WO2012102256A1 - フィッシャー・トロプシュ合成用触媒、及びその製造方法、並びにフィッシャー・トロプシュ合成用触媒を用いた炭化水素類の製造方法 - Google Patents

フィッシャー・トロプシュ合成用触媒、及びその製造方法、並びにフィッシャー・トロプシュ合成用触媒を用いた炭化水素類の製造方法 Download PDF

Info

Publication number
WO2012102256A1
WO2012102256A1 PCT/JP2012/051403 JP2012051403W WO2012102256A1 WO 2012102256 A1 WO2012102256 A1 WO 2012102256A1 JP 2012051403 W JP2012051403 W JP 2012051403W WO 2012102256 A1 WO2012102256 A1 WO 2012102256A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
mass
ruthenium
fischer
reaction
Prior art date
Application number
PCT/JP2012/051403
Other languages
English (en)
French (fr)
Inventor
靖智 三浦
茂徳 中静
Original Assignee
コスモ石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011011897A external-priority patent/JP2012152666A/ja
Priority claimed from JP2011011896A external-priority patent/JP2012152665A/ja
Application filed by コスモ石油株式会社 filed Critical コスモ石油株式会社
Priority to US13/978,053 priority Critical patent/US20130289145A1/en
Priority to EP12739287.6A priority patent/EP2669010A1/en
Publication of WO2012102256A1 publication Critical patent/WO2012102256A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/32Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group

Definitions

  • the present invention relates to a Fischer-Tropsch synthesis catalyst, a method for producing the same, and a method for producing hydrocarbons using the Fischer-Tropsch synthesis catalyst.
  • the present invention relates to a Fischer-Tropsch synthesis catalyst, a method for producing the catalyst, and a method for producing hydrocarbons from a mixed gas containing hydrogen and carbon monoxide as main components (hereinafter referred to as “synthesis gas”).
  • synthesis gas a mixed gas containing hydrogen and carbon monoxide as main components
  • the present invention relates to a method for producing hydrocarbons using a catalyst produced by the above method. More specifically, a catalyst mainly comprising manganese carbonate containing a metal having activity against the Fischer-Tropsch reaction (hereinafter referred to as “FT active metal”), a method for producing the catalyst, and a method for producing the catalyst.
  • FT active metal manganese carbonate containing a metal having activity against the Fischer-Tropsch reaction
  • the present invention relates to a method for producing hydrocarbons such as naphtha, kerosene, light oil, and wax by bringing the synthesized catalyst into contact with the synthesized catalyst.
  • This application claims priority based on Japanese Patent Application No. 2011-11896 filed in Japan on January 24, 2011 and Japanese Patent Application No. 2011-11897 filed in Japan on January 24, 2011. , The contents of which are incorporated herein.
  • Fischer-Tropsch reaction Fischer-Tropsch reaction
  • methanol synthesis reaction C2 oxygen-containing (ethanol, acetaldehyde, etc.) synthesis reaction
  • FT reaction Fischer-Tropsch reaction
  • the FT reaction proceeds with a catalyst that uses an iron group element of iron, cobalt, nickel, or a platinum group element such as ruthenium as an active metal
  • the methanol synthesis reaction proceeds with a copper catalyst
  • the C2 oxygen-containing synthesis reaction proceeds with a rhodium catalyst. It is known to proceed (see, for example, Non-Patent Document 1).
  • GTL gas to liquids
  • natural gas main component methane
  • H 2 S hydrogen sulfide
  • FT method a method for synthesizing hydrocarbons from synthesis gas by an FT reaction
  • FT method a method for synthesizing hydrocarbons from synthesis gas by an FT reaction
  • the synthesis capacity of hydrocarbons that is, high activity, low production of gas components, and excellent performance such as long-term stable activity are shown. It is considered effective to use a catalyst.
  • the catalyst for FT synthesis produces little gas components such as methane in the product and has a high yield of useful liquid hydrocarbons such as kerosene and light oil. Therefore, the present inventors have proposed a catalyst for FT synthesis that uses a manganese carbonate support, has a high CO conversion rate in the FT reaction, generates less gas components, and can perform the FT synthesis reaction stably.
  • the catalyst is very active and is optimal for use in fluidized beds, suspension beds, slurry beds, and the like.
  • the preferred physical properties that the catalyst should have are often different.
  • a fine powder catalyst for a slurry bed reactor is used in a fixed bed reactor, there is a concern about the generation of a differential pressure.
  • the fixed bed reactor is required to use a molded catalyst that generates little differential pressure.
  • the molded catalyst has a larger catalyst shape than the fine powder catalyst, the contact efficiency between the synthesis gas and the catalyst is low. Therefore, it is important to prepare a molded catalyst with higher activity.
  • the catalyst for the fixed bed reactor is required to have different catalyst physical properties from the slurry bed reactor, for example, while maintaining the activity and the catalyst strength peculiar to the reaction in the fixed bed reactor. .
  • an object of the present invention is to provide a molded catalyst for FT synthesis that exhibits higher performance and a method for producing the same.
  • the present inventors have incorporated a FT active metal into a molded support made of manganese carbonate containing a predetermined amount of an organic binder, and further has a catalyst surface area and pore volume. It was found that a catalyst for FT synthesis having a high activity and particularly suitable for a fixed bed reactor can be obtained by setting the value in a predetermined range, and the present invention has been completed.
  • the present invention provides a catalyst for FT synthesis having the following constitution, a method for producing the catalyst, and a method for producing hydrocarbons using the catalyst produced by the method.
  • silica is contained in an amount of 10 to 25% by mass in terms of oxide and on a catalyst basis
  • an organic binder is contained in an amount of 6% by mass or less on a catalyst basis
  • ruthenium is contained in an amount of 0.5 to 5% by mass on a metal basis and on a catalyst basis
  • a Fischer-Tropsch synthesis catalyst characterized by having a surface area of 100-210 m 2 / g and a pore volume of 0.1-0.6 ml / g.
  • Manganese carbonate contains at least a silica sol so that the silica content is 10 to 25% by mass in terms of oxide and on a catalyst basis, and an organic binder so that the content is 6% by mass or less on a catalyst basis.
  • the carrier is prepared by molding the obtained kneaded product,
  • a catalyst precursor is prepared by drying the support at 250 ° C. or less, Furthermore, the catalyst precursor contains ruthenium in an amount of 0.5 to 5% by mass in terms of metal and based on the catalyst, and then dried at 250 ° C. or less. Production method.
  • the catalyst for FT synthesis of the present invention has a higher CO conversion rate than conventional catalysts using alumina or silica as a carrier, and can reduce the generation ratio of CH 4 or the like as a gas component.
  • the catalyst for FT synthesis of the present invention has a predetermined surface area and pore volume in addition to containing a FT active metal in a support made of manganese carbonate containing a predetermined amount of an organic binder. It has both excellent FT synthesis activity and catalyst strength required in a fixed bed reaction. According to the method for producing an FT synthesis catalyst of the present invention, an FT synthesis catalyst having both excellent FT synthesis activity and catalyst strength required in a fixed bed reaction can be produced.
  • the FT synthesis catalyst obtained by the method for producing the FT synthesis catalyst of the present invention is a very excellent catalyst having a higher FT activity and a lower CH 4 selectivity than a conventional molded catalyst. Moreover, according to the present invention, an FT synthesis catalyst having high FT activity and high hydrocarbon productivity is provided, and effects such as catalyst cost and reactor size reduction are expected.
  • the catalyst for FT synthesis of the present embodiment is a carrier (hereinafter also referred to as “manganese carbonate support”) containing manganese carbonate as a main component and containing silica and an organic binder. , FT active metal species are contained. Further, the catalyst of this embodiment obtained by the method for producing a catalyst for FT synthesis of this embodiment (hereinafter also referred to as “the method of producing a catalyst of this embodiment”) uses ruthenium nitrate as a manganese carbonate carrier. It is preferable that ruthenium which is an FT active metal species is contained.
  • manganese carbonate which is the main component of the manganese carbonate support in the catalyst of the present embodiment
  • those produced and sold industrially can be used, and can also be produced by a conventionally known method.
  • manganese carbonate is obtained by a known method, for example, it can be obtained by reacting a soluble manganese salt solution with ammonia carbonate or an alkali carbonate (for example, sodium carbonate). It can also be obtained by reaction of divalent manganese ions with carbonate ions or bicarbonate ions.
  • the manganese carbonate carrier may contain components other than manganese carbonate as long as the effect of manganese carbonate is not impaired.
  • examples of other components include inorganic oxides usually used as carriers, such as silica, alumina, and silica-alumina.
  • organic binders that are auxiliary agents for catalyst molding, such as carboxymethyl cellulose and methyl cellulose, can be mentioned. The content of these other components can be set as appropriate as long as the effect of manganese carbonate is not impaired, but generally 5 to 50% by mass based on the carrier is appropriate.
  • the manganese carbonate support in the catalyst of the present embodiment preferably contains both an inorganic oxide and an organic binder in addition to manganese carbonate, and more preferably contains a silica and an organic binder.
  • the silica to be contained in manganese carbonate is preferably a silica sol. By using silica sol, it becomes easier to mold the manganese carbonate carrier than when powdered silica is contained as it is.
  • the content of silica in the catalyst of the present embodiment is 10 to 25% by mass, preferably 10 to 20% by mass in terms of oxide and on the catalyst basis.
  • the silica to be contained in manganese carbonate is preferably a silica sol. By using silica sol, it becomes easier to mold the manganese carbonate carrier than when powdered silica is contained as it is.
  • Examples of the organic binder used in the catalyst of the present embodiment include carboxymethyl cellulose and methyl cellulose, and methyl cellulose is preferably selected.
  • the content of the organic binder in the catalyst of the present embodiment is 6% by mass or less, preferably 0.5 to 4% by mass based on the catalyst.
  • an organic binder together with silica not only the carrier can be easily molded, but also sufficient strength can be obtained.
  • the content of the organic binder is 0.5% by mass or more, a catalyst having more sufficient strength can be produced.
  • content of an organic binder 6 mass% or less the fall of a surface area and pore volume can be suppressed, and also the fall of FT reaction activity by the fall of manganese carbonate content can be suppressed. Can do.
  • the manganese carbonate carrier used in the catalyst of the present embodiment is prepared by kneading a mixture containing at least silica and an organic binder (and other components as necessary) in manganese carbonate, and then obtaining the kneaded product. It is a molded carrier prepared by molding.
  • the method of kneading is not particularly limited, and the kneading may be performed manually using a mortar or the like, or may be performed using a kneader generally used in the production of a catalyst.
  • a molding method It can shape
  • the pressure applied by extrusion molding at the time of molding is low, and it is most preferable from the viewpoint that a catalyst having a surface area of 100 to 210 m 2 / g and a pore volume of 0.1 to 0.6 ml / g can be easily prepared.
  • the shape of the formed manganese carbonate carrier is not particularly limited, and a normal cylindrical product, a special shape extruded product such as a four-leaf shape or a ring shape can be used. Further, the size of the manganese carbonate support is not particularly limited, and is appropriately selected within the range in which the generation of the differential pressure can be suppressed according to the size of the reactor.
  • the shaped manganese carbonate carrier is then dried.
  • the drying temperature at this time is preferably 250 ° C. or less, more preferably 120 to 220 ° C. By setting the drying temperature to 120 ° C. or higher, it is possible to sufficiently promote the transpiration of moisture and increase the strength of the carrier. Moreover, if a drying temperature is 250 degrees C or less, it can suppress that the manganese carbonate of a support
  • Ruthenium is preferably selected as the FT active metal species in the catalyst of the present embodiment. In addition to using ruthenium alone, it can be used in combination with nickel, cobalt, iron or the like. As the FT active metal species used in addition to ruthenium, it is preferable to use nitrate (for example, cobalt nitrate).
  • the catalyst of this embodiment is prepared by including the FT active metal species in the carrier (catalyst precursor) dried after molding.
  • One method for incorporating a FT active metal species into a manganese carbonate carrier is to impregnate and support the FT active metal species on a manganese carbonate carrier.
  • the impregnation support will be described.
  • This impregnation support can be performed, for example, by impregnating a manganese carbonate carrier with an aqueous solution of a ruthenium salt, and then drying and baking.
  • an aqueous solution containing both a ruthenium salt and a cobalt salt may be prepared, impregnated with a ruthenium salt and a cobalt salt at the same time, and then dried and fired. Alternatively, each may be impregnated separately and then dried and fired.
  • the method for impregnating and supporting the FT active metal species on the manganese carbonate support is not particularly limited.
  • ruthenium salt used for the impregnation support examples include water-soluble ruthenium salts such as ruthenium chloride, ruthenium nitrate, ruthenium acetate, and ruthenium hexaammonium chloride. It is also possible to use a solution prepared so that ruthenium is already dissolved, such as a ruthenium nitrate solution. Furthermore, it is also possible to use an organic solvent such as alcohol, ether or ketone instead of water as the solvent of the ruthenium salt solution used for impregnation support. In this case, these salts are soluble in various organic solvents. Choose salt.
  • the ruthenium content in the catalyst of the present embodiment is preferably 0.5 to 5% by mass, more preferably 0.8 to 4.5% by mass, and particularly preferably 1 to 4% by mass in terms of the amount of metal based on the catalyst. It is.
  • the amount of ruthenium supported is related to the number of active sites. By setting the supported amount of ruthenium to 0.5% by mass or more, the number of active points can be kept better and sufficient catalytic activity can be obtained. Further, by setting the loading of ruthenium to 5% by mass or less, it is possible to more effectively suppress the reduction of ruthenium dispersibility and the expression of ruthenium species that do not interact with the carrier component.
  • ruthenium nitrate as a ruthenium source when ruthenium is contained in the manganese carbonate support.
  • ruthenium when ruthenium is impregnated and supported on a manganese carbonate carrier, it can be carried out by impregnating the manganese carbonate carrier with a ruthenium nitrate solution, followed by drying and firing.
  • Ruthenium chloride is an example of a ruthenium salt that is generally widely used as a ruthenium source when ruthenium is contained in a carrier.
  • Ruthenium nitrate and ruthenium chloride contain anions (nitrate ions and chloride ions) that are unnecessary for the FT reaction, and in the production of FT synthesis catalysts, anions that are unnecessary for activity are removed. There is. Since nitrate ions are easier to remove than chloride ions, the use of ruthenium nitrate in the removal of anions makes it possible to produce a FT synthesis catalyst more costly than in the case of using ruthenium chloride. Can be expected to be suppressed.
  • the ruthenium nitrate solution can be used by adjusting the ruthenium concentration in the solution using a solvent such as water or an organic solvent (alcohol, ether, or ketone) as necessary.
  • a solvent such as water or an organic solvent (alcohol, ether, or ketone) as necessary.
  • drying is performed. Drying at this time is performed for the purpose of transpiration of water and activation of the FT active metal species.
  • the drying temperature is preferably 250 ° C. or less, more preferably 70 to 220 ° C. By setting the drying temperature to 70 ° C. or higher, it is possible to sufficiently promote the transpiration of water. On the other hand, if a drying temperature is 250 degrees C or less, the nonuniformity of the active metal component by rapid evaporation of water can be suppressed, and the thermal decomposition of an organic binder can be suppressed. Further, in order to activate the FT active metal species, a corresponding temperature is required. Also from this point, the drying temperature is preferably within the above range.
  • the drying temperature is more preferably 70 to 170 ° C.
  • the drying temperature is more preferably 70 to 170 ° C.
  • the manganese carbonate support after supporting ruthenium nitrate is composed of manganese oxide and carbonic acid. Decomposition into gas can be suppressed.
  • the CO conversion rate is higher than when drying at a temperature higher than 170 ° C., and A very high performance catalyst for FT synthesis with low CH 4 selectivity can be obtained.
  • the ruthenium nitrate is used as a ruthenium source and drying is performed under a drying condition of 70 to 170 ° C.
  • the distribution state of the FT active metal on the shaped carrier, the metal particle diameter, or the state of binding with the shaped carrier component is suitable for the fixed bed Fischer-Tropsch synthesis and the activity is improved.
  • the drying processing time is not generally determined depending on the processing amount, but is usually 1 to 10 hours. By setting the treatment time to 1 hour or longer, it is possible to reliably evaporate moisture and to suppress the activation of the FT active metal species from being diluted. Further, even if the treatment time exceeds 10 hours, the catalytic activity is almost the same as when the treatment time is 10 hours or less. Therefore, considering workability and productivity, 10 hours or less is preferable.
  • This drying may be performed in the air, or may be an inert gas atmosphere such as nitrogen or helium, or a reducing gas atmosphere such as hydrogen, and is not particularly limited.
  • a manganese carbonate carrier is immersed in an aqueous solution of FT active metal species (solution containing ruthenium nitrate (other FT active metal species if necessary)) to deposit the active metal on the carrier.
  • FT active metal species solution containing ruthenium nitrate (other FT active metal species if necessary)
  • a method of adsorption equilibrium adsorption
  • a method of immersing the support in an aqueous solution of FT active metal species, and then adding an alkaline precipitant solution such as aqueous ammonia to precipitate the active metal on the support deposit method
  • the catalyst of the present embodiment can also be prepared by adding an FT active metal species to the manganese carbonate support.
  • the surface area of the catalyst of the present embodiment thus obtained is 100 to 210 m 2 / g, preferably 100 to 190 m 2 / g.
  • the pore volume of the catalyst of the present embodiment is 0.1 to 0.6 ml / g, preferably 0.1 to 0.5 ml / g.
  • a high FT activity is achieved by having the surface area and pore volume within these ranges.
  • the catalyst of the present embodiment can be used for the production of hydrocarbons by the FT reaction, similarly to other FT synthesis catalysts. That is, hydrocarbons can be synthesized by bringing the catalyst of this embodiment into contact with synthesis gas mainly composed of hydrogen and carbon monoxide.
  • the catalyst of the present embodiment there are a fixed bed, a fluidized bed, a suspension bed, a slurry bed, etc. with respect to the reactor type of the FT reaction.
  • the catalyst is optimal for a fixed bed. Below, the manufacturing method of hydrocarbons by a fixed bed is demonstrated.
  • the catalyst of this embodiment prepared as described above is filled and fixed inside the reactor.
  • the inside of the reactor may be filled with the catalyst of the present embodiment alone, or the catalyst of the present embodiment and a component inactive to the FT reaction may be mixed and filled.
  • the catalyst of this embodiment is subjected to reduction treatment (activation treatment) in advance before being subjected to the FT reaction.
  • reduction treatment activation treatment
  • the catalyst is activated so as to exhibit a desired catalytic activity in the FT reaction. If this reduction treatment is not performed, the FT active metal species are not sufficiently reduced and do not exhibit the desired catalytic activity in the FT reaction.
  • the treatment temperature in the reduction treatment of the catalyst of this embodiment is preferably 140 to 250 ° C, more preferably 150 to 240 ° C, and most preferably 160 to 230 ° C. If the temperature of the reduction treatment is 140 ° C. or higher, the FT active metal species is sufficiently reduced and sufficient reaction activity is obtained. Moreover, if the temperature of a reduction process is 250 degrees C or less, thermal decomposition of a carrier component etc. can be suppressed.
  • a reducing gas mainly containing hydrogen is preferably used.
  • the reducing gas to be used may contain a certain amount of components other than hydrogen, for example, water vapor, nitrogen, rare gas, etc. within a range that does not hinder the reduction.
  • the reduction treatment is influenced by the hydrogen partial pressure and the treatment time as well as the treatment temperature, but the hydrogen partial pressure is preferably 0.1 to 10 MPa, more preferably 0.5 to 6 MPa, and 1 to 5 MPa. Is most preferred.
  • the reduction treatment time varies depending on the catalyst amount, the hydrogen aeration amount, etc., but is generally preferably 0.1 to 72 hours, more preferably 1 to 48 hours, and most preferably 4 to 48 hours. If the treatment time is 0.1 hour or longer, it is possible to avoid insufficient activation of the catalyst. Moreover, if it is 72 hours or less, it is enough for the improvement of catalyst performance.
  • the catalyst of this embodiment reduced as described above is used for the FT reaction, that is, the hydrocarbon synthesis reaction.
  • a synthesis gas composed of hydrogen and carbon monoxide is brought into contact with a catalyst charged and fixed in the reactor.
  • the synthesis gas used for the FT reaction only needs to contain hydrogen and carbon monoxide as main components, and other components that do not interfere with the FT reaction may be mixed. Further, since the rate (k) of the FT reaction depends on the first order of the hydrogen partial pressure, it is desirable that the partial pressure ratio of hydrogen and carbon monoxide (H 2 / CO molar ratio) is 0.6 or more.
  • the total value of the partial pressures of hydrogen and carbon monoxide is higher.
  • the upper limit of the partial pressure ratio of hydrogen and carbon monoxide is not particularly limited, but the practical range of the partial pressure ratio is preferably 0.6 to 2.7, more preferably 0.8 to 2.5, and particularly It is preferably 1 to 2.3. If this partial pressure ratio is 0.6 or more, it is possible to prevent the yield of produced hydrocarbons from decreasing, and if this partial pressure ratio is 2.7 or less, gas is produced in the produced hydrocarbons. The tendency to increase the components and light components can be suppressed.
  • synthesis gas mixed with carbon dioxide obtained by a reforming reaction of natural gas or petroleum products can be used without any problem.
  • other components that do not interfere with the FT reaction other than carbon dioxide may be mixed.
  • a synthesis gas containing partially oxidized nitrogen or the like may be used.
  • Carbon dioxide can also be positively added to synthesis gas containing no carbon dioxide.
  • a synthetic gas containing carbon dioxide obtained by reforming natural gas or petroleum products by a self-thermal reforming method or a steam reforming method or the like can be directly subjected to FT reaction without decarboxylation treatment for removing carbon dioxide therein, the equipment construction cost and operation cost required for decarboxylation treatment can be reduced, and can be obtained by FT reaction. The manufacturing cost of hydrocarbons can be reduced.
  • the total pressure of the synthesis gas (mixed gas) subjected to the FT reaction is preferably 0.5 to 10 MPa, 0.7 to 7 MPa is more preferable, and 0.8 to 5 MPa is still more preferable. If this total pressure is 0.5 MPa or more, chain growth is sufficient, and it is possible to prevent the yield of gasoline, kerosene, wax, and the like from decreasing. In terms of equilibrium, the higher the partial pressure of hydrogen and carbon monoxide, the more advantageous. However, if the total pressure is 10 MPa or less, the plant construction cost will increase, and the size of the compressor required for compression will increase. As a result, disadvantages from an industrial point of view such as an increase in operating costs can be suppressed accordingly.
  • the reaction temperature is suitably 200 to 350 ° C., and 210 to 310 ° C. Is preferable, and 220 to 290 ° C. is more preferable.
  • the CO conversion rate is defined by the following formula.
  • CO conversion rate [(number of CO moles in raw material gas per unit time) ⁇ (number of CO moles in outlet gas per unit time)] / number of CO moles in raw material gas per unit time ⁇ 100
  • CO analysis was performed by a thermal conductivity gas chromatograph (TCD-GC) using an active carbon (60/80 mesh) as a separation column.
  • the raw material gas used was a synthesis gas (mixed gas of H 2 and CO) added with 25% by volume of Ar as an internal standard.
  • Qualitative and quantitative analysis was performed by comparing the peak position and peak area of CO with Ar.
  • the chemical component of the catalyst was identified by ICP (CQM-10000P, manufactured by Shimadzu Corporation). Further, CH 4 selectivity was calculated by the following equation.
  • CH 4 selectivity (%) (number of moles of CH 4 in the outlet gas per unit time) / ⁇ (number of moles of CO in the raw material gas per unit time) ⁇ (number of moles of CO in the outlet gas per unit time) ) ⁇ ⁇ 100
  • Manganese carbonate (II) n hydrate manufactured by Wako Pure Chemical Industries was used as manganese carbonate.
  • the specific surface area measured by the N 2 adsorption method was 46.4 m 2 / g, and the pore volume was 0.15 ml / g.
  • 24 g of manganese carbonate was weighed, 29.1 g of silica sol SI-550 (manufactured by JGC Catalysts & Chemicals, SiO 2 content: 20% by mass) and 0.3 g of methyl cellulose (manufactured by Wako Pure Chemical Industries, Ltd.) And kneaded thoroughly in a mortar.
  • the obtained kneaded product was formed into a cylindrical shape having a diameter of 1.4 mm and a length of 3 to 4 mm by an extrusion molding machine, and dried in air at 200 ° C. for 3 hours to obtain a manganese carbonate carrier (catalyst precursor).
  • a manganese carbonate carrier catalog 1
  • 19.4 g of the obtained manganese carbonate support was weighed and impregnated with an aqueous ruthenium chloride solution in which 1.5 g of ruthenium chloride (manufactured by Kojima Chemical Co., Ltd., Ru Assay: 40.79% by mass) was dissolved in 7.7 g of water. After leaving it to stand for 1 hour, it was dried in air at 80 ° C. for 5 hours to obtain Catalyst A.
  • the silica content was 18.7% by mass in terms of oxide and on the catalyst basis, and the methylcellulose content was 0.9% by mass on the catalyst basis from the charged amount, ruthenium.
  • the content of was 2.6% by mass in terms of metal and on a catalyst basis.
  • the catalyst A was evacuated at 200 ° C. for 3 hours, and then subjected to nitrogen adsorption measurement.
  • the catalyst physical properties were measured by the BET method and the DH method. As a result, the surface area was 115 m 2 / g, the pore volume was 0. It was 19 ml / g.
  • W / F (weight / flow) was about 13.5 g ⁇ hr / mol. Generation of differential pressure was not confirmed by using the molded catalyst A.
  • Example 2 Catalyst B was obtained in the same manner as in Example 1 except that the amount of methylcellulose added was 0.6 g.
  • the silica content was 18.6% by mass in terms of oxide and on the catalyst basis, and the methylcellulose content was 1.8% by mass on the catalyst basis from the charged amount, ruthenium.
  • the content of was 2.5% by mass in terms of metal and on a catalyst basis.
  • the surface area of the catalyst B was 109 m 2 / g and the pore volume was 0.19 ml / g.
  • This catalyst B was subjected to the FT reaction in the same manner as in Example 1. 20 hours after the start of evaluation at 270 ° C., the CO conversion was about 68.1%, and the CH 4 selectivity was 11.7%.
  • Example 3 Catalyst C was obtained in the same manner as in Example 1 except that the amount of methylcellulose added was 1.8 g.
  • the silica content was 17.5% by mass in terms of oxide and on the catalyst basis, and the methylcellulose content was 5.2% by mass on the catalyst basis from the charged amount, ruthenium.
  • the content of was 2.8% by mass in terms of metal and on a catalyst basis.
  • the surface area of the catalyst C was 105 m 2 / g and the pore volume was 0.18 ml / g.
  • This catalyst C was subjected to the FT reaction in the same manner as in Example 1.
  • the FT reaction at 270 ° C. 20 hours after the start of evaluation, the CO conversion was about 57.7%, and the CH 4 selectivity was 13.1%.
  • Example 4 Catalyst D was obtained in the same manner as in Example 1 except that the amount of ruthenium chloride added was changed to 1.0 g.
  • the silica content was 17.5% by mass in terms of oxide and on the catalyst basis, and the methylcellulose content was 1.9% by mass on the catalyst basis from the amount charged, ruthenium.
  • the content of was 1.7% by mass in terms of metal and on a catalyst basis.
  • the surface area of the catalyst D was 103 m 2 / g and the pore volume was 0.26 ml / g.
  • This catalyst D was subjected to FT reaction in the same manner as in Example 1. 20 hours after the start of the FT reaction at 270 ° C., the CO conversion was about 65.7%, and the CH 4 selectivity was 14.1%.
  • Example 5 A manganese carbonate carrier was obtained in the same manner as in Example 2. 29.1 g of the shaped manganese carbonate carrier was weighed and impregnated with 11.2 g of a ruthenium (III) nitrate solution (made by Furuya Metal Co., Ltd., ruthenium content: 8% by mass). The catalyst E was obtained by drying at 0 ° C. for 8 hours. As a result of the chemical composition analysis of the catalyst E by ICP, the silica content was 17.2% by mass in terms of oxide and on the catalyst basis, and the methylcellulose content was 1.8% by mass on the catalyst basis from the amount charged, ruthenium. The content of was 3.3% by mass in terms of metal and on a catalyst basis.
  • the surface area of the catalyst E was 185 m 2 / g and the pore volume was 0.42 ml / g.
  • This catalyst E was subjected to FT reaction in the same manner as in Example 1. The FT reaction at 270 ° C. 20 hours after the start of evaluation, the CO conversion was about 75.0%, and the CH 4 selectivity was 12.7%.
  • Example 6 A manganese carbonate carrier was obtained in the same manner as in Example 2. 29.4 g of the shaped manganese carbonate carrier was weighed and impregnated with a mixture of 7.5 g of a ruthenium (III) nitrate solution (made by Furuya Metal, ruthenium content: 8.05 mass%) and 4.3 g of purified water. And left to stand for 1 hour, and then dried in air at 80 ° C. for 8 hours to obtain Catalyst F. As a result of analyzing the chemical composition of the catalyst F by ICP, the content of ruthenium was 1.8% by mass in terms of metal and based on the catalyst. 3 g of catalyst F was subjected to FT reaction in the same manner as in Example 1. 20 hours after the start of evaluation at 270 ° C., the CO conversion was about 55.3%, and the CH 4 selectivity was 7.2%.
  • ruthenium (III) nitrate solution made by Furuya Metal, ruthenium content: 8.05 mass
  • Example 7 Catalyst G was obtained in the same manner as in Example 5 except that the drying temperature after impregnation was 200 ° C. As a result of analyzing the chemical composition of the catalyst G by ICP, the content of ruthenium was 3.5% by mass in terms of metal and based on the catalyst. This catalyst G was subjected to the FT reaction in the same manner as in Example 1. 20 hours after the start of evaluation at 270 ° C., the CO conversion was about 68.4%, and the CH 4 selectivity was 13.8%.
  • Example 8 Catalyst H was obtained in the same manner as in Example 6 except that the drying temperature after impregnation was 200 ° C. As a result of analyzing the chemical composition of the catalyst H by ICP, the content of ruthenium was 2.2% by mass in terms of metal and based on the catalyst. This catalyst H was subjected to FT reaction in the same manner as in Example 1. The FT reaction at 270 ° C. 20 hours after the start of evaluation, the CO conversion was about 46.6%, and the CH 4 selectivity was 8.3%.
  • Catalyst I was obtained in the same manner as in Example 6 except that the drying temperature after impregnation was 60 ° C.
  • the content of ruthenium was 1.5% by mass in terms of metal and on the catalyst basis.
  • This catalyst I was subjected to the FT reaction in the same manner as in Example 1.
  • Catalyst a was obtained in the same manner as in Example 1 except that the amount of methylcellulose added was 3.5 g.
  • the silica content was 17.1% by mass in terms of oxide and on the catalyst basis, and the methylcellulose content was 9.8% by mass on the catalyst basis from the amount charged, ruthenium The content of was 2.5% by mass in terms of metal and on a catalyst basis.
  • the surface area of the catalyst a was 98 m 2 / g and the pore volume was 0.18 ml / g.
  • This catalyst a was subjected to the FT reaction in the same manner as in Example 1. The FT reaction at 270 ° C. 20 hours after the start of evaluation, the CO conversion was about 48.2%, and the CH 4 selectivity was 14.9%.
  • Catalyst b was obtained in the same manner as in Example 1 except that the amount of methylcellulose added was 4.4 g.
  • the silica content was 15.1% by mass in terms of oxide and on the catalyst basis, and the methylcellulose content was 12.0% by mass on the catalyst basis from the charged amount, ruthenium.
  • the content of was 3.0% by mass in terms of metal and on a catalyst basis.
  • the surface area of the catalyst b was 82 m 2 / g and the pore volume was 0.16 ml / g.
  • This catalyst b was subjected to the FT reaction in the same manner as in Example 1.
  • the FT reaction at 270 ° C. 20 hours after the start of evaluation, the CO conversion was about 42.3%, and the CH 4 selectivity was 16%.
  • Catalyst c was obtained in the same manner as in Example 1 except that the addition amount of manganese carbonate was 29.4 g, the addition amount of silica sol was 15.6 g, and the addition amount of methylcellulose was 0.6 g.
  • the silica content was 9.5% by mass in terms of oxide and on the catalyst basis, and the methylcellulose content was 1.7% by mass on the catalyst basis from the amount charged, ruthenium.
  • the content of was 2.3% by mass in terms of metal and on a catalyst basis.
  • the surface area of the catalyst c was 87 m 2 / g and the pore volume was 0.18 ml / g.
  • This catalyst c was subjected to the FT reaction in the same manner as in Example 1.
  • Example 1 to 9 and Comparative Examples 1 to 3 are shown in Tables 1 to 3. From Tables 1 to 3, it is clear that the catalyst (catalysts A to I) of the present invention has a low production rate of CH 4 which is a gas component. Among them, the catalysts A to G were particularly high in CO conversion rate and low in the generation ratio of CH 4 as a gas component. On the other hand, the catalysts a and b having a methylcellulose content higher than 6% by mass have a ruthenium content of 0.5 to 5% by mass, as in the case of the catalysts A to E. The surface area was narrower than 100 m 2 / g despite being 10-25% by weight on the catalyst basis.
  • the surface area of the catalyst c having a silica content of less than 10% by mass in terms of oxide and on the basis of the catalyst was also smaller than 100 m 2 / g. It was speculated that the surface area of the catalyst was smaller than 100 m 2 / g as described above, which was the cause of the inferior FT activity of the catalysts a to c than the catalysts A to E. Further, when the catalysts E to I are compared, the drying temperature after impregnation is within the range of 70 to 170 ° C (catalysts E and F), and the drying temperature exceeds the range of 70 to 170 ° C. Compared to the catalyst, there was a tendency that the CO conversion rate was high and the generation ratio of CH 4 as a gas component was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

 このFT合成用触媒では、炭酸マンガンに、シリカを酸化物換算及び触媒基準で10~25質量%、有機バインダーを触媒基準で6質量%以下、ルテニウムを金属換算及び触媒基準で0.5~5質量%含有させてなり、かつ表面積が100~210m/g、細孔容積が0.1~0.6ml/gであることを特徴とする。

Description

フィッシャー・トロプシュ合成用触媒、及びその製造方法、並びにフィッシャー・トロプシュ合成用触媒を用いた炭化水素類の製造方法
 本発明は、フィッシャー・トロプシュ合成用触媒、及びその製造方法、並びにフィッシャー・トロプシュ合成用触媒を用いた炭化水素類の製造方法に関する。
 本発明は、水素と一酸化炭素を主成分とする混合ガス(以下「合成ガス」という)から炭化水素類を製造するための、フィッシャー・トロプシュ合成用触媒、当該触媒の製造方法、及び当該方法により製造された触媒を用いた炭化水素類の製造方法に関する。さらに詳しくは、主として炭酸マンガンからなる担体に、フィッシャー・トロプシュ反応に対する活性を有する金属(以下、「FT活性金属」という。)を含有させてなる触媒、その触媒の製造方法、及び当該方法により製造された触媒に合成ガスを接触させ、ナフサ、灯油、軽油、ワックスといった炭化水素類を製造する方法に関する。
 本願は、2011年1月24日に、日本に出願された特願2011-11896号、及び2011年1月24日に、日本に出願された特願2011-11897号に基づき優先権を主張し、その内容をここに援用する。
 合成ガスから炭化水素類を合成する方法として、フィッシャー・トロプシュ反応(Fischer-Tropsch反応)(以下「FT反応」という。)、メタノール合成反応、C2含酸素(エタノール、アセトアルデヒド等)合成反応などが良く知られている。FT反応は鉄、コバルト、ニッケルの鉄族元素やルテニウム等の白金族元素を活性金属とする触媒で進行し、メタノール合成反応は銅系触媒で進行し、C2含酸素合成反応はロジウム系触媒で進行することが知られている(例えば、非特許文献1参照。)。
 ところで、近年、大気環境保全の観点から、低硫黄分の軽油が望まれている。また、原油資源は有限であるとの観点やエネルギーセキュリティーの面から、石油代替燃料の開発が望まれている。これらの要望に応える技術として、エネルギー換算で原油に匹敵する可採埋蔵量があるといわれる天然ガス(主成分メタン)から灯軽油等の液体燃料を合成する技術であるGTL(gas to liquids)がある。天然ガスは、硫黄分を含まないか、含んでいても脱硫が容易な硫化水素(HS)等であるため、得られる灯軽油等の液体燃料には、殆ど硫黄分を含んでおらず、またセタン価の高い高性能ディーゼル燃料に利用できるなどの利点があるため、このGTLは近年ますます注目されるようになってきている。
 上記GTLの一環として、合成ガスからFT反応によって炭化水素類を合成する方法(以下「FT法」という)が盛んに研究されている。FT法において炭化水素類の収率を高めるためには、炭化水素類の合成能力、すなわち活性が高く、ガス成分の生成が少なく、長時間安定した活性を示すといった優れた性能を有するFT合成用触媒を用いることが有効と考えられる。
 そして、従来から、種々のFT合成用触媒が提案されており、例えば、コバルトや鉄といったFT活性金属種を、アルミナやシリカ、シリカ-アルミナ、チタニアなどの金属酸化物担体に担持した触媒が提案されている(例えば、特許文献1~3参照。)。また、オレフィン類への高選択性を目的とした触媒として、マンガン酸化物担体にルテニウムを担持させた触媒や、当該ルテニウム担持触媒にさらに第三成分を加えた触媒などのルテニウム系触媒が提案されている(例えば、特許文献4及び5参照。)。
 これらの従来提案されている触媒は、それを用いたFT法において、相応に優れたオレフィン類の選択性や、相応の触媒活性を示すが、更なる触媒活性の向上が望まれる。一般に、触媒の活性が高いほど、触媒重量当たりの目的物の生産性が高く、同じ量の目的物を得るための触媒使用重量は少なくて済み、それに伴い反応器を小型化できるなど、触媒費用や装置費用の軽減が期待できる。
 例えば、FT合成用触媒には、生成物中のメタン等のガス成分の生成が少なく、灯油や軽油といった有用な液状の炭化水素類の得率が高いことも望まれる。そこで、本発明者らは、炭酸マンガン担体を用い、FT反応においてCO転化率が高く、ガス成分の生成が少なく、安定してFT合成反応を行うことができるFT合成用触媒に関して提案している(例えば、特許文献6参照。)。当該触媒は、非常に活性が高く、流動床、懸濁床、スラリー床で用いる場合などに最適である。
 一方で、反応器の種類に応じて、触媒が備えるべき好ましい物性が異なる場合が多い。例えば、スラリー床反応器用の微粉末状触媒を固定床反応器に用いる場合には、差圧の発生が懸念される。このため、固定床反応器には、差圧の発生が少ない成型触媒の使用が求められるが、微粉末状触媒と比較して成型触媒は触媒形状が大きいため、合成ガスと触媒との接触効率が低くなる傾向があり、より高活性な成型触媒を調製する事が重要となる。
 その他にも、固定床反応器用の触媒には、活性を維持するとともに、固定床反応器における反応に特有な触媒強度が必要とされるなど、スラリー床反応器とは異なる触媒物性が要求される。
米国特許第5733839号明細書 米国特許第5545674号明細書 欧州特許第0167215号明細書 特公平3-70691号公報 特公平3-70692号公報 国際公開第2009/157260号パンフレット 特開2010-5496号公報
「C1ケミストリー」、触媒学会編、講談社、1984年4月1日、第25頁
 そこで、本発明は、前記課題に鑑み、より高い性能を示すFT合成用の成型触媒、及びその製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究をした結果、炭酸マンガンに所定量の有機バインダーを含有させてなる成型担体に、FT活性金属を含有させ、さらに触媒の表面積や細孔容積を所定の範囲にすることにより、活性が高く、特に固定床反応器に好適なFT合成用触媒が得られることを見出し、本発明を完成するに至った。
 また、本発明者らは、炭酸マンガンを主成分とする成型担体にFT活性金属であるルテニウムを含浸担持させる際に、ルテニウム源として硝酸ルテニウムを用い、かつ所定の乾燥条件で乾燥することにより、より高い性能を示すFT合成用触媒が得られることを見出した。
 本発明の触媒の活性向上やガスの生成の低下の詳細なメカニズムについては解明されておらず、現在、鋭意検討中ではあるが、FT反応に対しては不活性である担体主成分の炭酸マンガンが何らかの形でFT活性金属種に作用し、活性を向上させるとともに、ガスの生成を抑制する作用を有するものと推察している。
 すなわち、本発明は、上記目的を達成するために、下記構成のFT合成用触媒、当該触媒の製造方法、及び当該方法により製造された触媒を用いた炭化水素類の製造方法を提供する。
(1) 炭酸マンガンに、シリカを酸化物換算及び触媒基準で10~25質量%、有機バインダーを触媒基準で6質量%以下、ルテニウムを金属換算及び触媒基準で0.5~5質量%含有させてなり、かつ表面積が100~210m/g、細孔容積が0.1~0.6ml/gであることを特徴とするフィッシャー・トロプシュ合成用触媒。
(2) 前記有機バインダーがメチルセルロースであることを特徴とする前記(1)に記載のフィッシャー・トロプシュ合成用触媒。
(3) 炭酸マンガンに、少なくとも、シリカの含有量が酸化物換算及び触媒基準で10~25質量%となるようにシリカゾルを、触媒基準で6質量%以下となるように有機バインダーを、それぞれ含有させた混合物を混練りした後、得られた混練物を成形することにより担体を調製し、
 次いで、前記担体を250℃以下で乾燥させることにより触媒前駆体を調製し、
 さらに、前記触媒前駆体に、ルテニウムを金属換算及び触媒基準で0.5~5質量%となるように含有させた後に、250℃以下で乾燥させることを特徴とするフィッシャー・トロプシュ合成用触媒の製造方法。
(4) 前記担体に、硝酸ルテニウムを用いてルテニウムを含有させた後に、70~170℃で乾燥させる前記(3)に記載のフィッシャー・トロプシュ合成用触媒の製造方法。
(5) 前記(1)又は(2)に記載のフィッシャー・トロプシュ合成用触媒を用いて、水素及び一酸化炭素を主成分とするガスから炭化水素類を合成することを特徴とする炭化水素類の製造方法。
(6) 前記(3)又は(4)に記載のフィッシャー・トロプシュ合成用触媒の製造方法により製造されたフィッシャー・トロプシュ合成用触媒を用いて、水素及び一酸化炭素を主成分とするガスから炭化水素類を合成することを特徴とする炭化水素類の製造方法。
 本発明のFT合成用触媒は、従来のアルミナやシリカを担体とする触媒に比較してCO転化率が高く、また、ガス成分であるCHなどの生成割合を低下させることができる。特に、本発明のFT合成用触媒は、炭酸マンガンに所定量の有機バインダーを含有させてなる担体に、FT活性金属を含有させていることに加えて、所定の表面積や細孔容積を有するため、優れたFT合成活性と、固定床反応において必要とされる触媒強度とを共に有している。
 本発明のFT合成用触媒の製造方法により、優れたFT合成活性と、固定床反応において必要とされる触媒強度とを共に備えるFT合成用触媒を製造することができる。
 また、本発明のFT合成用触媒の製造方法により得られるFT合成用触媒は、従来の成型触媒よりもFT活性が高く、かつCH選択率が低い、非常に優れた触媒である。
 また、本発明によれば、FT活性が高く、炭化水素類の生産性が高いFT合成用触媒が提供され、触媒コストや反応器のサイズダウン等の効果が見込まれる。
 以下、本発明の触媒、及びその調製からそれを用いた炭化水素類の製造方法までの一実施形態を説明する。
 <FT合成用触媒及びその製造方法>
 本実施形態のFT合成用触媒(以下「本実施形態の触媒」とも言う。)は、炭酸マンガンを主成分とし、シリカと有機バインダーを含有した担体(以下「炭酸マンガン担体」とも言う。)に、FT活性金属種を含有させてなるものである。
 また、本実施形態のFT合成用触媒の製造方法(以下、「本実施形態の触媒の製造方法」とも言う。)により得られる本実施形態の触媒は、炭酸マンガン担体に、硝酸ルテニウムを用いて、FT活性金属種であるルテニウムを含有させてなるものであるとよい。
 本実施形態の触媒における炭酸マンガン担体の主成分である炭酸マンガンとしては、工業的に生産販売されているものを用いることもできるし、また、従来公知の方法で製造することもできる。炭酸マンガンを公知方法で得る場合、例えば、可溶性マンガン塩溶液と炭酸アンモニアあるいはアルカリの炭酸塩(例えば、炭酸ナトリウム)を反応させることで得られる。また、二価のマンガンイオンと炭酸イオンあるいは重炭酸イオンとの反応によっても得ることができる。
 炭酸マンガン担体は、炭酸マンガンの効果を阻害しない限りにおいて、炭酸マンガン以外の他の成分を含んでいてもよい。この他の成分としては、シリカ、アルミナ、シリカ-アルミナなど、通常担体として用いられる無機酸化物が挙げられる。更に、カルボキシメチルセルロースやメチルセルロースなど、触媒成型時の助剤となる有機バインダーが挙げられる。これら他の成分の含有量は、炭酸マンガンの効果を阻害しない限りにおいて、適宜設定できるが、一般に、担体基準で5~50質量%が適当である。
 成型性の点から、本実施形態の触媒における炭酸マンガン担体においては、炭酸マンガンの他に、無機酸化物と有機バインダーの両方を含むものであることが好ましく、シリカと有機バインダーを含むものであることがより好ましい。炭酸マンガンに含有させるシリカとしては、シリカゾルであることが好ましい。シリカゾルを用いることにより、粉末状のシリカをそのまま含有させる場合よりも、炭酸マンガン担体の成形が容易となる。
 本実施形態の触媒におけるシリカの含有量は、酸化物換算及び触媒基準で10~25質量%、好ましくは10~20質量%である。触媒におけるシリカの含有量を10質量%以上とすることにより、触媒強度が向上し、かつFT反応に適した表面積や細孔容積が得られる。また、触媒におけるシリカの含有量を25質量%以下とすることにより、所期の炭酸マンガンの効果への阻害を抑制できる。炭酸マンガンに含有させるシリカとしては、シリカゾルであることが好ましい。シリカゾルを用いることにより、粉末状のシリカをそのまま含有させる場合よりも、炭酸マンガン担体の成形が容易となる。
 本実施形態の触媒に用いられる有機バインダーとしては、カルボキシメチルセルロースやメチルセルロース等が挙げられ、好ましくはメチルセルロースが選択される。本実施形態の触媒における有機バインダーの含有量は、触媒基準で6質量%以下、好ましくは0.5~4質量%である。シリカとともに有機バインダーを含有させることにより、担体の成形が容易になるだけでなく、十分な強度を得ることができる。特に、有機バインダーの含有量を0.5質量%以上とすることにより、より十分な強度を備える触媒を製造することができる。また、有機バインダーの含有量を6質量%以下とすることにより、表面積や細孔容積の低下を抑制することができ、さらにまた、炭酸マンガン含有量の低下によるFT反応活性の低下を抑制することができる。
 本実施形態の触媒に用いられる炭酸マンガン担体は、炭酸マンガンに、少なくともシリカと有機バインダーと(必要に応じてその他の成分と)を含有させた混合物を混練りした後、得られた混練物を成形することにより調製された成型担体である。
 混練の方法としては、特に限定されず、乳鉢等を用いて手動で混練してもよく、触媒の製造において通常用いられている混練機を用いて行ってもよい。
 また、成形の方法としては、特に限定されず、押出し成形や打錠成形によって成形することができる。これらのうち、押出し成形が成形時に与える圧力が低く、簡便に表面積100~210m/g、細孔容積0.1~0.6ml/gの触媒を調製し得るとの観点から最も好ましい。
 成形された炭酸マンガン担体の形状は特に限定されず、通常の円柱品や、四葉状やリング状といった特殊形状押出し品を用いることができる。また、炭酸マンガン担体のサイズは特に限定されず、反応器のサイズに合わせて、差圧の発生を抑制できる範囲で適宜選択される。
 成形された炭酸マンガン担体は、その後乾燥される。この時の乾燥温度は、250℃以下が好ましく、120~220℃がより好ましい。乾燥温度を120℃以上とすることにより、水分の蒸散を十分に促進することが可能であり、担体の強度が増加する。また、乾燥温度が250℃以下であれば、担体成分の炭酸マンガンがマンガン酸化物と炭酸ガスに分解することを抑制することができ、また有機バインダーが熱分解することを抑制できる。
 本実施形態の触媒におけるFT活性金属種としては、ルテニウムが好ましく選択される。また、ルテニウム単独で用いるだけでなく、ニッケル、コバルト、鉄等と、複合させて用いることも可能である。ルテニウム以外に用いられるFT活性金属種としても、硝酸塩(例えば、硝酸コバルト等)を用いることが好ましい。
 成形後乾燥された担体(触媒前駆体)に、FT活性金属種を含有させることにより、本実施形態の触媒が調製される。炭酸マンガン担体にFT活性金属種を含有させる方法の一つに、FT活性金属種を炭酸マンガン担体に含浸担持させる方法がある。以下、この含浸担持について、説明する。
 この含浸担持は、例えば、炭酸マンガン担体にルテニウム塩の水溶液を含浸させ、その後、乾燥、焼成することによって行うことができる。このとき、FT活性金属種として2種以上の金属を担持する場合、例えばルテニウム塩とコバルト塩の両方含む水溶液を調製し、ルテニウム塩とコバルト塩を同時に含浸させ、その後、乾燥、焼成することもできるし、各々を別途に順次含浸させ、その後、乾燥、焼成しても良い。炭酸マンガン担体へのFT活性金属種の含浸担持方法は、特に限定されない。
 上記含浸担持に用いるルテニウム塩としては、塩化ルテニウム、硝酸ルテニウム、酢酸ルテニウム、塩化六アンモニアルテニウムなどの水溶性ルテニウム塩が挙げられる。また、硝酸ルテニウム溶液などの既にルテニウムが溶解しているように調製されている溶液も用いることが可能である。さらに、含浸担持に用いるルテニウム塩の溶液の溶媒に、水ではなく、アルコール、エーテル、ケトンなどの有機溶媒を用いることも可能であり、この場合は、これらの塩として各種有機溶媒に可溶な塩を選択する。
 本実施形態の触媒におけるルテニウムの含有量は、触媒基準、金属量換算で好ましくは0.5~5質量%、より好ましくは0.8~4.5質量%、特に好ましくは1~4質量%である。ルテニウムの担持量は活性点数と関連する。ルテニウムの担持量を0.5質量%以上とすることにより、活性点数がより良好に保たれ、十分な触媒活性を得ることができる。また、ルテニウムの担持量を5質量%以下とすることにより、ルテニウムの分散性の低下や、担体成分と相互作用を持たないルテニウム種が発現するのをより効果的に抑制できる。
 本実施形態の触媒の製造方法においては、炭酸マンガン担体にルテニウムを含有させる際に、特にルテニウム源として硝酸ルテニウムを用いることが好ましい。例えば、炭酸マンガン担体へルテニウムを含浸担持させる場合には、炭酸マンガン担体に硝酸ルテニウム溶液を含浸させ、その後、乾燥、焼成することによって行うことができる。
 ルテニウムを担体に含有させる場合にルテニウム源として一般的に広く用いられているルテニウム塩として、塩化ルテニウムが挙げられる。硝酸ルテニウムと塩化ルテニウムには、FT反応に不必要な陰イオン(硝酸イオンや塩素イオン)が含まれており、FT合成用触媒の製造においては、活性に不要な陰イオンの除去が行われる場合がある。硝酸イオンは、塩素イオンと比較して除去することが容易であるため、陰イオン除去を行う場合に、硝酸ルテニウムを用いることにより、塩化ルテニウムを用いた場合よりも、FT合成用触媒の製造コストを抑えられることが期待できる。
 硝酸ルテニウム溶液は、必要に応じて、水、又は有機溶媒(アルコール、エーテル、又はケトン)などの溶媒を用いて溶液中のルテニウム濃度を調節して使用することができる。
 FT活性金属種を炭酸マンガン担体に含浸した後は、乾燥を行う。このときの乾燥は、水を蒸散させ、FT活性金属種の活性化を図る目的で行う。この乾燥時の温度は250℃以下が好ましく、70~220℃がより好ましい。乾燥温度を70℃以上とすることで、水の蒸散を十分に促進することが可能である。一方で、乾燥温度が250℃以下であれば、急激な水の蒸散による活性金属成分の不均一化を抑制し、有機バインダーの熱分解を抑制することができる。また、FT活性金属種の活性化を図るためには、相応の温度が必要である。この点からも、乾燥温度は上記範囲が好ましい。
 特に、硝酸ルテニウムを用いてFT活性金属種を担持させた場合、乾燥温度は70~170℃であることがより好ましい。乾燥温度を70℃以上とすることで、水等の溶媒の蒸散を十分に促進することが可能である。70℃より低い温度で乾燥を行った場合には、水等の蒸散が不十分であり、触媒単位重量当たりのFT活性金属含有量が低くなり、高い触媒性能を得ることができなくなる。一方で、乾燥温度が170℃以下であれば、急激な水等の蒸散による活性金属成分の不均一化を抑制することができ、また、硝酸ルテニウム担持後の炭酸マンガン担体が、酸化マンガンと炭酸ガスに分解することを抑制することができる。
 また、ルテニウムを含浸させた後の炭酸マンガン担体の乾燥を、170℃以下という比較的低い温度で行うことにより、170℃よりも高い温度で乾燥させた場合よりも、CO転化率が高く、かつCH選択率が低い、非常に高性能なFT合成用触媒を得ることができる。
 本実施形態の触媒の活性向上の詳細なメカニズムについては解明されておらず、現在、鋭意検討中ではあるが、硝酸ルテニウムをルテニウム源として用い、かつ70~170℃という乾燥条件で乾燥を行うことにより、FT活性金属の成型担体上での分布状態や金属粒子径、又は成型担体成分との結合状態が固定床フィッシャー・トロプシュ合成に適した状態となり、活性を向上させるものと推察している。
 乾燥の処理時間は、処理量によって一概には決まらないが、通常1~10時間である。処理時間を1時間以上とすることにより、水分の蒸散を確実に行い、FT活性金属種の活性化が希薄となることを抑制できる。また、処理時間が10時間を超えても、触媒活性は、10時間以下の場合とほとんど変わらないため、作業性や生産性を考慮すると10時間以下が好ましい。なお、この乾燥は空気中で行うことも、あるいは窒素やヘリウムといった不活性ガス雰囲気でも、水素などの還元ガス雰囲気でもよく、特に限定はされない。
 上述の含浸担持法以外にも、例えば、炭酸マンガン担体をFT活性金属種の水溶液(硝酸ルテニウム(必要に応じてその他のFT活性金属種)を含有する溶液)に浸漬し担体上へ活性金属を吸着させる方法(平衡吸着)や、担体をFT活性金属種の水溶液に浸漬させた後、アンモニア水等のアルカリ性の沈殿剤溶液を加えて担体上に活性金属を沈殿させる方法(沈着法)等により、炭酸マンガン担体にFT活性金属種を含有させて本実施形態の触媒を調製することもできる。
 このようにして得られた本実施形態の触媒の表面積は、100~210m/g、好ましくは100~190m/gである。また、本実施形態の触媒の細孔容積は、0.1~0.6ml/g、好ましくは0.1~0.5ml/gである。表面積と細孔容積がこれらの範囲内にあることにより、高いFT活性が実現される。
 <炭化水素類の製造>
 本実施形態の触媒は、他のFT合成用触媒と同様に、FT反応による炭化水素類の製造に用いることができる。すなわち、本実施形態の触媒に水素及び一酸化炭素を主成分とする合成ガスを接触させることにより、炭化水素類を合成することができる。
 本実施形態の触媒を用いて炭化水素類を製造する場合においては、FT反応の反応器の形式に関しては、固定床、流動床、懸濁床、スラリー床などが挙げられるが、本実施形態の触媒は、固定床に対して最適である。以下に、固定床による炭化水素類の製造方法を説明する。
 本実施形態の触媒を用いた固定床による炭化水素の製造する場合、上記の如くして調製された本実施形態の触媒は反応器内部に充填され固定される。反応器内部へは、本実施形態の触媒を単独で充填させてもよく、本実施形態の触媒とFT反応に不活性な成分とを混合して充填することも可能である。
 本実施形態の触媒は、FT反応に供する前に、予め還元処理(活性化処理)される。この還元処理により、触媒がFT反応において所望の触媒活性を示すように活性化される。この還元処理を行わなかった場合には、FT活性金属種が十分に還元されず、FT反応において所望の触媒活性を示さない。
 本実施形態の触媒の還元処理における処理温度は、140~250℃が好ましく、150~240℃がより好ましく、160~230℃が最も好適である。還元処理の温度が140℃以上であれば、FT活性金属種が十分に還元され、十分な反応活性が得られる。また、還元処理の温度が250℃以下であれば、担体成分等の熱分解を抑制することができる。
 この還元処理には、水素を主成分とする還元性ガスが好ましく用いられる。用いる還元性ガスには、水素以外の成分、例えば水蒸気、窒素、希ガスなどを、還元を妨げない範囲である程度の量を含んでいても良い。
 また、この還元処理は、上記処理温度と共に、水素分圧及び処理時間にも影響されるが、水素分圧は、0.1~10MPaが好ましく、0.5~6MPaがより好ましく、1~5MPaが最も好ましい。還元処理時間は、触媒量、水素通気量等によっても異なるが、一般に、0.1~72時間が好ましく、1~48時間がより好ましく、4~48時間が最も好ましい。処理時間が0.1時間以上であれば、触媒の活性化が不十分となることを回避できる。また、72時間以下であれば、触媒性能の向上に十分である。
 上記の如く還元処理した本実施形態の触媒がFT反応、すなわち炭化水素類の合成反応に供せられる。反応装置内に充填、固定した触媒に水素と一酸化炭素からなる合成ガスを接触させる。
 FT反応に用いる合成ガスは、水素及び一酸化炭素を主成分としていれば良く、FT反応を妨げない他の成分が混入されていても差し支えない。また、FT反応の速度(k)は、水素分圧に約一次で依存するので、水素及び一酸化炭素の分圧比(H/COモル比)が0.6以上であることが望まれる。
 この反応は、体積減少を伴う反応であるため、水素及び一酸化炭素の分圧の合計値が高いほど好ましい。水素及び一酸化炭素の分圧比は、その上限は特に制限されないが、現実的なこの分圧比の範囲としては0.6~2.7が好ましく、より好ましくは0.8~2.5、特に好ましくは1~2.3である。この分圧比が0.6以上であれば、生成する炭化水素類の収量が低下することを防ぐことができ、また、この分圧比が2.7以下であれば、生成する炭化水素類においてガス成分や軽質分が増える傾向を抑止することができる。
 その他、上記合成ガス中に混入していても差し支えないFT反応を妨げない他の成分としては、二酸化炭素が挙げられる。本実施形態の触媒を用いて炭化水素類を製造する場合には、天然ガスや石油製品などの改質反応により得られる二酸化炭素の混入している合成ガスも何ら問題なく用いることができる。また、二酸化炭素以外のFT反応を妨げない他の成分が混入されていても差し支えなく、例えば、天然ガスや石油製品等の水蒸気改質反応あるいは自己熱改質反応から得られるようなメタンや水蒸気や部分酸化された窒素等が含有された合成ガスでも良い。また、二酸化炭素は、二酸化炭素の含有されてない合成ガスに積極的に添加することもできる。すなわち、本実施形態の触媒を用いて炭化水素類を製造するに当たって、天然ガスや石油製品を自己熱改質法あるいは水蒸気改質法等で改質して得られた二酸化炭素を含有する合成ガスを、その中の二酸化炭素を除去するための脱炭酸処理をすることなくそのままFT反応に供すれば、脱炭酸処理に要する設備建設コスト及び運転コストを削減することができ、FT反応で得られる炭化水素類の製造コストを低減することができる。
 本実施形態の触媒を用いて炭化水素類を製造する場合において、FT反応に供する合成ガス(混合ガス)の全圧(全成分の分圧の合計値)は、0.5~10MPaが好ましく、0.7~7MPaがさらに好ましく、0.8~5MPaがなおさらに好ましい。この全圧が0.5MPa以上であれば、連鎖成長が十分となり、ガソリン分、灯軽油分、ワックス分などの収率が低下することを防ぐことができる。平衡上は、水素及び一酸化炭素の分圧が高いほど有利になるが、上記全圧が10MPa以下であれば、プラント建設コスト等が高くなり、また、圧縮に必要な圧縮機などの大型化により運転コストが上昇するなどの産業上の観点からの不利益を相応に抑止することができる。
 このFT反応においては、一般に、合成ガスのH/COモル比が同一であれば、反応温度が低いほど連鎖成長確率やC5+選択性(FT反応性生物中の炭素数5以上の生成物の割合)が高くなるが、CO転化率は低くなる。逆に、反応温度が高くなれば、連鎖成長確率、C5+選択性は低くなるが、CO転化率は高くなる。また、H/CO比が高くなれば、CO転化率が高くなり、連鎖成長確率、C5+選択性は低下し、H/CO比が低くなれば、その逆となる。これらのファクターが反応に及ぼす効果は、用いる触媒の種類等によってその大小が異なるが、本実施形態の触媒を用いる方法においては、反応温度は、200~350℃が適当であり、210~310℃が好ましく、220~290℃がさらに好ましい。なお、CO転化率は下記式で定義されるものである。
 〔CO転化率〕
 CO転化率=[(単位時間当たりの原料ガス中のCOモル数)-(単位時間当たりの出口ガス中のCOモル数)]/単位時間当たりの原料ガス中のCOモル数×100
 以下、実施例、比較例を挙げて本発明を説明するが、本発明は以下の実施例に何ら限定されるものではない。
 以下の実施例において、CO分析は、Active Carbon(60/80mesh)を分離カラムに用いた熱伝導度型ガスクロマトグラフ(TCD-GC)で行った。なお、原料ガスには、Arを内部標準として25体積%添加した合成ガス(HとCOの混合ガス)を用いた。COのピーク位置及びピーク面積をArと比較することにより、定性及び定量分析した。触媒の化学成分の同定はICP(CQM-10000P、島津製作所製)により求めた。また、CH選択率は下記式により算出した。
 CH選択率(%)=(単位時間当たりの出口ガス中のCHモル数)/{(単位時間当たりの原料ガス中のCOモル数)-(単位時間当たりの出口ガス中のCOモル数)}×100
[実施例1]
 炭酸マンガンとして和光純薬工業製の炭酸マンガン(II)n水和物を使用した。N吸着法で測定した比表面積は46.4m/g、細孔容積は0.15ml/gであった。予め150℃で5時間乾燥した後、炭酸マンガン24gを秤量し、シリカゾルSI-550(日揮触媒化成製、SiO含量:20質量%)を29.1gとメチルセルロース(和光純薬製)0.3gを加えて乳鉢で十分混練りした。
 得られた混練り物を押出し成形機によって、直径1.4mm、長さ3~4mmの円柱状に成形し、空気中200℃で3時間乾燥して炭酸マンガン担体(触媒前駆体)を得た。得られた炭酸マンガン担体19.4gを秤量し、これに、1.5gの塩化ルテニウム(小島化学製、Ru Assay:40.79質量%)を7.7gの水に溶解した塩化ルテニウム水溶液を含浸させ、1時間放置した後、空気中、80℃で5時間乾燥して、触媒Aを得た。
 ICPにて触媒Aの化学組成分析を行った結果、シリカの含有量は酸化物換算及び触媒基準で18.7質量%、メチルセルロースの含有量は仕込み量より触媒基準で0.9質量%、ルテニウムの含有量は金属換算及び触媒基準で2.6質量%であった。触媒Aに対して、200℃で3時間の真空排気処理を行った後、窒素吸着測定を行い、BET法とDH法によって触媒物性を測定したところ、表面積115m/g、細孔容積0.19ml/gであった。
 触媒A3gを、希釈剤として反応に関与しない炭酸マンガン担体18gと共に内径15.5mmの反応器に充填し、水素分圧0.9MPa・G、温度170℃、流量100(STP)ml/min(STP:standard temperature and pressure)の条件で、水素を触媒Aに接触させて3時間還元した。還元後、H/CO比約2の合成ガス(Ar約25体積%含む)に切り換え、合成ガス111ml/min、温度270℃、圧力0.9MPa・GにしてFT反応を行った。W/F(weight/flow)は約13.5g・hr/molであった。成形した触媒Aを用いることにより、差圧の発生は確認されなかった。
 FT反応270℃評価開始20時間後のCO転化率は約70%、CH選択率は約9.2%であった。
[実施例2]
 メチルセルロースの添加量を0.6gとした以外は実施例1と同様にして、触媒Bを得た。ICPにて触媒Bの化学組成分析を行った結果、シリカの含有量は酸化物換算及び触媒基準で18.6質量%、メチルセルロースの含有量は仕込み量より触媒基準で1.8質量%、ルテニウムの含有量は金属換算及び触媒基準で2.5質量%であった。
 また、触媒Aと同様にして触媒物性を測定したところ、触媒Bの表面積は109m/g、細孔容積は0.19ml/gであった。この触媒Bを実施例1と同様の方法でFT反応に供した。FT反応270℃評価開始20時間後のCO転化率は約68.1%、CH選択率は11.7%であった。
[実施例3]
 メチルセルロースの添加量を1.8gとした以外は実施例1と同様にして、触媒Cを得た。ICPにて触媒Cの化学組成分析を行った結果、シリカの含有量は酸化物換算及び触媒基準で17.5質量%、メチルセルロースの含有量は仕込み量より触媒基準で5.2質量%、ルテニウムの含有量は金属換算及び触媒基準で2.8質量%であった。
 また、触媒Aと同様にして触媒物性を測定したところ、触媒Cの表面積は105m/g、細孔容積は0.18ml/gであった。この触媒Cを実施例1と同様の方法でFT反応に供した。FT反応270℃評価開始20時間後のCO転化率は約57.7%、CH選択率は13.1%であった。
[実施例4]
 塩化ルテニウムの添加量を1.0gとした以外は実施例1と同様にして触媒Dを得た。ICPにて触媒Dの化学組成分析を行った結果、シリカの含有量は酸化物換算及び触媒基準で17.5質量%、メチルセルロースの含有量は仕込み量より触媒基準で1.9質量%、ルテニウムの含有量は金属換算及び触媒基準で1.7質量%であった。
 また、触媒Aと同様にして触媒物性を測定したところ、触媒Dの表面積は103m/g、細孔容積は0.26ml/gであった。この触媒Dを実施例1と同様の方法でFT反応に供した。FT反応270℃評価開始20時間後のCO転化率は約65.7%、CH選択率は14.1%であった。
[実施例5]
 実施例2と同様にして炭酸マンガン担体を得た。成形した炭酸マンガン担体29.1gを秤量し、これに、硝酸ルテニウム(III)溶液(フルヤ金属製、ルテニウム含量:8質量%)11.2gを含浸させ、1時間放置した後、空気中、160℃で8時間乾燥して、触媒Eを得た。
 ICPにて触媒Eの化学組成分析を行った結果、シリカの含有量は酸化物換算及び触媒基準で17.2質量%、メチルセルロースの含有量は仕込み量より触媒基準で1.8質量%、ルテニウムの含有量は金属換算及び触媒基準で3.3質量%であった。
 また、触媒Aと同様にして触媒物性を測定したところ、触媒Eの表面積は185m/g、細孔容積は0.42ml/gであった。この触媒Eを実施例1と同様の方法でFT反応に供した。FT反応270℃評価開始20時間後のCO転化率は約75.0%、CH選択率は12.7%であった。
[実施例6]
 実施例2と同様にして炭酸マンガン担体を得た。成形した炭酸マンガン担体29.4g秤量し、これに、硝酸ルテニウム(III)溶液(フルヤ金属製、ルテニウム含量:8.05質量%)溶液7.5gと精製水4.3gとを混合した含浸液を含浸させ、1時間放置した後、空気中、80℃で8時間乾燥して、触媒Fを得た。
 ICPにて触媒Fの化学組成分析を行った結果、ルテニウムの含有量は金属換算及び触媒基準で1.8質量%であった。
 触媒F3gを、実施例1と同様の方法でFT反応に供した。
 FT反応270℃評価開始20時間後のCO転化率は約55.3%、CH選択率は7.2%であった。
[実施例7]
 含浸後の乾燥温度を200℃とした以外は実施例5と同様にして、触媒Gを得た。ICPにて触媒Gの化学組成分析を行った結果、ルテニウムの含有量は金属換算及び触媒基準で3.5質量%であった。
 この触媒Gを実施例1と同様の方法でFT反応に供した。FT反応270℃評価開始20時間後のCO転化率は約68.4%、CH選択率は13.8%であった。
[実施例8]
 含浸後の乾燥温度を200℃とした以外は実施例6と同様にして触媒Hを得た。ICPにて触媒Hの化学組成分析を行った結果、ルテニウムの含有量は金属換算及び触媒基準で2.2質量%であった。
 この触媒Hを実施例1と同様の方法でFT反応に供した。FT反応270℃評価開始20時間後のCO転化率は約46.6%、CH選択率は8.3%であった。
[比較例3]
 含浸後の乾燥温度を60℃とした以外は実施例6と同様にして、触媒Iを得た。ICPにて触媒Iの化学組成分析を行った結果、ルテニウムの含有量は金属換算及び触媒基準で1.5質量%であった。
 この触媒Iを実施例1と同様の方法でFT反応に供した。FT反応270℃評価開始20時間後のCO転化率は約41.4%、CH選択率は9.2%であった。
[比較例1]
 メチルセルロースの添加量を3.5gとした以外は実施例1と同様にして、触媒aを得た。ICPにて触媒aの化学組成分析を行った結果、シリカの含有量は酸化物換算及び触媒基準で17.1質量%、メチルセルロースの含有量は仕込み量より触媒基準で9.8質量%、ルテニウムの含有量は金属換算及び触媒基準で2.5質量%であった。
 また、触媒Aと同様にして触媒物性を測定したところ、触媒aの表面積は98m/g、細孔容積は0.18ml/gであった。この触媒aを実施例1と同様の方法でFT反応に供した。FT反応270℃評価開始20時間後のCO転化率は約48.2%、CH選択率は14.9%であった。
[比較例2]
 メチルセルロースの添加量を4.4gとした以外は実施例1と同様にして触媒bを得た。ICPにて触媒bの化学組成分析を行った結果、シリカの含有量は酸化物換算及び触媒基準で15.1質量%、メチルセルロースの含有量は仕込み量より触媒基準で12.0質量%、ルテニウムの含有量は金属換算及び触媒基準で3.0質量%であった。
 また、触媒Aと同様にして触媒物性を測定したところ、触媒bの表面積は82m/g、細孔容積は0.16ml/gであった。この触媒bを実施例1と同様の方法でFT反応に供した。FT反応270℃評価開始20時間後のCO転化率は約42.3%、CH選択率は16%であった。
[比較例3]
 炭酸マンガンの添加量を29.4g、シリカゾルの添加量を15.6g、メチルセルロースの添加量を0.6gとした以外は実施例1と同様にして、触媒cを得た。ICPにて触媒cの化学組成分析を行った結果、シリカの含有量は酸化物換算及び触媒基準で9.5質量%、メチルセルロースの含有量は仕込み量より触媒基準で1.7質量%、ルテニウムの含有量は金属換算及び触媒基準で2.3質量%であった。
 また、触媒Aと同様にして触媒物性を測定したところ、触媒cの表面積は87m/g、細孔容積は0.18ml/gであった。この触媒cを実施例1と同様の方法でFT反応に供した。FT反応270℃評価開始20時間後のCO転化率は約51.4%、CH選択率は15.5%であった。
 上記実施例1~9及び比較例1~3の実験結果を表1~表3に示す。
 表1~表3から、本発明の触媒(触媒A~I)は、ガス成分であるCHの生成割合が低いことが明らかである。中でも、触媒A~Gについては特に、CO転化率が高く、かつ、ガス成分であるCHの生成割合が低い結果が得られた。一方、メチルセルロースの含有量が6質量%よりも高い触媒a及びbは、触媒A~Eと同様に、ルテニウム含有量が0.5~5質量%であり、シリカの含有量が酸化物換算及び触媒基準で10~25質量%であるにもかかわらず、表面積が100m/gよりも狭かった。また、シリカの含有量が酸化物換算及び触媒基準で10質量%未満である触媒cも、やはり表面積が100m/gよりも狭かった。このように触媒の表面積が100m/gよりも狭いことが、触媒a~cが触媒A~EよりもFT活性が劣っていた原因と推察された。
 また、触媒E~Iを比較すると、含浸後の乾燥温度を70~170℃の範囲内で行って得られた触媒(触媒E及びF)では、乾燥温度が70~170℃の範囲を超えている触媒と比べて、CO転化率が高く、かつ、ガス成分であるCHの生成割合が低い傾向が見られた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (6)

  1.  炭酸マンガンに、シリカを酸化物換算及び触媒基準で10~25質量%、有機バインダーを触媒基準で6質量%以下、ルテニウムを金属換算及び触媒基準で0.5~5質量%含有させてなり、かつ表面積が100~210m/g、細孔容積が0.1~0.6ml/gであることを特徴とするフィッシャー・トロプシュ合成用触媒。
  2.  前記有機バインダーがメチルセルロースであることを特徴とする請求項1に記載のフィッシャー・トロプシュ合成用触媒。
  3.  炭酸マンガンに、少なくとも、シリカの含有量が酸化物換算及び触媒基準で10~25質量%となるようにシリカゾルを、触媒基準で6質量%以下となるように有機バインダーを、それぞれ含有させた混合物を混練りした後、得られた混練物を成形することにより担体を調製し、
     次いで、前記担体を250℃以下で乾燥させることにより触媒前駆体を調製し、
     さらに、前記触媒前駆体に、ルテニウムを金属換算及び触媒基準で0.5~5質量%となるように含有させた後に、250℃以下で乾燥させることを特徴とするフィッシャー・トロプシュ合成用触媒の製造方法。
  4.  前記担体に、硝酸ルテニウムを用いてルテニウムを含有させた後に、70~170℃で乾燥させる請求項3に記載のフィッシャー・トロプシュ合成用触媒の製造方法。
  5.  請求項1又は2に記載のフィッシャー・トロプシュ合成用触媒を用いて、水素及び一酸化炭素を主成分とするガスから炭化水素類を合成することを特徴とする炭化水素類の製造方法。
  6.  請求項3又は4に記載のフィッシャー・トロプシュ合成用触媒の製造方法により製造されたフィッシャー・トロプシュ合成用触媒を用いて、水素及び一酸化炭素を主成分とするガスから炭化水素類を合成することを特徴とする炭化水素類の製造方法。
PCT/JP2012/051403 2011-01-24 2012-01-24 フィッシャー・トロプシュ合成用触媒、及びその製造方法、並びにフィッシャー・トロプシュ合成用触媒を用いた炭化水素類の製造方法 WO2012102256A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/978,053 US20130289145A1 (en) 2011-01-24 2012-01-24 Catalyst for fischer-tropsch synthesis, production method therefor, and production method using fischer-tropsch synthesis catalyst
EP12739287.6A EP2669010A1 (en) 2011-01-24 2012-01-24 Catalyst for fischer-tropsch synthesis, and production method therefor, as well as hydrocarbon production method using fischer-tropsch synthesis catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-011897 2011-01-24
JP2011011897A JP2012152666A (ja) 2011-01-24 2011-01-24 フィッシャー・トロプシュ合成用触媒の製造方法
JP2011-011896 2011-01-24
JP2011011896A JP2012152665A (ja) 2011-01-24 2011-01-24 フィッシャー・トロプシュ合成用触媒及びその製造方法

Publications (1)

Publication Number Publication Date
WO2012102256A1 true WO2012102256A1 (ja) 2012-08-02

Family

ID=46580822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051403 WO2012102256A1 (ja) 2011-01-24 2012-01-24 フィッシャー・トロプシュ合成用触媒、及びその製造方法、並びにフィッシャー・トロプシュ合成用触媒を用いた炭化水素類の製造方法

Country Status (3)

Country Link
US (1) US20130289145A1 (ja)
EP (1) EP2669010A1 (ja)
WO (1) WO2012102256A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6910252B2 (ja) 2017-09-05 2021-07-28 昭和電工株式会社 シリカ担体の製造方法
JP6986908B2 (ja) * 2017-09-05 2021-12-22 昭和電工株式会社 脂肪族カルボン酸エステルの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0167215A2 (en) 1984-07-06 1986-01-08 Shell Internationale Researchmaatschappij B.V. Process for the preparation of hydrocarbons
JPH0370691B2 (ja) 1983-12-29 1991-11-08 Shinnenryoyu Kaihatsu Gijutsu Kenkyu Kumiai
JPH0370692B2 (ja) 1984-10-08 1991-11-08 Shinnenryoyu Kaihatsu Gijutsu Kenkyu Kumiai
US5545674A (en) 1987-05-07 1996-08-13 Exxon Research And Engineering Company Surface supported cobalt catalysts, process utilizing these catalysts for the preparation of hydrocarbons from synthesis gas and process for the preparation of said catalysts
US5733839A (en) 1995-04-07 1998-03-31 Sastech (Proprietary) Limited Catalysts
WO2009157260A1 (ja) 2008-06-24 2009-12-30 コスモ石油株式会社 フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法
JP2010005496A (ja) 2008-06-24 2010-01-14 Cosmo Oil Co Ltd フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法
JP2010221108A (ja) * 2009-03-23 2010-10-07 Cosmo Oil Co Ltd フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728672A (en) * 1984-10-08 1988-03-01 Research Association For Petroleum Alternatives Development Process for producing hydrocarbons
TW226970B (ja) * 1991-12-05 1994-07-21 Catalyst co ltd
EP1296914B1 (en) * 2000-07-03 2004-08-25 Shell Internationale Researchmaatschappij B.V. Catalyst and process for the preparation of hydrocarbons
EP2514525B1 (en) * 2009-12-18 2021-04-28 Cosmo Oil Co., Ltd. Catalyst composition for production of hydrocarbons and method for producing hydrocarbons

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370691B2 (ja) 1983-12-29 1991-11-08 Shinnenryoyu Kaihatsu Gijutsu Kenkyu Kumiai
EP0167215A2 (en) 1984-07-06 1986-01-08 Shell Internationale Researchmaatschappij B.V. Process for the preparation of hydrocarbons
JPH0370692B2 (ja) 1984-10-08 1991-11-08 Shinnenryoyu Kaihatsu Gijutsu Kenkyu Kumiai
US5545674A (en) 1987-05-07 1996-08-13 Exxon Research And Engineering Company Surface supported cobalt catalysts, process utilizing these catalysts for the preparation of hydrocarbons from synthesis gas and process for the preparation of said catalysts
US5733839A (en) 1995-04-07 1998-03-31 Sastech (Proprietary) Limited Catalysts
WO2009157260A1 (ja) 2008-06-24 2009-12-30 コスモ石油株式会社 フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法
JP2010005496A (ja) 2008-06-24 2010-01-14 Cosmo Oil Co Ltd フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法
JP2010221108A (ja) * 2009-03-23 2010-10-07 Cosmo Oil Co Ltd フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"C1 Chemistry", 1 April 1984, CATALYSIS SOCIETY OF JAPAN, KODANSHA LTD., pages: 25
YASUTOMO MIURA ET AL.: "Tansan Manganese o Tantai to suru Ru-kei FT Shokubai", DAI 40 KAI SEKIYU.SEKIYU KAGAKU TORONKAI KOEN YOSHI, vol. 40, 25 November 2010 (2010-11-25), pages 199, XP008170641 *

Also Published As

Publication number Publication date
EP2669010A1 (en) 2013-12-04
US20130289145A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP5128526B2 (ja) フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法
WO2005079979A1 (ja) 炭化水素類製造用触媒、その製造方法、及びその触媒を用いた炭化水素類の製造方法
JP3882044B2 (ja) Fischer−Tropsch合成用触媒の調製方法
KR101595181B1 (ko) 활성 및 수명 특성이 향상된 피셔-트롭쉬 촉매의 제조방법
WO2005099897A1 (ja) フィッシャー・トロプシュ合成用触媒および炭化水素の製造法
JP5129037B2 (ja) フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法
WO2011105118A1 (ja) 活性化フィッシャー・トロプシュ合成触媒の製造方法及び炭化水素の製造方法
AU2019219056B2 (en) Fischer-Tropsch process, supported Fischer-Tropsch synthesis catalyst and uses thereof
EP2301663B1 (en) Catalyst for fischer-tropsch synthesis and method for producing hydrocarbons
BR112019016319A2 (pt) Processo para produzir um catalisador de síntese de fischer-tropsch
JPWO2007094457A1 (ja) 液化石油ガス製造用触媒
WO2012102256A1 (ja) フィッシャー・トロプシュ合成用触媒、及びその製造方法、並びにフィッシャー・トロプシュ合成用触媒を用いた炭化水素類の製造方法
EP3628400A1 (en) Fischer-tropsch process, supported fischer-tropsch synthesis catalyst and uses thereof
JP4118503B2 (ja) 二酸化炭素共存下の炭化水素類の製造方法
JP4911974B2 (ja) フィッシャー・トロプシュ合成用触媒および炭化水素の製造法
JP2009078267A (ja) オ―トサ―マルリフォ―ミング触媒および水素または合成ガスの製造方法
EP3856872A1 (en) Fischer-tropsch process
JP2012152665A (ja) フィッシャー・トロプシュ合成用触媒及びその製造方法
JP2012152666A (ja) フィッシャー・トロプシュ合成用触媒の製造方法
JP4421913B2 (ja) 炭化水素類製造用触媒の製造方法およびその触媒を用いた炭化水素類の製造方法
JP4776403B2 (ja) 炭化水素の改質用触媒
JP4660021B2 (ja) フィッシャートロプシュ法による炭化水素類の製造方法
JP4267482B2 (ja) 炭化水素類製造用触媒およびその触媒を用いた炭化水素類の製造方法
WO2023277188A1 (ja) 液化石油ガス合成用触媒および液化石油ガスの製造方法
JP5553880B2 (ja) フィッシャー・トロプシュ合成用触媒の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13978053

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012739287

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004037

Country of ref document: TH