WO2023231126A1 - 一种基于拉乌尔喷管的超音速氢气喷吹系统及控制方法 - Google Patents

一种基于拉乌尔喷管的超音速氢气喷吹系统及控制方法 Download PDF

Info

Publication number
WO2023231126A1
WO2023231126A1 PCT/CN2022/102700 CN2022102700W WO2023231126A1 WO 2023231126 A1 WO2023231126 A1 WO 2023231126A1 CN 2022102700 W CN2022102700 W CN 2022102700W WO 2023231126 A1 WO2023231126 A1 WO 2023231126A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
nozzle
raoult
gas
control valve
Prior art date
Application number
PCT/CN2022/102700
Other languages
English (en)
French (fr)
Inventor
周国成
鲁雄刚
武文合
张玉文
叶水鑫
祝凯
刘权利
杨玉文
Original Assignee
昌黎县兴国精密机件有限公司
上海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昌黎县兴国精密机件有限公司, 上海大学 filed Critical 昌黎县兴国精密机件有限公司
Publication of WO2023231126A1 publication Critical patent/WO2023231126A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B2005/005Selection or treatment of the reducing gases

Definitions

  • the invention belongs to the technical field of hydrogen injection for blast furnace ironmaking, and particularly relates to a supersonic hydrogen injection system and a control method based on a Raoult nozzle.
  • the hydrogen metallurgical technology in the iron and steel smelting process mainly involves hydrogen injection into the blast furnace, which is an iron-making method in which hydrogen or hydrogen-rich gas is blown into the blast furnace through a hydrogen injection device at the tuyere or a hydrogen injection device at the bottom of the furnace body.
  • hydrogen is extremely flammable as a In the highly oxidizing atmosphere of the hot air direct blow pipe, the hydrogen at the outlet of the spray gun burns rapidly and releases a large amount of heat, causing the nozzle area of the hydrogen spray gun to be easily burned.
  • the traditional blast furnace hydrogen spray gun adopts the form of a straight tube, and the local area of the spray gun outlet
  • the high concentration of hydrogen makes hydrogen deflagration prone to occur in this area, seriously affecting the safe and stable operation of the blast furnace hydrogen injection system.
  • the present invention proposes a supersonic hydrogen injection system and control method based on a Raoult nozzle.
  • hydrogen is input into the blast furnace from the lance outlet at supersonic speed.
  • the hydrogen is injected into the hot air Volumetric combustion or dispersion combustion occurs in the form of turbulent flames in the environment. It is characterized by low reaction rate, low local heat release, uniform heat flow distribution, low combustion peak temperature and minimal noise. This combustion is different from the small area localization of traditional straight pipe injection.
  • the reaction proceeds in a large area, or even in the entire straight blow pipe, and the flame front disappears, which can effectively prevent the hydrogen concentration in local areas from being too high to form a flame front that generates large radiant heat and convection heat transfer, resulting in burning damage to the hydrogen spray gun;
  • nitrogen is added to the main blowing jet to maintain sufficient Raoult nozzle front end.
  • Gas pressure at the same time, a protective gas nozzle is installed outside the Raoult nozzle, and inert gases such as nitrogen are introduced.
  • the oxygen concentration in the nozzle outlet area is reduced to achieve the hydrogen jet defire effect.
  • the protective gas can extend the core of the supersonic jet. zone length to further expand the combustion range of hydrogen.
  • a supersonic hydrogen injection system based on a Raoult nozzle characterized by comprising a Raoult nozzle body and a protective gas nozzle body sleeved thereon, the Raoult nozzle body An annular gap is left between the outer surface of the protective gas nozzle body and the inner surface of the protective gas nozzle body to form a protective gas channel, and the blowing port of the Raoult nozzle body and the protective gas nozzle body are The injection annular seam ports have a coaxial relationship.
  • the inlet end of the Raoult nozzle body is connected to the output end of the hydrogen control valve group and the output end of the main blowing inert gas control valve group through a tee pipe.
  • the protective gas injection The inlet end of the pipe body is connected to the output end of the protective gas control valve group, the input end of the protective gas control valve group and the input end of the main blowing inert gas control valve group are connected to the inert gas source, and the input end of the hydrogen control valve group is connected to the hydrogen gas source.
  • a pipeline gas pressure sensor is provided at the inlet end of the Raoult nozzle body to control the flow rate of the supersonic jet formed by the injection port.
  • Nitrogen and/or argon are used as the inert gas, and the volume fraction of oxygen in the inert gas is ⁇ 5%.
  • the protective gas jet at the injection annular seam port reduces the oxygen concentration in the injection port area to achieve the hydrogen jet defire effect, and on the other hand extends the length of the core area of the supersonic jet to expand the combustion range of hydrogen in the ironmaking blast furnace. .
  • the pipeline gas pressure sensor, main blowing inert gas control valve group, hydrogen control valve group and protective gas control valve group are respectively connected to the host computer, so that the hydrogen gas and the main blowing inert gas merge to form a supersonic jet at the injection port. , so that the protective gas reaches the preset flow rate and flow rate at the injection annular seam port.
  • the speed of the supersonic jet is Mach 1-2.
  • the injection port of the Raoult nozzle body consists of an expansion section, a throat section and a contraction section inward.
  • the entrance diameter of the contraction section is 58mm ⁇ 10%, and the half cone angle is 22 degrees ⁇ 10%.
  • the diameter of the throat section is 29mm ⁇ 10%, the length is 8mm ⁇ 10%, the outlet diameter of the expansion section is 31mm ⁇ 10%, and the half cone angle is 5 degrees ⁇ 10%.
  • a supersonic hydrogen injection system based on a Raoult nozzle is used in blast furnace ironmaking to inject hydrogen from the tuyere of the blast furnace into the blast furnace furnace.
  • a control method for a supersonic hydrogen injection system based on a Raoult nozzle which is characterized by including the following modes:
  • Hydrogen injection mode When hydrogen injection starts, the set hydrogen injection flow rate is input to the control system.
  • the flow controller in the hydrogen control valve group automatically adjusts the valve opening, adjusts the hydrogen injection flow rate to the set flow rate, and protects the gas.
  • the nozzle still sprays inert gas;
  • the control system automatically opens the quick cut-off valve of the main blowing inert gas pipeline control valve group, and at the same time adjusts the flow controller in the main blowing inert gas control valve group to adjust the valve opening until the gas pressure at the front end of the Raoult nozzle is equal to Set Mach number critical pressure.
  • the inert gas flow range of the Raoult nozzle is 500-2000Nm 3 /h, and the inert gas flow range of the protective gas nozzle is 200-800Nm 3 /h;
  • the hydrogen gas flow range of the Raoult nozzle is 0 ⁇ 2500Nm 3 /h
  • the inert gas flow range of the Raoult nozzle is 0 ⁇ 1500Nm 3 /h
  • the inert gas flow range of the protective gas nozzle is respectively 200 ⁇ 800Nm 3 /h.
  • the present invention is a supersonic hydrogen injection system and control method based on a Raoult nozzle.
  • the Raoult nozzle is used to inject hydrogen into the blast furnace at supersonic speed.
  • the hydrogen is enriched in oxygen.
  • Dispersion combustion occurs in the form of turbulent flames in a hot air environment.
  • the reaction rate is low, the local heat release is small, the heat flow is evenly distributed, and the combustion peak temperature is low.
  • the reaction occurs in a large area or even the entire straight tube.
  • the flame front disappears, which can effectively avoid thermal damage to the spray gun outlet caused by the local heat generated by hydrogen combustion.
  • a protective gas pipe is installed outside the Raoult nozzle to introduce inert gases such as nitrogen to further prevent hydrogen from being burned in the spray gun.
  • the local area of the outlet burns rapidly.
  • the invention is suitable for the blast furnace hydrogen injection ironmaking process, can effectively increase the service life of the hydrogen spray gun, reduce the number of spray gun replacements during the blast furnace hydrogen injection process, and promote the popularization and application of the blast furnace hydrogen-rich smelting technology.
  • Figure 1 is a schematic structural diagram of a supersonic hydrogen injection system based on a Raoult nozzle according to the present invention.
  • 1-Hydrogen gas source 2-Inert gas source (including nitrogen and/or argon, the oxygen volume fraction in the inert gas is ⁇ 5%); 3-Hydrogen control valve group; 4-Main blow Inert gas control valve group; 5-Protective gas control valve group; 6-Tee pipe; 7-Pipeline gas pressure sensor; 8-Raoult nozzle gas inlet; 9-Protective gas nozzle gas inlet; 10-Raoult nozzle gas inlet; Er nozzle; 11-Protective gas nozzle.
  • FIG 1 is a schematic structural diagram of a supersonic hydrogen injection system based on a Raoult nozzle according to the present invention.
  • a supersonic hydrogen injection system based on a Raoult nozzle includes a Raoult nozzle 10 body and a protective gas nozzle 11 sleeved thereon.
  • the Raoult nozzle 10 An annular gap is left between the outer surface of the nozzle body and the inner surface of the protective gas nozzle body to form a protective gas channel, and the blowing port of the Raoult nozzle body is in contact with the protective gas nozzle.
  • the injection annular seam ports of the pipe body have a coaxial relationship.
  • the inlet end of the Raoult nozzle body is connected to the output end of the hydrogen control valve group 3 and the output of the main blowing inert gas control valve group 4 through the tee pipe 6. end, the inlet end of the protective gas nozzle body (through the protective gas nozzle gas inlet 9) is connected to the output end of the protective gas control valve group 5, the input end of the protective gas control valve group 5 and the main blowing inert gas control valve group 4
  • the input ends are connected to the inert gas source 2
  • the input end of the hydrogen control valve group 3 is connected to the hydrogen source 1
  • the inlet end of the Raoult nozzle body (through the Raoult nozzle gas inlet 8) is provided with a pipeline
  • the gas pressure sensor 7 is used to control the flow rate of the supersonic jet formed by the injection port.
  • Nitrogen and/or argon are used as the inert gas, and the volume fraction of oxygen in the inert gas is ⁇ 5%.
  • the protective gas jet at the injection annular seam port on the one hand reduces the oxygen concentration in the injection port area to achieve the hydrogen jet defire effect, and on the other hand extends the length of the core area of the supersonic jet to expand the combustion range of hydrogen in the ironmaking blast furnace. .
  • the pipeline gas pressure sensor 7, the main blowing inert gas control valve group 4, the hydrogen control valve group 3 and the protective gas control valve group 5 are respectively connected to the host computer, so that the hydrogen gas and the main blowing inert gas merge at the injection port.
  • a supersonic jet is formed so that the protective gas reaches the preset flow rate and flow rate at the blowing annular seam port.
  • the speed of the supersonic jet is Mach 1-2.
  • the injection port of the Raoult nozzle 10 body is divided into an expansion section, a throat section and a contraction section inward.
  • the entrance diameter of the contraction section is 58mm ⁇ 10%, and the half cone angle is 22 degrees ⁇ 10%.
  • the diameter of the throat section is 29mm ⁇ 10%
  • the length is 8mm ⁇ 10%
  • the outlet diameter of the expansion section is 31mm ⁇ 10%
  • the half cone angle is 5 degrees ⁇ 10%.
  • a supersonic hydrogen injection system based on a Raoult nozzle is used in blast furnace ironmaking to inject hydrogen from the tuyere of the blast furnace into the blast furnace furnace.
  • a control method for a supersonic hydrogen injection system based on a Raoult nozzle which is characterized by including the following modes: No hydrogen injection mode: When the injection system does not inject hydrogen during the blast furnace smelting process, the Raoult nozzle and The protective gas nozzles are all fed with inert gas; hydrogen injection mode: After starting to spray hydrogen, the set hydrogen injection flow rate is input to the control system, and the flow controller in the hydrogen control valve group automatically adjusts the valve opening to spray hydrogen. The blowing flow rate is adjusted to the set flow rate, and the protective gas nozzle still blows inert gas; the pipeline gas pressure is monitored in real time.
  • the control system automatically opens the main blowing inert gas pipeline control valve group quick cut-off valve, and at the same time adjusts the main blowing inert gas control valve group
  • the flow controller adjusts the valve opening until the gas pressure at the front end of the Raoult nozzle is equal to the set Mach number critical pressure.
  • the inert gas flow range of the Raoult nozzle is 500-2000Nm 3 /h, and the inert gas flow range of the protective gas nozzle is 200-800Nm 3 /h; in the hydrogen injection mode, the Raoult nozzle hydrogen The gas flow range is 0 ⁇ 2500Nm 3 /h, the Raoult nozzle inert gas flow range is 0 ⁇ 1500Nm 3 /h, and the protective gas nozzle inert gas flow range is 200 ⁇ 800Nm 3 /h.
  • a supersonic hydrogen injection system based on a Raoult nozzle which includes an injection device, a gas supply system and a control system.
  • the injection device consists of a Raoult nozzle 10 and a protective gas nozzle 11 .
  • the gas supply system includes a hydrogen gas source 1, an inert gas source 2, a hydrogen pipeline and a control valve group 3, a main blowing inert gas pipeline and a control valve group 4, a protective gas pipeline and a control valve group 5.
  • the control system includes a pipeline gas pressure sensor 7 and a host computer.
  • a supersonic hydrogen injection system based on a Raoult nozzle is composed of an expansion section, a throat section and a contraction section.
  • a supersonic hydrogen injection system can be formed at the outlet of the nozzle.
  • Sonic jet ; an annular gap is left between the protective gas nozzle and the Raoult nozzle to form a protective gas channel, and the Raoult nozzle and the protective gas nozzle have a coaxial relationship.
  • the hydrogen gas source 1 is connected to the hydrogen control valve group 3 through a pipeline, the inert gas source 2 is connected to the main blowing inert gas control valve group 4 through a pipeline, and then the hydrogen and the main blowing inert gas are merged by the tee pipe 6 and then connected to the pulley.
  • the gas inlet 8 of the Ur nozzle and the gas output end of the tee pipe should also be equipped with a pipeline gas temperature and pressure sensor 7.
  • the protective gas source 2 is connected to the protective gas control valve group 5 through a pipeline, and then connected to the gas inlet 9 of the protective gas nozzle of the blowing device through a pipeline.
  • the valve groups should include pneumatic quick shut-off valves, manual quick shut-off valves, and mass flow controllers.
  • the valve groups 3, 4, 5 and the pipeline gas pressure sensor 7 are connected to the host computer through data lines.
  • the control method of the supersonic hydrogen injection system based on the Raoult nozzle specifically includes the following modes:
  • Hydrogen injection mode When hydrogen injection starts, the set hydrogen injection flow rate is input to the control system.
  • the flow controller in the hydrogen control valve group automatically adjusts the valve opening, adjusts the hydrogen injection flow rate to the set flow rate, and protects the gas.
  • the nozzle still sprays inert gas.
  • the control system automatically opens the quick cut-off valve of the main blowing inert gas pipeline control valve group, and at the same time adjusts the flow controller in the main blowing inert gas control valve group to adjust the valve opening until the gas pressure at the front end of the Raoult nozzle is equal to Set Mach number critical pressure.
  • Inert gases include nitrogen and argon, the volume fraction of oxygen in the gas is less than 0.5%, and the Mach number range set by the Raoult nozzle is 1-2.
  • the inert gas flow ranges of the Raoult nozzle and protective gas nozzle are 500-2000Nm 3 /h and 200-800Nm 3 /h respectively.
  • the hydrogen gas flow range of the Raoult nozzle is 0-2500Nm3/h
  • the inert gas flow ranges of the Raoult nozzle and protective gas nozzle are 0-1500Nm 3 /h and 200-800Nm 3 /h respectively.
  • Example 1 The present invention is applied to hydrogen injection in a 1780m3 blast furnace.
  • the blast furnace has 26 tuyeres.
  • the daily output of molten iron is 4300t.
  • the hydrogen injection volume per ton of iron is 200Nm3 /t.
  • the center line of the spray gun and the direct blow pipe of the tuyere are at a 15-degree angle. Angular insertion, the flow rate of a single hydrogen spray gun is 1380m 3 /h, and the design Mach number of the Raoult nozzle is 1.5.
  • the inlet diameter of the contraction section of the Raoult nozzle is 58.13mm, the length of the contraction section is 34.88mm, the half cone focus of the contraction section is 22.6 degrees, the diameter of the throat section is 29.06mm, the length of the throat section is 8mm, and the exit diameter of the expansion section is 31.52 mm, the length of the expansion section is 14.04mm, the half-cone angle of the expansion section is 5 degrees, and the design inlet pressure is 0.367MPa when the Mach number reaches 1.5.
  • the inner diameter of the protective gas nozzle is 65mm and the outer diameter is 75mm.
  • both the Raoult nozzle and the protective gas nozzle are supplied with nitrogen, and their flow rates are 1000Nm 3 /h and 500Nm 3 /h respectively.
  • the flow controller in the hydrogen control valve group automatically adjusts the valve opening to adjust the hydrogen injection flow to the set flow rate, and its Raoult nozzle
  • the front-end gas pressure is 0.367MPa greater than the design inlet pressure, forming a supersonic hydrogen jet.
  • the control system automatically opens the main blowing inert gas pipeline control valve group quick cut-off valve, and at the same time Adjust the flow controller in the main blowing inert gas control valve group and adjust the valve opening until the gas pressure at the front end of the Raoult nozzle is equal to 0.367MPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

一种基于拉乌尔喷管的超音速氢气喷吹系统及控制方法,基于拉乌尔喷管(10)将氢气以超音速形式从喷枪输入至高炉,避免氢气在局部区域浓度过高导致喷枪烧损;拉乌尔喷管(10)入口端分别连接氢气控制阀组(3)输出端和主吹惰性气体控制阀组(4)输出端,当氢气设定喷吹流量较小不足以达到超音速时补充氮气以维持足够的气体压力;拉乌尔喷管(10)外部同轴套接保护气喷管(11),二者之间留有环缝形成保护气通道,降低喷枪出口区域氧气浓度,达到氢气射流脱火效果,并扩大氢气燃烧范围。

Description

一种基于拉乌尔喷管的超音速氢气喷吹系统及控制方法 技术领域
本发明属于高炉炼铁喷吹氢气技术领域,特别涉及一种基于拉乌尔喷管的超音速氢气喷吹系统及控制方法。
背景技术
在应对气候变化和能源转型的背景下,各国都高度重视无碳和低碳能源的开发与利用,以减少碳足迹、降低碳排放为中心的冶金工艺技术变革日益受到钢铁工业的关注。氢能被视为21世纪最具发展潜力的清洁能源,利用氢气代替部分碳质原料(焦炭、煤粉)作为高炉冶炼熔融生铁过程的燃料及金属氧化物的还原剂,与传统的碳冶金相比,反应产物由温室气体CO 2转变为水,从根本上减少钢铁生产流程碳排放量,是钢铁产业优化能源结构和工艺流程,实现绿色低碳可持续发展的有效途径之一。
目前钢铁冶炼工序中氢冶金技术主要是高炉喷吹氢气,即将氢气或富氢气体通过风口喷氢装置或炉身下部喷氢装置吹入高炉内部的炼铁方法,但氢气作为一种极易燃烧的气体,在热风直吹管高氧化性气氛环境下,喷枪出口位置氢气快速燃烧并放出大量的热,导致氢气喷枪喷头区域极易烧损;同时传统高炉氢气喷枪采用直管形式,喷枪出口局部区域氢气浓度较高,导致该区域易发生氢气爆燃,严重影响高炉喷氢系统安全稳定运行。
因此如何改进现有高炉氢气喷吹系统,并结合相应喷氢控制方法,保证氢气喷枪在高温高氧化性的风口直吹管及回旋区域不易烧损并保持较长使用寿命,是目前高炉富氢冶炼急需解决的关键技术难题。
发明内容
为解决上述问题,本发明提出一种基于拉乌尔喷管的超音速氢气喷吹系统及控制方法,基于拉乌尔喷管将氢气以超音速形式从喷枪出口输入至高炉中,氢气在热风环境中以湍流火焰形式发生容积燃烧或弥散燃烧,其特征是反应速率低、局部释热少、热流分布均匀、燃烧峰值温度低且噪音极小,该燃烧与传统直管喷吹的小区域局部高温燃烧相比,反应在大区域、甚至整个直吹管进行,火焰锋面消失,可有效避免氢气在局部区域浓度过高形成火焰锋面产生较大的辐射热和对流换热,导致氢气喷枪烧损;而根据高炉实际冶炼工况,而根据实际冶 炼工况需要,当氢气设定喷吹流量较小不足以达到超音速时,则在主吹射流中补充以氮气维持足够的拉乌尔喷管前端气体压力;同时在拉乌尔喷管外部辅以保护气喷管,通入氮气等惰性气体,一方面降低喷枪出口区域氧气浓度,达到氢气射流脱火效果,同时保护气可以延长超音速射流核心区长度,进一步扩大氢气的燃烧范围。
本发明的技术解决方案如下:
一种基于拉乌尔喷管的超音速氢气喷吹系统,其特征在于,包括拉乌尔喷管管体和套接其上的保护气喷管管体,所述拉乌尔喷管管体的外表面与所述保护气喷管管体的内表面之间留有环形缝隙以形成保护气通道,所述拉乌尔喷管管体的喷吹端口与所述保护气喷管管体的喷吹环缝端口具有同轴关系,所述拉乌尔喷管管体的入口端通过三通管道分别连接氢气控制阀组输出端和主吹惰性气体控制阀组输出端,所述保护气喷管管体的入口端连接保护气控制阀组输出端,保护气控制阀组输入端和主吹惰性气体控制阀组输入端均连接惰性气体气源,氢气控制阀组输入端连接氢气气源,所述拉乌尔喷管管体的入口端设置有管道气体压力传感器以控制所述喷吹端口所形成超音速射流的流速。
所述惰性气体采用氮气和/或氩气,所述惰性气体中氧气体积分数<5%。
所述喷吹环缝端口的保护气射流一方面降低喷吹端口区域氧气浓度,达到氢气射流脱火效果,另一方面延长超音速射流核心区长度以扩大氢气在炼铁高炉炉膛中的燃烧范围。
所述管道气体压力传感器、主吹惰性气体控制阀组、氢气控制阀组和保护气控制阀组分别连接上位机,以使氢气与主吹惰性气体汇流后在所述喷吹端口形成超音速射流,使保护气在所述喷吹环缝端口达到预设的流量和流速。
所述超音速射流的速度为1~2马赫。
所述拉乌尔喷管管体的喷吹端口向内依次为扩张段、喉口段和收缩段,所述收缩段的入口直径为58mm±10%,半锥角为22度±10%,所述喉口段的直径为29mm±10%,长度为8mm±10%,所述扩张段的出口直径为31mm±10%,半锥角为5度±10%。
一种基于拉乌尔喷管的超音速氢气喷吹系统在高炉炼铁中的应用,用于从高炉的风口向高炉炉膛内喷吹氢气。
一种基于拉乌尔喷管的超音速氢气喷吹系统的控制方法,其特征在于,包括以下模式:
未喷氢模式:高炉冶炼过程中喷吹系统未喷氢时,拉乌尔喷管及保护气喷管均通入惰性气体;
喷氢模式:当开始喷氢后,将设定的氢气喷吹流量输入至控制系统,氢气控制阀组中流量控制器自动调节阀门开度,将氢气喷吹流量调整至设定流量,保护气喷管仍喷吹惰性气体;
实时监测管道气体压力,当拉乌尔喷管前端气体压力大于等于拉乌尔喷管设定马赫数临 界压力时,维持现有操作不变;当拉乌尔喷管前端气体压力小于设定马赫数临界压力时,控制系统自动打开主吹惰性气体管道控制阀组快速切断阀,同时调整主吹惰性气体控制阀组中的流量控制器,调节阀门开度至拉乌尔喷管前端气体压力等于设定马赫数临界压力。
未喷氢模式下,拉乌尔喷管惰性气体流量范围为500~2000Nm 3/h,保护气喷管惰性气体流量范围为200-800Nm 3/h;
喷氢模式下,拉乌尔喷管氢气气体流量范围为0~2500Nm 3/h,拉乌尔喷管惰性气体流量范围分别为0~1500Nm 3/h,保护气喷管惰性气体流量范围分别为200~800Nm 3/h。
本发明的技术效果如下:本发明一种基于拉乌尔喷管的超音速氢气喷吹系统及控制方法,利用拉乌尔喷管将氢气以超音速形式喷吹至高炉中,氢气在富氧热风环境中以湍流火焰形式发生弥散燃烧,反应速率低、局部释热少、热流分布均匀、燃烧峰值温度低,与传统直管氢气喷吹局部高温燃烧相比,反应在大区域、甚至整个直吹管进行,火焰锋面消失,可有效避免氢气燃烧局部放热对喷枪出口的热态烧损;同时在拉乌尔喷管外部辅以保护气管道,通入氮气等惰性气体,进一步避免氢气在喷枪出口局部区域快速燃烧。本发明适用于高炉喷吹氢气炼铁过程,可有效提高氢气喷枪的使用寿命,降低高炉喷氢过程中喷枪更换次数,促进高炉富氢冶炼技术的推广应用。
附图说明
图1是实施本发明一种基于拉乌尔喷管的超音速氢气喷吹系统的结构示意图。
附图标记列示如下:1-氢气气源;2-惰性气体气源(包括氮气和/或氩气,惰性气体中氧气体积分数<5%);3-氢气控制阀组;4-主吹惰性气体控制阀组;5-保护气控制阀组;6-三通管道;7-管道气体压力传感器;8-拉乌尔喷管气体入口;9-保护气喷管气体入口;10-拉乌尔喷管;11-保护气喷管。
具体实施方式
下面结合附图(图1)和实施例对本发明进行说明。
图1是实施本发明一种基于拉乌尔喷管的超音速氢气喷吹系统的结构示意图。参考图1所示,一种基于拉乌尔喷管的超音速氢气喷吹系统,包括拉乌尔喷管10管体和套接其上的保护气喷管11管体,所述拉乌尔喷管管体的外表面与所述保护气喷管管体的内表面之间留有环形缝隙以形成保护气通道,所述拉乌尔喷管管体的喷吹端口与所述保护气喷管管体的喷吹环缝端口具有同轴关系,所述拉乌尔喷管管体的入口端通过三通管道6分别连接氢气控制阀组3输出端和主吹惰性气体控制阀组4输出端,所述保护气喷管管体的入口端(通过保护气喷 管气体入口9)连接保护气控制阀组5输出端,保护气控制阀组5输入端和主吹惰性气体控制阀组4输入端均连接惰性气体气源2,氢气控制阀组3输入端连接氢气气源1,所述拉乌尔喷管管体的入口端(通过拉乌尔喷管气体入口8处)设置有管道气体压力传感器7以控制所述喷吹端口所形成超音速射流的流速。
所述惰性气体采用氮气和/或氩气,所述惰性气体中氧气体积分数<5%。所述喷吹环缝端口的保护气射流一方面降低喷吹端口区域氧气浓度,达到氢气射流脱火效果,另一方面延长超音速射流核心区长度以扩大氢气在炼铁高炉炉膛中的燃烧范围。所述管道气体压力传感器7、主吹惰性气体控制阀组4、氢气控制阀组3和保护气控制阀组5分别连接上位机,以使氢气与主吹惰性气体汇流后在所述喷吹端口形成超音速射流,使保护气在所述喷吹环缝端口达到预设的流量和流速。所述超音速射流的速度为1~2马赫。所述拉乌尔喷管10管体的喷吹端口向内依次为扩张段、喉口段和收缩段,所述收缩段的入口直径为58mm±10%,半锥角为22度±10%,所述喉口段的直径为29mm±10%,长度为8mm±10%,所述扩张段的出口直径为31mm±10%,半锥角为5度±10%。
一种基于拉乌尔喷管的超音速氢气喷吹系统在高炉炼铁中的应用,用于从高炉的风口向高炉炉膛内喷吹氢气。
一种基于拉乌尔喷管的超音速氢气喷吹系统的控制方法,其特征在于,包括以下模式:未喷氢模式:高炉冶炼过程中喷吹系统未喷氢时,拉乌尔喷管及保护气喷管均通入惰性气体;喷氢模式:当开始喷氢后,将设定的氢气喷吹流量输入至控制系统,氢气控制阀组中流量控制器自动调节阀门开度,将氢气喷吹流量调整至设定流量,保护气喷管仍喷吹惰性气体;实时监测管道气体压力,当拉乌尔喷管前端气体压力大于等于拉乌尔喷管设定马赫数临界压力时,维持现有操作不变;当拉乌尔喷管前端气体压力小于设定马赫数临界压力时,控制系统自动打开主吹惰性气体管道控制阀组快速切断阀,同时调整主吹惰性气体控制阀组中的流量控制器,调节阀门开度至拉乌尔喷管前端气体压力等于设定马赫数临界压力。
未喷氢模式下,拉乌尔喷管惰性气体流量范围为500~2000Nm 3/h,保护气喷管惰性气体流量范围为200-800Nm 3/h;喷氢模式下,拉乌尔喷管氢气气体流量范围为0~2500Nm 3/h,拉乌尔喷管惰性气体流量范围分别为0~1500Nm 3/h,保护气喷管惰性气体流量范围分别为200~800Nm 3/h。
一种基于拉乌尔喷管的超音速氢气喷吹系统,该系统包括喷吹装置、供气系统和控制系统。
所述喷吹装置由拉乌尔喷管10和保护气喷管11组成。
所述供气系统包括氢气气源1、惰性气体气源2、氢气管道及控制阀组3、主吹惰性气体 管道及控制阀组4、保护气管道及控制阀组5。
所述控制系统包括管道气体管道气体压力传感器7和上位机。
一种基于拉乌尔喷管的超音速喷氢系统,所述拉乌尔超音速喷枪由扩张段、喉口段和收缩段组成,当喷吹气体达到临界压力时即可在喷枪出口形成超音速射流;所述保护气喷管与所述拉乌尔喷管之间留有环形缝隙以形成保护气通道,所述拉乌尔喷管与保护气喷管具有同轴关系。
氢气气源1通过管道与氢气控制阀组3连接,惰性气体气源2通过管道与主吹惰性气体控制阀组4连接,之后由三通管道6将氢气与主吹惰性气体汇流后连接至拉乌尔喷管气体入口8,其三通管道气体输出端管道上还应配有管道气体温度压力传感器7。
保护气气源2通过管道与保护气控制阀组5连接,后通过管道与喷吹装置保护气喷管气体入口9连接。
所述阀组均应包括气动快速切断阀、手动快速切断阀、质量流量控制器。所述阀组3、4、5及管道气体压力传感器7通过数据线与所述上位机连接。
基于拉乌尔喷管的超音速氢气喷吹系统的控制方法,具体包括以下模式:
未喷氢模式:高炉冶炼过程中喷吹系统未喷氢时,拉乌尔喷管及保护气喷管均通入惰性气体。
喷氢模式:当开始喷氢后,将设定的氢气喷吹流量输入至控制系统,氢气控制阀组中流量控制器自动调节阀门开度,将氢气喷吹流量调整至设定流量,保护气喷管仍喷吹惰性气体。
实时监测管道气体压力,当拉乌尔喷管前端气体压力大于等于拉乌尔喷管设定马赫数临界压力时,维持现有操作不变;当拉乌尔喷管前端气体压力小于设定马赫数临界压力时,控制系统自动打开主吹惰性气体管道控制阀组快速切断阀,同时调整主吹惰性气体控制阀组中的流量控制器,调节阀门开度至拉乌尔喷管前端气体压力等于设定马赫数临界压力。
惰性气体包括氮气、氩气,气体中氧气体积分数小于0.5%,拉乌尔喷管设定的马赫数范围为1-2。
未喷氢模式下,拉乌尔喷管及保护气喷管惰性气体流量范围分别为500-2000Nm 3/h、200-800Nm 3/h。喷氢模式下,拉乌尔喷管氢气气体流量范围为0-2500Nm3/h,拉乌尔喷管及保护气喷管惰性气体流量范围分别为0-1500Nm 3/h、200-800Nm 3/h。
实例1:本发明应用在1780m 3高炉喷吹氢气,该高炉共有26个风口,铁水日产量为4300t,吨铁氢气喷吹量为200Nm 3/t,喷枪与风口直吹管中心线呈15度夹角插入,单只氢气喷枪流量为1380m 3/h,拉乌尔喷管设计马赫数为1.5。
拉乌尔喷管收缩段入口直径为58.13mm,收缩段长度为34.88mm,收缩段半锥焦为22.6 度,喉口段直径为29.06mm,喉口段长度为8mm,扩张段出口直径为31.52mm,扩张段长度为14.04mm,扩张段半锥角为5度,马赫数达到1.5时其设计入口压力为0.367MPa。保护气喷管内径为65mm,外径为75mm。
高炉冶炼过程中氢气喷吹系统未喷氢时,拉乌尔喷管及保护气喷管均通入氮气,其流量分别为1000Nm 3/h和500Nm 3/h。
高炉冶炼过程中,氢气喷吹流量设定值为1500Nm 3/h时,氢气控制阀组中流量控制器自动调节阀门开度,将氢气喷吹流量调整至设定流量,其拉乌尔喷管前端气体压力大于设计入口压力0.367MPa,形成超音速氢气射流。
高炉冶炼过程中,当氢气喷吹流量为500Nm 3/h时,其拉乌尔喷管前端气体压力小于设计入口压力0.367MPa,控制系统自动打开主吹惰性气体管道控制阀组快速切断阀,同时调整主吹惰性气体控制阀组中流量控制器,调节阀门开度至拉乌尔喷管前端气体压力等于0.367MPa。
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。在此指明,以上叙述有助于本领域技术人员理解本发明创造,但并非限制本发明创造的保护范围。任何没有脱离本发明创造实质内容的对以上叙述的等同替换、修饰改进和/或删繁从简而进行的实施,均落入本发明创造的保护范围。

Claims (9)

  1. 一种基于拉乌尔喷管的超音速氢气喷吹系统,其特征在于,包括拉乌尔喷管管体和套接其上的保护气喷管管体,所述拉乌尔喷管管体的外表面与所述保护气喷管管体的内表面之间留有环形缝隙以形成保护气通道,所述拉乌尔喷管管体的喷吹端口与所述保护气喷管管体的喷吹环缝端口具有同轴关系,所述拉乌尔喷管管体的入口端通过三通管道分别连接氢气控制阀组输出端和主吹惰性气体控制阀组输出端,所述保护气喷管管体的入口端连接保护气控制阀组输出端,保护气控制阀组输入端和主吹惰性气体控制阀组输入端均连接惰性气体气源,氢气控制阀组输入端连接氢气气源,所述拉乌尔喷管管体的入口端设置有管道气体压力传感器以控制所述喷吹端口所形成超音速射流的流速。
  2. 根据权利要求1所述的基于拉乌尔喷管的超音速氢气喷吹系统,其特征在于,所述惰性气体采用氮气和/或氩气,所述惰性气体中氧气体积分数<5%。
  3. 根据权利要求1所述的基于拉乌尔喷管的超音速氢气喷吹系统,其特征在于,所述喷吹环缝端口的保护气射流一方面降低喷吹端口区域氧气浓度,达到氢气射流脱火效果,另一方面延长超音速射流核心区长度以扩大氢气在炼铁高炉炉膛中的燃烧范围。
  4. 根据权利要求1所述的基于拉乌尔喷管的超音速氢气喷吹系统,其特征在于,所述管道气体压力传感器、主吹惰性气体控制阀组、氢气控制阀组和保护气控制阀组分别连接上位机,以使氢气与主吹惰性气体汇流后在所述喷吹端口形成超音速射流,使保护气在所述喷吹环缝端口达到预设的流量和流速。
  5. 根据权利要求1所述的基于拉乌尔喷管的超音速氢气喷吹系统,其特征在于,所述超音速射流的速度为1~2马赫。
  6. 根据权利要求1所述的基于拉乌尔喷管的超音速氢气喷吹系统,其特征在于,所述拉乌尔喷管管体的喷吹端口向内依次为扩张段、喉口段和收缩段,所述收缩段的入口直径为58mm±10%,半锥角为22度±10%,所述喉口段的直径为29mm±10%,长度为8mm±10%,所述扩张段的出口直径为31mm±10%,半锥角为5度±10%。
  7. 一种如权利要求1-6之一所述的基于拉乌尔喷管的超音速氢气喷吹系统在高炉炼铁中的应用,用于从高炉的风口向高炉炉膛内喷吹氢气。
  8. 一种如权利要求1-6之一所述的基于拉乌尔喷管的超音速氢气喷吹系统的控制方法,其特征在于,包括以下模式:
    未喷氢模式:高炉冶炼过程中喷吹系统未喷氢时,拉乌尔喷管及保护气喷管均通入惰性气体;
    喷氢模式:当开始喷氢后,将设定的氢气喷吹流量输入至控制系统,氢气控制阀组中流量控制器自动调节阀门开度,将氢气喷吹流量调整至设定流量,保护气喷管仍喷吹惰性气体;
    实时监测管道气体压力,当拉乌尔喷管前端气体压力大于等于拉乌尔喷管设定马赫数临界压力时,维持现有操作不变;当拉乌尔喷管前端气体压力小于设定马赫数临界压力时,控制系统自动打开主吹惰性气体管道控制阀组快速切断阀,同时调整主吹惰性气体控制阀组中的流量控制器,调节阀门开度至拉乌尔喷管前端气体压力等于设定马赫数临界压力。
  9. 根据权利要求8所述的控制方法,其特征在于,未喷氢模式下,拉乌尔喷管惰性气体流量范围为500~2000Nm 3/h,保护气喷管惰性气体流量范围为200-800Nm 3/h;
    喷氢模式下,拉乌尔喷管氢气气体流量范围为0~2500Nm 3/h,拉乌尔喷管惰性气体流量范围分别为0~1500Nm 3/h,保护气喷管惰性气体流量范围分别为200~800Nm 3/h。
PCT/CN2022/102700 2022-05-31 2022-06-30 一种基于拉乌尔喷管的超音速氢气喷吹系统及控制方法 WO2023231126A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210609779.1A CN115058548B (zh) 2022-05-31 2022-05-31 一种基于拉乌尔喷管的超音速氢气喷吹系统及控制方法
CN202210609779.1 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023231126A1 true WO2023231126A1 (zh) 2023-12-07

Family

ID=83197763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102700 WO2023231126A1 (zh) 2022-05-31 2022-06-30 一种基于拉乌尔喷管的超音速氢气喷吹系统及控制方法

Country Status (2)

Country Link
CN (1) CN115058548B (zh)
WO (1) WO2023231126A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312757A (ja) * 2005-05-06 2006-11-16 Jfe Steel Kk 気体還元材吹込み用のランス、高炉および高炉操業方法
CN211057145U (zh) * 2019-10-14 2020-07-21 武钢集团昆明钢铁股份有限公司 一种高炉用超音速风口结构
CN113739581A (zh) * 2021-08-12 2021-12-03 昌黎县兴国精密机件有限公司 一种用于高炉或竖炉富氢冶炼的车载供氢方法及设备
CN216786172U (zh) * 2022-01-20 2022-06-21 中钢集团鞍山热能研究院有限公司 一种炼铁用复合燃料喷枪
CN114657294A (zh) * 2022-03-31 2022-06-24 北京科技大学 模拟高炉喷吹燃料燃烧的实验方法及装置
CN114854916A (zh) * 2022-05-17 2022-08-05 中冶赛迪工程技术股份有限公司 超音速风口喷吹装置及设计方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220617A (ja) * 1999-11-30 2001-08-14 Kawasaki Steel Corp ガス吹きランス
FR2816324B1 (fr) * 2000-11-09 2003-01-24 Air Liquide Procede d'injection d'un gaz a l'aide d'une tuyere
UA113614C2 (xx) * 2013-02-14 2017-02-27 Спосіб експлуатації кисневої продувальної фурми в металургійній ємності і вимірювальна система для визначення використовуваних при цьому сигналів вимірювань
CN106595317A (zh) * 2016-11-30 2017-04-26 宝钢工程技术集团有限公司 多功能冶金喷枪
CN113502362A (zh) * 2021-07-07 2021-10-15 山西晋南钢铁集团有限公司 一种提高氢冶金高炉热量的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312757A (ja) * 2005-05-06 2006-11-16 Jfe Steel Kk 気体還元材吹込み用のランス、高炉および高炉操業方法
CN211057145U (zh) * 2019-10-14 2020-07-21 武钢集团昆明钢铁股份有限公司 一种高炉用超音速风口结构
CN113739581A (zh) * 2021-08-12 2021-12-03 昌黎县兴国精密机件有限公司 一种用于高炉或竖炉富氢冶炼的车载供氢方法及设备
CN216786172U (zh) * 2022-01-20 2022-06-21 中钢集团鞍山热能研究院有限公司 一种炼铁用复合燃料喷枪
CN114657294A (zh) * 2022-03-31 2022-06-24 北京科技大学 模拟高炉喷吹燃料燃烧的实验方法及装置
CN114854916A (zh) * 2022-05-17 2022-08-05 中冶赛迪工程技术股份有限公司 超音速风口喷吹装置及设计方法

Also Published As

Publication number Publication date
CN115058548A (zh) 2022-09-16
CN115058548B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2021073015A1 (zh) 转炉 co2-o2 混合喷吹冶炼方法和火点区温度动态控制方法
CN104235849A (zh) 分级富氧无焰燃烧燃气烧嘴及其控制方法
CN105838845B (zh) 一种电弧炉超音速环燃集束碳氧枪及喷头结构
CN111518986B (zh) 一种利用一次燃烧热能冶炼废钢系统的炼钢方法
CN111748673B (zh) 一种电弧炉炼钢用多功能氢氧烧嘴及供能控制方法
CN105256107A (zh) 一种环槽集束射流喷头结构
KR20090099538A (ko) 용광로에서 선철을 제조하기 위한 방법
WO2023231126A1 (zh) 一种基于拉乌尔喷管的超音速氢气喷吹系统及控制方法
US20140170573A1 (en) BURNER UTILIZING OXYGEN LANCE FOR FLAME CONTROL AND NOx REDUCTION
CN111872365A (zh) 一种高炉煤气高烘烤温度中间包烘烤装置
CN204084375U (zh) 分级富氧无焰燃烧燃气烧嘴
CN109489035A (zh) 一种低NOx排放燃烧器
CN211999790U (zh) 一种旋流风高炉煤粉直吹管
JP2761885B2 (ja) 微粉炭バーナ
CA1051659A (en) Liquid-fuel atomization and injection device
CN101775450A (zh) 一种氧煤炼铁喷吹装置
CN220907527U (zh) 一种可喷吹还原气体的高炉风口小套
CN212398107U (zh) 一种中间包烘烤装置
CN205368275U (zh) 一种新型鼓风口氧气烧嘴
CN205170911U (zh) 一种环槽集束射流喷头结构
CN213195606U (zh) 一种高炉煤气高烘烤温度的钢包烘烤设备
CN215288861U (zh) 一种顶燃式热风炉燃烧器吹扫系统
CN210220701U (zh) 侧吹熔池熔炼炉低压氧枪蘑菇头在线清除装置及熔炼炉
CN219136825U (zh) 一种用于硅砖热风炉的烘炉保温装置
CN216473301U (zh) 一种欧冶炉风口喷煤枪

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944441

Country of ref document: EP

Kind code of ref document: A1