WO2012102150A1 - 水膨潤性層状複水酸化物とその製造方法、ゲル状又はゾル状物質及び、複水酸化物ナノシートとその製造方法 - Google Patents

水膨潤性層状複水酸化物とその製造方法、ゲル状又はゾル状物質及び、複水酸化物ナノシートとその製造方法 Download PDF

Info

Publication number
WO2012102150A1
WO2012102150A1 PCT/JP2012/050973 JP2012050973W WO2012102150A1 WO 2012102150 A1 WO2012102150 A1 WO 2012102150A1 JP 2012050973 W JP2012050973 W JP 2012050973W WO 2012102150 A1 WO2012102150 A1 WO 2012102150A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ldh
double hydroxide
mgal
ise
Prior art date
Application number
PCT/JP2012/050973
Other languages
English (en)
French (fr)
Inventor
井伊 伸夫
海老名 保男
佐々木 高義
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to JP2012554740A priority Critical patent/JP5910887B2/ja
Priority to US13/982,191 priority patent/US9545615B2/en
Priority to EP12738734.8A priority patent/EP2669251B1/en
Publication of WO2012102150A1 publication Critical patent/WO2012102150A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G5/00Compounds of silver
    • C01G5/006Compounds containing, besides silver, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/08Intercalated structures, i.e. with atoms or molecules intercalated in their structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Definitions

  • the present invention relates to a water-swellable layered double hydroxide that is gelled by an aqueous solvent containing water as a main component, a method for producing the same, and a gel-like or sol-like substance made using the water-swellable layered double hydroxide And it is related with the double hydroxide nanosheet and its manufacturing method.
  • LDH Layered double hydroxide
  • LDH double hydroxide nanosheet obtained from LDH is attracting attention for the following three reasons.
  • LDH has a cationic layer, and cationic nanosheets can be alternately stacked with anionic nanosheets (Non-Patent Document 1 and Patent Document 1).
  • LDH can introduce various divalent and trivalent metal ions having magnetism and electrical conductivity into a layer, and has a high possibility of material design (Non-patent Documents 2-4), (3)
  • Non-patent Documents 1, 5, 6, 7 and Patent Documents 1, 2
  • formamide is difficult to evaporate and harmful to the human body, and alternating lamination is often performed in water rather than in an organic solvent such as formamide.
  • nanosheets have been desired.
  • LDH a carboxylate anion
  • a carboxylate anion which is an organic anion
  • LDH Non-patent Document 8 and Patent Document 3
  • a lactic acid anion CH 3 —CH (OH) —COO ⁇
  • Mg acrylate and / or Mg acetate are included between layers.
  • LDH Patent Documents 4 and 5
  • a so-called “reconstruction method” in which LDH whose structure has been changed by heat treatment at a high temperature close to 600 ° C. is reacted in an aqueous solution of a salt containing these carboxylate anions is used.
  • Non-Patent Document 9 the constituent metal ion composition may change (Non-Patent Document 9). Further, as described in Non-Patent Document 8, nearly 50% of the anions between the layers are carbonate ions. Therefore, the reflection peak is broad even in XRD diffraction, and the crystallinity is poor.
  • the MgH / Al molar ratio of LDH used as a starting material is 3, the layer charge density is high, and the Mg / Al molar ratio considered to be difficult to exfoliate is 2 LDH and other than Mg and Al
  • LDH of metal ions there are few demonstration examples using LDH of metal ions, and there is a problem in versatility regarding LDH peeling using water.
  • Patent Document 6 Patent Document 7, Non-Patent Document 11
  • the obtained acetic acid anion type LDH is superior to other water-swellable LDHs in terms of purity and peelability.
  • Patent Document 6 Non-Patent Document 10
  • acetic acid odor due to acetic acid release.
  • the present invention provides high crystallinity, high purity, high stability, versatility, which can obtain high-quality LDH nanosheets having various sizes, for example, a crystal diameter of 0.1 to 10 ⁇ m.
  • a gel-like or sol-like substance produced using a water-swellable layered double hydroxide, a double hydroxide nanosheet and a production method thereof With the goal.
  • the organic carboxylic acid used in the water-swellable LDH is often a short-chain carboxylate ion
  • the present inventors have determined that the hydrophilicity of the ionic portion and the organic portion of the organic portion are only in the short-chain case. It was thought that the hydrophobicity was balanced and water swellability was exhibited. Furthermore, the change to carbonate ion-type LDH seen in LDH containing acetate anions and the release of acetic acid accompanying the alteration are because the carboxylic acid such as acetic acid has the same weak acidity as the carbon dioxide produced from carbon dioxide. I thought.
  • the present invention relates to a water-swellable layered double hydroxide and a production method, a gel-like or sol-like substance produced using the water-swellable layered double hydroxide, a double hydroxide nanosheet and a method for producing the same.
  • the purpose is to provide.
  • the water-swellable layered double hydroxide of the present invention has an organic sulfonate anion (A ⁇ ) between the layers and is represented by the following general formula (1): It is a thing.
  • Q is a divalent metal
  • R is a trivalent metal
  • a ⁇ is an organic sulfonate anion
  • m is a real number larger than 0.
  • z is in the range of 1.8 ⁇ z ⁇ 4.2.
  • X n ⁇ is an n-valent anion remaining without substituting A ⁇
  • n is 1 or 2.
  • y represents the remaining amount of X n ⁇ , and 0 ⁇ y ⁇ 0.4.
  • the organic sulfonate anion (A ⁇ ) is preferably an anion of isethionic acid represented by the chemical formula HOC 2 H 4 SO 3 — .
  • Q is a divalent metal, and specifically, a metal selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, and Ca is preferable.
  • R is a trivalent metal, and specifically, a metal selected from the group consisting of Al, Ga, Cr, Mn, Fe, Co, Ni, and La is preferable.
  • the method for producing a water-swellable layered double hydroxide of the present invention comprises a layered double hydroxide having a composition represented by the following general formula (2), the following general formula (A ⁇ ) containing the organic sulfonate anion (A ⁇ ):
  • the compound represented by 3) is dispersed in a solution in water or an organic solvent, and X n ⁇ and A ⁇ are subjected to anion exchange.
  • z represents a numerical range of 1.8 ⁇ z ⁇ 4.2
  • Q is a divalent metal ion
  • R is a trivalent metal ion
  • m is a real number greater than 0.
  • L n + is an n-valent cation
  • n is a numerical value range of 1 ⁇ n ⁇ 3
  • L n + is Na + , NH 4 + , Li + , K + , H + , and n +
  • n 2
  • Mg 2+ , Ca 2+ , Sr 2+ , Ca 2+ , and when n 3, Al 3+ .
  • Q is a divalent metal, preferably a metal selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn and Ca.
  • R is a trivalent metal, and a metal selected from the group consisting of Al, Ga, Cr, Mn, Fe, Co, Ni, and La is preferable.
  • [L n + ] represents Na + , NH 4 + , Li + , K + , H + , Mg 2+ , Ca 2+ , Sr 2+ , Ca 2+ and Al 3+. Is preferably selected from the group consisting of
  • the gel-like or sol-like substance of the present invention is characterized in that the water-swellable layered double hydroxide of the present invention is swollen with a solvent containing water as a main component.
  • the solvent containing water as a main component is preferably water or a mixed solvent composed of 50 mol% or more of water and the remainder being an organic solvent soluble in water.
  • the double hydroxide nanosheet of the present invention has a composition represented by the following general formula (4).
  • Q is a divalent metal
  • R is a trivalent metal
  • z is a numerical range of 1.8 ⁇ z ⁇ 4.2. Examples of preferable metals for Q and R are as described above.
  • the thickness of the double hydroxide nanosheet is preferably in the range of 0.5 nm to 10 nm.
  • the method for producing a double hydroxide nanosheet of the present invention is characterized in that a double hydroxide nanosheet is produced from the water-swellable layered double hydroxide of the present invention using a solvent containing water as a main component.
  • the solvent containing water as a main component is water or a mixed solvent, and the mixed solvent is preferably an organic solvent in which water is 50 mol% or more and the remainder is soluble in water.
  • the water-swellable layered double hydroxide of the present invention has an organic sulfonate anion (A ⁇ ) between layers, is represented by the general formula (1), is a compound having excellent stability, and has water swellability. .
  • the layered double hydroxide having the composition represented by the general formula (2) is converted into a general formula (3) containing an organic sulfonate anion (A ⁇ ). Is dispersed in water or an organic solvent solution in which X n ⁇ and A ⁇ are anion-exchanged.
  • the raw material LDH as a starting material is produced by an anion exchange method, a high-purity water-swellable layered double hydroxide having the same particle size or the same particle shape as the raw material LDH is obtained.
  • the gel-like or sol-like substance of the present invention is produced by swelling the water-swellable layered double hydroxide of the present invention with a solvent mainly composed of water, other organic solvents such as formamide are used. Unlike the method used, it is excellent in safety and can be easily formed into a thin film or a self-supporting film disclosed in Patent Document 6. Since the method for producing a double hydroxide nanosheet of the present invention uses a water-based solvent used for laminating nanosheets, a colloidal solution containing double hydroxide nanosheets can be directly used in the LDH laminating process. it can.
  • FIG. 1 It is a schematic diagram which shows the structure of the water-swellable layered double hydroxide of the present invention. It is a figure which shows the manufacturing scheme of the water-swellable layered double hydroxide by anion exchange of this invention. It is a schematic diagram which shows the gel, sol, and double hydroxide nanosheet of this invention, and its production
  • 2 is a graph showing a Fourier transform infrared spectrum (transmittance) of MgAl—LDH3 in Example 1.
  • (a) is a chart of carbonate ion type MgAl-LDH3
  • (b) is a perchlorate ion type MgAl-LDH3
  • (c) is an isethionate anion type MgAl-LDH3.
  • 4 is a graph showing Fourier transform infrared spectroscopy (transmittance) of MgAl-LDH3 including various organic sulfonate anions in Example 1.
  • FIG. 2 is a graph showing the light transmittance (wavelength: 589 nm) of MgAl—LDH3 including various organic sulfonate anions in Example 1.
  • FIG. 4 is a graph showing a Fourier transform infrared spectrum (transmittance) of MgAl—LDH2 in Example 2.
  • (a) is a chart of MgAl-LDH2 containing carbonate ions, (b) perchlorate ions, and (c) isethionate anions (Ise).
  • 6 is a graph showing Fourier transform infrared spectroscopy (transmittance) of MgAl-LDH2 including various organic sulfonate anions in Example 2.
  • 6 is a graph showing the light transmittance (wavelength: 589 nm) of MgAl—LDH2 including various organic sulfonate anions in Example 2.
  • FIG. 4 is a graph showing a powder X-ray diffraction profile of Ise-MgAl-LDH3 when the relative humidity is changed in Example 3.
  • FIG. 6 is a graph showing a powder X-ray diffraction profile of Ise-MgAl-LDH2 when the relative humidity is changed in Example 3. It is a graph which shows the change of the bottom face distance of Ise-MgAl-LDH3 accompanying a relative humidity change. It is a graph which shows the change of the bottom face distance of Ise-MgAl-LDH2 accompanying a relative humidity change.
  • 6 is a view showing an SEM (scanning electron microscope) image of MgAl—LDH3 of Example 3.
  • FIG. 14A is an image including carbonate ions
  • FIG. 14B is an image including perchlorate ions
  • FIG. 14C is an image including isethionate anions (Ise) between layers.
  • 6 is a view showing an SEM (scanning electron microscope) image of MgAl—LDH 2 of Example 3.
  • FIG. 15A is an image including carbonate ions
  • FIG. 15B is a perchlorate ion
  • FIG. 15C is an image including an isethionate anion (Ise) between layers.
  • 6 is a graph showing changes in weight of Ise-MgAl-LDH2 and Ise-MgAl-LDH3 with changes in relative humidity in Example 3.
  • FIG. 4 shows images of (a) Ise-MgAl-LDH2 gel and (b) Ise-MgAl-LDH3 gel in Example 4.
  • 6 is an image showing a suspended state of various mols of 0.01 mol / L in Example 4.
  • 6 is a powder X-ray diffraction profile of Ise-MgAl-LDH3 in Example 4.
  • FIG. 10 is a view showing an AMF image of an LDH nanosheet of Ise-MgAl-LDH3 in Example 4, and is a view seen from a direction perpendicular to the substrate.
  • FIG. 10 is a view showing an AMF image of an LDH nanosheet of Ise-MgAl-LDH2 in Example 4, and is a view seen from a direction perpendicular to the substrate.
  • 6 is a diagram showing a Fourier transform infrared spectrum (transmittance) of NiAl-LDH2 in Example 5.
  • 6 is a diagram showing a Fourier transform infrared spectrum (transmittance) of NiAl-LDH3 in Example 5.
  • (a) is a carbonate ion
  • (b) is a perchlorate ion
  • (c) is NiAl-LDH3 containing an isethionate anion (Ise) between layers.
  • 7 is a Fourier transform infrared spectrum (transmittance) of NiAl-LDH4 of Example 5.
  • (a) is a carbonate ion
  • (b) is a perchlorate ion
  • (c) is NiAl-LDH4 containing an isethionate anion (Ise) between layers.
  • 7 is an X-ray diffraction profile of NiAl-LDH of Example 5.
  • FIG. 1 shows NiAl-LDH4, (b) shows NiAl-LDH3, and (c) shows NiAl-LDH2. It is a figure which shows the state of the gel of LDH of Example 5 and Example 6.
  • 6 is a diagram showing a Fourier transform infrared spectrum (transmittance) of CoAl-LDH2 in Example 6.
  • (a) is a carbonate ion
  • (b) is a chlorine ion
  • (c) is CoAl-LDH2 containing an isethionate anion (Ise) between layers.
  • 6 is a graph showing a powder X-ray diffraction profile of CoAl-LDH2 in Example 6.
  • (a) is a carbonate ion
  • (b) is a chlorine ion
  • (c) is CoAl-LDH2 containing an isethionate anion (Ise) between layers.
  • water-swellable LDH water-swellable layered double hydroxide of the present invention
  • its production method a gel-like or sol-like substance
  • the double-hydroxide nanosheet and its production method are described below. This will be described in detail with reference to examples.
  • the water-swellable LDH of the present invention is a compound represented by the general formula (1).
  • Q is a divalent metal
  • R is a trivalent metal
  • a ⁇ is an organic sulfonate anion.
  • m is a real number larger than 0, and z is in a range of 1.8 ⁇ z ⁇ 4.2.
  • X n ⁇ is an n-valent anion remaining without substituting A ⁇
  • n is 1 or 2.
  • y represents the remaining amount of X n ⁇ , and 0 ⁇ y ⁇ 0.4.
  • a ⁇ is an organic sulfonate anion, preferably an isethionate anion.
  • Isethionic acid which is also referred to as 2-hydroxy-1-sulfonic acid, its anion has the formula HOC 2 H 4 SO 3 - represented by.
  • Q is a divalent metal, and specifically, is preferably selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, and Ca.
  • R is a trivalent metal, specifically, a metal selected from the group consisting of Al, Ga, Cr, Mn, Fe, Co, Ni, and La.
  • the range of z is a composition range well known as the composition range of LDH (see Non-Patent Documents 2-4).
  • X n ⁇ is an n-valent anion contained in the raw material LDH for synthesizing the water-swellable LDH of the present invention, and X n ⁇ is an anion other than A ⁇ . Therefore, X n ⁇ may be various anions, and is not particularly limited. For example, CO 3 2 ⁇ , ClO 4 ⁇ , Cl ⁇ , NO 3 ⁇ , Br ⁇ , I ⁇ or ClO 3 ⁇ Can be mentioned. In addition, although these anions may be only one type, two or more types of anions may be mixed.
  • the y value is in the range of 0 ⁇ y ⁇ 0.4.
  • the organic sulfonate anion is desirably 80% or more, and y is preferably 0.2 or less, more preferably 0.1. It is as follows.
  • M represents the amount of water between layers, and is a real number greater than zero. Since this value varies greatly depending on the relative humidity of the atmosphere, it is meaningless to specify the range specifically.
  • FIG. 1 is a schematic diagram showing the structure of the water-swellable LDH of the present invention.
  • An LDH crystal is formed by interposing an organic sulfonate anion (A ⁇ ) in a gap between a plurality of metal hydroxide layers formed of metal octahedrons formed of metals Q, R, and OH. Water molecules are also present in the gap.
  • the crystal shape of LDH includes a hexagonal plate shape and an elliptical plate shape shown in the figure, but is not limited to these shapes.
  • the crystal diameter is often 0.1 to 10 ⁇ m, and the crystal thickness is about 0.01 to 1 ⁇ m.
  • the thickness of one metal hydroxide layer is about 0.5 nm.
  • the distance between the bottom surfaces (the distance between the bottom surfaces of adjacent layers) varies depending on the relative humidity of the atmosphere. When A ⁇ is an isethionate anion, it is about 1.4 nm.
  • the water-swellable LDH can swell by containing many water molecules between layers in water.
  • the water-swellable LDH of the present invention is an LDH having a composition represented by the following general formula (2) (hereinafter referred to as a raw material LDH) represented by the following general formula (3) containing an organic sulfonate anion (A ⁇ ).
  • a raw material LDH represented by the following general formula (3) containing an organic sulfonate anion (A ⁇ ).
  • a ⁇ organic sulfonate anion
  • z represents a numerical range of 1.8 ⁇ z ⁇ 4.2
  • Q is a divalent metal ion
  • R is a trivalent metal ion.
  • m is a real number larger than 0 and, as described above, is a value that varies with relative humidity, and it does not make sense to specify a specific range.
  • L n + in the general formula (3) is an n-valent cation, and n is a numerical range of 1 ⁇ n ⁇ 3.
  • N 3 is Al 3+ .
  • Na + or NH 4 + is preferred because of its availability.
  • an inorganic sulfate compound such as sodium sulfate or sodium hydrogen sulfate is mixed as an impurity in a commercially available chemical (usually 98% purity).
  • a commercially available chemical usually 98% purity.
  • Sodium isethionate is not particularly toxic and is used as an additive for cosmetics and the like, and is a substance produced in the body as a metabolite of taurine contained in beverages.
  • the water-swellable LDH of the present invention is Even if it touches the human body and releases the isethionate anion, it can be said that it is harmless.
  • the z value of the general formula (2) of the raw material LDH and the general formula (1) of the water-swellable LDH is in the same range of 1.8 ⁇ z ⁇ 4.2 because of metal hydroxide by anion exchange reaction. This is because there is no change in the ratio of the metal that is the composition of the physical layer.
  • the method for producing water-swellable LDH of the present invention is a method to which an ion exchange method capable of maintaining the shape of the raw material LDH is applied. Therefore, raw material LDH having good crystallinity can be used as a starting material, and a process such as “rebuilding” which is a conventional method for producing water-swellable LDH is unnecessary, and water-swellable LDH having higher purity can be obtained. Obtainable. Therefore, this is an extremely simple method capable of easily obtaining an LDH nanosheet having a controlled size and shape.
  • FIG. 3 is a schematic view showing gel-like substances and sol-like substances according to an embodiment of the present invention and generation thereof.
  • the water-swellable LDH metal hydroxide has water molecules entering between the layers, and the layers are expanded. Further, the water is further changed into a gel state and a sol state by addition of water.
  • the gel-like substance (solid form) and the sol-like substance (liquid form) swell when water enters between the metal hydroxide layers of the water-swellable layered LDH, and the bonds between the layers gradually weaken and are generated.
  • the water-swellable LDH is swollen with a solvent containing water as a main component, so that more water molecules are inserted between the layers, and the bottom surface distance, that is, the distance from the center of the layer to the center of the layer is expanded.
  • the layers are separated from each other.
  • the solvent containing water as a main component is preferably water or a mixed solvent composed of 50 mol% or more of water and the remaining solvent is an organic solvent soluble in water.
  • the double hydroxide nanosheet of the present invention has a composition represented by the following general formula (4).
  • Q is a divalent metal
  • R is a trivalent metal
  • z is a numerical range of 1.8 ⁇ z ⁇ 4.2. Specific metals for Q and R are as described above.
  • the double hydroxide nanosheet is derived from the metal hydroxide layer forming the water-swellable LDH of the present invention, and is composed of the above-described divalent and trivalent metals and OH.
  • the double hydroxide nanosheet is a single metal hydroxide layer, but is not limited to a single layer, and may contain about 2 to 5 layers. The thickness range is about 0.5 to 10 nm.
  • the shape of the double hydroxide nanosheet in plan view reflects the crystal shape of the water-swellable LDH. For example, hexagonal nanosheets are formed from hexagonal plate-like water-swellable LDH crystals as shown in FIG.
  • the method for producing a double hydroxide nanosheet of the present invention is characterized in that the water-swellable LDH of the present invention is swollen and peeled using a solvent containing water as a main component.
  • FIG. 3 schematically shows an example of the double hydroxide nanosheet of the present invention and its production process. That is, the water-swellable LDH swells with a solvent containing water as a main component, and finally the layers are separated from each other.
  • a double hydroxide nanosheet can be easily produced simply by immersing the water-swellable LDH in a solvent containing water as a main component.
  • the water-swellable LDH of the present invention is excellent in stability and odorless.
  • a water-swellable LDH is synthesized by anion exchange using a highly crystalline LDH having anion exchange properties as a starting material, no complicated operation is required.
  • Even LDH having a high layer charge density can be made into water-swellable LDH.
  • Anion exchange can be performed without changing the shape and size of the crystal, and since the nanosheet also inherits the shape, a nanosheet with a free size and shape can be obtained.
  • the reagent used is easily and inexpensively available and has no toxicity or danger.
  • the LDH nanosheet of the present invention can be expected not only as a component of alternating lamination, but also because LDH layers are separated in water one by one, so that improvement in reactivity can be expected. It is expected to form water-swellable LDH with various anions and molecules that could not be included by ion exchange.
  • Talsite DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd., used a particle size distribution of about 0.1 to 1 ⁇ m and a Mg / Al molar ratio of 2.99 ( ⁇ 0.06). This is expressed as CO 3 2- MgAl-LDH3 or carbonate ion type MgAl-LDH3.
  • an acetic acid ratio that is, a ratio of molar amount of acetic acid to a total molar amount of acetic acid and sodium acetate of 0.127 using a 0.1 mol / L acetic acid buffer solution, and a NaClO 4 concentration of 2 mol of acetic acid buffer solution—NaClO 4 A mixed solution was prepared.
  • 100 mg of CO 3 2- MgAl-LDH3 was added to 50 ml of an acetic acid buffer / NaClO 4 mixed solution, and the mixture was allowed to react with stirring with a magnetic stirrer at 25 ° C. for 18 hours under a nitrogen stream (500 mL / min).
  • the mixture was filtered through a membrane filter having a pore size of 0.2 ⁇ m in a nitrogen stream, and the precipitate was sufficiently washed with degassed water.
  • the precipitate collected by filtration was collected and immediately reduced in pressure, and dried under vacuum for 1 hour or longer to obtain 108 mg of white powder.
  • the degassed water is water containing no carbon dioxide produced by boiling ion exchange water for 15 minutes or more.
  • conversion method 2 500 mg of CO 3 2- MgAl-LDH3 was placed in a three-necked flask, and 45 mL of methanol was added to prepare a suspension. While stirring with a magnetic stirrer under a nitrogen stream (500 mL / min), a solution of 350 mg of perchloric acid (60%) dissolved in 5 mL of methanol was added dropwise to this suspension, and the mixture was further stirred at 25 ° C. for 1 hour. While reacting. Then, it filtered with the membrane filter with the hole diameter of 0.2 micrometer in nitrogen stream, and wash
  • sodium hydroxymethanesulfonate and sodium isethionate had impurities insoluble in methanol (so-called sodium hydrogen sulfate, sodium sulfate, etc.), so filtered through a membrane filter with a pore size of 0.2 ⁇ m and used the filtrate. did.
  • the precipitate was filtered through a membrane filter having a pore size of 0.2 ⁇ m in a nitrogen stream, and the precipitate was sufficiently washed with methanol.
  • the precipitate collected by filtration was collected, immediately depressurized and dried under vacuum for 1 hour or longer to obtain a white powder.
  • the obtained white powder was further subjected to ion exchange under the same conditions.
  • Table 1 shows the organic sodium sulfonate used and abbreviations.
  • the obtained product is represented by prefixing MgAl-LDH3 with an anion abbreviation Me, Et, Pr, Mp, Hm or Ise.
  • the infrared absorption spectrum of each synthesized MgAl-LDH3 is shown in FIG.
  • the spectrum of Ise-MgAl-LDH3 is indicated by (c) in FIG.
  • Each has strong absorption of 1040 and 1200 cm ⁇ 1 , which is characteristic of organic sulfonate anions, so that organic sulfonate anion exchange is sufficiently performed, and there is no residual ClO 4 ⁇ and uptake of CO 3 2 ⁇ . This shows that the target anion-exchanged MgAl-LDH3 is obtained.
  • anion exchange MgAl-LDH3 The swelling property of anion exchange MgAl-LDH3 in water was examined. By adding water, only Ise-MgAl-LDH3 immediately formed a viscous gel and further hydration gave a colloidal solution. In anion exchanged MgAl-LDH3 other than Ise-MgAl-LDH3, a suspension with low transparency was obtained, and no gelation was observed.
  • FIG. 6 shows a graph of transmittance.
  • the abbreviation C in the graph is carbonate ion type MgAl-LDH3, and the other abbreviations mean various anion-exchanged MgAl-LDH3.
  • MgAl-LDH2 or carbonate ion-type MgAl-LDH2 was synthesized.
  • the Mg / Al molar ratio is about 2, and the layer charge density is higher than that of MgAl-LDH3 in Example 1.
  • Carbonate ion type MgAl-LDH2 was synthesized according to Patent Document 9. Specifically, 508 mg of MgCl 2 .6H 2 O and 302 mg of AlCl 3 .6H 2 O were added with ion exchange water to make a 12.5 mL solution, and 12.5 mL of an aqueous solution in which 613 mg of hexamethylenetetramine was dissolved therein. In addition, after filtration through a 0.2 micron membrane filter, the mixture was put in a 50 mL capacity pressure resistant Teflon (registered trademark) container, sealed in a pressure resistant stainless steel container, and subjected to hydrothermal treatment at 140 ° C. for 1 day. Filtration and washing with water followed by drying in vacuo gave 279 mg of white powder. The particle size was about 0.5-2 ⁇ m, and the Mg / Al molar ratio was 1.94 ( ⁇ 0.04).
  • the FTIR spectrum is shown in FIG.
  • the result of the infrared absorption profile by FTIR in FIG. 7 also has characteristic absorption of ClO 4 ⁇ at 1100 cm ⁇ 1 (refer to the chart of (b) in FIG. 7), and absorption by carbonate ions at 1360 cm ⁇ 1 (FIG. 7). 7 (see (a)) disappeared, and it was confirmed that perchlorate ion-type MgAl-LDH2 was formed.
  • Me-MgAl-LDH2 Me-MgAl-LDH2, Et-MgAl-LDH2, Pr-MgAl-LDH2, Mp-MgAl-LDH2, Hm-MgAl-LDH2, and Ise-MgAl-LDH2, respectively.
  • Each infrared absorption spectrum is shown in FIG.
  • the spectrum of Ise-MgAl-LDH2 is shown in the chart of (c) in FIG. Since strong absorption of 1040 and 1200 cm ⁇ 1 peculiar to organic sulfonate anions is observed, anion exchange is sufficiently performed, ClO 4 ⁇ does not remain, and CO 3 2 ⁇ is not taken in. This shows that anion-exchanged MgAl-LDH2 is obtained.
  • MgAl-LDH3 and -LDH2 containing an isethionate anion (Ise) between layers show swelling properties with respect to water and form a gel or a colloidal solution.
  • the two LDHs were analyzed in more detail by powder X-ray diffraction, scanning electron microscope, and the like, and were characterized in a powder state.
  • FIG. 10 shows changes in the X-ray diffraction pattern of Ise-MgAl-LDH3
  • FIG. 11 shows changes in the X-ray diffraction pattern of Ise-MgAl-LDH2.
  • FIG. 14A An SEM image of MgAl-LDH3 is shown in FIG. 14A is an image including carbonate ions
  • FIG. 14B is an image including perchlorate ions
  • FIG. 14C is an image including isethionate anions (Ise) between layers.
  • the bar in the figure is 1 ⁇ m
  • FIGS. 14A to 14C are the same magnification.
  • FIG. 15A an SEM image of MgAl—LDH 2 is shown in FIG. 15A is an image including carbonate ions, FIG.
  • FIG. 15B is a perchlorate ion
  • FIG. 15C is an image including an isethionate anion (Ise) between layers.
  • the bar in the figure is 1 ⁇ m
  • FIGS. 15A to 15C are the same magnification.
  • Ise-MgAl-LDH3 is a disk-like crystal having a diameter of about 0.1 to 1 ⁇ m, and inherits the shape of the starting carbonate ion type and perchlorate ion type LDH3.
  • Ise-MgAl-LDH2 is a hexagonal plate-like crystal having a diameter of about 0.5 to 2 ⁇ m and inherits the shapes of the starting carbonate ion type and perchlorate ion type LDH3. . That is, it can be seen that the outer shapes of Ise-MgAl-LDH3 and Ise-MgAl-LDH2 were maintained by ion exchange.
  • the Mg / Al molar ratio is 1.96 ( ⁇ 0.04) for Ise-MgAl-LDH2 and 2 for Ise-MgAl-LDH3. .99 ( ⁇ 0.06). These values are almost the same as the Mg / Al molar ratio of the starting carbonate ion type LDH, indicating that the anion conversion was performed without changing the layer components.
  • Ise-MgAl-LDH2 was 1.9
  • Ise-MgAl-LDH3 and Ise-MgAl-LDH2 were examined for changes in relative humidity and weight at 25 ° C.
  • the change in weight was examined by measuring the weight after increasing RH by 10% and holding for 15 minutes based on the weight dried for 1 hour in a nitrogen atmosphere. It was found that when RH was changed to 90% even at room temperature, approximately 25% by weight of water entered. Compared to the increase of about 3% in the chloride ion type LDH shown in FIG. 16 of Patent Document 6, there is a difference of almost 10 times.
  • the acetate ion type MgAl-LDH2 having no water swellability increased about 8%, but the Ise-MgAl-LDH2 having the same Mg / Al molar ratio of 2 increased about 25%. It can be seen that Ise-MgAl-LDH2 has a stronger affinity for water, and Ise is related to water swellability.
  • Example 2 of Patent Document 6 when LDH containing an acetate anion is exposed to the outside air, carbon dioxide enters due to a change in the humidity of the outside air, and gradually becomes carbonate ion type LDH in about one week to one month. It has been described that it was observed that a change in quality occurred. Although Ise-MgAl-LDH2 and Ise-MgAl-LDH3 were left exposed to the open air under open conditions, there was no substantial change in XRD and FTIR profiles even after 2 months, and alterations such as uptake of carbonate ions Was not seen.
  • Ise-MgAl-LDH3 and Ise-LDH2 were examined in detail.
  • a gel produced by adding 2 mL of water to 200 mg of Ise-MgAl-LDH is shown in FIG.
  • the left side is a gel prepared using Ise-MgAl-LDH2
  • the right side is using Ise-MgAl-LDH3. It can be seen that both are in a highly viscous translucent jelly (gel) that does not flow even when the bottle is placed sideways.
  • Ise-MgAl-LDH and Ise-MgAl-LDH2 become colloidal solutions by further water addition.
  • a suspension was prepared under the same conditions as in Example 1, and light scattering was observed.
  • FIG. 18 shows the suspended state.
  • (c) is a colloid solution prepared using Ise-MgAl-LDH2
  • (d) is a colloid solution prepared using Ise-MgAl-LDH3.
  • red LED light is irradiated from the right side
  • (c) and (d) are highly transparent and cause a Tyndall phenomenon due to nanosheet formation
  • (a) and (b) Scattered light was generated due to the suspended state of the powder. From this result, it was found that Ise-MgAl-LDH3 and Ise-MgAl-LDH2 are swellable with water, and form a highly viscous gel and a highly transparent colloid solution with water.
  • FIG. 19 shows the measurement results for Ise-MgAl-LDH3
  • FIG. 20 shows the measurement results for Ise-MgAl-LDH2.
  • (a) is in a powder state
  • (b) is in a state immediately after dropping a small amount of water
  • (c) is in a state where about 20 minutes have elapsed after the water is dropped
  • (d) is generated in a nitrogen stream. It is an XRD profile after drying for several hours.
  • (b) and (c) are magnified 5 times
  • (d) is 0.3 times (FIG. 19) or 0.4 times (FIG. 20).
  • the thickness of the LDH nanosheet varies depending on the degree of peeling.
  • the surface topography was examined using a Seiko E-Sweep atomic force microscope (AFM).
  • Samples for surface topography are obtained by adhering a cationic polymer (PEI) and an anionic polymer (PSS) one layer at a time on an acid-washed Si substrate, and adsorbing cationic LDH nanosheets thereon. It was prepared by letting. The thickness was measured with a cantilever equipped with a silicon chip in a tapping mode of 20 N / m.
  • FIG. 21 shows an AMF image of an LDH nanosheet of Ise-MgAl-LDH3
  • FIG. 22 shows an AMF image of an LDH nanosheet of Ise-MgAl-LDH2.
  • the thickness is indicated by the shade of the scale shown at the bottom of each figure.
  • the thickness of the LDH nanosheet is about 1.5 to 2.0 nm, which is presumed to be a single layer sheet.
  • the nanosheet obtained using formamide is slightly larger than the nanosheet of about 1 nm, which is considered because the isethionate anion is attached to the surface of the nanosheet.
  • LDH nanosheets having a thickness of about 2 to 6 layers were also observed.
  • Ise-MgAl-LDH3 since a single layer or two layers of LDH nanosheets are formed, it was estimated that the degree of peeling was considerably high.
  • Ise-MgAl-LDH2 there were more 2-5 LDH nanosheets than single layers. This is consistent with the fact that Ise-MgAl-LDH2 is inferior in the light transmittance of the colloidal solution, indicating that it is somewhat difficult to produce a single-layer LDH nanosheet.
  • the outer shape maintains the shape shown in the SEM images of FIGS. 14 and 15, and it can be seen that the layer peeled off as it was to form a nanosheet. From the above results, it is clear that the water-swellable LDHs Ise-MgAl-LDH3 and Ise-MgAl-LDH2 are peeled off by water to form double hydroxide nanosheets.
  • the LDH nanosheet obtained in the present invention is a high-quality nanosheet in which the single-layer sheet has one to several layers. That is, the present invention has succeeded in obtaining a colloidal solution containing LDH nanosheets.
  • NiAl-LDH with Ni / Al molar ratios of 2, 3 and 4 were synthesized for LDH containing Ni ions as divalent metal ions and Al ions as trivalent metal ions.
  • NiAl-LDH with Ni / Al molar ratio 2.00 ( ⁇ 0.06).
  • This LDH is represented as CO 3 2- NiAl-LDH2.
  • the conversion method 2 shown in Example 1 was used to convert CO 3 2- NiAl-LDH2 to perchlorate ion type LDH. 155 mg of CO 3 2- NiAl-LDH2 was weighed, and 45 mL of methanol was added to prepare a suspension. A solution obtained by dissolving 105 mg of perchloric acid (60%) in 5 mL of methanol was added dropwise to this suspension while stirring with a magnetic stirrer under a nitrogen stream, and further reacted at 25 ° C. with stirring for 1 hour. It dried by the same process as Example 1, and obtained 180 mg of blue-green powder.
  • the precipitate collected by filtration was immediately dried under vacuum for 1 hour or longer to obtain 100 mg of blue-green powder Ise-NiAl-LDH3.
  • the Ni / Al molar ratio was almost the same as that of the starting material, and was 2.96 ( ⁇ 0.06).
  • NiAl-LDH with Ni / Al molar ratio 436 mg of Ni (NO 3 ) 2 .6H 2 O, 141 mg of Al (NO 3 ) 3 .9H 2 O and 248 mg of urea are dissolved in a 25 mL capacity pressure-resistant Teflon (registered trademark) container Then, it was sealed in a pressure resistant stainless steel container and hydrothermally treated at 180 ° C. for 1 day. 223 mg of product was obtained. The particle size was 0.2 to 0.8 ⁇ m, and the Ni / Al molar ratio was 3.83 ( ⁇ 0.08).
  • the obtained CO 3 2 -NiAl-LDH4 was used to convert to perchlorate ion type LDH.
  • 329 mg of CO 3 2- NiAl-LDH4 was weighed and 45 mL of methanol was added to prepare a suspension.
  • a solution prepared by dissolving 140 mg of perchloric acid (60%) in 5 mL of methanol was added dropwise to this suspension while stirring with a magnetic stirrer under a nitrogen stream, and further reacted at 25 ° C. for 1 hour with stirring. It dried by the same process as Example 1, and obtained 353 mg of blue-green powder.
  • the precipitate separated by filtration was immediately dried under vacuum for 1 hour or longer to obtain 98 mg of blue-green powder.
  • the obtained Ise-NiAl-LDH4 had a Ni / Al molar ratio of 3.93 ( ⁇ 0.08), which was almost the same as that of the starting material.
  • FIGS. Infrared absorption profiles obtained by FTIR for NiAl-LDH2, NiAl-LDH3, and NiAl-LDH4 are shown in FIGS.
  • (a) is carbonate ion type LDH
  • (b) is perchlorate ion type LDH
  • (c) is Ise type LDH.
  • Ise-NiAl-LDH2, Ise- NiAl-LDH3, Ise-NiAl-LDH4 are both organic SO 3 to 1040 cm -1 and 1200 cm -1 - There are characteristic absorption, also, carbonate 1360 cm -1 Absorption due to ions and absorption of ClO 4 ⁇ at 1100 cm ⁇ 1 are hardly observed, indicating that high-purity Ise-type LDH is produced.
  • the Ise type inherits the shapes of the starting carbonate ion type LDH and perchlorate ion type LDH in any of NiAl-LDH2, NiAl-LDH3, and NiAl-LDH4, and maintains its outer shape by ion exchange. While showing that the conversion was done.
  • FIG. 27 shows the resulting gel state after adding 8 to 10 times the amount of water to 200 mg of each Ise-NiAl-LDH.
  • (a) is a gel prepared using Ise-MgAl-LDH4
  • (b) is Ise-MgAl-LDH3
  • (c) is a gel prepared using Ise-MgAl-LDH4. It can be seen that it is a highly viscous translucent jelly (gel) that does not flow even when the bottle is placed sideways.
  • the CO 3 2- CoAl-LDH2 Cl - was converted to the type CoAl-LDH2.
  • 50 ml of an acetic acid buffer / NaCl mixed solution in which the NaCl concentration was adjusted to 2 mol using 0.1 mol / L acetic acid buffer with an acetic acid ratio of 0.15 was added, and nitrogen was added.
  • the reaction was conducted while stirring with a magnetic stirrer at 20 ° C. for 2 hours under an air flow (500 mL / min). Then, it filtered with the 0.2 micrometer membrane filter in nitrogen stream, and wash
  • the resulting water-swellable LDH was inspected for water swellability.
  • a gel was immediately formed by adding 8 to 10 times the amount of water to 200 mg of Ise-CoAl-LDH2.
  • the resulting gel is shown in FIG. It can be seen that the gel is translucent jelly. It can also be seen that even if there is about 10% residual CO 3 2- , the water swellability is not significantly impaired. From the above, it has been found that Ise-CoAl-LDH2 is swellable with water and forms a highly viscous gel or a highly transparent colloidal solution with water.
  • a commercially available hydrotalcite represented by the general formula Mg 3 Al (OH) 8 (CO 3 2 ⁇ ) 0.5 ⁇ 2H 2 O used in Example 1 is used, and ammonium isethionate is used as an acidic substance to produce alcohol.
  • the reaction was performed in. This is a reaction in which X n ⁇ is CO 3 2 ⁇ in the formula (2) and L n + is NH 4 + in the formula (3).
  • the amount of ammonium isethionate used, since twice the CO 3 2- of moles in CO 3 2- type LDH is equivalent, when expressed in this amount (expression, [HOC 2 H 4 SO 3 NH 4 ] / (2 ⁇ [CO 3 2- ]) is defined as f, and is represented by the value of f.
  • the water-swellable LDH of the present invention satisfies all the conditions of high crystallinity, high purity, high stability, versatility, odorlessness, and nontoxicity, and swells with a solvent containing water.
  • a gel or colloidal solution containing LDH nanosheets can be easily produced.
  • the LDH nanosheet of the present invention may be useful as a cationic nanomaterial.
  • an improvement in reactivity can be expected, and an organic-inorganic hybrid is formed with enormous anions and molecules that could not be included by conventional ion exchange until now. I can expect that.
  • it can be considered to spread and develop into new application fields such as gel materials rich in elasticity by compounding with water-soluble polymers and construction of nanostructures having catalyst / sensor functions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

層間に、有機スルホン酸アニオン(A-)を有し、下記一般式(1)で表されることを特徴とする水膨潤性層状複水酸化物。 QzR(OH)2(z+1)(A-(1-y)(Xn-y/n・mH2O…(1) ここで、Qは2価の金属であり、Rは3価の金属であり、A-は有機スルホン酸アニオンであり、mは0より大きい実数であり、zは1.8≦z≦4.2の範囲である。Xn-はA-に置換せずに残ったn価のアニオンで、nは1もしくは2である。yはXn-の残存分を示し、0≦y<0.4である。

Description

水膨潤性層状複水酸化物とその製造方法、ゲル状又はゾル状物質及び、複水酸化物ナノシートとその製造方法
 本発明は、水を主成分とする水系溶媒によってゲル化する水膨潤性の層状複水酸化物とその製造方法、水膨潤性の層状複水酸化物を用いて作られるゲル状又はゾル状物質及び、複水酸化物ナノシートとその製造方法に関する。
 層状複水酸化物(Layered Double Hydroxide、LDH)は、陽イオン性の複水酸化物層とその電荷補償のため層間にアニオン(陰イオン)を有する層状化合物であり、ハイドロタルサイト様物質とも称されている。
 従来、モンモリロナイトなどの粘土鉱物においては、水や有機溶媒との接触により層間に溶媒分子が侵入し、層間距離が増して膨潤することでゲル化する。そして、さらに膨潤することで、最終的には、層が1層1層バラバラになって剥離してナノシート化し、透明感のあるコロイド溶液となってゾルになる事が知られている。
 また、近年、粘土鉱物以外の層状無機化合物、例えばチタン酸化合物などで層と層の間に特定の有機イオンを導入することによって、水中で層が剥離し、ナノシート化することが知られており、陽イオン性(カチオン性)及び陰イオン性(アニオン性)のシートを交互に1層1層積み上げる交互積層法によって、ナノ積層構造を形成する研究が行なわれている。
 LDHより得られる複水酸化物ナノシートが注目されているのは、次の3つの理由による。
(1)多くの無機ナノシートはアニオン性を示し、カチオン性ナノシートの事例は少ない。LDHは、層がカチオン性であり、カチオン性ナノシートは、アニオン性ナノシートと交互積層できること(非特許文献1及び特許文献1)、
(2)LDHは、層に磁性や電気伝導性を有する各種の2価、3価の金属イオンを導入することができ、物質設計の可能性が大きいこと(非特許文献2-4)、
(3)LDH自体の合成が比較的簡単であること。
 このようなLDHに特有の利点に注目し、LDHを膨潤・剥離させて、カチオン性ナノシートを作製する試みがこれまで行われてきた。
 近年、フォルムアミド(HCONH2)によるLDHの剥離が見出されたことにより、複水酸化物ナノシートの作製が広く行なわれるようになってきた(非特許文献1、5、6、7及び特許文献1、2)。しかし、フォルムアミドは、難蒸発性でしかも人体に有害であること、また、交互積層はフォルムアミドのような有機溶媒中ではなく水中で行うことが多いこと、などの理由から、水中での剥離及びナノシート化が望まれていた。
 水によるLDHの剥離は、有機アニオンであるカルボン酸アニオンを層間に導入することによって実現されてきた。例えば、乳酸アニオン(CH3-CH(OH)-COO-)を層間に含むLDH(非特許文献8及び特許文献3)や、アクリル酸Mg塩及び/又は酢酸Mg塩などが層間に含まれるとされるLDH(特許文献4、5)がそれに該当する。しかしながら、いずれも600℃近い高温での熱処理により構造変化したLDHを、これらカルボン酸アニオンを含む塩の水溶液に入れて反応させる、いわゆる「再構築法」という方法をとるため、得られたLDHの結晶性は低く、結晶形状は不定で、結晶径も数十ナノメートル程度と小さく、大面積で良質なLDHナノシートが得られないという問題があった。さらに再構築法では、構成する金属イオン組成が変化する場合がある(非特許文献9)。また、非特許文献8に記載されているように、層間のアニオンのうち、50%近くが炭酸イオンであることから、XRD回折でも反射ピークはブロードで、結晶性も悪い。さらに、多くの場合、出発物として使用するLDHのMg/Alモル比が3であり、層電荷密度が高く、剥離しにくいと考えられるMg/Alモル比が2のLDH及び、Mg、Al以外の金属イオンのLDHを使用した実証例も少なく、水を用いたLDH剥離に関しては汎用性に問題があった。
 本発明者らは、LDH層間のアニオンを入れ替えるアニオン交換法により、層間に酢酸アニオン又は塩素アニオンを包接した水膨潤性LDHの合成に成功し、これを特許出願している(特許文献6、特許文献7、非特許文献11)。得られた酢酸アニオン型LDHは、純度及び剥離性の点で他の水膨潤性LDHよりも優れている。しかし、空気中で開放した状態で保存すると、空気中の二酸化炭素と反応し、酢酸アニオンを放出して炭酸イオン型LDHに変化するため、密栓した容器に保存する必要があり、安定性にやや難がある(特許文献6、非特許文献10)。また、酢酸放出による酢酸臭の問題もある。
 これまでに、層間に有機カルボン酸アニオンを導入することによって、水膨潤性のLDHを合成する試みがなされており、それぞれに特徴のある水膨潤性LDHが見出されているが、今のところ高結晶性、高純度、高安定性、汎用性、無臭性、無毒性など、全ての条件を満たす良質の水膨潤性LDHは見出されていない。
特開2007-31189号公報 特開2005-89269号公報 特開2006-52114号公報 特開2008-184343号公報 特開2008-1806号公報 特開2009-173482号公報 特許第4228077号公報 WO2009/072488号パンフレット 特開2005-335965号公報
リ リャン、マ ルンジ、海老名 保男、井伊 伸夫、佐々木 高義、Chem.Mater.17、4386-4391(2005). Cavani、F.、Trifiro、F.、Vaccari、A.、Catal.Today 11、173-301(1991). Miyata、S.、Clays Clay Miner.31、305-311(1983). Reichle、W.T.、Solid States Ionics 22、135-141(1986). Hibino、T.、Chem.Mater.16、5482-5488(2004). リ リャン、マ ルンジ、海老名 保男、井伊 伸夫、Takata、K.、佐々木 高義、Langmuir、2007、23、861-867(2007). Okamoto、K.、佐々木 高義、Fujita、T.、井伊 伸夫、J.Mater.Chem.、16、1608-1616(2006). Hibino、T.、Kobayashi、M.、J.Mater. Chem.15、653-656(2005). Stanimirova、T.S.、Kirov、G.、Dinolova、E.、J.Mater.Sci.Lett.20、453-455(2001). 井伊 伸夫、海老名 保男、佐々木 高義、Langmuir、24、5591-5598(2008). 井伊 伸夫、Matsumoto、T.、Kaneko、Y.、Kitamura、K.、Chem.Mater.16、2926-2932 (2004). 井伊 伸夫、Yamada、H.、Chem.Lett. 39、591-593 (2010) 井伊 伸夫、Fujii、K.、Okamoto、K.、佐々木 高義、Appl.Clay Sci.35、218-227(2007).
 本発明は、このような実情に鑑み、各種サイズ、例えば、結晶径が0.1~10μmサイズの高品質なLDHナノシートを得ることができる高結晶性、高純度、高安定性、汎用性、無臭性及び無毒性の水膨潤性LDHとその合成法、水膨潤性の層状複水酸化物を用いて作られるゲル状又はゾル状物質及び、複水酸化物ナノシートとその製造方法を提供することを目的とする。
 本発明者らは、水膨潤性LDHに使用される有機カルボン酸が、多くの場合、短鎖のカルボン酸イオンであることから、短鎖の場合にのみ、イオン部分の親水性と有機部分の疎水性のバランスが取れ、水膨潤性を示すと考えた。さらに、酢酸アニオンを含むLDHで見られる炭酸イオン型LDHへの変質及び変質に伴う酢酸の放出は、酢酸などのカルボン酸が二酸化炭素から生じる炭酸と比して同程度の弱い酸性度であるためと考えた。
 以上の2つの考えに基づき、アニオンとして、強酸性のスルホン酸基を有する短鎖の有機スルホン酸のアニオンが候補として有望であると推測し、各種の短鎖の有機スルホン酸アニオンを包接したLDHを合成してその水膨潤性を調べた。
 その結果、イセチオン酸(2-ヒドロキシエタン-1-スルホン酸)アニオンを包接した各種のLDHが著しい水膨潤性を示すことを知見するに至ったものである。
 従って、本発明は、水膨潤性層状複水酸化物と製造方法、水膨潤性の層状複水酸化物を用いて作られるゲル状又はゾル状物質及び、複水酸化物ナノシートとその製造方法を提供することを目的とする。
 本発明の水膨潤性層状複水酸化物は、層間に、有機スルホン酸アニオン(A-)を有し、下記一般式(1)で表されることを特徴とする水膨潤性層状複水酸化物である。
Figure JPOXMLDOC01-appb-C000005
 ここで、上記Qは2価の金属であり、Rは3価の金属であり、A-は有機スルホン酸アニオンであり、mは0より大きい実数である。zは1.8≦z≦4.2の範囲である。Xn-はA-に置換せずに残ったn価のアニオンで、nは1もしくは2である。yはXn-の残存分を示し、0≦y<0.4である。
 有機スルホン酸アニオン(A-)は、化学式HOC24SO3 -で表されるイセチオン酸のアニオンであることが好ましい。Qは2価金属であり、具体的には、Mg、Mn、Fe、Co、Ni、Cu、Zn及びCaからなる群から選択される金属が好ましい。Rは3価金属であり、具体的には、Al、Ga、Cr、Mn、Fe、Co、Ni及びLaからなる群から選択される金属が好ましい。
 本発明の水膨潤性層状複水酸化物の製造方法は、下記一般式(2)で表される組成を有する層状複水酸化物を、有機スルホン酸アニオン(A-)を含む下記一般式(3)で示す化合物を水又は有機溶媒に溶解させた溶液中に分散し、Xn-とA-をアニオン交換することを特徴とする。
Figure JPOXMLDOC01-appb-C000006
 ここで、式中、zは1.8≦z≦4.2の数値範囲を示し、Qは2価の金属イオン、Rは3価の金属イオン、mは0より大きい実数である。Xn-は、n=1ではCl-、Br-、NO3 -、ClO4 -、ClO3 -、n=2ではCO3 2-、である。
Figure JPOXMLDOC01-appb-C000007
ここで、Ln+はn価の陽イオンであり、nは1≦n≦3の数値範囲で、Ln+は、n=1ではNa+、NH4 +、Li+、K+、H+、n=2ではMg2+、Ca2+、Sr2+、Ca2+、n=3ではAl3+、である。
 Qは2価金属であり、Mg、Mn、Fe、Co、Ni、Cu、Zn及びCaからなる群から選択される金属が好ましい。Rは3価金属であり、Al、Ga、Cr、Mn、Fe、Co、Ni及びLaからなる群から選択される金属が好ましい。
 前記一般式(3)において、[Ln+]は、Na+、NH4 +、Li+、K+、H+、Mg2+、Ca2+、Sr2+、Ca2+及びAl3+からなる群から選択されることが好ましい。
 本発明のゲル状又はゾル状物質は、本発明の水膨潤性層状複水酸化物が水を主成分とする溶媒で膨潤されてなることを特徴とする。
 水を主成分とする溶媒は、水又は水が50モル%以上で、残りが水に可溶な有機溶媒からなる混合溶媒が好ましい。
 本発明の複水酸化物ナノシートは、下記一般式(4)で表される組成を有する。
Figure JPOXMLDOC01-appb-C000008
 ここで、Qは2価の金属であり、Rは3価の金属であり、zは1.8≦z≦4.2の数値範囲である。なお、Q及びRの好ましい金属の例は前述したとおりである。
 複水酸化物ナノシートの厚さは、0.5nm以上10nm以下の範囲が好ましい。
 本発明の複水酸化物ナノシートの製造方法は、水を主成分とする溶媒を用いて、本発明の水膨潤性層状複水酸化物から複水酸化物ナノシートを生成することを特徴とする。水を主成分とする溶媒は、水又は混合溶媒であり、前記混合溶媒は、水が50モル%以上で、残りが水に可溶な有機溶媒であることが好ましい。
 本発明の水膨潤性層状複水酸化物は、層間に有機スルホン酸アニオン(A-)を有し、一般式(1)で表され、安定性に優れた化合物で、しかも水膨潤性を有する。
 本発明の水膨潤性層状複水酸化物の製造方法は、一般式(2)で表される組成を有する層状複水酸化物を、有機スルホン酸アニオン(A-)を含む一般式(3)で示す化合物を溶解させた水又は有機溶媒の溶液中に分散し、Xn-とA-とをアニオン交換する。本発明にあっては、出発物質である原料LDHをアニオン交換法により製造するため、原料LDHと同じ粒径又は同じ粒子形状を持つ、高純度の水膨潤性層状複水酸化物が得られる。
 本発明のゲル状又はゾル状物質は、本発明の水膨潤性層状複水酸化物を、水を主成分とする溶媒で膨潤して生成するため、他のフォルムアミドなどのような有機溶媒を使う方法と異なり、安全性に優れており、容易に特許文献6に示される薄膜又は自立膜に成形できる。
 本発明の複水酸化物ナノシートの製造方法は、ナノシートの積層に使われる水を主成分とする溶媒を用いるため、複水酸化物ナノシートを含むコロイド溶液を、そのままLDHの積層プロセスに使うことができる。
本発明の水膨潤性層状複水酸化物の構造を示す模式図である。 本発明のアニオン交換による水膨潤性層状複水酸化物の製造スキームを示す図である。 本発明のゲル、ゾル及び複水酸化物ナノシートとその生成過程を示す模式図である。 実施例1におけるMgAl-LDH3のフーリエ変換赤外分光スペクトル(透過度)を示すグラフである。図中、(a)は、炭酸イオン型MgAl-LDH3、(b)は、過塩素酸イオン型MgAl-LDH3、(c)は、イセチオン酸アニオン型MgAl-LDH3の各チャートである。 実施例1における各種の有機スルホン酸アニオンを包接したMgAl-LDH3のフーリエ変換赤外分光スペクトル(透過度)を示すグラフである。 実施例1における、各種の有機スルホン酸アニオンを包接したMgAl-LDH3の光透過度(波長:589nm)を示すグラフである。 実施例2におけるMgAl-LDH2のフーリエ変換赤外分光スペクトル(透過度)を示すグラフである。図中、(a)は炭酸イオン、(b)は過塩素酸イオン、(c)はイセチオン酸アニオン(Ise)、を層間に含むMgAl-LDH2の各チャートを示す。 実施例2における各種の有機スルホン酸アニオンを包接したMgAl-LDH2のフーリエ変換赤外分光スペクトル(透過度)を示すグラフである。 実施例2における、各種の有機スルホン酸アニオンを包接したMgAl-LDH2の光透過度(波長:589nm)を示すグラフである。 実施例3における、相対湿度を変化させたときのIse-MgAl-LDH3の粉末X線回折プロファイルを示す図である。 実施例3における、相対湿度を変化させたときのIse-MgAl-LDH2の粉末X線回折プロファイルを示す図である。 相対湿度変化に伴うIse-MgAl-LDH3の底面間隔の変化を示すグラフである。 相対湿度変化に伴うIse-MgAl-LDH2の底面間隔の変化を示すグラフである。 実施例3のMgAl-LDH3のSEM(走査電子顕微鏡)像を示す図である。図14(a)は炭酸イオンを、図14(b)は過塩素酸イオンを、図14(c)はイセチオン酸アニオン(Ise)を、層間に含む像である。 実施例3のMgAl-LDH2のSEM(走査電子顕微鏡)像を示す図である。図15(a)は炭酸イオンを、図15(b)は過塩素酸イオンを、図15(c)はイセチオン酸アニオン(Ise)を、層間に含む像である。 実施例3における相対湿度の変化に伴うIse-MgAl-LDH2及びIse-MgAl-LDH3の重量変化を示すグラフである 実施例4における(a)Ise-MgAl-LDH2のゲル及び(b)Ise-MgAl-LDH3のゲルの像を示す図である。 実施例4における、0.01mol/Lの各種LDHの懸濁状態を示す像である。図中、(a)は炭酸イオン型MgAl-LDH2、(b)は炭酸イオン型MgAl-LDH3、(c)はIse-MgAl-LDH2、(d)はIse-MgAl-LDH3である。 実施例4におけるIse-MgAl-LDH3の粉末X線回折プロファイルである。図中(a)は粉末、(b)は粉末に水を滴下した直後のもの、(c)は粉末に水を滴下して約20分後のゲル状態のもの、(d)はゲルを基板上で乾燥させたものである。 実施例4におけるIse-MgAl-LDH2の粉末X線回折プロファイルである。図中、(a)は粉末、(b)は粉末に水を滴下した直後のもの、(c)は粉末に水を滴下して約20分後のゲル状態のもの、(d)はゲルを基板上で乾燥させたものである。 実施例4におけるIse-MgAl-LDH3のLDHナノシートのAMF像を示す図で、基板に垂直な方向から見た図である。 実施例4におけるIse-MgAl-LDH2のLDHナノシートのAMF像を示す図で、基板に垂直な方向から見た図である。 実施例5のNiAl-LDH2のフーリエ変換赤外分光スペクトル(透過度)を示す図である。図中、(a)は炭酸イオン、(b)は過塩素酸イオン、(c)はイセチオン酸アニオン(Ise)、を層間に含むNiAl-LDH2である。 実施例5のNiAl-LDH3のフーリエ変換赤外分光スペクトル(透過度)を示す図である。図中、(a)は炭酸イオン、(b)は過塩素酸イオン、(c)はイセチオン酸アニオン(Ise)、を層間に含むNiAl-LDH3である。 実施例5のNiAl-LDH4のフーリエ変換赤外分光スペクトル(透過度)である。図中、(a)は炭酸イオン、(b)は過塩素酸イオン、(c)はイセチオン酸アニオン(Ise)、を層間に含むNiAl-LDH4である。 実施例5のNiAl-LDHのX線回折プロファイルである。(a)はNiAl-LDH4、(b)はNiAl-LDH3、(c)はNiAl-LDH2を示す。 実施例5及び実施例6のLDHのゲルの状態を示す図である。図中、(a)はIse-NiAl-LDH4、(b)はIse-NiAl-LDH3、(c)はIse-NiAl-LDH2、(d)はIse-CoAl-LDH2、のゲルである。 実施例6のCoAl-LDH2のフーリエ変換赤外分光スペクトル(透過度)を示す図である。図中、(a)は炭酸イオン、(b)は塩素イオン、(c)はイセチオン酸アニオン(Ise)、を層間に含むCoAl-LDH2である。 実施例6のCoAl-LDH2の粉末X線回折プロファイルを示す図である。図中、(a)は炭酸イオン、(b)は塩素イオン、(c)はイセチオン酸アニオン(Ise)、を層間に含むCoAl-LDH2である。
 以下、本発明の水膨潤性層状複水酸化物(以下、水膨潤性LDHという。)とその製造方法、ゲル状又はゾル状物質、及び複水酸化物ナノシートとその製造方法について、幾つかの実施例を参照しつつ詳細に説明する。
<水膨潤性LDH>
 本発明の水膨潤性LDHは、一般式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000009
 ここで、Qは2価の金属であり、Rは3価の金属であり、A-は有機スルホン酸アニオンである。mは0より大きい実数であり、zは1.8≦z≦4.2の範囲である。Xn-はA-に置換せずに残ったn価のアニオンであって、nは1もしくは2である。yはXn-の残存分を示し、0≦y<0.4である。
 前記のように、A-は有機スルホン酸アニオンであり、好ましくは、イセチオン酸アニオンである。イセチオン酸は、2-ヒドロキシエタン-1-スルホン酸とも称されるもので、そのアニオンは、化学式HOC24SO3 -で表される。
 Qは、2価の金属であり、具体的には、Mg、Mn、Fe、Co、Ni、Cu、Zn及びCaからなる群から選択されるのが好ましい。
 Rは、3価の金属であり、具体的には、Al、Ga、Cr、Mn、Fe、Co、Ni及びLaからなる群から選択される金属である。
 なお、前記zの範囲は、LDHの組成範囲としてよく知られている組成範囲である(非特許文献2-4参照)。
 Xn-は、本発明の水膨潤性LDHを合成するための原料LDHに含まれていたn価のアニオンであって、Xn-はA-以外のアニオンである。したがって、Xn-は様々なアニオンであってよく、特に限定されるものではないが、例えば、CO3 2-、ClO4 -、Cl-、NO3 -、Br-、I-又はClO3 -を挙げることができる。なお、これらのアニオンは、一種類だけのこともあるが、2種類以上のアニオンが混在していてもよい。
 y値は、0≦y<0.4の範囲にある。Xn-が有機スルホン酸アニオン(A-)に完全にイオン交換された場合(100%の置換率)は、y=0となる。しかし、後述するアニオン交換反応条件を緩和させることにより、アニオン(Xn-)が置換されずに残留する。有機スルホン酸アニオン以外に20%程度の他種イオンが混在していても、本発明の水膨潤性LDHは、水に対して膨潤する。しかしながら、純度が低下することによってコロイド溶液の透明度などの性能が低下するため、有機スルホン酸アニオンは、80%以上にするのが望ましく、yは0.2以下が好ましく、より好ましくは0.1以下である。
 mは、層間の水分量を表し、0より大きい実数である。この値は、雰囲気の相対湿度によって大きく値が変化するため、具体的に範囲を特定することは意味がない。
 図1は、本発明の水膨潤性LDHの構造を示す模式図である。金属Q、R及びOHから形成される金属八面体からなる複数の金属水酸化物層の隙間に有機スルホン酸アニオン(A-)が介在して、LDHの結晶が形成されている。隙間には、水分子も存在する。LDHの結晶形状は、図示する六角板状のものや楕円板状のものがあるが、これらの形状に限られるものではない。結晶径は0.1~10μmのものが多く、結晶の厚さは0.01~1μm程度である。
 1層の金属水酸化物層の厚さは、0.5nm程度である。底面間隔(隣接する層の底面間の距離)は、雰囲気の相対湿度によって変化する。A-がイセチオン酸アニオンの場合、約1.4nmである。水膨潤性LDHは、水中では層間に多くの水分子を含有して膨潤することができる。
<水膨潤性LDHの製造方法>
 本発明の水膨潤性LDHは、下記一般式(2)で表される組成を有するLDH(以下、原料LDHという。)を、有機スルホン酸アニオン(A-)を含む下記一般式(3)で示す塩を溶解させた水、又はメタノールもしくはエタノールなどの有機溶媒の溶液中で、X-とA-をアニオン交換することによって合成する。
Figure JPOXMLDOC01-appb-C000010
 式(2)中、zは1.8≦z≦4.2の数値範囲を示し、Qは2価の金属イオンであり、Rは3価の金属イオンである。mは0より大きい実数であり、上述したように、相対湿度によって変化する値であり、具体的な範囲を特定することは意味がない。Xn-は、n=1では、Cl-、Br-、NO3 -、ClO4 -又はClO3 -であり、n=2では、CO3 2-である。
Figure JPOXMLDOC01-appb-C000011
 前記一般式(1)、一般式(2)及び一般式(3)中のA-、Q、R及びzは、前述したとおりである。
 一般式(3)中のLn+はn価の陽イオンであり、nは1≦n≦3の数値範囲である。具体的には、Ln+は、n=1では、Na+、NH4 +、Li+、K+又はH+、n=2では、Mg2+、Ca2+、Sr2+又はCa2+、n=3では、Al3+である。入手の容易性から、Na+又はNH4 +が好ましい。
 なお、一般式(3)において、Ln+=Na+のイセチオン酸ナトリウムを用いる場合、市販の薬品(通常、純度98%)では、硫酸ナトリウム、硫酸水素ナトリウムなどの無機の硫酸化合物が不純物として混入していることがある。これらは、メタノールに不溶であるので、メタノール溶液から、不溶物をろ過により、分離・除去してから使用することが望ましい。
 イセチオン酸ナトリウムは、特に毒性は報告されておらず、化粧品などの添加物として使用され、飲料に含まれるタウリンの代謝物として、体内で生成される物質であり、本発明の水膨潤性LDHが人体に触れて、イセチオン酸アニオンを放出したとしても無害であるといえる。
 なお、原料LDHの一般式(2)と水膨潤性LDHの一般式(1)のz値が同じ1.8≦z≦4.2の範囲であるのは、アニオン交換反応によって、金属水酸化物層の組成である金属の比に変化が生じないためである。
 本発明のアニオン交換による水膨潤性LDHの製造スキームを図2に示す。
 本発明の水膨潤性LDHの製造方法は、原料LDHの形状を保つことが可能なイオン交換法を適用した方法である。したがって、結晶性の良い原料LDHを出発原料として用いることができ、また、従来の水膨潤性LDHの製造方法である「再構築」などのプロセスが不要で、より純度の高い水膨潤性LDHを得ることができる。したがって、サイズや形状を制御したLDHナノシートを容易に得ることが可能な極めて簡便な方法である。
<ゲル状又はゾル状物質>
 本発明のゲル状又はゾル状物質は、本発明の水膨潤性LDHが、水を主成分とする溶媒で膨潤されたものである。
 図3に、本発明の実施形態であるゲル状物質及びゾル状物質とその生成を示す模式図を示す。水膨潤性LDHの金属水酸化物層間に水分子が入ることによって層間が広がり、また更なる加水によって、ゲル状、ゾル状と変化していく様子を図示している。ゲル状物質(固体状)及びゾル状物質(液体状)は、水膨潤性層状LDHの金属水酸化物層間に水が入ることにより膨潤し、層と層の結合が次第に弱化して生成する。すなわち、水膨潤性LDHが水を主成分とする溶媒で膨潤されて、より多くの水分子が層間に挿入され、底面間隔、すなわち層の中央から層の中央までの距離が広げられ、ついには層と層が剥離した状態になる。なお、水を主成分とする溶媒は、水又は水が50モル%以上で、残りが水に可溶な有機溶媒からなる混合溶媒が好ましい。
<複水酸化物ナノシート>
 本発明の複水酸化物ナノシートは、下記一般式(4)で表される組成を有する。
Figure JPOXMLDOC01-appb-C000012
 ここで、Qは2価の金属であり、Rは3価の金属であり、zは1.8≦z≦4.2の数値範囲である。Q及びRの具体的な金属は、前述したとおりである。
 複水酸化物ナノシートは、本発明の水膨潤性LDHを形成する金属水酸化物層に由来し、前述した2価及び3価の金属とOHとから構成される。
 複水酸化物ナノシートは1層の金属水酸化物層であるが、1層に限られるものではなく、層数は2~5層程度のものも含むことがある。厚さの範囲は、0.5~10nm程度となる。複水酸化物ナノシートの平面視の形状は、水膨潤性LDHの結晶形状を反映する。たとえば、図1のような六角板状の水膨潤性LDH結晶からは六角形のナノシートが形成される。
<複水酸化物ナノシートの製造方法>
 本発明の複水酸化物ナノシートの製造方法は、水を主成分とする溶媒を用いて、本発明の水膨潤性LDHを膨潤、剥離させて生成することを特徴とする。
 図3には、本発明の複水酸化物ナノシートの一例とその生成過程も模式的に示されている。すなわち、水膨潤性LDHは、水を主成分とする溶媒で膨潤し、ついには層と層が剥離した状態になる。
 このように、水を主成分とする溶媒に水膨潤性LDHを浸漬するだけで、容易に複水酸化物ナノシートを生成することができる。
 以上説明したように、本発明には以下のような利点がある。
 (1)本発明の水膨潤性LDHは安定性に優れ、無臭である。
 (2)アニオン交換性を有する良結晶性LDHを出発物として、アニオン交換により水膨潤性LDHを合成するため、煩雑な操作を必要としない。
 (3)高い層電荷密度を持つLDHでも、水膨潤性LDHにできる。
 (4)アニオン交換は結晶の形状やサイズを変化させることなく行うことができ、さらにナノシートもその形状を継承するため、自由なサイズ・形状のナノシートを得ることができる。
 (5)使用する試薬は容易かつ安価に入手可能であり、毒性及び危険性がない。
 (6)本発明のLDHナノシートは、交互積層の構成成分としてだけでなく、LDHの層が1層1層、別れて水中で存在するため、反応性の向上が期待でき、これまで、通常のイオン交換では包接できなかった種々のアニオンや分子などと水膨潤性LDHを形成することが期待できる。
 以下、実施例に基づいて具体的に本発明を説明する。但しこれらの実施例は、本発明を容易に理解するための一助として示したものであり、決して本発明を限定する趣旨ではない。
 本実施例において2価の金属イオンとしてMgイオン、3価の金属イオンとしてAlイオンを含み、一般式Mg3Al(OH)8(CO3 2-0.5・2H2Oで示される市販のハイドロタルサイト(DHT-6、協和化学工業株式会社製。粒径分布は約0.1~1μm、Mg/Alモル比は、2.99(±0.06)を使用した。以下、このLDHをCO3 2-MgAl-LDH3又は炭酸イオン型MgAl-LDH3と表す。
(炭酸イオン型MgAl-LDH3から過塩素酸イオン型MgAl-LDH3への変換)
 特許文献8及び非特許文献12の方法を適用して、炭酸イオン型MgAl-LDH3を過塩素酸イオン型MgAl-LDH3(ClO4 -MgAl-LDH3)へ変換した。以下、この方法を変換法1と呼ぶ。
 まず、酢酸比、すなわち酢酸モル量の、酢酸及び酢酸ナトリウム合計モル量に対する比率が0.127の0.1mol/L酢酸緩衝液を使用して、NaClO4濃度が2molの酢酸緩衝液-NaClO4混合溶液を調整した。100mgのCO3 2-MgAl-LDH3を酢酸緩衝液-NaClO4混合溶液50mlに加え、窒素気流下(500mL/分)、25℃で18時間、マグネティックスターラーで撹拌しつつ反応させた。その後、窒素気流中、孔径0.2μmのメンブランフィルターでろ過し、脱ガス水で沈殿物を充分に洗浄した。ろ別した沈殿物を回収して直ちに減圧し、真空下で1時間以上乾燥して、白色粉末108mgを得た。ここで、上記脱ガス水は、イオン交換水を15分以上沸騰させて作製した二酸化炭素を含まない水である。
 変換法1とは別に、以下に示す変換方法も試みた。以下、これを変換法2という。
 500mgのCO3 2-MgAl-LDH3を、三口フラスコに入れ、メタノール45mLを加え、懸濁液を作製した。窒素気流下(500mL/分)、マグネティックスターラーで撹拌しつつ、この懸濁液に、過塩素酸(60%)350mgをメタノール5mLに溶かした溶液を滴下し、さらに25℃で1時間、撹拌しつつ反応させた。その後、窒素気流中、孔径0.2μmのメンブランフィルターでろ過し、メタノールで沈殿物を充分に洗浄した。ろ別した沈殿物を回収して直ちに減圧し、真空下で1時間以上乾燥して、白色粉末561mgを得た。なお、メタノールの代わりにエタノールを用いたところ、同じ白色粉末が得られた。
(過塩素酸イオン型MgAl-LDH3(ClO4 -MgAl-LDH3)のキャラクタリゼーション)
 変換法1及び変換法2によって得られた生成物は、粉末X線回折で、底面間隔0.901nm(RH=0%で測定)を示した。この値は、非特許文献13の値0.904nmとよく一致しており、他にピークもなく、また、回折ピークはブロードでなく、結晶性に変化の無い良質なClO4 -MgAl-LDH3が合成されていることを示していた。
 変換法1及び変換法2によって得られた生成物のFTIR(フーリエ変換赤外吸収法)を用い、KBr法によって赤外吸収プロファイルを測定した。図4に示すように、1100cm-1にClO4 -の特性吸収があり(図4の(b)のチャート参照)、炭酸イオン型MgAl-LDH3の1360cm-1のCO3 2-による吸収が消失している(図4の(a)のチャート参照)ことから、ClO4 -MgAl-LDH3の生成が確認できた。
(各種のスルホン酸アニオンの包接)
 ClO4 -MgAl-LDH3を20mg使用し、それぞれ、0.067mol/Lのメタンスルホン酸ナトリウム、エタンスルホン酸ナトリウム、1-プロパンスルホン酸ナトリウム、2-メチル-2-プロペン-1-スルホン酸ナトリウム、ヒドロキシメタンスルホン酸ナトリウム及びイセチオン酸ナトリウムの6種類の有機スルホン酸塩(表1参照)のメタノール溶液10mLを加え、25℃で20時間、イオン交換反応させた。
 なお、ヒドロキシメタンスルホン酸ナトリウム及びイセチオン酸ナトリウムは、メタノールに不溶の不純物(硫酸水素ナトリウム、硫酸ナトリウムなどと考えられる)があったので、孔径0.2μmのメンブランフィルターでろ過し、ろ液を使用した。
 イオン交換反応後、沈殿物を窒素気流中、孔径0.2μmのメンブランフィルターでろ過し、沈殿物を充分にメタノールで洗浄した。ろ別した沈殿物を回収し、直ちに減圧して真空下で1時間以上乾燥して、白色粉末を得た。得られた白色粉末を、さらにもう一度同じ条件でイオン交換を行なった。
 表1に、使用した有機スルホン酸ナトリウムと略号を示す。なお、得られた生成物は、MgAl-LDH3の接頭にそれぞれ、アニオンの略号であるMe、Et、Pr、Mp、Hm又はIseを付して表す。
Figure JPOXMLDOC01-appb-T000013
 本実施例において、前記一般式(3)の化合物として、有機スルホン酸ナトリウム塩のみを用いた。これは、ナトリウム塩が最も安価で入手が容易であり、水への溶解度が大きいことによる。しかし、アニオン交換においては、溶液内に存在する[A-]が肝要であり、ナトリウムイオン以外の陽イオンからなる前記一般式(3)の化合物であってもよい。
 合成したそれぞれのMgAl-LDH3の赤外吸収スペクトルを図5に示す。なお、Ise-MgAl-LDH3のスペクトルは、図4中の(c)で示している。それぞれ、有機スルホン酸アニオンに特有の1040、1200cm-1の強い吸収を有していることから、有機スルホン酸アニオン交換が充分に行われ、ClO4 -の残留及びCO3 2-の取り込みもなく、目的とするアニオン交換MgAl-LDH3が得られていることを示している。
 アニオン交換MgAl-LDH3の水に対する膨潤性を検査した。水を加えることによって、Ise-MgAl-LDH3のみ、直ちに粘稠なゲルを形成し、また更なる加水によってコロイド溶液を生じた。Ise-MgAl-LDH3以外のアニオン交換MgAl-LDH3では、透明度の低い懸濁液が得られたのみでゲル化も観察されなかった。
 定量的な光の透過度を調べるため、それぞれの0.01mol/Lの水溶液を作り、可視紫外光分光器(JASCO V-570)で透過度を測定した。測定波長=589nm、1×1cmの標準石英キュベットを使用した。比較のため、炭酸イオン型MgAl-LDH3の懸濁液の透過度を測定した。
 図6に透過度のグラフを示した。グラフ中の略号Cは、炭酸イオン型MgAl-LDH3であり、その他の略号は、各種アニオン交換MgAl-LDH3を意味する。
 図6からわかるように、Ise-MgAl-LDH3のみ、96%程度の高い透過度を示し、他のアニオン交換MgAl-LDH3は、炭酸イオン型LDHと同程度の低い光透過度の懸濁液を生じるのみであった。
 以上、表1に示した有機スルホン酸アニオンのうち、Ise、すなわち、イセチオニン酸アニオン:HOC24SO3 -が層間に包接されたMgAl-LDH3のみが水膨潤性を示し、透明度の高いゾルを形成することが明らかになった。
 本実施例において2価の金属としてMg、3価の金属としてAlを含み、一般式Mg2Al(OH)6(CO3 2-0.5・2H2Oで示されるLDH(以下、CO3 2-MgAl-LDH2又は炭酸イオン型MgAl-LDH2という。)を合成した。Mg/Alモル比が約2であり、層電荷密度は実施例1のMgAl-LDH3よりも高い。
 炭酸イオン型MgAl-LDH2の合成を特許文献9に従って行なった。
 具体的には、MgCl2・6H2Oを508mg、AlCl3・6H2Oを302mgにイオン交換水を加えて12.5mLの溶液とし、これにヘキサメチレンテトラミン613mgを溶かした水溶液12.5mLを加え、0.2ミクロンのメンブランフィルターでろ過したのち、50mL容量の耐圧テフロン(登録商標)容器に入れ、耐圧ステンレス容器に収めて密封し、140℃で1日、水熱処理を行なった。ろ過及び水洗後真空中で乾燥し、279mgの白色粉末を得た。粒径は約0.5~2μm、Mg/Alモル比は、1.94(±0.04)であった。
 FTIRスペクトルを図7(a)に示す。
(炭酸イオン型MgAl-LDH2から過塩素酸イオン型MgAl-LDH2(ClO4 -MgAl-LDH2)への変換)
 実施例1において示した変換法2を使い、過塩素酸イオン型への変換を行なった。CO3 2-MgAl-LDH2を202mg秤量して、三口フラスコに入れ、メタノール45mLを加え、懸濁液を作製した。窒素気流下(500mL/分)、マグネティックスターラーで撹拌しつつ、この懸濁液に過塩素酸(60%)175mgをメタノール5mLに溶かした溶液を滴下し、さらに25℃で1時間撹拌しつつ反応させた。実施例1と同様な処理により乾燥し、238mgの白色粉末を得た。
(過塩素酸イオン型MgAl-LDH2のキャラクタリゼーション)
 粉末X線回折の結果、生成物は、底面間隔0.879nm(RH=0%で測定)を示し、非特許文献13の値0.881nmとよく一致しており、また、その回折ピーク形は、結晶性にほとんど変化無く、良質な過塩素酸イオン型MgAl-LDH2が合成されていることを示している。
 図7のFTIRによる赤外吸収プロファイルの結果も、1100cm-1にClO4 -の特性吸収があり(図7中の(b)のチャート参照)、また、1360cm-1の炭酸イオンによる吸収(図7中の(a)参照)が消失していることから、過塩素酸イオン型MgAl-LDH2が生成していることが確認できた。
(各種のスルホン酸アニオンの包接)
 過塩素酸イオン型MgAl-LDH2を、16mg使用し、実施例1の表1に示す有機スルホン酸塩について、それぞれ、0.067mol/Lのメタノール溶液10mLを作製して加え、25℃で20時間、イオン交換反応させた。沈殿物を、実施例1と同じ方法で乾燥させ、白色粉末を得た。白色粉末を、さらにもう一度同じ条件でイオン交換を行なった。
 生成物をそれぞれ、Me-MgAl-LDH2、Et-MgAl-LDH2、Pr-MgAl-LDH2、Mp-MgAl-LDH2、Hm-MgAl-LDH2、Ise-MgAl-LDH2で略称する。
 それぞれの赤外吸収スペクトルを図8に示す。なお、Ise-MgAl-LDH2のスペクトルは、図7中の(c)のチャートに示している。
 有機スルホン酸アニオンに特有の1040、1200cm-1の強い吸収が見られることから、アニオン交換が充分に行われ、ClO4 -の残留もなく、また、CO3 2-の取り込みもなく、目的とするアニオン交換MgAl-LDH2が得られていることを示している。
 得られたアニオン交換MgAl-LDH2の水に対する膨潤性を検査した。水を加えることによって、Ise-MgAl-LDH2のみ、直ちに粘稠なゲルを形成し、また更なる加水によってコロイド溶液を生じた。他のアニオン交換MgAl-LDH2では、透明度の低い懸濁液が得られたのみでゲル化も観察されなかった。
 光の透過度を調べるため、0.01mol/Lの水溶液を作り、実施例1と同じ条件で透過度を測定した。結果を図9に示す。比較のため、炭酸イオン型MgAl-LDH2の懸濁液の透過度を示す(図9中Cで示す。)。
 Ise-MgAl-LDH3に比べて透明度は劣るものの、Ise-MgAl-LDH2のみが、他のLDH2に比べて格段に高い透明度(透過度50%程度)を示した。有機スルホン酸アニオンのなかでは、Iseが層間に包接されたMgAl-LDH2のみが水膨潤性を示し、透明度の高いゾルを形成することが明らかになった。
 実施例1、2で、イセチオン酸アニオン(Ise)を層間に含むMgAl-LDH3及び-LDH2が水に対して膨潤性を示し、ゲルやコロイド溶液を形成することが明らかになったので、これらの2つのLDHについて、より詳しく粉末X線回折、走査型電子顕微鏡などの分析をおこない、粉末状態でのキャラクタリゼーションを行った。
 相対湿度によって底面間隔が変化するため、測定雰囲気の相対湿度を変化させて、粉末X線回折測定を行った。
 測定は、X線粉末回折装置Rint1200(リガク、日本)を用い、回折条件は、CuKα線(λ=1.5405nm)、40kV/30mA、走査速度2°(2θ)/分で、測定は25℃で行った。相対湿度は、25℃で窒素ガスと水を飽和させた窒素ガスを混合する装置(SHINYEI SRG-1R-1)を用いて調整し、相対湿度の値は湿度温度測定器(VAISALA社製 HMI41)でモニターした。
 図10はIse-MgAl-LDH3のX線回折パターンの変化、図11はIse-MgAl-LDH2のX線回折パターンの変化を示す。相対湿度の増加により、底面間隔が著しく変化することがわかる。
 また、底面間隔と相対湿度との関係を、それぞれ、図12及び13に示す。相対湿度の増加により、底面間隔が、不連続に増大することが分かる。これは、水分子が層間に層として挿入されるためであると考えられる。
 走査型電子顕微鏡(JEOL、Japan)を用いて、Ise-MgAl-LDH3及びIse-MgAl-LDH2の形状観察を加速電圧15kVで行った。
 MgAl-LDH3のSEM像を図14に示す。図14(a)は炭酸イオンを、図14(b)は過塩素酸イオンを、図14(c)はイセチオン酸アニオン(Ise)を、層間に含む像である。なお、図中のバーは1μmで、図14(a)~図14(c)は同一倍率である。
 また、MgAl-LDH2のSEM像を図15に示す。図15(a)は炭酸イオンを、図15(b)は過塩素酸イオンを、図15(c)はイセチオン酸アニオン(Ise)を、層間に含む像である。なお、図中のバーは1μmで、図15(a)~図15(c)は同一倍率である。
 SEM像から、Ise-MgAl-LDH3は、直径が約0.1~1μmの大きさを有する円板状の結晶で、出発物の炭酸イオン型、過塩素酸イオン型のLDH3の形状を継承していることがわかる。Ise-MgAl-LDH2は、直径が約0.5~2μmの大きさを有する六角板状の結晶で、出発物である炭酸イオン型及び過塩素酸イオン型LDH3の形状を継承しいることがわかる。すなわち、Ise-MgAl-LDH3及びIse-MgAl-LDH2は、イオン交換によっても外形が保たれていたことがわかる。
 ICP(誘導結合プラズマ)発光分析装置(Seiko SPS1700HVR)による元素分析より、Mg/Alモル比は、Ise-MgAl-LDH2では、1.96(±0.04)、Ise-MgAl-LDH3では、2.99(±0.06)であることがわかった。これらの値は、出発物の炭酸イオン型LDHのMg/Alモル比とほとんど違いがなく、層の成分が変化することなく、アニオンの変換が行なわれたことを示している。
 また、CS-444LS型炭素硫黄同時分析装置(LECO社、高周波加熱燃焼-赤外線吸収法による定量分析)を使ってC/S比を測定したところ、Ise-MgAl-LDH2は、1.9、Ise-MgAl-LDH3は、2.0であり、イセチオン酸アニオンの値であるC/S=2.0にほぼ一致しており、イセチオン酸アニオンが分解せずに包接されていることを示していた。
 図16に示すように、Ise-MgAl-LDH3及びIse-MgAl-LDH2について、25℃で相対湿度と重量変化を調べた。重量変化は、窒素雰囲気中で1時間乾燥させた重量を基準として、RHを10%ずつ増加して、15分保持した後、重量を測定する方法で重量の変化を調べた。
 室温においてもRH=90%まで変化させると、約25%の重量の水分が入ることが分かった。特許文献6の図16に示されている塩素イオン型LDHが3%程度の増加であるのに比べ、10倍近い差がある。また、水膨潤性のない酢酸イオン型のMgAl-LDH2では、8%程度の増加であったが、Mg/Alモル比が同じ2であるIse-MgAl-LDH2では、25%程度の増加となっており、Ise-MgAl-LDH2のほうが水に対する親和性が強く、Iseが水膨潤性に関係していることがわかる。
 特許文献6の実施例2には、酢酸アニオンを含むLDHでは、外気にさらした場合、外気の湿度変化に伴い二酸化炭素の浸入が生じ、1週間~1ヶ月程度で、次第に炭酸イオン型LDHへの変質が起こることが観察されたことが記載されている。
 Ise-MgAl-LDH2及びIse-MgAl-LDH3について、開放条件で外気にさらして放置したが、2ヶ月後においても、XRD、及びFTIRプロファイルに本質的な変化がなく、炭酸イオンの取り込みなどの変質は見られなかった。
 Ise-MgAl-LDH3及びIse-LDH2の水に対する反応を詳しく調べた。
 200mgのIse-MgAl-LDHに水を2mL加えて生じたゲルを図17に示す。図中、左側がIse-MgAl-LDH2、右側がIse-MgAl-LDH3を用いて作製したゲルである。両方共にボトルを横にしても流れない高粘性の半透明ゼリー状(ゲル)になっていることが分かる。
 Ise-MgAl-LDH及びIse-MgAl-LDH2は、さらなる加水によってコロイド溶液となる。実施例1と同じ条件で懸濁液を作製して、光の散乱を観察した。
 図18に懸濁状態を示す。図中、(c)がIse-MgAl-LDH2、(d)がIse-MgAl-LDH3を用いて作製したコロイド溶液である。比較のため、同じ条件で作製した炭酸イオン型MgAl-LDH2の状態(図中(a))と炭酸イオン型MgAl-LDH3の状態(図中(b))を示す。
 図18では、右側から赤色LED光を照射しており、(c)及び(d)は、透明性が高く、ナノシート形成によるチンダル現象を起こしているのに対し、(a)及び(b)は、粉末の懸濁状態のために散乱光が生じていた。
 この結果から、Ise-MgAl-LDH3及びIse-MgAl-LDH2は、水に対し膨潤性があり、水によって高粘性のゲルや透明度の高いコロイド溶液を形成することがわかった。
 粉末状態及びゲル状態のIse-MgAl-LDH3及びIse-MgAl-LDH2についてX線回折測定を行なった。さらに、ゲルを窒素気流中で乾燥させた後、X線回折測定を行った状態で、X線回折測定を行った。
 図19は、Ise-MgAl-LDH3、図20は、Ise-MgAl-LDH2の測定結果である。
 図中、各々、(a)が粉末状態、(b)が水を少量滴下した直後の状態、(c)が水滴下後20分ほど経過した状態、(d)が生じたゲルを窒素気流中で数時間乾燥させた後のXRDプロファイルである。表示のスケールは、(b)及び(c)は、5倍に拡大したものであり、(d)は、0.3倍(図19)又は0.4倍(図20)である。
 Ise-MgAl-LDH3、Ise-MgAl-LDH2のどちらについても、粉末状態(図中(a))で明らかであった回折ピークは、水の滴下によって直ちに低角側に移ると共にピーク強度が激減し(図中(b))、水滴下後、20分程度で完全に消失した(図中(c))。これは、図3(右側の概念図)のように層がバラバラに分かれて不規則に並んだ状態となり、規則性がなくなるために回折ピークが消滅するためである。
 このゲルを乾燥させることによってそれらの反射ピークの再出現が観察された(図中(d))。(d)において、ピークの強度がかなり増加しているのは、剥離後の積層により規則性が著しく増すためであると考えられる。
 (a)~(d)の結果から、ゲル状態でLDHの層が剥離し、乾燥によって再度、積層されたことがわかる。
 このように、XRD測定でも、Ise-MgAl-LDH3、Ise-MgAl-LDH2共に、水によって層の剥離が起こり、乾燥によって再積層することが証明された。
 LDHナノシートの厚さは、剥離の程度によって異なる。
 LDHナノシートの厚さを調べるため、表面トポグラフィをSeiko E-Sweep原子間力顕微鏡(AFM)を用いて調べた。
 表面トポグラフィ用の試料は、酸洗浄したSi基板上に、カチオン性高分子(PEI)とアニオン性高分子(PSS)とを1層ずつ順に付着して、その上にカチオン性のLDHナノシートを吸着させることによって調製した。
 厚さ測定は、シリコンチップを備えたカンチレバーで、20N/mのタッピングモードで行った。
 図21はIse-MgAl-LDH3のLDHナノシート、図22はIse-MgAl-LDH2のLDHナノシートのAMF像を示している。それぞれ、基板にLDHナノシートが付着している状態を基板に垂直な方向から観察した図である。厚さは、それぞれの図の下部に示すスケールの濃淡によって示される。
 LDHナノシートの厚さは、1.5~2.0nm程度であり、単層のシートであると推定される。フォルムアミドを用いて得られるナノシートが1nm程度であるのに比べ、やや大きい値であるが、これは、イセチオン酸アニオンがナノシートの表面に付着しているため、と考えられる。その他にも、2~6層程度の厚さのLDHナノシートも観察された。Ise-MgAl-LDH3では、多くが単層もしくは、2層のLDHナノシートが形成されていることから、剥離の程度がかなり高いことが推定された。一方、Ise-MgAl-LDH2については、単層よりも2~5層のLDHナノシートが多かった。これは、Ise-MgAl-LDH2では、コロイド溶液の光の透過度が劣ることとも符合しており、単層のLDHナノシートがややできにくいことを示している。外形は、図14及び15のSEM像で示した形状を保っており、層がそのまま剥離してナノシート化したことがわかる。
 以上の結果から、水膨潤性LDHであるIse-MgAl-LDH3及びIse-MgAl-LDH2が、水により剥離し、複水酸化物ナノシートが生成することは明らかである。
 実施例3及び実施例4から、本発明で得られるLDHナノシートは、単層シートが、一層~数層までとなっている良質のナノシートといえる。つまり、本発明は、LDHナノシートを含むコロイド溶液を得ることに成功したものである。
 2価の金属イオンとしてNiイオン、3価の金属イオンとしてAlイオンを含むLDHについて、Ni/Alモル比=2、3及び4の3種類のNiAl-LDHを合成した。
(Ni/Alモル比=2のNiAl-LDH)
 Ni(NO32・6H2Oを364mg、Al(NO33・9H2Oを235mg及びヘキサメチレンテトラミン307mgを溶かした12.5mLの混合水溶液を、25mL容量の耐圧テフロン(登録商標)容器に入れ、耐圧ステンレス容器に収めて密封し、180℃で1日、水熱処理を行なった。ろ過、洗浄、乾燥により青緑色粉末185mgを得た。粒径は0.3~0.6μmであった。ICP分析より、Ni/Alモル比は2.00(±0.06)であった。このLDHをCO3 2-NiAl-LDH2と表す。
 実施例1で示した変換法2を使い、CO3 2-NiAl-LDH2の過塩素酸イオン型LDHへの変換を行なった。
 CO3 2-NiAl-LDH2を155mg秤量して、メタノール45mLを加え、懸濁液を作製した。窒素気流下、マグネティックスターラーで撹拌しつつ、この懸濁液に、過塩素酸(60%)105mgをメタノール5mLに溶かした溶液を滴下し、さらに25℃で1時間撹拌しつつ反応させた。実施例1と同じ処理により乾燥し、青緑色粉末180mgを得た。
 得られた過塩素酸イオン型NiAl-LDH2を用い、イセチオン酸アニオンとのイオン交換を行なった。
 ClO4 -NiAl-LDH2を100mg使用し、イセチオン酸ナトリウムの0.067mol/Lメタノール溶液80mLを作製して加え、25℃で20時間イオン交換反応させた。上澄みを取り除き、同量のイセチオン酸ナトリウムのメタノール溶液を加え、さらにもう一度、同じ条件でイオン交換を行なった。その後、窒素気流中、0.2μmのメンブランフィルターでろ過し、メタノールで沈殿物を洗浄した。ろ別した沈殿物を直ちに真空下で1時間以上乾燥して、青緑色粉末のIse-NiAl-LDH2を103mg得た。Ni/Alモル比は、出発原料と同じく、2.00(±0.04)であった。
(Ni/Alモル比=3のNiAl-LDH)
 Ni(NO32・6H2Oを409mg、Al(NO33・9H2Oを176mg及び尿素254mgを溶かした12.5mLの混合水溶液を、25mL容量の耐圧テフロン(登録商標)容器に入れ、耐圧ステンレス容器に収めて密封し、180℃で1日、水熱処理を行なった。ろ過、洗浄、乾燥により、188mgの生成物が得られた。粒径は0.2~0.6μm、Ni/Alモル比は、2.91(±0.06)であった。このLDHをCO3 2-NiAl-LDH3と表す。
 実施例1の変換方法2を使い、CO3 2-NiAl-LDH3の過塩素酸イオン型LDHへの変換を行なった。CO3 2-NiAl-LDH3を268mg秤量してメタノール45mLを加え、懸濁液を作製した。窒素気流下、マグネティックスターラーで撹拌しつつ、この懸濁液に、過塩素酸(60%)140mgをメタノール5mLに溶かした溶液を滴下し、さらに25℃で1時間撹拌しつつ反応させた。実施例1と同じ処理により乾燥し、青緑色粉末297mgを得た。
 得られた過塩素酸イオンNiAl-LDH3を用い、イセチオン酸アニオンとのイオン交換を行なった。ClO4 -NiAl-LDH3を100mg使用し、イセチオン酸ナトリウムの0.067mol/Lメタノール溶液80mLを作製して加え、25℃で20時間イオン交換反応させた。上澄みを取り除き、同量のイセチオン酸ナトリウムのメタノール溶液を加え、さらにもう一度同じ条件でイオン交換を行なった。その後、窒素気流中、0.2ミクロンのメンブランフィルターでろ過し、メタノールで沈殿物を洗浄した。ろ別した沈殿物を直ちに真空下で1時間以上乾燥して、青緑色粉末のIse-NiAl-LDH3を100mg得た。Ni/Alモル比は、出発原料とほぼ同じで、2.96(±0.06)であった。
(Ni/Alモル比=4のNiAl-LDH)
 Ni(NO32・6H2Oを436mg、Al(NO33・9H2Oを141mg及び尿素248mgを溶かした12.5mLの混合水溶液を、25mL容量の耐圧テフロン(登録商標)容器に入れ、耐圧ステンレス容器に収めて密封し、180℃で1日、水熱処理を行なった。223mgの生成物が得られた。粒径は0.2~0.8μm、Ni/Alモル比は、3.83(±0.08)であった。
 得られたCO3 2-NiAl-LDH4を用い、過塩素酸イオン型LDHへの変換を行なった。
 CO3 2-NiAl-LDH4を329mg秤量して、メタノール45mLを加え、懸濁液を作製した。窒素気流下、マグネティックスターラーで撹拌しつつ、この懸濁液に、過塩素酸(60%)140mgをメタノール5mLに溶かした溶液を滴下し、さらに25℃で1時間、撹拌しつつ反応させた。実施例1と同じ処理により乾燥し、青緑色粉末353mgを得た。
 得られた過塩素酸イオン型NiAl-LDH4を用い、イセチオン酸アニオンとのイオン交換を行なった。ClO4 -NiAl-LDH4を100mg使用し、イセチオン酸ナトリウムの0.067mol/Lメタノール溶液80mLを作製して加え、25℃で20時間イオン交換反応させた。上澄みを取り除き、同量のイセチオン酸ナトリウムのメタノール溶液を加え、さらにもう一度同じ条件でイオン交換を行なった。その後、窒素気流中、孔径0.2μmのメンブランフィルターでろ過し、メタノールで沈殿物を洗浄した。ろ別した沈殿物を直ちに真空下で1時間以上乾燥して、青緑色粉末98mgを得た。得られたIse-NiAl-LDH4のNi/Alモル比は、出発原料とほぼ同じで、3.93(±0.08)であった。
 NiAl-LDH2、NiAl-LDH3及びNiAl-LDH4について、FTIRによって得られた赤外吸収プロファイルを図23、24及び25に示す。それぞれの図中の(a)は、炭酸イオン型LDH、(b)は、過塩素酸イオン型LDH、(c)は、Ise型LDHである。
 得られたIse-NiAl-LDH2、Ise-NiAl-LDH3、Ise-NiAl-LDH4は、いずれも、1040cm-1及び1200cm-1に有機SO3 -の特性吸収があり、また、1360cm-1の炭酸イオンによる吸収や1100cm-1のClO4 -の吸収がほとんど見られないことから、純度の高いIse型LDHが生成していることを示している。
 NiAl-LDH2、NiAl-LDH3及びNiAl-LDH4の粉末のX線回折測定をRH=0%、窒素雰囲気下で15分保持してから行った。
 結果を図26に示す。図中、(a)はNiAl-LDH4、(b)はNiAl-LDH3、(c)はNiAl-LDH2であり、(a)~(c)に付された枝番1は、CO3 2-型、枝番2は、ClO4 -型、枝番3は、Ise型である。
 Ise-NiAl-LDH2にわずかにClO4 -残留によると思われるブロードな反射が認められるものの、全てアニオン交換によってIse型に変換されていることがわかる。また、窒素雰囲気下で測定したNIAl-LDHの底面間隔を表2に示す。
Figure JPOXMLDOC01-appb-T000014
 走査型電子顕微鏡を用いて、CO3 2-、ClO4 -、Ise型のNiAl-LDHの形状観察を行った。Ise型は、NiAl-LDH2、NiAl-LDH3、NiAl-LDH4のいずれにおいても、それぞれ出発物の炭酸イオン型LDH及び過塩素酸イオン型LDHの形状を継承しており、イオン交換によっても外形を保ちつつ、変換が行われたことを示していた。
 200mgの各Ise-NiAl-LDHに水を8~10倍量加えて、生じたゲルの状態を図27に示す。図中、(a)はIse-MgAl-LDH4、(b)はIse-MgAl-LDH3、(c)はIse-MgAl-LDH4、を用いて作製したゲルである。ボトルを横にしても流れない高粘性の半透明ゼリー状(ゲル)になっていることが分かる。
 Ni/Al比の異なる各種のNiAl-LDHにおいても、Iseを層間に導入することによって、水膨潤性LDHになることがわかった。
(CoAl-LDH)
 CoCl2・6H2Oを238mg、AlCl3・6H2Oを121mg及び尿素300mgを溶かした25mLの混合水溶液を、50mL容量の耐圧テフロン(登録商標)容器に入れ、耐圧ステンレス容器に収めて密封し、110℃で1日水熱処理を行なった。145mgのピンク色の生成物が得られた。ICP分析によるCo/Alモル比は、1.91(±0.06)であった。このLDHをCO3 2-CoAl-LDH2と表す。
 CO3 2-CoAl-LDH2をCl-型CoAl-LDH2に変換した。104mgのCO3 2-CoAl-LDH2に、酢酸比が0.15の0.1mol/L酢酸緩衝液を使用して、NaCl濃度を2molに調整した酢酸緩衝液-NaCl混合溶液50mlを加え、窒素気流下(500mL/分)、20℃で2時間、マグネティックスターラーで撹拌しつつ反応させた。その後、窒素気流中、0.2μmのメンブランフィルターでろ過し、脱ガス水で沈殿物を充分に洗浄した。ろ別した沈殿物を回収し、直ちに減圧し、真空下で1時間以上乾燥して、ピンク色粉末99mgを得た。
 100mgのCl-型CoAl-LDH2に、イセチオン酸ナトリウムの0.067mol/Lメタノール溶液80mLを加え、25℃で20時間イオン交換反応させた。上澄みを取り除き、同量のイセチオン酸ナトリウムのメタノール溶液を加え、さらにもう一度同じ条件でイオン交換を行なった。その後、窒素気流中、0.2μmのメンブランフィルターでろ過し、メタノールで沈殿物を洗浄した。ろ別した沈殿物を回収し、直ちに減圧し、真空下で1時間以上乾燥して、ピンク色粉末121mgのIse-CoAl-LDH2を得た。ICP分析によるCo/Alモル比は、1.99(±0.06)であった。
 CO3 2-型CoAl-LDH2、Cl-型CoAl-LDH2、及びIse-CoAl-LDH2の赤外吸収スペクトルを図28に示す。図中、(a)は炭酸イオン、(b)は塩素イオン、(c)はイセチオン酸アニオン(Ise)を層間に含むCoAl-LDH2である。
 Ise-CoAl-LDH2(図中の(c))において、有機スルホン酸アニオンに特有の1040、1200cm-1の強い吸収が見られ、Iseの層間への導入が確認された。しかし、CO3 2-からCl-への変換が充分でなく、Cl-型LDH(図中の(b))の赤外吸収プロファイルからもわかるように、10%程度の残留CO3 2-があった。
 また、粉末X線回折測定結果(RH=0%で測定)を図29に示す。Ise-CoAl-LDH2は、底面間隔1.035nmを示していた。また、残留CO3 2-によると思われる反射がプロファイルに現れていた。
 得られた水膨潤性LDHの水に対する膨潤性を検査した。
 200mgのIse-CoAl-LDH2に水を8~10倍量の水を加えることによって、直ちにゲルを形成した。生じたゲルを図27(d)に示す。ゲルは、半透明ゼリー状であることが分かる。また、10%程度の残留CO3 2-があっても、水膨潤性は著しく損なわれないことがわかる。
 以上のことから、Ise-CoAl-LDH2が水に対し膨潤性があり、水によって高粘性のゲルや透明度の高いコロイド溶液を形成することがわかった。
 以上の実施例では、2価金属と3価金属の組み合わせをMg-Al、Ni-Al、Co-Alで行い、2価-3価金属イオンのLDHで水膨潤性が生じることを示した。その結果、LDHの水膨潤性が構成する金属イオンの種類に影響されることはないことがわかった。また、膨潤・剥離に関しても、構成する金属イオンの種類にほとんど影響されずに生じており、実施例で示した金属の組み合わせ以外のLDHにおいても同様であることは、容易に推測できる。
(Ise-LDHの他の製造法)
 実施例1、2、5及び6に、CO3 2-型LDHから、ClO4 -型もしくはCl-型LDHを経由し、さらに、これらをアニオン交換することによるIse-LDHへの変換反応を記載した。
 この変換反応は、CO3 2-型LDHを出発物とする場合は、二段階の反応であるため、より簡便な一段階の変換反応であるCO3 2-型LDHからIse-LDHへの直接変換を試みた。
 実施例1で用いた、一般式Mg3Al(OH)8(CO3 2-0.5・2H2Oで示される市販のハイドロタルサイトを用い、酸性物質として、イセチオン酸アンモニウムを用いて、アルコール中で反応を行なった。これは、前記式(2)においてXn-がCO3 2-であり、前記式(3)においてLn+がNH4 +に相当する反応である。
 使用するイセチオン酸アンモニウムの量は、CO3 2-型LDH中のCO3 2-のモル数の2倍が当量となるため、この量(式で表すと、[HOC24SO3NH4]/(2×[CO3 2-])となる)をfとして定義し、fの値により表記した。
 100mg(0.331mmol)のCO3 2-MgAl-LDH3を、三口フラスコに入れ、メタノール35mLを加え、超音波で分散させて懸濁液を作製した。この懸濁液をマグネティックスターラーで撹拌しつつ、窒素気流下(0.5L/分)、f=2のイセチオン酸アンモニウム(Aldrich特級、純度99%)(95mg; 0.662mmol)を15mLメタノールに溶かした溶液を加えた。三口フラスコに冷却管を付け、マグネティックスターラーを用い、窒素気流下で、CO3 2-MgAl-LDH3の懸濁液を撹拌しつつ、ウォーターバスで加熱しながら60℃で2時間反応させた。
 排出窒素ガス中に脱炭酸イオンによる大量のCO2が認められた。反応後、窒素気流下、孔径0.2μmのメンブランフィルターでろ過し、メタノールで沈殿物を充分に洗浄した。ろ別した沈殿物をかき集めて回収し、直ちに減圧して真空下で1時間以上乾燥して、白色粉末121mgを得た。収率は92~97%であった。
 得られた物質のFTIRおよび粉末XRDのプロファイルは、実施例1のIse-MgAl-LDH3と同一であり、また、層間にCO3 2-の残留は認められなかった。また、生成物は、水と接することによって直ちにゲル状に変化した。以上により、純度の高いイセチオン酸イオン型LDHの生成を確認した。
 上記の実験では、60℃で行なっているが、60℃未満でも実験を行った。その結果、低い温度の条件でもイセチオン酸イオンは、LDHの層間に入るものの、温度が低くなるほど層間の残留CO3 2-量が増える傾向があり、例えば、55℃では5%程度、50℃では10%程度の残留CO3 2-が観察された。
 また、イセチオン酸アンモニウムの量については、f=2を超える量を用いた実験を行なった。例えば、f=8では、55℃で残留CO3 2-は観察されなかったが、残留CO3 2-の量を減少させるには、イセチオン酸アンモニウムの量(f)を増やすよりも、温度を上げるほうが効果的であった。
 メタノール以外のアルコールとしてエタノールを用いた実験を同じ方法で行なった。エタノールを用いた場合も、反応温度が65℃以上、f=2以上の場合、Ise-LDHが得られ、残留CO3 2-は認められなかった。
 なお、比較のため、プロトンを放出しないイセチオン酸ナトリウムを使用して、同様の実験を行なったが、FTIRでは、数%のイセチオン酸イオンの包接は認められたものの、基本的には、炭酸イオン型LDHのプロファイルであった。これは、上記の一段反応は、酸性化合物であるアンモニウム塩を使うことによってはじめて効率的に起こることを示している。
 以上、説明してきたように、本発明の水膨潤性LDHは、高結晶性、高純度、高安定性、汎用性、無臭性、無毒性の条件をすべて満し、水を含む溶媒によって膨潤し、LDHナノシートを含むゲルもしくはコロイド溶液を容易に製造することができる。
 本発明のLDHナノシートは、カチオン性のナノ材料として有用であり得る。また、本発明のLDHナノシートは、剥離した状態であるため、反応性の向上が期待でき、これまで、通常のイオン交換では包接できなかった巨大なアニオンや分子などと有機無機ハイブリッドを形成することが期待できる。
 また、水溶性ポリマーとの複合による弾性に富むゲル材料や、触媒・センサ機能を有するナノ構造の構築といった新しい応用分野にまで波及・発展することが考えられる。

Claims (10)

  1.  層間に有機スルホン酸アニオン(A-)を有し、下記一般式(1)で表されることを特徴とする水膨潤性層状複水酸化物。
    Figure JPOXMLDOC01-appb-C000001
     ここで、Qは2価の金属であり、Rは3価の金属であり、A-は有機スルホン酸アニオンであり、mは0より大きい実数であり、zは1.8≦z≦4.2の範囲である。Xn-はA-に置換せずに残ったn価のアニオンで、nは1もしくは2である。yは、Xn-の残存分を示し、0≦y<0.4である。
  2.  前記A-が、イセチオン酸アニオン(HOC24SO3 -)であることを特徴とする、請求項1に記載の水膨潤性層状複水酸化物。
  3.  Qが2価金属のMg、Mn、Fe、Co、Ni、Cu、Zn、及び、Caからなる群から選択される一種類以上の金属である、請求項1に記載の水膨潤性層状複水酸化物。
  4.  Rが3価金属のAl、Ga、Cr、Mn、Fe、Co、Ni、及び、Laからなる群から選択される一種類以上の金属である、請求項1に記載の水膨潤性層状複水酸化物。
  5.  Xn-が、n=1では、Cl-、Br-、NO3 -、ClO4 -、ClO3 -、n=2では、CO3 2-である、請求項1に記載の水膨潤性層状複水酸化物。
  6.  下記一般式(2)で表される組成を有する層状複水酸化物を、有機スルホン酸アニオン(A-)を含む下記一般式(3)で示す化合物を水又は有機溶媒に溶解させた溶液中に分散し、Xn-とA-をアニオン交換して、請求項1に記載の水膨潤性層状複水酸化物を合成することを特徴とする、水膨潤性層状複水酸化物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     式中、zは、1.8≦z≦4.2の数値範囲を示し、Qは、2価の金属イオン。Rは、3価の金属イオン。mは0より大きい実数である。Xn-は、n価のアニオンである。
    Figure JPOXMLDOC01-appb-C000003
     ここで、Ln+はn価の陽イオンであり、nは1≦n≦3の数値範囲であり、Ln+が、n=1では、Na+、NH4 +、Li+、K+、H+、n=2では、Mg2+、Ca2+、Sr2+、Ca2+、n=3では、Al3+である。
  7.  請求項1に記載の水膨潤性層状複水酸化物を水又は水が50モル%以上で且つ残りが水に可溶な有機溶媒より成る混合溶媒で膨潤した、ゲル状又はゾル状物質。
  8.  請求項1に記載の水膨潤性層状複水酸化物が水又は水が50モル%以上で且つ残りが水に可溶な有機溶媒より成る混合溶媒中で剥離されて得られる、下記一般式(4)で表される、複水酸化物ナノシート。
    Figure JPOXMLDOC01-appb-C000004
     ここで、Qは2価の金属であり、Rは3価の金属であり、zは1.8≦z≦4.2の数値範囲である。
  9.  厚さが0.5nm以上10nm以下である、請求項8に記載の複水酸化物ナノシート。
  10.  請求項1に記載の水膨潤性層状複水酸化物を水又は水が50モル%以上で且つ残りが水に可溶な有機溶媒より成る混合溶媒中で剥離することを特徴とする、請求項8又は9に記載の複水酸化物ナノシートの製造方法。
PCT/JP2012/050973 2011-01-27 2012-01-18 水膨潤性層状複水酸化物とその製造方法、ゲル状又はゾル状物質及び、複水酸化物ナノシートとその製造方法 WO2012102150A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012554740A JP5910887B2 (ja) 2011-01-27 2012-01-18 水膨潤性層状複水酸化物とその製造方法、ゲル状又はゾル状物質及び、複水酸化物ナノシートとその製造方法
US13/982,191 US9545615B2 (en) 2011-01-27 2012-01-18 Water-swelling layered double hydroxide, method for producing same, gel or sol substance, double hydroxide nanosheet, and method for producing same
EP12738734.8A EP2669251B1 (en) 2011-01-27 2012-01-18 Water-swelling layered double hydroxide, method for producing same, gel or sol substance, double hydroxide nanosheet, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011014742 2011-01-27
JP2011-014742 2011-06-29

Publications (1)

Publication Number Publication Date
WO2012102150A1 true WO2012102150A1 (ja) 2012-08-02

Family

ID=46580722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050973 WO2012102150A1 (ja) 2011-01-27 2012-01-18 水膨潤性層状複水酸化物とその製造方法、ゲル状又はゾル状物質及び、複水酸化物ナノシートとその製造方法

Country Status (4)

Country Link
US (1) US9545615B2 (ja)
EP (1) EP2669251B1 (ja)
JP (1) JP5910887B2 (ja)
WO (1) WO2012102150A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012078A1 (ja) * 2013-07-25 2015-01-29 株式会社ノリタケカンパニーリミテド 陰イオン伝導材料およびその製造方法
JP2015201483A (ja) * 2014-04-04 2015-11-12 国立研究開発法人物質・材料研究機構 超格子構造体、その製造方法およびそれを用いた電極材料
JP2016056035A (ja) * 2014-09-05 2016-04-21 国立研究開発法人物質・材料研究機構 層状遷移金属水酸化物ナノコーンを単層剥離する方法、遷移金属酸化物ナノコーンを製造する方法、および、遷移金属水酸化物ナノシートを用いた電極材料
JPWO2017006999A1 (ja) * 2015-07-09 2018-06-21 住友精化株式会社 耐部分放電用電気絶縁樹脂組成物
JP2018106882A (ja) * 2016-12-26 2018-07-05 国立研究開発法人物質・材料研究機構 燃料電池および水電解装置
WO2020012649A1 (ja) * 2018-07-13 2020-01-16 共栄社化学株式会社 層状複水酸化物及び樹脂複合材料組成物
JP2021010886A (ja) * 2019-07-08 2021-02-04 国立研究開発法人物質・材料研究機構 複合体、複合体の製造方法、及び、分離デバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2611526C1 (ru) * 2015-11-26 2017-02-27 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения гидроталькитоподобных соединений
KR102124976B1 (ko) * 2017-11-16 2020-06-22 성균관대학교 산학협력단 층상형 KZnSb, 층상형 ZnSb, KZnSb 나노시트, ZnSb 나노시트 및 이들의 제조방법
KR102065681B1 (ko) * 2017-11-16 2020-01-13 성균관대학교 산학협력단 층상형 NaZnSb, 층상형 ZnSb, NaZnSb 나노시트, ZnSb 나노시트 및 이들의 제조방법
US11932479B2 (en) * 2018-07-12 2024-03-19 National Institute For Materials Science Method for producing package including hydrogen sulfide sustained release agent, hydrogen sulfide sustained release agent, hydrogen sulfide sustained release composite, and method for generating hydrogen sulfide using same
CN109939683B (zh) * 2019-04-09 2022-03-04 江苏新沃催化剂有限公司 一种催化燃烧VOCs的三元复合氧化物型催化剂及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352541A (ja) * 2003-05-28 2004-12-16 Kyoeisha Chem Co Ltd 層間に有機酸を有する層状複水酸化物の製造方法
JP2005089269A (ja) 2003-09-19 2005-04-07 National Institute Of Advanced Industrial & Technology 高分散性層状複水酸化物
JP2005335965A (ja) 2004-05-24 2005-12-08 National Institute For Materials Science ヘキサメチレンテトラミンを用いた均一沈殿法による良質な層状複水酸化物の製造方法およびその用途
JP2006052114A (ja) 2004-08-13 2006-02-23 National Institute Of Advanced Industrial & Technology 高分散性水酸化物系樹脂配合剤および樹脂組成物
JP2007031189A (ja) 2005-07-25 2007-02-08 National Institute For Materials Science 層状複水酸化物を剥離する方法、複水酸化物ナノシート、該複合薄膜材料、該製造方法、および、層状複水酸化物薄膜材料の製造方法
JP2008001806A (ja) 2006-06-22 2008-01-10 Tayca Corp 剥離した層状複水酸化物を含む難燃性合成樹脂組成物
JP2008184343A (ja) 2007-01-29 2008-08-14 Tayca Corp 水中で剥離する層状複水酸化物、その製造方法および用途
JP4228077B2 (ja) 2004-03-10 2009-02-25 独立行政法人物質・材料研究機構 ハイドロタルサイトの脱炭酸イオンによる、イオン交換性のある陰イオンを有する層状水酸化物の製造方法
WO2009072488A2 (ja) 2007-12-05 2009-06-11 National Institute For Materials Science 陰イオン交換性層状複水酸化物の製造方法
JP2009173482A (ja) 2008-01-23 2009-08-06 National Institute For Materials Science 膨潤性層状複水酸化物およびその製造方法とそれを用いたゲル状物質、ゾル状物質ならびにナノシート

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352541A (ja) * 2003-05-28 2004-12-16 Kyoeisha Chem Co Ltd 層間に有機酸を有する層状複水酸化物の製造方法
JP2005089269A (ja) 2003-09-19 2005-04-07 National Institute Of Advanced Industrial & Technology 高分散性層状複水酸化物
JP4228077B2 (ja) 2004-03-10 2009-02-25 独立行政法人物質・材料研究機構 ハイドロタルサイトの脱炭酸イオンによる、イオン交換性のある陰イオンを有する層状水酸化物の製造方法
JP2005335965A (ja) 2004-05-24 2005-12-08 National Institute For Materials Science ヘキサメチレンテトラミンを用いた均一沈殿法による良質な層状複水酸化物の製造方法およびその用途
JP2006052114A (ja) 2004-08-13 2006-02-23 National Institute Of Advanced Industrial & Technology 高分散性水酸化物系樹脂配合剤および樹脂組成物
JP2007031189A (ja) 2005-07-25 2007-02-08 National Institute For Materials Science 層状複水酸化物を剥離する方法、複水酸化物ナノシート、該複合薄膜材料、該製造方法、および、層状複水酸化物薄膜材料の製造方法
JP2008001806A (ja) 2006-06-22 2008-01-10 Tayca Corp 剥離した層状複水酸化物を含む難燃性合成樹脂組成物
JP2008184343A (ja) 2007-01-29 2008-08-14 Tayca Corp 水中で剥離する層状複水酸化物、その製造方法および用途
WO2009072488A2 (ja) 2007-12-05 2009-06-11 National Institute For Materials Science 陰イオン交換性層状複水酸化物の製造方法
JP2009173482A (ja) 2008-01-23 2009-08-06 National Institute For Materials Science 膨潤性層状複水酸化物およびその製造方法とそれを用いたゲル状物質、ゾル状物質ならびにナノシート

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
CAVANI, F.; TRIFIRO, F.; VACCARI, A., CATAL. TODAY, vol. 11, 1991, pages 173 - 301
HIBINO, T., CHEM. MATER., vol. 16, 2004, pages 5482 - 5488
HIBINO, T.; KOBAYASHI, M., J. MATER. CHEM., vol. 15, 2005, pages 653 - 656
IYI, N.; EBINA, Y.; SASAKI, T., LANGMUIR, vol. 24, 2008, pages 5591 - 5598
IYI, N.; FUJII, K.; OKAMOTO, K.; SASAKI, T., APPL. CLAY SCI., vol. 35, 2007, pages 218 - 227
IYI, N.; MATSUMOTO, T.; KANEKO, Y.; KITAMURA, K., CHEM. MATER., vol. 16, 2004, pages 2926 - 2932
IYI, N.; YAMADA, H., CHEM. LETT., vol. 39, 2010, pages 591 - 593
LI, L.; MA, R.; EBINA, Y.; IYI, N.; SASAKI, T., CHEM. MATTER., vol. 17, 2005, pages 4386 - 4391
LI, L.; MA, R.; EBINA, Y.; IYI, N.; TAKATA, K.; SASAKI, T., LANGMUIR, vol. 23, 2007, pages 861 - 867
MIYATA, S., CLAYS CLAY MINER., vol. 31, 1983, pages 305 - 311
OKAMOTO, K.; SASAKI, T.; FUJITA, T.; IYI, N., J. MATER. CHEM., vol. 16, 2006, pages 1608 - 1616
R ANBARASAN ET AL.: "Modification of layered double hydroxides by short chain organic surfactants via ion-exchange method", INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, vol. 12, no. 3, May 2005 (2005-05-01), pages 259 - 262, XP055123689 *
REICHLE, W. T., SOLID STATES IONICS, vol. 22, 1986, pages 135 - 141
See also references of EP2669251A4
STANIMIROVA, T. S.; KIROV, G.; DINOLOVA, E., J. MATER. SCI. LETT., vol. 20, 2001, pages 453 - 455

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012078A1 (ja) * 2013-07-25 2015-01-29 株式会社ノリタケカンパニーリミテド 陰イオン伝導材料およびその製造方法
US20160159659A1 (en) * 2013-07-25 2016-06-09 Noritake Co., Limited Anion-conducting material and method for manufacturing same
JPWO2015012078A1 (ja) * 2013-07-25 2017-03-02 株式会社ノリタケカンパニーリミテド 陰イオン伝導材料およびその製造方法
JP2015201483A (ja) * 2014-04-04 2015-11-12 国立研究開発法人物質・材料研究機構 超格子構造体、その製造方法およびそれを用いた電極材料
JP2016056035A (ja) * 2014-09-05 2016-04-21 国立研究開発法人物質・材料研究機構 層状遷移金属水酸化物ナノコーンを単層剥離する方法、遷移金属酸化物ナノコーンを製造する方法、および、遷移金属水酸化物ナノシートを用いた電極材料
JPWO2017006999A1 (ja) * 2015-07-09 2018-06-21 住友精化株式会社 耐部分放電用電気絶縁樹脂組成物
JP2018106882A (ja) * 2016-12-26 2018-07-05 国立研究開発法人物質・材料研究機構 燃料電池および水電解装置
WO2020012649A1 (ja) * 2018-07-13 2020-01-16 共栄社化学株式会社 層状複水酸化物及び樹脂複合材料組成物
JPWO2020012649A1 (ja) * 2018-07-13 2021-08-02 共栄社化学株式会社 層状複水酸化物及び樹脂複合材料組成物
JP2021010886A (ja) * 2019-07-08 2021-02-04 国立研究開発法人物質・材料研究機構 複合体、複合体の製造方法、及び、分離デバイス
JP7289134B2 (ja) 2019-07-08 2023-06-09 国立研究開発法人物質・材料研究機構 複合体、複合体の製造方法、及び、分離デバイス

Also Published As

Publication number Publication date
EP2669251A1 (en) 2013-12-04
US9545615B2 (en) 2017-01-17
EP2669251B1 (en) 2018-01-03
JP5910887B2 (ja) 2016-05-11
JPWO2012102150A1 (ja) 2014-06-30
US20130313476A1 (en) 2013-11-28
EP2669251A4 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5910887B2 (ja) 水膨潤性層状複水酸化物とその製造方法、ゲル状又はゾル状物質及び、複水酸化物ナノシートとその製造方法
Hosono et al. Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co 3 O 4
Yu et al. Preparation of two dimensional layered double hydroxide nanosheets and their applications
Srivastava et al. Morphologically controlled synthesis of copper oxides and their catalytic applications in the synthesis of propargylamine and oxidative degradation of methylene blue
JP5317293B2 (ja) 陰イオン交換性層状複水酸化物の製造方法
Dong et al. Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies
Xu et al. Abrupt structural transformation in hydrotalcite-like compounds Mg1-x Al x (OH) 2 (NO3) x⊙ n H2O as a continuous function of nitrate anions
Xu et al. High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphological changes
Du et al. Conversion of solid Cu2 (OH) 2CO3 into HKUST-1 metal-organic frameworks: toward an under-liquid superamphiphobic surface
Zhang et al. Eco-friendly nanostructured Zn–Al layered double hydroxide photocatalysts with enhanced photocatalytic activity
Wang et al. Metal oxide decorated layered silicate magadiite for enhanced properties: insight from ZnO and CuO decoration
Antonyraj et al. Synthesis of delaminated LDH: A facile two step approach
Gunawan et al. Synthesis of unusual coral-like layered double hydroxide microspheres in a nonaqueous polar solvent/surfactant system
Xiao et al. Self-assembled 3D flower-like Ni2+–Fe3+ layered double hydroxides and their calcined products
JP2009173482A (ja) 膨潤性層状複水酸化物およびその製造方法とそれを用いたゲル状物質、ゾル状物質ならびにナノシート
Lv et al. Rugby-like anatase titania hollow nanoparticles with enhanced photocatalytic activity
Peng et al. Controllable synthesis and photoreduction performance towards Cr (vi) of BiOCl microrods with exposed (110) crystal facets
Yu et al. Cleaner production of spherical nanostructure chromium oxide (Cr2O3) via a facile combination membrane and hydrothermal approach
Steunou et al. Rational design of one-dimensional vanadium (v) oxide nanocrystals: an insight into the physico-chemical parameters controlling the crystal structure, morphology and size of particles
JP2014136673A (ja) 複合化層状複水酸化物
Feng et al. Preparation of novel porous hydroxyapatite sheets with high Pb2+ adsorption properties by self-assembly non-aqueous precipitation method
JP2008290913A (ja) 水酸化コバルト・鉄結晶および水酸化コバルト・鉄単層ナノシートならびにそれらの製造方法
Alexa et al. NON-TOXIC NANOCOMPOSITE CONTAINING CAPTOPRIL INTERCALATED INTO GREEN INORGANIC CARRIER.
Zhang et al. Solvothermal synthesis and enhanced photo-electrochemical performance of hierarchically structured strontium titanate micro-particles
Ma et al. Synthesis of LDH nanosheets and their layer-by-layer assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738734

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13982191

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012554740

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012738734

Country of ref document: EP