JP2006312757A - 気体還元材吹込み用のランス、高炉および高炉操業方法 - Google Patents

気体還元材吹込み用のランス、高炉および高炉操業方法 Download PDF

Info

Publication number
JP2006312757A
JP2006312757A JP2005134982A JP2005134982A JP2006312757A JP 2006312757 A JP2006312757 A JP 2006312757A JP 2005134982 A JP2005134982 A JP 2005134982A JP 2005134982 A JP2005134982 A JP 2005134982A JP 2006312757 A JP2006312757 A JP 2006312757A
Authority
JP
Japan
Prior art keywords
blast furnace
reducing material
pipe
gas
lance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005134982A
Other languages
English (en)
Inventor
Ryota Murai
亮太 村井
Michitaka Sato
道貴 佐藤
Tatsuro Ariyama
達郎 有山
Shinji Hasegawa
伸二 長谷川
Akio Shimomura
昭夫 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005134982A priority Critical patent/JP2006312757A/ja
Publication of JP2006312757A publication Critical patent/JP2006312757A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Abstract

【課題】 高炉への気体還元材吹込みにあたりランスおよび送風管の溶損を防止する。
【解決手段】 気体還元材吹込み用のランス10は、内管21および外管22を備えた2重管構造であり、内管21から気体還元材を吹込み、内管21と外管22との間に冷却用の気体を流通させるように構成されており、内管21の先端部を外管22に対して突出させるとともに、この突出部を、内管21の先端部が外管22の仮想延長線内に位置する範囲内の曲率で湾曲させた。
【選択図】図3

Description

本発明は、例えば天然ガス、メタンガス、コークス炉ガス、石炭ガス化ガス、水素ガス等の気体還元材を高炉に吹込み、高炉の生産性向上を可能にすることのできる高炉への気体還元材吹込み用のランス、該ランスを備えた高炉および高炉操業方法に関する。
銑鉄を製造する高炉は一般に大型設備であり、その建設には多額の資金を要する。その生産性を向上できれば、投資に伴うリスクが低減可能であることから、高炉における生産性向上が望まれてきた。
気体還元材を高炉羽口から吹込む方法は生産性向上に有効であることが知られている。この理由は次の2つによるところが大きい。1つは、気体還元材には灰分が含有されないことによる。コークスや、微粉炭など他の還元材は灰分を含有していることから、高炉下部の高温領域で液体状のスラグを生成する。スラグは充填層の空隙を埋めるため、通気性が悪化して、銑鉄の生産に必要な還元ガスを高炉内へ送り込むことを妨げることになり、生産性の上限を低下させる。
もう一つは、気体還元材は炭材由来の還元材に比べ、水素の含有量が多いことによる。酸化鉄の還元に有効なガスとしてはHあるいはCOであるが、Hの方がガスの粘性が低く同一の充填層を流通する際の圧力損失が小さくなる。このため、気体還元材使用時には高炉内への還元ガスの送り込みが容易になり、生産性を向上させることができるのである。
しかしながら、気体還元材は一般に燃焼速度が速く、ランスから噴出後速やかに燃焼を開始するため、ランスの溶損防止対策が必要となる。
溶損防止対策のため、ランスを空冷構造とすることは古くから実施されており、たとえば、特許文献1には、高炉羽口への粉体燃料の吹込みに、空冷2重管構造でその内管を外管に対して突出させたランスを用いる技術が開示されている。
特開昭58−171508号公報
特許文献1は、粉体燃料を有効に吹込むための技術ではあるが、本発明者らは、気体還元材吹込みへの適用を試みた。実際に試験炉を用いて気体還元材の燃焼試験を実施したところ、粉体燃料の吹込みでは生じなかった問題点が明らかとなった。特許文献1で問題となったランス先端部分への付着は灰分を含まない気体還元材では問題とはならないが、外管から流通する冷却用気体の流速が低い場合など冷却が不十分な場合にはランス先端部の溶損が生じたし、さらに送風管の溶損が生じることも明らかとなった。気体還元材は着火燃焼が速いため送風管の中で速やかに燃焼が進行して非常に高温となる。送風管壁を貫通してランスを設置すると気体還元材をランスと反対側の送風管側面に吹き付ける形となり、ランスの軸の延長上で送風管壁が溶損していた。粉体燃料の燃焼速度は気体還元材の燃焼速度に比較して一般に遅いため、特許文献1に記載の技術は粉体燃料には適用可能であるが、気体還元材には適用できないものと考えられる。
本発明は、このような従来技術の課題を解決することを目的とし、高炉への気体還元材吹込みにあたりランスおよび送風管の溶損を防止するためになされたものである。
上記課題を解決するため、本発明は、以下の(1)〜(6)を提供する。
(1)高炉の送風管内に管壁を貫通して挿入され、高炉羽口内に気体還元材を吹き込む気体還元材吹込み用のランスであって、
内管および外管を備えた2重管構造であり、前記内管から気体還元材を吹込み、前記内管と前記外管との間に冷却用の気体を流通させるように構成されており、
前記内管の先端部を前記外管に対して突出させるとともに、この突出部を、前記内管の先端部が前記外管の仮想延長線内に位置する範囲内で湾曲させたことを特徴とする、気体還元材吹込み用のランス。
(2)上記(1)の気体還元材吹込み用のランスを装着した送風管を配備したことを特徴とする、高炉。
(3)前記ランスを、前記気体還元材の噴出方向と高炉送風の方向が一致するように配備したことを特徴とする、上記(2)の高炉。
(4)内管および外管を備えた2重管構造であり、前記内管から気体還元材を吹込み、前記内管と前記外管との間に冷却用の気体を流通させるように構成されており、前記内管の先端部を前記外管に対して突出させるとともに、この突出部を、前記内管の先端部が前記外管の仮想延長線内に位置する範囲内で湾曲させた気体還元材吹込み用のランスを、高炉の送風管内に管壁を貫通して挿入し、高炉羽口内に気体還元材を吹き込むことを特徴とする、高炉操業方法。
(5)前記ランスを、前記気体還元材の噴出方向と高炉送風の方向が一致するように配備したことを特徴とする、上記(4)の高炉操業方法。
(6)前記内管と前記外管との間に流通させる冷却用の気体の初速vを、
前記内管の突出長さが前記外管の半径以下の場合には
va ≦ v
とし、前記内管の突出長さが前記外管の半径を超える場合には
v > 1.3×L×va
[ただし、v:冷却用の気体の初速(m/sec)
va:送風管内の熱風の流速(m/sec)
L:内管の突出長さ(mm)を意味する]
とすることを特徴とする、上記(5)の高炉操業方法。
本発明において、内管の先端を外管に対して突出させ、突出させた内管部分に湾曲を設け、好ましくは気体還元材の噴出方向と高炉送風の方向が一致するように調整する理由は次の通りである。特許文献1に記載のランスを用いた場合、内管の先端を外管に対して突出させてはいるが、突出させた内管部分に湾曲を設けていないため、気体還元材の噴出方向と高炉送風の方向が一致するように調整することができない。このため、気体還元材がランス先端から高炉の送風管に向かって噴出することにより、ランス軸の延長上の送風管壁温度が上昇し、溶損が起こった。ランスを湾曲させて気体還元材の噴出方向を送風の方向に一致させると、送風管壁の溶損は緩和される。しかしながら湾曲した2重管構造のランスを製作することは機械加工上極めて困難であり、仮に製作できても均一な冷却用気体の流路幅の確保が困難である。部分的に冷却用気体の流路が狭まっている部位があると、冷却不良によりランスがその部分から破損する可能性がある。したがって2重管構造のランス先端に突出させた内管部分のみに曲率を設けることとした。
また、冷却用気体により内管の突出部分が効果的に冷却されるためには、内管の先端部分が外管の仮想延長線内に位置するような曲率で湾曲させることが必要であることも分かった。
さらに、冷却用気体の流速は、内管の突出長さが長くなるほど速くする必要がある。突出部分は気体還元材の燃焼にともなう輻射熱を受けて過熱され、先端部にいくほど高温になる。内管の突出長が長すぎる場合には冷却用気体による冷却効果が充分に得られず、ランス先端部が溶損するからである。したがって、内管の突出長さと冷却用気体との関係は、後に示すように適正範囲に調整することが好ましい。
本発明では、内管および外管を備えた2重管構造の気体還元材吹込み用のランスにおいて、内管の先端部を外管に対して突出させるとともに、この突出部に、内管の先端部が外管の仮想延長線内に位置する範囲内の曲率で湾曲を設けたので、高炉へ気体還元材を吹込むにあたり、送風管の溶損を防止することが可能となり、高炉の生産性を向上させることができる。また、湾曲部を所定の曲率とすることにより、冷却用気体による内管先端の冷却が充分に行なわれ、ランス自体の溶損も防止できる。
以下、図面を参照しながら、本発明の好ましい実施の形態について説明する。
図1は本発明の気体還元材吹込みランスを配備した高炉1の概要を示す断面図である。高炉1は、上方から順に炉頂部2、シャフト部3、炉腹部4、炉底部5を有している、高炉1の炉頂部2には、装入装置6が設けられており、この装入装置6から高炉1内に主に鉄鉱石およびコークスからなる原料7が装入される。炉底部5には、炉内反応を生じさせるための熱風を吹き込む複数の羽口8が円周状に設けられており、この羽口8を介して送風管9から高炉1内に熱風を吹き込む。この送風管9には、気体還元材吹込み用のランス10が管壁を貫通して挿入されている。
羽口8から送風される領域には、レースウェイ11が形成される。レースウェイ11は、羽口8から吹き込まれる衝風のエネルギーによって羽口前のコークスが押しのけられてできる空間である。炉底部5に存在する湯溜り部12には炉内反応により生成された溶銑およびスラグが溶銑層およびスラグ層として存在し、溶銑およびスラグは複数の出銑口13から周期的に出銑滓される。この場合に、複数の出銑口13は、開口と閉塞とを交互に行なう。なお、符号14は炉芯である。
図2は本発明の気体還元材吹込み用のランスを模式的に示す斜視図であり、図3は断面図である。ランス10は、2重管構造を有しており、それぞれ内管21、外管22からなっている。内管21は気体還元材の流路となっている。気体還元材としては、高炉1への吹き込み時にランス10を通過する段階で気体の還元材であればよく、例えば天然ガス、メタンガス、コークス炉ガス、石炭ガス化ガス、水素ガス等を用いることができる。
外管22の基端側には冷却用気体取り入れ口24が設けられており、この冷却用気体取り入れ口24から冷却用気体を導入することにより、内管21の周囲に冷却用気体が流通する。冷却用の気体としては、窒素などの不活性ガスが望ましいが、ある程度の支燃剤を含んでいても良く、たとえば空気とすることもできる。またその温度は常温以下が望ましいが、100℃程度までであれば、冷却効果を発揮できるものと考えられる。
ランス10の先端側は、内管のみを突出させた部位(以下、「先端チップ23」と記す)を有している。この先端チップ23は、所定の曲率で湾曲形成されている。湾曲は、先端チップ23の全部(つまり、突出した部分の全体)にもたせてもよいし、先端チップ23の一部にもたせてもよい。この先端チップ23の曲率については、図3に示すように、先端チップ23の先端を外管22の仮想延長線の内側に位置させるような曲率に形成する。この範囲の曲率にすることにより、冷却用気体による先端チップ23の冷却が充分に機能するようになって、先端チップ23の溶損を防止できる。
また、このように曲成された先端チップ23を備えたランス10は、送風管9に配備した状態で、図4に示すように、気体還元材の噴出方向が高炉1の送風管9を流れる熱風の進行方向と同一になるような方向で装着される。つまり、気体還元材の噴出方向と高炉送風の方向が一致するように配備される。これにより噴出した気体還元材が送風管9の近傍で燃焼することが抑制されるため、ランス10に対向する側の送風管9の壁9aの溶損を防止することが可能となる。このような溶損防止効果により、ランス10によって吹込む気体還元材の流量や流速を従来よりも大きくすることができるので、高炉の生産性を向上させることができる。ここで、「気体還元材の噴出方向と高炉送風の方向が一致する」とは、具体的には、図4に示すように、ランス10の先端チップ23から噴出された気体還元材の噴出方向の延長線が、高炉1の炉内に向けて縮径して設けられた羽口8の出口径の範囲内に入るようになっていればよい。このような方向であれば、ランス10から噴出した気体還元材を羽口8を介してスムーズに高炉1内に導入できる。
先端チップ23は、内管21をそのまま延長しても良いし、2重管構造のランスを製作後、別途内管21の内径と同一の径をもち、曲率を設けた単管を用意して、内管21の先端部分に溶接して取り付けても良い。この理由は、一般に溶接部分の高温耐久性は低下するが、ランス10の場合、先端チップ23と内管21の溶接部分は空冷の効果が充分期待できる部分であるから、高温にさらされる心配が無いためである。
次に、図5から図8を参照しながら、先端チップ23の長さ(つまり、内管21の突出部の長さ)の範囲について説明を行なう。本発明者らは、ランス10の先端チップ23の長さLを種々変更した試作品を製作し、実際に吹込み試験を実施してその耐久性を調査した。その結果、長さLと冷却用気体の初期流速v(図5中、冷却用気体流路25の出口における流速)にある関係が成立することを見出した。なお、図5は先端チップ23の長さLが長い例であり、図6は短い例である。
図6のように、長さLが外管の半径rよりも短い場合、冷却用気体の流速vが送風管9内を流れる熱風の流速を下回ると先端チップ23が溶損した。この理由は図6に図示したように、ランス本体と先端チップ23の段差部分で高炉へ送風される熱風が渦を生成し、先端チップ23から噴出する気体還元材と熱風の混合が促進され、先端チップ23の極近傍で着火燃焼を生じて、先端チップ23への熱負荷が増大したものと考えられる。これを防止するためには冷却用気体の速度を熱風の流速以上とする必要がある。
以上の耐久性試験結果を図7に示した。本耐久性試験は、試験燃焼炉を用いて実施されたもので、本試験燃焼炉で24時間以上の耐久性を持てば、実機で4ヶ月以上の耐久性を持つことが確認されているものである。実機では最低4ヶ月以上溶損せずに吹込み可能であれば良い。この理由は約4ヶ月周期で休風と呼ばれる大修理があり、たとえ溶損しても、この機会に交換することができるからである。このため図7では試作ランスを各10本試験し、24時間以内に溶損したものの割合を示した。
図7は、ランス10の先端チップ23の長さLが外管22の半径rよりも短い場合の試験結果である。ここでは、L=25mm、r=30mmであるランス10を用いた。この図7から、冷却用気体の速度を熱風の流速以上にすると先端部の溶損を防止できることが理解される。
一方、図5のように、先端チップ23の長さLを長くする場合には、冷却用気体の流速もそれに応じて速くすることによって先端チップ23の溶損が防止できる。図8に、送風管内の熱風の流速を160m/sec、長さLを0.1mまたは0.2mとして、冷却用気体の流速を変化させた場合の試験結果を示している。評価方法は前述の図7の試験と同様とした。この図8から、溶損防止のためには、冷却用の気体の初速(m/sec)が、1.3×L×va[ただし、va:送風管内の熱風の流速(m/sec)である]となるところが境界的速度であり、これより大きな速度にすることが好ましいことが理解される。
以上の試験結果から、先端チップ23の長さLと冷却用気体の初速vについてまとめると以下の通りである。
先端チップ23の長さLが外管22の半径以下の場合には
va ≦ v
とし、先端チップ23の長さLが外管22の半径を超える場合には
v > 1.3×L×va
[ただし、v:冷却用の気体の初速(m/sec)
va:送風管内の熱風の流速(m/sec)
L:先端チップ23の長さ(m)を意味する]
とすることが好ましい。
以下、実施例および比較例を挙げ、本発明をさらに詳細に説明するが、本発明はこれによって制約されるものではない。実施例、比較例では、実際の高炉において本発明のランス10および比較用のランスを用いて気体還元材の吹込み操業を実施した。すなわち、図1と同様の構成を備え、内容積が3223mである高炉1の送風管9の管壁を貫通して気体還元材吹込みランスを設置した。なお、実施例では、気体還元材の噴出方向と高炉送風の方向が一致するようにした。
また、実施例、比較例において、吹込み気体還元材はメタン(CH)ガスを用いた。メタンガスは天然ガスの主成分であり、高炉吹込み用の気体として入手が比較的容易であることから、実施例および比較例における吹込み気体として選択したが、他にたとえばコークス炉ガス、あるいは石炭ガスにより発生するガスあるいは都市ガスや水素ガスなど高炉内に入って還元材として働く気体であれば代替可能である。
表1は、送風圧力一定および羽口先温度一定の条件の下で、各実施例および比較例における高炉の各諸元の変化と生産量の変化を記載している。生産量を上げるためには送風量を上げる(送風圧力を増大する)か、酸素富化率を上げる(結果的に羽口先温度が上昇する)などの方法があるが、図1の高炉では送風圧力は0.38MPaが最大であり、酸素富化率もまた羽口先温度が上限に近い2300℃程度になっていることから、各例で生産量は最大であったと考えることができる。
Figure 2006312757
実施例1は、本発明の吹込みランス10を用いて、気体還元材を20kg/t-p(溶銑1トンあたり20kgの意味;以下同様である)で高炉に吹込んだ場合の結果を示している。生産量(出銑量)は7732t/dであり、気体還元材の吹込みがない場合(比較例1)の生産量の約1.14倍の銑鉄を生産することができた。
実施例2は、本発明の吹込みランス10を用いて、気体還元材を60kg/t-p高炉に吹込んだ場合の結果を示している。生産量(出銑量)は8051t/dであり、気体還元材の吹込みがない場合(比較例1)の生産量の約1.19倍の銑鉄を生産することができた。
実施例3は、本発明の吹込みランス10を用いて、気体還元材を20kg/t-p高炉に吹込んだ場合の結果を示している。この場合は先端チップ長が外管半径rよりも短いため冷却用気体流速を送風管内の熱風流速の速度と一致させた。溶損トラブルなどは発生せず、生産量(出銑量)は7729t/dであり、気体還元材の吹込みがない場合(比較例1)の生産量の約1.14倍の銑鉄を生産することができた。
実施例4は、本発明の吹込みランス10を用いて、気体還元材を13kg/t-p高炉に吹き込んだ場合の結果を示している。生産量(出銑量)は7120t/dであり、気体還元材の吹込みがない場合(比較例1)の生産量の約1.05倍の銑鉄を生産することができた。
実施例5は、本発明の吹込みランス10を用いて、気体還元材を11kg/t-p高炉に吹き込んだ場合の結果を示している。生産量(出銑量)は7042t/dであり、気体還元材の吹込みがない場合(比較例1)の生産量の約1.04倍の銑鉄を生産することができた。
比較例1は、気体還元材比の吹込みを実施しない場合の高炉操業の一例を示したもので、先に示したように、生産量の上限は気体還元材の吹込みを実施した場合に比較して低いものとなった。
比較例2は、図9(a)に示すように、内管の突出部に湾曲を設けていない従来型の空冷ランス50により気体還元材を吹込んだものである。この場合は、図9(b)に示すように気体吹込みランス50の延長線と送風管壁の交点近傍に温度センサー51を取り付け、送風管壁の温度が上昇した場合、溶損防止のため、気体還元材の吹込みを停止した。その結果、気体還元材の停止時間が長く、一日平均値でわずか0.1kg/t-pの気体還元材を吹込めたのみであった。このため、気体還元材吹込みによる生産量向上効果を得ることができなかった。
以上、本発明の実施形態を述べたが、本発明は上記実施形態に制約されることはなく、種々の変形が可能である。
高炉の概略構成を模式的に示す断面図。 気体還元材吹込み用ランスの要部斜視図。 気体還元材吹込み用ランスの概略構成を模式的に示す断面図。 気体還元材吹込み用ランスを送風管に装着した状態を説明する図面。 気体還元材吹込み用ランスの要部断面図。 気体還元材吹込み用ランスの要部断面図。 冷却用気体流速と溶損率と熱風の流速との関係を説明する図面。 冷却用気体流速と溶損率と内管の突出長さとの関係を説明する図面。 従来技術のランスの説明に供する図面。
符号の説明
10 ランス
21 内管
22 外管
23 先端チップ
24 冷却用気体取り入れ口
25 冷却用気体流路

Claims (6)

  1. 高炉の送風管内に管壁を貫通して挿入され、高炉羽口内に気体還元材を吹き込む気体還元材吹込み用のランスであって、
    内管および外管を備えた2重管構造であり、前記内管から気体還元材を吹込み、前記内管と前記外管との間に冷却用の気体を流通させるように構成されており、
    前記内管の先端部を前記外管に対して突出させるとともに、この突出部を、前記内管の先端部が前記外管の仮想延長線内に位置する範囲内で湾曲させたことを特徴とする、気体還元材吹込み用のランス。
  2. 請求項1に記載の気体還元材吹込み用のランスを装着した送風管を配備したことを特徴とする、高炉。
  3. 前記ランスを、前記気体還元材の噴出方向と高炉送風の方向が一致するように配備したことを特徴とする、請求項2に記載の高炉。
  4. 内管および外管を備えた2重管構造であり、前記内管から気体還元材を吹込み、前記内管と前記外管との間に冷却用の気体を流通させるように構成されており、前記内管の先端部を前記外管に対して突出させるとともに、この突出部を、前記内管の先端部が前記外管の仮想延長線内に位置する範囲内で湾曲させた気体還元材吹込み用のランスを、高炉の送風管内に管壁を貫通して挿入し、高炉羽口内に気体還元材を吹き込むことを特徴とする、高炉操業方法。
  5. 前記ランスを、前記気体還元材の噴出方向と高炉送風の方向が一致するように配備したことを特徴とする、請求項4に記載の高炉操業方法。
  6. 前記内管と前記外管との間に流通させる冷却用の気体の初速vを、
    前記内管の突出長さが前記外管の半径以下の場合には
    va ≦ v
    とし、前記内管の突出長さが前記外管の半径を超える場合には
    v > 1.3×L×va
    [ただし、v:冷却用の気体の初速(m/sec)
    va:送風管内の熱風の流速(m/sec)
    L:内管の突出長さ(m)を意味する]
    とすることを特徴とする、請求項5に記載の高炉操業方法。

JP2005134982A 2005-05-06 2005-05-06 気体還元材吹込み用のランス、高炉および高炉操業方法 Pending JP2006312757A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134982A JP2006312757A (ja) 2005-05-06 2005-05-06 気体還元材吹込み用のランス、高炉および高炉操業方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134982A JP2006312757A (ja) 2005-05-06 2005-05-06 気体還元材吹込み用のランス、高炉および高炉操業方法

Publications (1)

Publication Number Publication Date
JP2006312757A true JP2006312757A (ja) 2006-11-16

Family

ID=37534362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134982A Pending JP2006312757A (ja) 2005-05-06 2005-05-06 気体還元材吹込み用のランス、高炉および高炉操業方法

Country Status (1)

Country Link
JP (1) JP2006312757A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312756A (ja) * 2005-05-06 2006-11-16 Jfe Steel Kk 気体還元材吹込み用のランス、高炉および高炉操業方法
JP2009235482A (ja) * 2008-03-27 2009-10-15 Jfe Steel Corp 高炉操業方法
JP2010014319A (ja) * 2008-07-02 2010-01-21 Jfe Steel Corp 竪型溶解炉および溶銑製造方法
JP2011168882A (ja) * 2010-01-19 2011-09-01 Jfe Steel Corp 高炉操業方法
JP2011168885A (ja) * 2010-01-19 2011-09-01 Jfe Steel Corp 高炉操業方法
JP2011168886A (ja) * 2010-01-19 2011-09-01 Jfe Steel Corp 高炉操業方法
JP2011168883A (ja) * 2010-01-19 2011-09-01 Jfe Steel Corp 高炉操業方法
JP2011168884A (ja) * 2010-01-19 2011-09-01 Jfe Steel Corp 高炉操業方法
WO2012098713A1 (ja) * 2011-01-18 2012-07-26 Jfeスチール株式会社 高炉操業方法
KR101642816B1 (ko) * 2015-09-30 2016-07-26 주식회사 포스코 미분탄 취입용 랜스
WO2023231126A1 (zh) * 2022-05-31 2023-12-07 昌黎县兴国精密机件有限公司 一种基于拉乌尔喷管的超音速氢气喷吹系统及控制方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312756A (ja) * 2005-05-06 2006-11-16 Jfe Steel Kk 気体還元材吹込み用のランス、高炉および高炉操業方法
JP2009235482A (ja) * 2008-03-27 2009-10-15 Jfe Steel Corp 高炉操業方法
JP2010014319A (ja) * 2008-07-02 2010-01-21 Jfe Steel Corp 竪型溶解炉および溶銑製造方法
JP2011168882A (ja) * 2010-01-19 2011-09-01 Jfe Steel Corp 高炉操業方法
JP2011168885A (ja) * 2010-01-19 2011-09-01 Jfe Steel Corp 高炉操業方法
JP2011168886A (ja) * 2010-01-19 2011-09-01 Jfe Steel Corp 高炉操業方法
JP2011168883A (ja) * 2010-01-19 2011-09-01 Jfe Steel Corp 高炉操業方法
JP2011168884A (ja) * 2010-01-19 2011-09-01 Jfe Steel Corp 高炉操業方法
WO2012098713A1 (ja) * 2011-01-18 2012-07-26 Jfeスチール株式会社 高炉操業方法
CN103339266A (zh) * 2011-01-18 2013-10-02 杰富意钢铁株式会社 高炉操作方法
KR101642816B1 (ko) * 2015-09-30 2016-07-26 주식회사 포스코 미분탄 취입용 랜스
WO2023231126A1 (zh) * 2022-05-31 2023-12-07 昌黎县兴国精密机件有限公司 一种基于拉乌尔喷管的超音速氢气喷吹系统及控制方法

Similar Documents

Publication Publication Date Title
JP2006312757A (ja) 気体還元材吹込み用のランス、高炉および高炉操業方法
US7258831B2 (en) Injector-burner for metal melting furnaces
JP4745731B2 (ja) キュポラによる溶銑の溶製方法
JP5087955B2 (ja) 溶融還元方法
JP5470251B2 (ja) 熔鉄製造用羽口およびこれを利用したガス吹込方法
JP6256710B2 (ja) 酸素高炉の操業方法
TWI484041B (zh) Blast furnace operation method
EP2873741B1 (en) Blast furnace operating method and tube bundle-type lance
AU2013284587B2 (en) Method for operating blast furnace
JP2017053029A (ja) 酸素高炉の操業方法
JP4341131B2 (ja) 微粉炭吹込みバーナー
JP4747662B2 (ja) 気体還元材吹込み用のランス、高炉および高炉操業方法
KR101629123B1 (ko) 고로 조업 방법
JP5983293B2 (ja) 高炉操業方法及びランス
JP3561982B2 (ja) 高炉の操業方法
KR101629122B1 (ko) 고로 조업 방법
KR101655213B1 (ko) 고로의 노심 활성화 장치 및 그 방법
JP2001115202A (ja) 高炉への補助燃料吹込み操業方法
JPH1112612A (ja) 高炉への微粉炭吹き込み用ランス
JP5610109B1 (ja) 高炉操業方法
JP5983294B2 (ja) 高炉操業方法及びランス
JP2000239719A (ja) 高炉への補助燃料吹込み操業方法
JPH1053804A (ja) 高炉への微粉炭吹き込みバーナ
JPH11310808A (ja) 高炉の操業方法
JP2017179586A (ja) 高炉の羽口吹き込みランスにおけるランス保護方法