WO2012098713A1 - 高炉操業方法 - Google Patents

高炉操業方法 Download PDF

Info

Publication number
WO2012098713A1
WO2012098713A1 PCT/JP2011/066771 JP2011066771W WO2012098713A1 WO 2012098713 A1 WO2012098713 A1 WO 2012098713A1 JP 2011066771 W JP2011066771 W JP 2011066771W WO 2012098713 A1 WO2012098713 A1 WO 2012098713A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing material
blown
lance
pulverized coal
blast furnace
Prior art date
Application number
PCT/JP2011/066771
Other languages
English (en)
French (fr)
Inventor
大樹 藤原
明紀 村尾
渡壁 史朗
雅之 北原
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011007954A external-priority patent/JP2011168886A/ja
Priority claimed from JP2011007953A external-priority patent/JP2011168885A/ja
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020137021642A priority Critical patent/KR101536626B1/ko
Priority to CN2011800653873A priority patent/CN103339266A/zh
Priority to AU2011356008A priority patent/AU2011356008B2/en
Priority to EP11856085.3A priority patent/EP2653563B1/en
Priority to BR112013018060-9A priority patent/BR112013018060B1/pt
Publication of WO2012098713A1 publication Critical patent/WO2012098713A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • C21B7/163Blowpipe assembly
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B2005/005Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/26Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • a solid reducing material is blown from an inner pipe of the double pipe lance and a flammable reducing material is blown from an outer pipe of the double pipe lance.
  • a flammable reducing material is blown from the inner pipe of the double pipe lance and a solid reducing material is blown from the outer pipe of the double pipe lance.
  • the solid reducing material is preferably pulverized coal.
  • the solid reducing material is preferably blown in a range of 50 to 300 kg per ton of pig iron. More preferably, the solid reducing material is blown in a range of 60 to 180 kg per 1 ton of pig iron.
  • FIG. 1 is an overall view of a blast furnace to which the blast furnace operating method of the present embodiment is applied.
  • a blow pipe 2 for blowing hot air is connected to a tuyere 3 of a blast furnace 1, and a lance 4 is passed through the blow pipe 2. is set up.
  • a combustion space called a raceway 5 exists in the coke deposit layer in the hot air blowing direction ahead of the tuyere 3, and the reducing material is mainly burned and gasified in this combustion space.
  • a two-color thermometer is a radiation thermometer that measures temperature using thermal radiation (electromagnetic wave movement from a high-temperature object to a low-temperature object).
  • thermal radiation electromagnetic wave movement from a high-temperature object to a low-temperature object.
  • it is one of the wavelength distribution types to obtain the temperature by measuring the temperature change of the wavelength distribution, and in particular to measure the wavelength distribution, the radiant energy at two wavelengths is measured and the ratio
  • the temperature is measured from
  • the combustion state of the unburned char is determined by collecting unburned char with a probe at a position of 150 mm and 300 mm from the tip of the lance 14 in the blast pipe 12 of the experimental furnace 11, filling the resin, polishing, and then analyzing the void in the char by image analysis. The rate was measured and judged.
  • the solid-gas ratio of pulverized coal and the carrier gas that transports the pulverized coal is 10-25 kg / Nm 3 in the solid-gas ratio in the method of transporting powder, that is, pulverized coal (high concentration transport) with a small amount of gas.
  • the solid-gas ratio is 5 to 10 kg / Nm 3 .
  • air can also be used as the carrier gas. The evaluation of the experimental results is based on the combustion temperature, combustion position, unburned char combustion status and diffusibility (mainly pulverized coal) when only pulverized coal is blown from a single pipe, and from the inner pipe of the double pipe lance.
  • FIG. 6 shows the result of the combustion experiment described above.
  • pulverized coal blown in a carrier gas (using nitrogen gas N 2).
  • N 2 nitrogen gas
  • Oxygen excess rate (air blown from tuyere and lance, pure oxygen, oxygen amount in solid reducing material) / (CO 2 , H 2 O, SO by burning carbon, hydrogen, sulfur in solid reducing material) (The amount of oxygen required to make 2 )
  • FIG. 8 shows a state of a water jacket of a double pipe lance in which pulverized coal is blown from the inner pipe and city gas is blown from the outer pipe.
  • FIG. 9 shows a state of a water jacket of a double pipe lance in which city gas is blown from the inner pipe and pulverized coal is blown from the outer pipe.
  • the only way to cool the outer tube of a double-pipe lance that cannot be cooled with water is to dissipate heat with the gas supplied to the inside.
  • the gas flow rate affects the lance temperature. Therefore, the inventors measured the temperature of the lance surface by variously changing the flow rate of the gas blown from the outer pipe of the double pipe lance.
  • the experiment was carried out by blowing city gas from the outer pipe of the double pipe lance and blowing pulverized coal from the inner pipe, and the gas flow rate was adjusted by adjusting N 2 as an inert gas to the city gas blown from the outer pipe. did.
  • N 2 may be a part of the carrier gas for carrying the pulverized coal.
  • the measurement results are shown in FIG.
  • 15A schedule 5S and steel pipe called 25A schedule 5S were used for the outer pipe of the double pipe lance.
  • the inner tube of the double tube lance, steel called 15A schedule 90 using one, to measure the temperature of the lance surface by changing the total flow rate of N 2 and city gas in various ways.
  • 15A”, “20A”, and “25A” are nominal dimensions of the outer diameter of the steel pipe specified in JIS G 3459, 15A is the outer diameter 21.7 mm, 20A is the outer diameter 27.2 mm, and 25A is the outer diameter 34. 0.0 mm.
  • the “schedule” is a nominal dimension of the thickness of the steel pipe defined in JIS G 3459.
  • the schedule 5S is 1.65 mm
  • the 15A schedule 90 is 3.70 mm.
  • a steel pipe is used as the outer pipe of the double pipe lance, it is practical to use a steel pipe having the above-described two types of outer diameters. It is also possible to use a 20A schedule 90 (wall thickness: 3.9 mm) and a 25A schedule 90 (wall thickness: 4.5 mm).
  • plain steel can also be used.
  • the outer diameter of the steel pipe is specified in JIS G 3453
  • the wall thickness is specified in JIS G 3454.
  • the temperature of the lance surface decreases in inverse proportion to the increase in the total flow rate of the gas blown from the outer pipe of the double pipe lance for each steel pipe of different size. . This is because if the steel pipe size is different, the gas flow rate is different even at the same total gas flow rate.
  • the surface temperature of a double pipe lance exceeds 880 degreeC, creep deformation will occur and a double pipe lance will bend. Therefore, when a 20A schedule 5S or 25A schedule 5S steel pipe is used for the outer pipe of the double pipe lance and the surface temperature of the double pipe lance is 880 ° C.
  • the flow rate of the blown gas from the outer pipe is 85 Nm 3.
  • the outlet flow velocity of the outer pipe of the double pipe lance when these steel pipes are used is 20 m / sec or more.
  • the outer pipe of the double pipe lance The surface temperature is 880 ° C. or lower, and the double-pipe lance is not deformed or bent.
  • the flow rate of the carrier gas of the solid reducing material or the flammable reducing material blown from the outer pipe of the double pipe lance is adjusted, and the outlet flow velocity of the outer pipe of the double pipe lance is 20 m / sec.
  • the solid reducing material such as pulverized coal blown from the double pipe lance per 50 tons of pig iron is 50 to 300 kg.
  • the lance since the lance has a lower blow limit due to equipment restrictions, if the blown reductant ratio is reduced, it is necessary to take measures such as blowing the blown tuyere down, resulting in a tuyere that blows in the reductant.
  • the solid reducing material is 50 kg or more per 1 ton of pig iron. Further, when the ratio of the blown reducing material to the solid reducing material is lowered, in the heat exchange between the gas and the charged material, the ratio of the charged material that is supplied with heat is increased and the furnace top gas temperature is decreased. In view of preventing the furnace top gas temperature from becoming the dew point or lower, the solid reducing material is 50 kg or more, preferably 60 kg or more per 1 ton of pig iron.
  • the ratio of blown-in reducing material due to airflow restrictions when aiming for low-reduced material ratio operation.
  • Solid reducing material charged from the top of the furnace as the ratio of blown-in solid reducing material increases. Since the (coke) ratio decreases, ventilation becomes difficult. However, if the total pressure loss (blowing pressure-furnace top pressure) exceeds the allowable level, the reducing material (coke) ratio is increased even if the blowing reducing material is increased. In addition to impeding stable operation, it may not be possible to reduce it, and it may lead to inoperability.
  • the solid reducing material is 300 kg or less per 1 ton of pig iron.
  • flammable reducing materials such as city gas and natural gas (LNG) require 1 kg or more per ton of pig iron to ensure a high combustion temperature, and the upper limit is 1 t of pig iron for protection of tuyere and furnace top equipment. 50 kg or less per unit. The amount is preferably 10 to 35 kg per 1 ton of pig iron. From the above points, the solid reducing material / flammable reducing material (each mass%) is 1 to 300, preferably 1 to 180, when calculated backward.
  • LNG city gas and natural gas
  • the oxygen enrichment rate during blowing is 2 to 10%, preferably 2.5 to 8%.
  • the average particle diameter of pulverized coal is 10 to 100 ⁇ m, in the present invention, when combustibility is ensured and supply from the lance and supply to the lance are taken into consideration, it is preferably 20 to 50 ⁇ m. Good. If the average particle size of the pulverized coal is less than 20 ⁇ m, the combustibility is excellent, but the lance is easily clogged during pulverized coal transportation (gas transportation), and if it exceeds 50 ⁇ m, the pulverized coal combustibility may be deteriorated.
  • the ratio of pulverized coal to the all solid reducing material is preferably 80 mass% or more.
  • pulverized coal and waste plastics, waste solid fuel (RDF), organic resources (biomass), waste materials, etc. differ in the amount of heat due to the reaction. It tends to be unstable.
  • waste plastics, solid waste fuel (RDF), organic resources (biomass), waste materials, etc. have a lower calorific value due to the combustion reaction. Since the substitution efficiency with respect to the solid reducing material to be introduced is lowered, the ratio of pulverized coal is preferably 80 mass% or more.
  • waste plastic, waste solid fuel (RDF), organic resources (biomass), and waste materials can be mixed and used with pulverized coal as fine particles of 6 mm or less, preferably 3 mm or less.
  • the ratio with pulverized coal can be mixed by merging with pulverized coal fed by carrier gas. You may mix and use beforehand with pulverized coal.
  • converter gas in addition to city gas and natural gas, converter gas, blast furnace gas, and coke oven gas generated at steelworks can be used as the flammable reducing material in addition to propane gas and hydrogen.
  • pulverized coal (solid reducing material) 6 and city gas (flammable reducing material) 9 are blown from the double pipe lance 4 provided in the tuyere 3, and the feathers
  • the city gas (flammable reducing material) 9 that comes into contact with the O 2 being blown first burns, so that pulverized coal (
  • the temperature of the solid reducing material (6) is significantly increased, thereby increasing the heating rate of the pulverized coal (solid reducing material) 6 and sufficiently combusting.
  • the combustion temperature is greatly improved.
  • the unit can be reduced, and the deformation of the double pipe lance 4 due to the temperature rise can be prevented by setting the outlet flow velocity of the outer pipe of the double pipe lance 4 to 20 to 120 m / sec.
  • the total flow rate of the gas blown from the outer pipe of the double pipe lance 4 is set to 85 to 800 Nm 3 / h or more to prevent the double pipe lance 4 from being deformed due to the temperature rise. be able to.
  • 1 is a blast furnace
  • 2 is a blow pipe
  • 3 is a tuyere
  • 4 is a lance
  • 5 is a raceway
  • 6 is pulverized coal (solid reducing material)
  • 7 is coke
  • 8 is char
  • 9 is city gas (flammable reduction) Material)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

より一層の燃焼温度の向上及び還元材原単位の低減を可能とする高炉操業方法を提供する。羽口3から還元材を吹き込むためのランス4を二重管とし、その二重管ランス4から微粉炭6などの固体還元材と都市ガス9などの易燃性還元材を吹込み、且つ羽口3への送風の酸素過剰率を0.7~1.3とすることにより、先に送風中のOに接触する都市ガス9が燃焼することで微粉炭6の温度が大幅に上昇し、これにより微粉炭6の加熱速度が上昇して微粉炭6が十分に燃焼し、その結果、燃焼温度が大幅に向上し、もって還元材原単位を低減することができると共に、二重管ランス4の外側管の出口流速を20~120m/secとすることにより、昇温による二重管ランス4の変形を防止することができる。

Description

高炉操業方法
 本発明は、高炉羽口から微粉炭などの固体還元材と、LNG(Liquefied Natural Gas:液化天然ガス)や都市ガスなどの易燃性還元材とを吹込んで、燃焼温度を上昇させることにより生産性の向上及び還元材原単位の低減を図る高炉の操業方法に関するものである。
 近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出COの抑制は重要な課題である。これを受け、最近の高炉操業では、低還元材比(RAR:Reducing Agent Rateの略で、銑鉄1t製造当たりの、羽口からの吹込み還元材と炉頂から装入されるコークスの合計量)操業が強力に推進されている。高炉は、主に炉頂から装入される固体還元材であるコークス及び羽口から吹込む固体還元材である微粉炭を還元材として使用しており、低還元材比、ひいては炭酸ガス排出抑制を達成するためには固体還元材であるコークスや微粉炭などを廃プラ、都市ガス、重油等の水素含有率の高い還元材で置換する方策が有効である。下記特許文献1では、羽口から還元材を吹込むランスを二重管とし、二重管ランスの内側管からLNGを吹込み、二重管ランスの外側管から微粉炭を吹込むことが提案されている。また、下記特許文献2では、同じく羽口から還元材を吹込むランスを二重管とし、二重管ランスの内側管から微粉炭を吹込み、二重管ランスの外側管からLNGを吹込むことが提案されている。
特開第3176680号公報 特公平1−29847号公報
 前記特許文献1に記載される高炉操業方法も、前記特許文献2に記載される高炉操業方法も、従来の微粉炭だけを羽口から吹込む方法に比べれば、燃焼温度の向上や還元材原単位の低減に効果があるものの、更なる改良の余地がある。
 本発明は、上記のような問題点に着目してなされたものであり、より一層の燃焼温度の向上及び還元材原単位の低減を可能とする高炉操業方法を提供することを目的とするものである。
上記課題を解決するために、本発明は、ランスを介して羽口から易燃性還元材と固体還元材とを吹込む高炉操業方法であって、前記易燃性還元材と固体還元材とを二重管ランスで吹込み、前記二重管ランスの外側管の出口流速を20~120m/secとし、且つ羽口への送風の酸素過剰率を0.7~1.3としたことを特徴とする高炉操業方法を提供する。
 前記高炉操業方法において、前記二重管ランスの内側管から固体還元材を吹込むと共に、二重管ランスの外側管から易燃性還元材を吹込むのが好ましい。
 また、前記高炉操業方法において、前記二重管ランスの内側管から易燃性還元材を吹込むと共に、二重管ランスの外側管から固体還元材を吹込むのが好ましい。
 前記固体還元材は微粉炭であるのが好ましい。
 前記高炉操業方法において、前記固体還元材を銑鉄1t当たり50~300kgの範囲で吹込むのが好ましい。前記固体還元材を銑鉄1t当たり60~180kgの範囲で吹込むのがより好ましい。
 前記高炉操業方法において、前記固体還元材の微粉炭に、廃プラスチック、廃棄物固形燃料、有機性資源、廃材を混合するのが好ましい。
 また、前記固体還元材の微粉炭の割合を80mass%以上として、廃プラスチック、廃棄物固形燃料、有機性資源、廃材を混合使用するのが好ましい。
 また、前記易燃性還元材が都市ガス、天然ガス、プロパンガス、水素、転炉ガス、高炉ガス、コークス炉ガスであるのが好ましい。
 また、前記易燃性還元材を銑鉄1t当たり1~50kgの範囲で吹込むのが好ましい。前記易燃性還元材を銑鉄1t当たり10~35kgの範囲で吹込むのがより好ましい。
 而して、本発明の高炉操業方法によれば、先に送風中のOに接触する易燃性還元材が燃焼することで、当該易燃性還元材の内側の固体還元材の温度が大幅に上昇し、これにより固体還元材の加熱速度が上昇するのであるが、このとき羽口への送風の酸化過剰率を0.7~1.3とすることで固体還元材が十分に燃焼し、その結果、燃焼温度が大幅に向上し、もって還元材原単位を低減することができると共に、二重管ランスの外側管の出口流速を20~120m/sec以上とすることにより、昇温による二重管ランスの変形を防止することができる。
本発明の高炉操業方法が適用された高炉の一実施形態を示す縦断面図である。 図1のランスから微粉炭だけを吹込んだときの燃焼状態の説明図である。 図2の微粉炭の燃焼メカニズムの説明図である。 微粉端と都市ガスを吹込んだときの燃焼メカニズムの説明図である。 燃焼実験装置の説明図である。 燃焼実験結果の説明図である。 酸素過剰率を変化させたときの燃焼温度の説明図である。 二重管ランスのウォータージャケットの説明図である。 二重管ランスのウォータージャケットの説明図である。 二重管ランスの外側管から吹込まれるガスの流量とランス表面温度の関係を示す説明図である。
 次に、本発明の高炉操業方法の一実施形態について図面を参照しながら説明する。
 図1は、本実施形態の高炉操業方法が適用された高炉の全体図である。図に示すように、高炉(blast furnace)1の羽口(tuyere)3には、熱風を送風するための送風管(blow pipe)2が接続され、この送風管2を貫通してランス4が設置されている。羽口3の熱風送風方向先方のコークス堆積層には、レースウエイ(raceway)5と呼ばれる燃焼空間が存在し、主として、この燃焼空間で還元材の燃焼、ガス化が行われる。
 図2には、ランス4から固体還元材として微粉炭6だけを吹込んだときの燃焼状態を示す。ランス4から羽口3を通過し、レースウエイ5内に吹込まれた微粉炭6は、コークス7と共に、その揮発分と固定炭素が燃焼し、燃焼しきれずに残った、一般にチャーと呼ばれる炭素と灰分の集合体は、レースウエイから未燃チャー(unburnt char)8として排出される。羽口3の熱風送風方向先方における熱風速度は約200m/secであり、ランス4の先端からレースウエイ5内におけるOの存在領域は約0.3~0.5mとされているので、実質的に1/1000秒のレベルで微粉炭粒子の昇温及びOとの接触効率(分散性)の改善が必要となる。なお、高炉内に吹込まれる微粉炭の平均粒径は10~100μmで使用されている。
 図3は、ランス4から送風管2内に微粉炭(図ではPC:Pulverized Coal)6のみを吹込んだ場合の燃焼メカニズムを示す。羽口3からレースウエイ5内に吹込まれた微粉炭6は、レースウエイ5内の火炎からの輻射伝熱によって粒子が加熱し、更に輻射伝熱、伝導伝熱によって粒子が急激に温度上昇し、300℃以上昇温した時点から熱分解が開始し、揮発分に着火して火炎が形成され、燃焼温度は1400~1700℃に達する。揮発分が放出してしまうと、前述したチャー8となる。チャー8は、主に固定炭素であるので、燃焼反応と共に、炭素溶解反応と呼ばれる反応も生じる。
 図4は、ランス4から送風管2内に微粉炭(図ではPC)6と共に易燃性還元材として都市ガス9を吹込んだ場合の燃焼メカニズムを示す。都市ガス9の主成分はメタンであり、他にエタン、プロパン、ブタンなどを含む。下記表1に都市ガスの組成例を示す。微粉炭6と都市ガス9の吹込み方法は、単純に平行に吹込んだ場合を示している。なお、図中の二点鎖線は、図3に示した微粉炭のみを吹込んだ場合の燃焼温度を参考に示している。このように微粉炭と都市ガスを同時に吹込む場合、気体ガスである都市ガスが優先的に燃焼し、この燃焼熱によって微粉炭が急速に加熱、昇温すると考えられ、これによりランスに近い位置で燃焼温度が更に上昇する。
Figure JPOXMLDOC01-appb-T000001
 このような知見に基づき、図5に示す燃焼実験装置を用いて燃焼実験を行った。実験炉11内には高炉内を模擬するためコークスが充填されており、覗き窓からレースウエイ15の内部を観察することができる。送風管12にはランス14が差し込まれ、燃焼バーナ13で生じた熱風を実験炉11内に所定の送風量で送風することができる。また、この送風管12では、送風の酸素負荷量を調整することも可能である。ランス14は、微粉炭及び都市ガスの何れか一方又は双方を送風管12内に吹込むことができる。実験炉11内で生じた排ガスは、サイクロンと呼ばれる分離装置16で排ガスとダストに分離され、排ガスは助燃炉などの排ガス処理設備に送給され、ダストは捕集箱17に捕集される。
 燃焼実験には、ランス4に単管ランスと二重管ランスの二種類を用い、単管ランスを用いて微粉炭のみを吹込んだ場合、二重管ランスを用い、二重管ランスの内側管から微粉炭を吹込み、二重管ランスの外側管から易燃性還元材として都市ガスを吹込んだ場合、二重管ランスの内側管から易燃性還元材として都市ガスを吹込み、二重管ランスの外側管から微粉炭を吹込んだ場合の夫々について覗き窓から2色温度計による燃焼温度、燃焼位置、未燃チャーの燃焼状況、拡散性を測定した。2色温度計は、周知のように、熱放射(高温物体から低温物体への電磁波の移動)を利用して温度計測を行う放射温度計であり、温度が高くなると波長分布が短波長側にずれていくことに着目して、波長分布の温度の変化を計測することで温度を求める波長分布形の一つであり、中でも波長分布を捉えるため、2つの波長における放射エネルギーを計測し、比率から温度を測定するものである。未燃チャーの燃焼状況は、実験炉11の送風管12内のランス14先から150mm、300mmの位置にてプローブで未燃チャーを回収して、樹脂埋め、研磨後、画像解析によってチャー内空隙率を測定し、判定した。
 微粉炭の諸元は、固定炭素(FC:Fixed Carbon)77.8%、揮発分(VM:Volatile Matter)13.6%、灰分(Ash)8.6%で、吹込み条件は29.8kg/h(溶銑1t当たり100kgに相当)とした。また、都市ガスの吹込み条件は、3.6kg/h(5Nm/h、溶銑1t当たり10kgに相当)とした。送風条件は、送風温度1200℃、流量300Nm/h、流速70m/s、O富化+5.5(酸素濃度26.5%、空気中酸素濃度21%に対し、5.5%の富化)とした。微粉炭の搬送ガスにはNを用いた。なお、微粉炭と、微粉炭を搬送する搬送ガスの固気比は、少ないガス量で粉体、つまり微粉炭を輸送する方式(高濃度搬送)では固気比10~25kg/Nm、多量のガスで輸送する方式(低濃度輸送)では固気比5~10kg/Nmである。搬送ガスにはNの他、空気を用いることもできる。実験結果の評価は、単管から微粉炭のみを吹込んだ場合の燃焼温度、燃焼位置、未燃チャーの燃焼状況、拡散性(主として微粉炭)を基準とし、二重管ランスの内側管から微粉炭を吹込み、外側管から都市ガスを吹込んだ場合、二重管ランスの内側管から都市ガスを吹込み、外側管から微粉炭を吹込んだ場合の夫々を評価した。評価は、微粉炭のみの場合と同程度の場合を△、少し改善された場合を○、大幅に改善された場合を◎で表した。
 図6には、前述した燃焼実験の結果を示す。微粉炭(図ではPC)は搬送ガス(窒素ガスNを使用)で吹込む。同図から明らかなように、二重管ランスの内側管から微粉炭を吹込み、外側管から都市ガスを吹込む場合には、燃焼位置については改善が見られたが、その他の項目については変化が見られない。これは、微粉炭の外側の都市ガスが先にOと接触して速やかに燃焼し、その燃焼熱で微粉炭の加熱速度が上昇したものの、都市ガスの燃焼にOが消費されてしまい、微粉炭の燃焼に必要なOが減少して、十分な燃焼温度上昇に至らず、未燃チャーの燃焼状況も改善されなかったと考えられる。一方、二重管ランスの内側管から都市ガスを吹込み、外側管から微粉炭を吹込む場合には、燃焼温度、未燃チャーの燃焼状況について改善が見られ、拡散性については大幅な改善が見られたものの、燃焼位置については変化が見られない。これは、外側の微粉炭領域を通じた内側の都市ガスまでのOの拡散に時間を要したものの、内側の易燃性の都市ガスが燃焼すれば、爆発的な拡散が生じ、都市ガスの燃焼熱で微粉炭が加熱されて燃焼温度も上昇し、未燃チャーの燃焼状況も改善されたものと考えられる。
 本願発明者は、この実験結果を踏まえて、二重管ランスの内側管から微粉炭を吹込み、外側管から都市ガスを吹込む場合や、二重管ランスの内側管から都市ガスを吹込み、外側管から微粉炭を吹込む場合に、特に燃焼温度を上昇するための検討を行い、送風への酸素富化、即ち酸素過剰率に着目した。そこで、前述の燃焼実験装置を用い、例えば二重管ランスの内側管から微粉炭を吹込むと共に外側管から都市ガスを吹込み、酸素過剰率を種々に変更して燃焼温度と燃焼位置の測定を行った。この場合の酸素過剰率は、送風中の酸素量を、微粉炭の完全燃焼に必要な酸素量で除した値となり、数値が1なら完全燃焼し、1より小さいと完全燃焼できない。実際の操業での酸素過剰率は以下で表される。
 酸素過剰率=(羽口及びランスから吹込まれる空気、純酸素、固体還元材中の酸素量)/(固体還元材中の炭素、水素、硫黄を燃焼させてCO、HO、SOにするのに必要な酸素量)
 実験結果を図7に示す。同図より明らかなように、単管ランスによる微粉炭のみの吹込みの場合に比して、例えば二重管ランスの内側管から微粉炭を吹込み且つ外側管から都市ガスを吹込む場合に、酸素過剰率が0.7以上であれば、何れの場合もランスに近い位置での燃焼温度が上昇している。特に、二重管ランスの内側管から微粉炭を吹込み且つ外側管から都市ガスを吹込む場合に、酸素過剰率が1以上であれば、ランスからの如何なる位置でも燃焼温度が上昇している。このことから、二重管ランスの内側管から微粉炭を吹込み且つ外側管から都市ガスを吹込む場合、酸素過剰率0.7以上を下限とし、酸素過剰率1.3以下を上限とする。酸素過剰率を増大すれば、更なる燃焼温度上昇を期待できるが、酸素製造コストに鑑みて、酸素過剰率の上限を1.3とした。好ましくは酸素過剰率を0.9~1.2とする。なお、二重管ランスの内側管から都市ガスを吹込み、外側管から微粉炭を吹込む場合にも、同等の結果が得られるものと考えられる。ちなみに、燃焼温度の向上は燃焼量増加の証左であり、吹込み固体還元材の燃焼量増加により羽口先における堆積微粉量(炉内投入微粉量)が減少し、炉内の通気が改善される。熱バランスが適正であれば、改善された通気余力分、装入コークス(コークス比)を低減することが可能となるので、結果として還元材原単位の低減となる。また、都市ガスを易燃性還元材例としているが、下記表2に示すように、天然ガス(LNG)も主成分はメタンで都市ガスと同等であり、使用できる。
Figure JPOXMLDOC01-appb-T000002
 ところで、前述のような燃焼温度の上昇に伴って、二重管ランスの外側管は高温に晒され易くなる。二重管ランスは、例えばステンレス鋼鋼管で構成される。勿論、二重管ランスの外側管には所謂ウォータージャケットと呼ばれる水冷が施されているが、ランス先端までは覆うことができない。図8には、内側管から微粉炭を吹込み、外側管から都市ガスを吹込む二重管ランスのウォータージャケットの状態を示す。図9には、内側管から都市ガスを吹込み、外側管から微粉炭を吹込む二重管ランスのウォータージャケットの状態を示す。図8、図9において、特に、この水冷の及ばない二重管ランスの外側管の先端部が熱で変形することが分かった。二重管ランスの外側管が変形する、つまり曲がると所望部位に微粉炭や都市ガスを吹込むことができないし、消耗品であるランスの交換作業に支障がある。また、曲がりにより微粉炭の流れが変化して羽口に当たることも考えられ、そのような場合には羽口が損傷する恐れがある。二重管ランスの外側管が曲がると、内側管との隙間が閉塞され、外側管からガスが流れなくなると、二重管ランスの外側管が溶損し、場合によっては送風管が破損する可能性もある。ランスが変形したり損耗したりすると、前述のような燃焼温度を確保することができなくなり、ひいては還元材原単位を低減することもできない。
 水冷できない二重管ランスの外側管を冷却するためには、内部に送給されるガスで放熱するしかない。内部に流れるガスに放熱して二重管ランスの外側管自体を冷却する場合、ガスの流量がランス温度に影響を与えると考えられる。そこで、本発明者等は、二重管ランスの外側管から吹込まれるガスの流量を種々に変更してランス表面の温度を測定した。実験は、二重管ランスの外側管から都市ガスを吹込み、内側管から微粉炭を吹込んで行い、ガスの流量調整は、外側管から吹込まれる都市ガスに不活性ガスとしてNを加減した。なお、Nは、微粉炭を搬送するための搬送ガスの一部を流用するようにしてもよい。測定結果を図10に示す。
 二重管ランスの外側管には、20Aスケジュール5Sと呼ばれる鋼管、及び25Aスケジュール5Sと呼ばれる鋼管の2種類を用いた。また、二重管ランスの内側管には、15Aスケジュール90と呼ばれる鋼管、1種類を用い、Nと都市ガスの合計流量を種々に変更してランス表面の温度を測定した。ちなみに、「15A」、「20A」、「25A」はJIS G 3459に規定する鋼管外径の称呼寸法であり、15Aは外径21.7mm、20Aは外径27.2mm、25Aは外径34.0mmである。また、「スケジュール」はJIS G 3459に規定する鋼管の肉厚の称呼寸法であり、スケジュール5Sは1.65mm、15Aスケジュール90は3.70mmである。二重管ランスの外側管に鋼管を用いる場合、上記の2種類程度の外径を有する鋼管とすることが現実的である。また、20Aスケジュール90(肉厚:3.9mm)、25Aスケジュール90(肉厚:4.5mm)を用いることも可能である。なお、ステンレス鋼鋼管の他、普通鋼も利用できる。その場合の鋼管の外径はJIS G 3452に規定され、肉厚はJIS G 3454に規定される。
 同図に二点鎖線で示すように、サイズの異なる鋼管毎に、二重管ランスの外側管から吹込まれるガスの合計流量の増加に伴ってランス表面の温度が反比例的に低下している。これは、鋼管のサイズが違うと、同じガス合計流量でもガスの流速が異なるためである。鋼管を二重管ランスに使用する場合、二重管ランスの表面温度が880℃を上回るとクリープ変形が起こり、二重管ランスが曲がってしまう。従って、二重管ランスの外側管に20Aスケジュール5S、或いは25Aスケジュール5Sの鋼管を用い、二重管ランスの表面温度が880℃以下である場合の外側管からの吹込みガスの流量は85Nm/h以上であり、それらの鋼管を用いた場合の二重管ランスの外側管の出口流速は20m/sec以上となる。そして、二重管ランスの外側管の吹込みガスの流量を85Nm/h以上とし、二重管ランスの外側管の出口流速が20m/sec以上である場合には二重管ランスの外側管の表面温度は880℃以下となり、二重管ランスに変形や曲がりは生じない。一方、二重管ランスの外側管の吹込みガスの合計流量が800Nm/hを超えたり、出口流速が120m/secを超えたりすると、設備の運用コストの点で実用的でないので、二重管ランスの外側管の吹込みガスの合計流量の上限を800Nm/h、出口流速の上限を120m/secとした。即ち、水冷できない二重管ランスの外側管を冷却するためには、二重管ランスの外側管の吹込みガスの合計流量を調整し、二重管ランスの外側管の出口流速を20~120m/secとするのである。
 この二重管ランスでは、二重管ランスの外側管から吹込まれる固体還元材の搬送ガス又は易燃性還元材の流量を調整し、二重管ランスの外側管の出口流速を20m/sec以上として、二重管ランスの変形(曲がり)を防止し、それに応じて、銑鉄1t当たり、二重管ランスから吹込む微粉炭などの固体還元材を50~300kgとする。即ち、ランスには設備制約上の吹込み下限があるため、吹込み還元材比が低下すると、吹込み羽口を間引いて吹込むなどの対応が必要となり、結果として還元材を吹込む羽口と吹込まない羽口が混在し、円周方向に偏差が生じることとなり、高炉の安定操業上好ましくない。従って、固体還元材は銑鉄1t当たり50kg以上とする。また、固体還元材の吹込み還元材比が低下すると、ガスと装入物の熱交換において、熱を供給される側である装入物の比率が増加し、炉頂ガス温度が低下する。この炉頂ガス温度が露点以下となるのを防止する点でも、固体還元材は銑鉄1t当たり50kg以上、好ましくは60kg以上とする。
 更に、低還元材比操業を志向する上では、通気の制約から、吹込み還元材比には上限があり、吹込み固体還元材比の増加に伴い、炉頂から装入される固体還元材(コークス)比が減少するため、通気が困難になっていくが、許容できる全圧損(送風圧−炉頂圧)を超えると、吹込み還元材を増加しても還元材(コークス)比を低減することができなくなり、安定操業を妨げるほか、操業不可能に至る恐れもある。また、炉頂設備保護のためにも固体還元材は銑鉄1t当たり300kg以下とする。
 また、都市ガス、天然ガス(LNG)などの易燃性還元材は、高い燃焼温度を確保する点から銑鉄1t当たり1kg以上必要であり、上限は羽口及び炉頂機器の保護のため銑鉄1t当たり50kg以下とする。好ましくは銑鉄1t当たり10~35kgである。
 以上の点から、固体還元材/易燃性還元材(各mass%)は、逆算すると、1~300、好ましくは1~180となる。
 更に、二重管ランスを使用する際の固体還元材、易燃性還元材の燃焼性のため、送風中酸素富化率は2~10%、好ましくは2.5~8%とする。
 また、微粉炭の平均粒子径は10~100μmで使用されるが、本発明では燃焼性を確保し、ランスからの送給並びにランスまでの供給性を考慮したとき、好ましくは20~50μmとするとよい。微粉炭の平均粒子径が20μm未満では、燃焼性は優れるが、微粉炭輸送時(気体輸送)にランスが詰まり易く、50μmを超えると微粉炭燃焼性が悪化する恐れがある。
 また、吹込む固体還元材には、微粉炭を主として、その中に廃プラスチック、廃棄物固形燃料(RDF)、有機性資源(バイオマス)、廃材を混合使用してもよい。混合使用の際は、微粉炭の全固体還元材に対する比は80mass%以上とするのが好ましい。即ち、微粉炭と、廃プラスチック、廃棄物固形燃料(RDF)、有機性資源(バイオマス)、廃材などでは反応による熱量が異なるため、互いの使用比率が近くなると燃焼に偏りが生じ易くなり、操業の不安定となり易い。また、微粉炭と比して、廃プラスチック、廃棄物固形燃料(RDF)、有機性資源(バイオマス)、廃材等は燃焼反応による発熱量が低位であるため、多量に吹込むと炉頂より装入される固体還元材に対する代替効率が低下するため、微粉炭の割合を80mass%以上とするのが好ましいのである。
 なお、廃プラスチック、廃棄物固形燃料(RDF)、有機性資源(バイオマス)、廃材は、6mm以下、好ましくは3mm以下の細粒として微粉炭と混合使用できる。微粉炭との割合は、搬送ガスにより気送される微粉炭と合流させることで混合可能である。予め微粉炭と混合して使用しても構わない。
 更に、易燃性還元材には、都市ガス、天然ガス以外に、プロパンガス、水素の他、製鉄所で発生する転炉ガス、高炉ガス、コークス炉ガスを用いることもできる。
 このように、本実施形態の高炉操業方法では、羽口3に設けた二重管ランス4から微粉炭(固体還元材)6と都市ガス(易燃性還元材)9を吹込み、且つ羽口3への送風の酸素過剰率を0.7~1.3としたことにより、先に送風中のOに接触する都市ガス(易燃性還元材)9が燃焼することで微粉炭(固体還元材)6の温度が大幅に上昇し、これにより微粉炭(固体還元材)6の加熱速度が上昇して十分に燃焼し、その結果、燃焼温度が大幅に向上し、もって還元材原単位を低減することができると共に、二重管ランス4の外側管の出口流速を20~120m/secとすることにより、昇温による二重管ランス4の変形を防止することができる。
 また、二重管ランス4の内側管から微粉炭(固体還元材)6を吹込むと共に、二重管ランス4の外側管から都市ガス(易燃性還元材)9を吹込むことにより、先に送風中のOに接触する都市ガス(易燃性還元材)9が燃焼することで、当該都市ガス(易燃性還元材)9の内側の微粉炭(固体還元材)6の温度が大幅に上昇する。
 また、二重管ランス4の内側管から都市ガス(易燃性燃料)9を吹込むと共に、二重管ランス4の外側管から微粉炭(固体燃料)6を吹込むことにより、微粉炭(固体燃料)6の内側の都市ガス(易燃性燃料)9が先に燃焼することで微粉炭(固体燃料)6が爆発的に拡散し、同時に都市ガス(易燃性燃料)9の燃焼熱で微粉炭(固体燃料)6の温度が大幅に上昇する。
 また、図10の例では、二重管ランス4の外側管から吹込まれるガスの合計流量を85~800Nm/h以上とすることにより、昇温による二重管ランス4の変形を防止することができる。
 1は高炉、2は送風管、3は羽口、4はランス、5はレースウエイ、6は微粉炭(固体還元材)、7はコークス、8はチャー、9は都市ガス(易燃性還元材)

Claims (11)

  1.  ランスを介して羽口から易燃性還元材と固体還元材とを吹込む高炉操業方法であって、前記易燃性還元材と固体還元材とを二重管ランスで吹込み、前記二重管ランスの外側管の出口流速を20~120m/secとし、且つ羽口への送風の酸素過剰率を0.7~1.3としたことを特徴とする高炉操業方法。
  2.  前記二重管ランスの内側管から固体還元材を吹込むと共に、二重管ランスの外側管から易燃性還元材を吹込むことを特徴とする請求項1に記載の高炉操業方法。
  3.  前記二重管ランスの内側管から易燃性還元材を吹込むと共に、二重管ランスの外側管から固体還元材を吹込むことを特徴とする請求項1に記載の高炉操業方法。
  4.  前記固体還元材が微粉炭であることを特徴とする請求項1乃至3の何れか一項に記載の高炉操業方法。
  5.  前記固体還元材を銑鉄1t当たり50~300kgの範囲で吹込むことを特徴とする請求項4に記載の高炉操業方法。
  6.  前記固体還元材を銑鉄1t当たり60~180kgの範囲で吹込むことを特徴とする請求項5に記載の高炉操業方法。
  7.  前記固体還元材の微粉炭に、廃プラスチック、廃棄物固形燃料、有機性資源、廃材を混合することを特徴とする請求項4乃至6の何れか一項に記載の高炉操業方法。
  8.  前記固体還元材の微粉炭の割合を80mass%以上として、廃プラスチック、廃棄物固形燃料、有機性資源、廃材を混合使用することを特徴とする請求項7に記載の高炉操業方法。
  9.  前記易燃性還元材が都市ガス、天然ガス、プロパンガス、水素、転炉ガス、高炉ガス、コークス炉ガスであることを特徴とする請求項1乃至8の何れか一項に記載の高炉操業方法。
  10.  前記易燃性還元材を銑鉄1t当たり1~50kgの範囲で吹込むことを特徴とする請求項9に記載の高炉操業方法。
  11.  前記易燃性還元材を銑鉄1t当たり10~35kgの範囲で吹込むことを特徴とする請求項10に記載の高炉操業方法。
PCT/JP2011/066771 2011-01-18 2011-07-15 高炉操業方法 WO2012098713A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137021642A KR101536626B1 (ko) 2011-01-18 2011-07-15 고로 조업 방법
CN2011800653873A CN103339266A (zh) 2011-01-18 2011-07-15 高炉操作方法
AU2011356008A AU2011356008B2 (en) 2011-01-18 2011-07-15 Method for operating blast furnace
EP11856085.3A EP2653563B1 (en) 2011-01-18 2011-07-15 Method for operating blast furnace
BR112013018060-9A BR112013018060B1 (pt) 2011-01-18 2011-07-15 Método para operar alto-forno

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011007954A JP2011168886A (ja) 2010-01-19 2011-01-18 高炉操業方法
JP2011-007954 2011-01-18
JP2011-007953 2011-01-18
JP2011007953A JP2011168885A (ja) 2010-01-19 2011-01-18 高炉操業方法
JP2011-152079 2011-07-08
JP2011152079A JP5699833B2 (ja) 2011-07-08 2011-07-08 高炉操業方法

Publications (1)

Publication Number Publication Date
WO2012098713A1 true WO2012098713A1 (ja) 2012-07-26

Family

ID=46515359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066771 WO2012098713A1 (ja) 2011-01-18 2011-07-15 高炉操業方法

Country Status (8)

Country Link
EP (1) EP2653563B1 (ja)
JP (1) JP5699833B2 (ja)
KR (1) KR101536626B1 (ja)
CN (1) CN103339266A (ja)
AU (1) AU2011356008B2 (ja)
BR (1) BR112013018060B1 (ja)
TW (1) TWI516604B (ja)
WO (1) WO2012098713A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3040426A4 (en) * 2013-08-28 2016-08-31 Jfe Steel Corp METHOD OF OPERATING A HIGH STOVE
CN113744811A (zh) * 2021-07-14 2021-12-03 鞍钢集团朝阳钢铁有限公司 一种在线调整高炉热量的计算方法
CN115595389A (zh) * 2022-10-25 2023-01-13 上海大学(Cn) 一种高炉氢气和生物质颗粒耦合喷吹系统及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6258039B2 (ja) 2014-01-07 2018-01-10 新日鐵住金株式会社 高炉の操業方法
JP6269533B2 (ja) 2015-03-02 2018-01-31 Jfeスチール株式会社 高炉操業方法
JP6443361B2 (ja) * 2016-02-26 2018-12-26 Jfeスチール株式会社 高炉操業方法
JP6551471B2 (ja) * 2016-07-29 2019-07-31 Jfeスチール株式会社 高炉操業方法
EP3789355A1 (en) * 2019-09-04 2021-03-10 Linde GmbH A method of operating a shaft furnace
KR20220082037A (ko) * 2020-01-23 2022-06-16 제이에프이 스틸 가부시키가이샤 고로의 조업 방법 및 고로 부대 설비
WO2024103122A1 (en) * 2022-11-17 2024-05-23 Newsouth Innovations Pty Limited Co-injection of hydrogen and biomass in ironmaking for decarbonisation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142706A (ja) * 1985-12-17 1987-06-26 Kawasaki Steel Corp 高炉内への粉粒体吹込み方法
JPS62238307A (ja) * 1986-04-10 1987-10-19 Kobe Steel Ltd 高炉への難燃性燃料の吹込方法
JPH0129847B2 (ja) 1986-03-28 1989-06-14 Kobe Steel Ltd
JPH03176680A (ja) 1989-12-06 1991-07-31 Hitachi Ltd Ic試験装置
JPH05179323A (ja) * 1992-01-06 1993-07-20 Nippon Steel Corp 高炉操業法
JP2006152434A (ja) * 2004-10-28 2006-06-15 Jfe Steel Kk 高炉操業方法
JP2006233332A (ja) * 2005-01-31 2006-09-07 Jfe Steel Kk 高炉操業方法
JP2006312757A (ja) * 2005-05-06 2006-11-16 Jfe Steel Kk 気体還元材吹込み用のランス、高炉および高炉操業方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1050712A (zh) * 1989-10-06 1991-04-17 北京信通集团公司 从顺丁烯二酸生产dl-酒石酸的路线
KR100782684B1 (ko) * 2001-07-10 2007-12-07 주식회사 포스코 고로내 미분의 고체연료 취입장치
TWI277654B (en) * 2005-01-31 2007-04-01 Jfe Steel Corp Method for operating blast furnace

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142706A (ja) * 1985-12-17 1987-06-26 Kawasaki Steel Corp 高炉内への粉粒体吹込み方法
JPH0129847B2 (ja) 1986-03-28 1989-06-14 Kobe Steel Ltd
JPS62238307A (ja) * 1986-04-10 1987-10-19 Kobe Steel Ltd 高炉への難燃性燃料の吹込方法
JPH03176680A (ja) 1989-12-06 1991-07-31 Hitachi Ltd Ic試験装置
JPH05179323A (ja) * 1992-01-06 1993-07-20 Nippon Steel Corp 高炉操業法
JP2006152434A (ja) * 2004-10-28 2006-06-15 Jfe Steel Kk 高炉操業方法
JP2006233332A (ja) * 2005-01-31 2006-09-07 Jfe Steel Kk 高炉操業方法
JP2006312757A (ja) * 2005-05-06 2006-11-16 Jfe Steel Kk 気体還元材吹込み用のランス、高炉および高炉操業方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2653563A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3040426A4 (en) * 2013-08-28 2016-08-31 Jfe Steel Corp METHOD OF OPERATING A HIGH STOVE
CN113744811A (zh) * 2021-07-14 2021-12-03 鞍钢集团朝阳钢铁有限公司 一种在线调整高炉热量的计算方法
CN113744811B (zh) * 2021-07-14 2024-03-29 鞍钢集团朝阳钢铁有限公司 一种在线调整高炉热量的计算方法
CN115595389A (zh) * 2022-10-25 2023-01-13 上海大学(Cn) 一种高炉氢气和生物质颗粒耦合喷吹系统及方法
CN115595389B (zh) * 2022-10-25 2023-12-08 上海大学 一种高炉氢气和生物质颗粒耦合喷吹系统及方法

Also Published As

Publication number Publication date
TW201231677A (en) 2012-08-01
EP2653563A4 (en) 2017-03-08
KR101536626B1 (ko) 2015-07-14
AU2011356008B2 (en) 2015-05-07
BR112013018060A2 (pt) 2020-10-27
BR112013018060B1 (pt) 2021-09-21
JP2013019007A (ja) 2013-01-31
EP2653563B1 (en) 2018-11-28
TWI516604B (zh) 2016-01-11
KR20130122659A (ko) 2013-11-07
EP2653563A1 (en) 2013-10-23
AU2011356008A1 (en) 2013-07-25
JP5699833B2 (ja) 2015-04-15
CN103339266A (zh) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5699833B2 (ja) 高炉操業方法
JP5263430B2 (ja) 高炉操業方法
JP5699834B2 (ja) 高炉操業方法
JP5699832B2 (ja) 高炉操業方法
JP5824810B2 (ja) 高炉操業方法
JP5923968B2 (ja) 高炉操業方法
JP5974687B2 (ja) 高炉操業方法
JP5522326B1 (ja) 高炉操業方法及び管束型ランス
JP2011168886A (ja) 高炉操業方法
JP5824812B2 (ja) 高炉操業方法
JPWO2015029424A1 (ja) 高炉操業方法
JP2011168885A (ja) 高炉操業方法
JP5983293B2 (ja) 高炉操業方法及びランス
JP5824813B2 (ja) 高炉操業方法
JP5824811B2 (ja) 高炉操業方法
JP5983294B2 (ja) 高炉操業方法及びランス
EP2796565B1 (en) Blast furnace operation method
JP2015160993A (ja) 高炉操業方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011856085

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011356008

Country of ref document: AU

Date of ref document: 20110715

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137021642

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013018060

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013018060

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130715