
 更に、第2の軟質遮音層30は、第2の吸音材と部分的に、もしくは全面で接着される。適当な接着剤を用いて両者を接着してもよいが、第2の軟質遮音層30が接着性を備えることが好ましい。尚、第2の吸音材との接着が部分的である場合、接着面積が第2の吸音材と第2の軟質遮音層との接触面積の50%以上であることが好ましい。
 このような通気率、ヤング率及び接着性を考慮すると、第2の軟質遮音層30は熱可塑性エラストマーフィルムが好ましく、特に熱可塑性ウレタンエラストマーフィルムが好ましい。また、熱可塑性ウレタンエラストマーとしては、芳香族環からなるハードセグメントとR(エステル基含有脂肪族炭化水素)からなるソフトセグメントを混在させた、下記構造式(1)のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000001
(1)
 尚、式中のRはエステル基含有脂肪族炭化水素、Rは短鎖(炭素数1~4)の炭化水素を表す。また、m及びnは1以上の整数である。
 更に、第2の軟質遮音層30は、不織布のようなシート材をコーティングして目止めをして上記の通気率及びヤング率としたもので代用することもできる。例えば、ポリエステルやポリアミド、ポリプロピレンといった有機繊維製不織布にウレタンやアクリル、シリコーンといった樹脂をコーティングしたものを使用できる。
 本発明の防音材は、第1の吸音材1、第1の軟質遮音層10、第2の吸音材20及び第2の軟質遮音層30を積層したものであるが、防音性能を良好に確保しつつ軽量化するためには、それぞれの目付け量の合計が2000g/m以下であることが好ましい。目付け量の合計が2000g/m以下であれば、個々の目付け量には制限はないが、第1の吸音材1の目付け量が250~1,000g/m、第1の軟質遮音層10の目付け量が30~100g/m、第2の吸音材30の目付け量が150~500g/m、第2の軟質遮音層30の目付け量が30~1,000g/mで、合計で2000g/m以下とすることが好ましい。
 本発明の防音材には、図2に示すように、第2の軟質遮音層30の上に、表皮材40を付着してもよい。表皮材40は、防音材の保形性を高めるとともに、遮音性を付与する作用を有するものが好ましく、不織布を接着することが好ましい。具体的には、ポリエチレンテレフタレート短繊維を酢酸ビニル樹脂でケミカルボンドさせて作製した基布と、ポリエステル繊維をスパンボンド法で溶着させた布を積層した不織布が挙げられる。
 尚、表皮材40を付着する場合、第2の軟質遮音層30に熱可塑性エラストマーを用いると、熱融着により表皮材40と熱可塑性エラストマーとの複合材が形成される。そのため、この複合材の通気率やヤング率、目付け量を上記した第2の軟質遮音層30の範囲とすることが好ましい。
 また、本発明の防音材は、その周端がシールされていることが好ましい。シール構造としては、図3に示すように、積層体の周端50,50を熱プレスにより圧着することができる。こうした周端は、例えば幅3~20mm、厚さ0.5~2.5mmで圧縮されていればよい。また、端面(防音材の厚み部分)にホットメルトシートを熱融着してもよい。具体的には、ポリアミド系ホットメルトフィルム(厚さ30μm)を170℃で熱溶着して積層体の端面をシールすればよい。これにより、第1の吸音材1及び第2の吸音材20の端面を通じて外部に音が漏洩するのを防ぐことができる。尚、図示は省略するが、表皮材40を付着した場合も同様に周端を圧着してシールすることができる。
 更に、本発明の防音材は、図示されるように積層しただけでもよいが、3次元形状(図4参照)の防音成形体とすることもできる。こうした3次元形状を得るためには、積層体を所望形状に保持した状態で加熱すればよい。その後、加熱により変形した積層体は、常温になると固まり、その形状が固定される。
 本発明の防音材を製造するには、下記の方法を採用することができる。図4に示すように、まずそれぞれ長尺の第1の吸音材1を形成するフィルム1a、第1の軟質遮音層10を形成するフィルム10a、第2の吸音材20を形成するフィルム20a、第2の軟質遮音層30を形成するフィルム30a、更には必要に応じて表皮材40を形成するシート40aを、それぞれのロールから供給し、積層状態でオーブン100に投入する。オーブン100を通過する間に少なくとも第2の吸音材20を形成するフィルム20aと第2の軟質遮音層を形成するフィルム30aとを熱融着する。これにより、防音材となる長尺の積層体200が製造される。そして、積層体200を所定長さに切断し、必要に応じて周端を熱圧縮により圧着して本発明の防音材が得られる。尚、オーブン100には上下一対のコンベア110a,110bが配置されており、第1の吸音材1を形成するフィルム1a、第1の軟質遮音層10を形成するフィルム10a、第2の吸音材20を形成するフィルム20a、第2の軟質遮音層30を形成するフィルム30a、表皮材40を形成するシート40aを、それぞれのロールからオーブン内に引き込む構成となっている。ここで、コンベアスピードやオーブン温度、長さなど特に制限はないが、例えば、コンベアスピード1~3m/min、温度190~220℃、オーブンの長さ5~20mであればよい。
 また、3次元形状に成形する場合は、オーブン100の後段に上下一対の成形型300a,300bを配置し、オーブン100から搬出された積層体200を熱圧縮して3次元形状に成形する。その際、図示されるように、熱圧縮した部分210を平坦部分とし、他の部分を熱圧縮せず、積層したままの部分220を円弧状等の3次元形状とすることができる。そして、熱圧縮した部分210を切断することにより、断面が円弧状で、周端が熱圧縮によりシールされた防音成形体が得られる。所望する形状、積層体の厚さによるが、こうした熱圧縮は例えば、温度180~200℃、10~30秒間行うことができる。
 上記製造方法において、オーブン100を用いず、成形型300a,300bを熱プレス装置にすることにより、接着と同時に3次元形状に成形することもできる。
 本発明の防音材は、図1~3に示したように3次元形状に成形しない状態で使用する場合は、建築物での使用が好適であり、例えば内壁材と外壁材との間に介在させて使用する。また、自動車やオートバイ、船舶等のエンジン、トランスミッション、モータ等の音源に装着することもできる。その際、例えば、エンジンとエンジンカバーとの隙間よりも厚い防音材を用い、第1の吸音材をエンジンに載置し、エンジンカバーを装着した際に圧縮させてエンジンとエンジンカバーとの隙間を埋めるようにすることができる。
 また、3次元形状に成形した防音成形体は、例えばエンジンの外形に一致させて成形し、第1の吸音材をエンジンに接触させて装着することができる。こうした構成により、エンジン表面からの空気放射音の密閉遮音及び、固体伝搬音(振動)の絶縁が実現され、更なる防音効果の向上が期待される。
 以下、実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。尚、通気率はJIS L1018に準拠し、ヤング率はJIS K7127-1999に準拠して測定した。また、目付け量は1m×1m当たりの質量である。
〔試験1〕
(実施例1)
 第1の吸音材及び第2の吸音材として厚さ10mmのポリエチレンテレフタレートフェルト(目付け量500g/m)、第1の軟質遮音層として厚さ30μmのホットメルトフィルム(通気率0.01cc/cm・sec、ヤング率80MPa、目付け量80g/m:低分子量ポリプロピレン等を延伸成形したポリオレフィン系ホットメルトフィルム)、第2の軟質遮音層として厚さ30μmの熱可塑性ウレタンエラストマーフィルム(通気率0.001cc/cm・sec、ヤング率1,000MPa、目付け量36g/m:前記式(1)に構造式を示した、芳香族環からなるハードセグメントとR(エステル基含有脂肪族炭化水素)からなるソフトセグメントを混在させた、ポリエステル系熱可塑性ウレタンエラストマーフィルム)、表皮材としてポリエステル不織布(通気率110cc/cm・sec、ヤング率200MPa、目付け量220g/m:ポリエチレンテレフタレート短繊維を酢酸ビニル樹脂でケミカルボンドさせて作製した基布と、ポリエステル繊維をスパンボンド法で溶着させた布を積層した不織布)を用意した。
 そして、第1の吸音材の一方の面上に、第1の軟質遮音層、第2の吸音材、第2の軟質遮音層及び表皮材の順で積層し、全体をオーブンにて加熱して全ての界面を接着し、防音材を作製した。界面の接着状態は、全面接着(接着面積100%)である。
(実施例2)
 第2の軟質遮音層として、ポリエステル不織布にウレタンコーティングしたものを用いた以外は、実施例1と同様にして防音材を作製した。
(比較例1)
 実施例1と同様の材料を用い、各界面を接着することなく積層して防音材を作製した。
 実施例1,2及び比較例1の防音材について、小型残響箱(拡散音場)・無響室(自由音場)・音響インテンシティー法にて音響透過損失を測定した。本試験方法について概説すると、測定系は(1)音源側(小型残響箱:拡散音場)、(2)試験体、(3)受音側(無響室:自由音場)からなり、(1)から(2)への入射音エネルギー(A)から、(2)表面から(3)に放射される透過音のエネルギーを、1対のマイクロフォンから構成されるインテンシティーマイクロフォン(指向性マイクロフォン)により計測した値(B)を引いた計算値をもって音響透過損失とした。結果を図5に示すが、各界面と接着することにより、防音性能が高まることがわかる。
〔試験2〕
(実施例3~10、比較例2~7)
 表1~3に示す第1の吸音材、第1の軟質遮音層、第2の吸音材、第2の軟質遮音層及び表皮材を積層し、オーブンにて加熱して防音材を作製した。尚、比較例2~4では、第2の吸音材と第2の軟質遮音層とは接着されていない。また、実施例8~10以外は、防音材の周端を熱プレスしてシールした。そして、試験1と同様にして音響透過損失測定を行った。なお、表1~3中の各吸音材、軟質遮音層、及び表皮材の材質については、特に断りがない限り上記実施例1で用いたものと同じである。また、表1~3中の、部材間の接着に関する“あり”の表記は、全面接着状態を意味する。また、表1~3において、(2)第1の軟質遮音層/(3)第2の吸音材の接着は、全面接着である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 結果を図6~図10に示すが、本発明に従い、第1の吸音材、第1の軟質遮音層、第2の吸音材及び第2の軟質遮音層を積層し、少なくとも第2の吸音材と第2の軟質遮音層とを接着した防音材は、優れた防音性能を有することがわかる。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本発明は、2011年1月26日出願の日本特許出願2011-014515に基づくものであり、その内容はここに参照として取り込まれる。また、本明細書中に記載の文献の内容も、ここに参照として取り込まれる。
1  第1の吸音材
10 第1の軟質遮音層
20 第2の吸音材
30 第2の軟質遮音層
40 表皮材

Claims (9)

  1.  音源に対向して配置される第1の吸音材と、
     第1の吸音材の音源とは反対側の面に積層され、JIS L1018で測定した通気率が10cc/cm・sec以下である第1の軟質遮音層と、
     第1の軟質遮音層に積層される第2の吸音材と、
     第2の吸音材に積層され、JIS L1018で測定した通気率が10cc/cm・sec以下で、かつJIS K7127で測定したヤング率が前記第1の軟質遮音層よりも5倍以上大きい第2の軟質遮音層とを備え、
     少なくとも第2の軟質遮音層と第2の吸音材とが、部分的に、もしくは全面で接着されている、防音材。
  2.  請求項1に記載の防音材において、第1の吸音材、第1の軟質遮音層、第2の吸音材及び第2の軟質遮音層の各目付量の合計が2000g/m以下である、防音材。
  3.  請求項1または2に記載の防音材において、前記第2の軟質遮音層は、熱可塑性エラストマーフィルムである、防音材。
  4.  請求項1~3の何れか1項に記載の防音材において、周端がシールされている、防音材。
  5.  請求項1~4の何れか1項に記載の防音材を3次元形状に成形してなる、防音成形体。
  6.  第1の吸音材の上に、順に、熱可塑性樹脂からなり、JIS L1018で測定した通気率が10cc/cm・sec以下である第1の軟質遮音フィルムと、第2の吸音材と、熱可塑性樹脂からなり、JIS L1018で測定した通気率が10cc/cm・sec以下で、かつJIS K7127で測定したヤング率が前記第1の軟質遮音フィルムよりも5倍以上大きい第2の軟質遮音フィルムとを積層して積層体を得る積層工程と、
     得られた積層体を熱処理して、少なくとも第2の軟質遮音層と第2の吸音材とを部分的に、もしくは全面で接着する接着工程とを備える、防音材の製造方法。
  7.  請求項6に記載の防音材の製造方法において、接着工程後、積層体を3次元形状に成形する成形工程を備える、防音材の製造方法。
  8.  第1の吸音材の上に、順に、熱可塑性樹脂からなり、JIS L1018で測定した通気率が10cc/cm・sec以下である第1の軟質遮音フィルムと、第2の吸音材と、熱可塑性樹脂からなり、JIS L1018で測定した通気率が10cc/cm・sec以下で、かつJIS K7127で測定したヤング率が前記第1の軟質遮音フィルムよりも5倍以上大きい第2の軟質遮音フィルムとを積層して積層体を得る積層工程と、
     得られた積層体を熱圧縮して3次元形状に成形するとともに、少なくとも第2の軟質遮音層と第2の吸音材とを部分的に、もしくは全面で接着する接着工程とを備える、防音材の製造方法。
  9.  請求項1~5の何れか1項に記載の防音材を、前記第1の吸音材を音源に接触させて配置する、防音方法。
PCT/JP2012/051691 2011-01-26 2012-01-26 防音材及びその製造方法、並びに防音成形体及び防音方法 WO2012102345A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/982,110 US9093060B2 (en) 2011-01-26 2012-01-26 Sound-proof material and process for production thereof, sound-proof molding, and sound insulation method
CN201280006688.3A CN103339669B (zh) 2011-01-26 2012-01-26 隔音材料及其制造方法、以及隔音成型体和隔音方法
JP2012554840A JP5715163B2 (ja) 2011-01-26 2012-01-26 防音材及びその製造方法、並びに防音成形体及び防音方法
KR1020137019855A KR101898747B1 (ko) 2011-01-26 2012-01-26 방음재 및 그 제조 방법과, 방음 성형체 및 방음 방법
EP12739765.1A EP2669888B1 (en) 2011-01-26 2012-01-26 Process for production of a sound-proof material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011014515 2011-01-26
JP2011-014515 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012102345A1 true WO2012102345A1 (ja) 2012-08-02

Family

ID=46580909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051691 WO2012102345A1 (ja) 2011-01-26 2012-01-26 防音材及びその製造方法、並びに防音成形体及び防音方法

Country Status (6)

Country Link
US (1) US9093060B2 (ja)
EP (1) EP2669888B1 (ja)
JP (1) JP5715163B2 (ja)
KR (1) KR101898747B1 (ja)
CN (1) CN103339669B (ja)
WO (1) WO2012102345A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011291A (ja) * 2013-07-02 2015-01-19 富士ゼロックス株式会社 吸音構造
WO2015025696A1 (ja) * 2013-08-22 2015-02-26 株式会社オートネットワーク技術研究所 吸音材及び吸音材付きワイヤーハーネス
BE1022557B1 (fr) * 2013-10-09 2016-06-02 Parker Corporation Materiau insonore pour compresseur et procede de fabrication de celui-ci
US9415728B2 (en) 2014-04-23 2016-08-16 Hyundai Motor Company Dash pad for vehicle
JP2018055048A (ja) * 2016-09-30 2018-04-05 因幡電機産業株式会社 遮音材及び遮音材の製造方法
JP2018145773A (ja) * 2017-03-08 2018-09-20 積水樹脂株式会社 吸音パネル
JP2018204345A (ja) * 2017-06-07 2018-12-27 積水樹脂株式会社 吸音パネル
JPWO2018182001A1 (ja) * 2017-03-31 2019-11-07 三井化学株式会社 積層体及び吸音材
WO2021065145A1 (ja) 2019-10-03 2021-04-08 ニチアス株式会社 防音部材
RU213296U1 (ru) * 2022-07-01 2022-09-05 Сергей Леонидович Емшанов Шумоизоляционный чехол для запорно-регулирующей арматуры, участков трубопроводов и иного промышленного оборудования
JP7567272B2 (ja) 2020-08-18 2024-10-16 株式会社レゾナック 吸音材

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006896A1 (ja) * 2012-07-04 2014-01-09 西川ゴム工業株式会社 防音材
JP2015139948A (ja) * 2014-01-29 2015-08-03 株式会社オートネットワーク技術研究所 遮音材及び遮音材付きワイヤーハーネス
KR101582647B1 (ko) * 2014-04-08 2016-01-08 엔브이에이치코리아(주) 극세사를 이용한 자동차용 다층구조 흡음재 및 이의 제조방법
KR101655615B1 (ko) * 2014-04-23 2016-09-07 현대자동차주식회사 자동차용 저중량 흡음형 대쉬 패드
JP6043407B2 (ja) * 2015-02-27 2016-12-14 富士フイルム株式会社 防音構造、及び防音構造の製造方法
US10096310B2 (en) * 2015-10-16 2018-10-09 Auralex Acoustics Acoustic system and method
JP6624923B2 (ja) * 2015-12-24 2019-12-25 三菱電機株式会社 エレベータ用巻上機の防音装置、エレベータ用巻上機及びエレベータ
US10657946B2 (en) * 2016-02-19 2020-05-19 Edward Gentile Device for absorbing sound within the cabin of vehicle
US10034553B2 (en) * 2016-03-07 2018-07-31 L&P Property Management Company Multi-layered impermeable fabric for use in pocketed spring assembly
CN105730369A (zh) * 2016-03-29 2016-07-06 成都一汽四环汽车内饰件有限公司 驾驶室前围阻尼垫及其制造装置和加工方法
KR101881006B1 (ko) * 2016-07-29 2018-09-06 주식회사 휴비스 저융점 폴리에스테르 수지를 포함하는 자동차 내외장재 및 이의 제조방법
CN107584750B (zh) * 2017-08-16 2021-03-05 柳州申通汽车科技有限公司 一种汽车隔音膜片的热压工艺
CN107521432A (zh) * 2017-08-23 2017-12-29 柳州市日海汽配有限责任公司 汽车内饰用隔音件
RU2754414C1 (ru) * 2018-06-28 2021-09-02 Эл энд Пи ПРОПЕРТИ МЕНЕДЖМЕНТ КОМПАНИ Пружинный блок с пружинами в карманах, имеющий многослойную непроницаемую ткань
FR3085223B1 (fr) * 2018-08-27 2020-08-21 Arianegroup Sas Panneau d'attenuation acoustique ayant des performances ameliorees dans les basses et moyennes frequences
JP7177311B2 (ja) * 2018-11-28 2022-11-24 株式会社アーケム 防音材、及び、防音材の製造方法
CN109807043A (zh) * 2019-01-17 2019-05-28 张兰 一种耐腐蚀的电气工程用消声材料及其制备方法
IT202000003769A1 (it) * 2020-02-24 2021-08-24 Adler Evo S R L Dispositivo per isolamento acustico a base di metamateriali
TWI784843B (zh) * 2021-12-16 2022-11-21 厚生股份有限公司 隔音材及其製造方法與使用方法
TWI806785B (zh) * 2022-10-04 2023-06-21 厚生股份有限公司 防水隔音材及其製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347900A (ja) * 2000-06-05 2001-12-18 Toyoda Spinning & Weaving Co Ltd 防音材
JP2005208494A (ja) * 2004-01-26 2005-08-04 Takehiro:Kk 超軽量な防音材
JP2005227747A (ja) * 2003-10-29 2005-08-25 Takehiro:Kk 超軽量な防音材
JP2010036675A (ja) * 2008-08-04 2010-02-18 Howa Textile Industry Co Ltd 車両用軽量多層構造防音材

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488619A (en) * 1984-04-11 1984-12-18 Neill Justin T O Foam-barrier-foam-facing acoustical composite
JPS61154831A (ja) 1984-12-27 1986-07-14 Hino Motors Ltd 防音材の製造方法
CH671546A5 (ja) * 1986-09-26 1989-09-15 Matec Holding
DE8715142U1 (de) * 1987-11-13 1988-06-01 Dr. Alois Stankiewicz GmbH, 3101 Adelheidsdorf Schalldämmteil mit Absorptionseigenschaften für Trennwand
EP0509603B1 (en) * 1991-04-15 2001-09-12 Matsushita Electric Works, Ltd. Sound absorptive material
US5504282A (en) * 1994-08-24 1996-04-02 Foamex L.P. Sound transmission and absorption control media
WO1998018656A1 (de) * 1996-10-29 1998-05-07 Rieter Automotive (International) Ag Ultraleichter multifunktionaler, schallisolierender bausatz
JP3533862B2 (ja) 1997-01-24 2004-05-31 日産自動車株式会社 エンジンカバー
JP4257818B2 (ja) 2000-12-14 2009-04-22 河西工業株式会社 車両用防音材及びその製造方法
FR2835955B1 (fr) * 2002-02-11 2004-07-16 Sai Automotive Sommer Ind Ensemble d'insonorisation et piece comprenant une paroi recouverte par ledit ensemble
EP1428656A1 (en) * 2002-12-09 2004-06-16 Rieter Technologies A.G. Ultralight trim composite
US7320739B2 (en) * 2003-01-02 2008-01-22 3M Innovative Properties Company Sound absorptive multilayer composite
JP2006098966A (ja) 2004-09-30 2006-04-13 Nichias Corp 防音カバー
EP1710126B1 (en) * 2005-04-04 2009-04-01 Rieter Technologies AG Sealed thin multi-layer sound absorber
JP4361036B2 (ja) * 2005-07-13 2009-11-11 豊和繊維工業株式会社 車両用防音材
WO2007134391A1 (en) * 2006-05-23 2007-11-29 Bellmax Acoustic Pty Ltd An acoustic shield
US20080017445A1 (en) * 2006-07-21 2008-01-24 Lear Corporation Lightweight dash insulator construction
US8051950B2 (en) * 2006-08-03 2011-11-08 Glacier Bay, Inc. System for reducing acoustic energy
JP4893324B2 (ja) * 2007-01-17 2012-03-07 セントラル硝子株式会社 遮音性積層構造体及びその製法
EP2132031A1 (en) * 2007-03-14 2009-12-16 Futuris Automotive Interiors (US), Inc. Low mass acoustically enhanced floor carpet system
FR2919218B1 (fr) * 2007-07-25 2011-12-02 Faurecia Automotive Ind Composant moule d'insonorisation,et son procede de fabrication
US7770692B2 (en) 2007-09-14 2010-08-10 Gm Global Technology Operations, Inc. Engine acoustic treatment
JP4997057B2 (ja) * 2007-10-10 2012-08-08 河西工業株式会社 車両用防音材
DE102008017357B4 (de) * 2008-04-04 2014-01-16 Airbus Operations Gmbh Akustisch optimiertes Kabinenwandelement und seine Verwendung
US20090250292A1 (en) * 2008-04-08 2009-10-08 Howa Textile Industry Co., Ltd. Automotive sound-absorbing material
JP5459835B2 (ja) * 2008-08-08 2014-04-02 ニチアス株式会社 自動車用防音カバー
FR2942437B1 (fr) * 2009-02-20 2012-08-24 Faurecia Automotive Ind Ensemble d'insonorisation pour vehicule automobile et element de paroi associe.
JP2010234991A (ja) * 2009-03-31 2010-10-21 Kasai Kogyo Co Ltd 車両用防音材
KR20110000083U (ko) * 2009-06-29 2011-01-06 이계정 피아노용 방음 및 방진매트
JP5459838B2 (ja) * 2009-09-18 2014-04-02 ニチアス株式会社 防音カバー及びその製造方法
JP4828658B1 (ja) * 2011-03-14 2011-11-30 株式会社タケヒロ 車両用防音材
US8496088B2 (en) * 2011-11-09 2013-07-30 Milliken & Company Acoustic composite
US8418806B1 (en) * 2012-01-13 2013-04-16 Janesville Acoustics, a Unit of Jason Incorporated Sound attenuating device using an embedded layer for acoustical tuning
US8590670B1 (en) * 2012-06-08 2013-11-26 Polyglass S.P.A. Sound proof membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347900A (ja) * 2000-06-05 2001-12-18 Toyoda Spinning & Weaving Co Ltd 防音材
JP2005227747A (ja) * 2003-10-29 2005-08-25 Takehiro:Kk 超軽量な防音材
JP2005208494A (ja) * 2004-01-26 2005-08-04 Takehiro:Kk 超軽量な防音材
JP2010036675A (ja) * 2008-08-04 2010-02-18 Howa Textile Industry Co Ltd 車両用軽量多層構造防音材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2669888A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011291A (ja) * 2013-07-02 2015-01-19 富士ゼロックス株式会社 吸音構造
CN105474305B (zh) * 2013-08-22 2020-03-03 株式会社自动网络技术研究所 吸音材料及带吸音材料的线束
WO2015025696A1 (ja) * 2013-08-22 2015-02-26 株式会社オートネットワーク技術研究所 吸音材及び吸音材付きワイヤーハーネス
JP2015039846A (ja) * 2013-08-22 2015-03-02 株式会社オートネットワーク技術研究所 吸音材及び吸音材付きワイヤーハーネス
CN105474305A (zh) * 2013-08-22 2016-04-06 株式会社自动网络技术研究所 吸音材料及带吸音材料的线束
US9570061B2 (en) 2013-08-22 2017-02-14 Autonetworks Technologies, Ltd. Acoustic material and wire harness with acoustic material
BE1022557B1 (fr) * 2013-10-09 2016-06-02 Parker Corporation Materiau insonore pour compresseur et procede de fabrication de celui-ci
US9415728B2 (en) 2014-04-23 2016-08-16 Hyundai Motor Company Dash pad for vehicle
JP2018055048A (ja) * 2016-09-30 2018-04-05 因幡電機産業株式会社 遮音材及び遮音材の製造方法
JP2018145773A (ja) * 2017-03-08 2018-09-20 積水樹脂株式会社 吸音パネル
JPWO2018182001A1 (ja) * 2017-03-31 2019-11-07 三井化学株式会社 積層体及び吸音材
JP2021192983A (ja) * 2017-03-31 2021-12-23 三井化学株式会社 積層体及び吸音材
JP7206564B2 (ja) 2017-03-31 2023-01-18 三井化学株式会社 積層体及び吸音材
JP2018204345A (ja) * 2017-06-07 2018-12-27 積水樹脂株式会社 吸音パネル
WO2021065145A1 (ja) 2019-10-03 2021-04-08 ニチアス株式会社 防音部材
US12087262B2 (en) 2019-10-03 2024-09-10 Nichias Corporation Soundproof member
JP7567272B2 (ja) 2020-08-18 2024-10-16 株式会社レゾナック 吸音材
RU213296U1 (ru) * 2022-07-01 2022-09-05 Сергей Леонидович Емшанов Шумоизоляционный чехол для запорно-регулирующей арматуры, участков трубопроводов и иного промышленного оборудования
RU213331U1 (ru) * 2022-07-01 2022-09-06 Сергей Леонидович Емшанов Шумоизоляционный чехол для запорно-регулирующей арматуры, участков трубопроводов и иного промышленного оборудования

Also Published As

Publication number Publication date
KR101898747B1 (ko) 2018-09-13
US9093060B2 (en) 2015-07-28
CN103339669A (zh) 2013-10-02
JP5715163B2 (ja) 2015-05-07
CN103339669B (zh) 2015-03-25
EP2669888B1 (en) 2022-03-09
EP2669888A1 (en) 2013-12-04
JPWO2012102345A1 (ja) 2014-06-30
KR20140004699A (ko) 2014-01-13
US20140027200A1 (en) 2014-01-30
EP2669888A4 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP5715163B2 (ja) 防音材及びその製造方法、並びに防音成形体及び防音方法
JP5459838B2 (ja) 防音カバー及びその製造方法
JP5459835B2 (ja) 自動車用防音カバー
JP4767209B2 (ja) 防音カバー
US4615411A (en) Sound-insulated flow duct and process for the manufacture thereof
JP4635847B2 (ja) 防音材
JP4691388B2 (ja) 超軽量な防音材
WO2013035614A1 (ja) 吸気ダクト
WO2017159646A1 (ja) 防音カバー
JP2004294619A (ja) 超軽量な防音材
JP3930506B2 (ja) 超軽量な防音材
WO2020084802A1 (ja) 自動車用遮音材
JP2017171179A (ja) 車両用防音材及びその製造方法
WO2011108527A1 (ja) ダクトホース
US20060013996A1 (en) Laminated surface skin material and laminate for interior material
JP3930484B2 (ja) 超軽量な防音材
JP3530522B1 (ja) 超軽量な防音材
JP2008203542A (ja) 吸音体
JP2023114559A (ja) 防音材及び防音構造体
JP2021050672A (ja) 吸気ダクト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554840

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012739765

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137019855

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13982110

Country of ref document: US