WO2012098644A1 - 過給機付き内燃機関 - Google Patents

過給機付き内燃機関 Download PDF

Info

Publication number
WO2012098644A1
WO2012098644A1 PCT/JP2011/050752 JP2011050752W WO2012098644A1 WO 2012098644 A1 WO2012098644 A1 WO 2012098644A1 JP 2011050752 W JP2011050752 W JP 2011050752W WO 2012098644 A1 WO2012098644 A1 WO 2012098644A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
exhaust
cylinder
exhaust gas
Prior art date
Application number
PCT/JP2011/050752
Other languages
English (en)
French (fr)
Inventor
邦彦 坂田
晃浩 池田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/979,703 priority Critical patent/US9228522B2/en
Priority to JP2012553494A priority patent/JP5720700B2/ja
Priority to PCT/JP2011/050752 priority patent/WO2012098644A1/ja
Publication of WO2012098644A1 publication Critical patent/WO2012098644A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • F02D41/1443Plural sensors with one sensor per cylinder or group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an internal combustion engine with a supercharger, and more particularly to a multi-cylinder internal combustion engine with a supercharger provided with an air-fuel ratio sensor for detecting an air-fuel ratio of exhaust gas.
  • an air-fuel ratio (actual air-fuel ratio) detected by an air-fuel ratio sensor disposed in an exhaust passage and a target air-fuel ratio (for example, theoretical air-fuel ratio) Based on the deviation, the amount of fuel (fuel injection amount) injected from the injector (fuel injection valve) is feedback controlled (air-fuel ratio feedback control).
  • air-fuel ratio feedback control By performing such air-fuel ratio feedback control, the air-fuel ratio can be accurately controlled, and exhaust emission can be improved.
  • a turbocharger generally includes a turbine wheel that is rotated by exhaust gas flowing through an exhaust passage of an internal combustion engine, a compressor impeller that forcibly feeds air in the intake passage to a combustion chamber of the engine, and the turbine wheel and the compressor impeller. And a connecting shaft to be connected.
  • the turbine wheel disposed in the exhaust passage is rotated by the energy of the exhaust gas, and the compressor impeller disposed in the intake passage is rotated accordingly, whereby the intake air is supercharged, and the engine Supercharged air is forced into the combustion chamber of each cylinder.
  • a twin entry turbocharger having two exhaust gas inlets in a turbine (turbine housing) is known (for example, see Patent Documents 2 and 3).
  • This twin entry turbocharger is employed for the purpose of preventing the exhaust pulsations of a multi-cylinder internal combustion engine from interfering with each other and increasing the output.
  • a multi-cylinder internal combustion engine a multi-cylinder internal combustion engine with a supercharger
  • a twin entry turbocharger a plurality of cylinders are divided into cylinder groups in which the exhaust strokes are not adjacent to each other, and the exhaust gas is independent for each cylinder group. To the exhaust gas inlet of the turbine.
  • an air-fuel ratio sensor (A / F sensor) for detecting the air-fuel ratio of exhaust gas upstream of the catalyst is disposed between the turbine of the turbocharger and the catalyst.
  • the exhaust gas to the element portion of the air-fuel ratio sensor is agitated by the upstream turbocharger and the air-fuel ratio is averaged, so there is a concern that the air-fuel ratio of each cylinder cannot be accurately detected.
  • the air-fuel ratio of each cylinder cannot be detected accurately, the above-described variation in air-fuel ratio among the cylinders cannot be detected accurately, and the OBD regulations may not be met.
  • the present invention has been made in view of such circumstances, and provides a supercharged internal combustion engine capable of accurately detecting the air-fuel ratio of exhaust gas upstream of the catalyst for each cylinder. Objective.
  • the present invention provides a first exhaust passage through which exhaust gas discharged from a first cylinder group of an internal combustion engine having a plurality of cylinders flows, and a second exhaust passage through which exhaust gas discharged from a second cylinder group of the internal combustion engine flows.
  • a turbocharger twin entry turbocharger having a turbine and a compressor and provided with two exhaust gas inlets in the turbine, wherein the first exhaust passage is one exhaust gas inlet of the turbine
  • a supercharged internal combustion engine in which the second exhaust passage is connected to the other exhaust gas inlet of the turbine.
  • a technical feature is that an air-fuel ratio sensor is provided.
  • the first exhaust passage includes a plurality of branch pipes connected to each exhaust port of the first cylinder group and a branch assembly portion, and downstream ends of the plurality of branch pipes
  • the first exhaust manifold is connected to the upstream end of the branch assembly portion, and an air-fuel ratio sensor is provided at the branch assembly portion of the first exhaust manifold
  • the second exhaust passage includes a first exhaust manifold, Second exhaust having a plurality of branch pipes connected to each exhaust port of the two-cylinder group and a branch aggregate portion, and having downstream end portions of the plurality of branch pipes connected to upstream end portions of the branch aggregate portions
  • exhaust gases from a plurality of cylinders (for example, the first cylinder # 1 and the fourth cylinder # 4) of the first cylinder group gather on the upstream side of the turbocharger (upstream side of the exhaust gas flow).
  • the air-fuel ratio sensor is disposed at the position after the operation (branch gathering portion of the first exhaust manifold), and exhaust gases from a plurality of cylinders (for example, the second cylinder # 2 and the third cylinder # 3) gather in the second cylinder group. Since the air-fuel ratio sensor is arranged at the later position (branch gathering portion of the second exhaust manifold), the gas hit of the exhaust gas to the element portion of each air-fuel ratio sensor becomes good.
  • the cylinder groups (2
  • the arrangement position of the air-fuel ratio sensor only needs to be determined in consideration of the flow of exhaust gas from one cylinder) (exhaust gas flow in each of the aggregate portions of the first exhaust passage and the second exhaust passage).
  • the degree of freedom of the arrangement position is increased, and the element portions of the respective air-fuel ratio sensors can be arranged at positions with good gas contact (a place where the flow of exhaust gas from each cylinder is smooth).
  • the air-fuel ratio sensor arranged in the first exhaust passage and the air-fuel ratio sensor arranged in the second exhaust passage are cylinders whose exhaust strokes are not adjacent to each other (for example, the first cylinder and the fourth cylinder, the second cylinder and the second cylinder). 3 cylinders), the time interval for detecting the air-fuel ratio of the exhaust gas becomes longer than when one air-fuel ratio sensor is provided for all the cylinders of the internal combustion engine ( Therefore, the output of the air-fuel ratio sensor can be reliably separated for each cylinder. As a result, the air-fuel ratio of the exhaust gas upstream of the catalyst can be accurately detected for each cylinder, and the air-fuel ratio imbalance between the cylinders can be accurately detected. As a result, it becomes possible to comply with the OBD regulations for detecting the air-fuel ratio imbalance between cylinders.
  • the present invention based on the outputs of the air-fuel ratio sensor provided in the first exhaust passage and the air-fuel ratio sensor provided in the second exhaust passage, it is detected whether an air-fuel ratio imbalance between the cylinders has occurred. To be configured. As a specific configuration in this case, it is detected whether an air-fuel ratio imbalance between cylinders is generated based on the output waveform of each air-fuel ratio sensor (for example, the slope of the sensor output waveform: see FIG. 5A). The structure of doing can be mentioned.
  • the air-fuel ratio sensor provided in each of the first exhaust passage (first cylinder group) and the second exhaust passage (second cylinder group) is used for air-fuel ratio imbalance detection.
  • the air-fuel ratio of the exhaust gas upstream of the catalyst can be accurately detected for each cylinder, and the occurrence of an air-fuel ratio imbalance between the cylinders can be accurately detected.
  • the air-fuel ratio of the exhaust gas upstream of the catalyst can be accurately detected for each cylinder, it is possible to accurately detect the air-fuel ratio imbalance between the cylinders.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a multi-cylinder engine to which the present invention is applied. It is a schematic block diagram which shows only 1 cylinder of the engine of FIG. It is sectional drawing which shows the structure of a part of turbocharger with which the engine of FIG. 1 is equipped. It is a block diagram which shows the structure of control systems, such as ECU. It is a figure which shows the output waveform of an air fuel ratio sensor.
  • an internal combustion engine (hereinafter also referred to as an engine) to which the present invention is applied will be described.
  • FIG. 2 shows only the configuration of one cylinder of the engine. Further, the turbocharger is not shown in FIG.
  • the engine 1 of this example is an in-cylinder injection type four-cylinder gasoline engine mounted on an automobile, and is vertically arranged in a cylinder block 1a constituting each cylinder # 1, # 2, # 3, # 4.
  • a reciprocating piston 1c is provided.
  • the piston 1c is connected to the crankshaft 15 via the connecting rod 16, and the reciprocating motion of the piston 1c is converted into rotation of the crankshaft 15 by the connecting rod 16.
  • a signal rotor 17 is attached to the crankshaft 15.
  • a plurality of teeth (projections) 17a are provided on the outer peripheral surface of the signal rotor 17 at equal angles (in this example, for example, 10 ° CA (crank excessive)). Further, the signal rotor 17 has a missing tooth portion 17b in which two teeth 17a are missing.
  • crank position sensor 401 for detecting the crank angle is arranged.
  • the crank position sensor 401 is, for example, an electromagnetic pickup, and generates a pulse signal (voltage pulse) corresponding to the teeth 17a of the signal rotor 17 when the crankshaft 15 rotates.
  • the engine speed NE can be calculated from the output signal of the crank position sensor 401.
  • a water temperature sensor 403 for detecting the temperature of engine cooling water is disposed in the cylinder block 1a of the engine 1.
  • a cylinder head 1b is provided at the upper end of the cylinder block 1a, and a combustion chamber 1d is formed between the cylinder head 1b and the piston 1c.
  • a spark plug 3 is disposed in the combustion chamber 1 d of the engine 1. The ignition timing of the spark plug 3 is adjusted by the igniter 4.
  • the igniter 4 is controlled by an ECU (Electronic Control Unit) 500.
  • An oil pan 18 for storing lubricating oil (engine oil) is provided below the cylinder block 1a of the engine 1.
  • Lubricating oil stored in the oil pan 18 is pumped up by an oil pump (not shown) through an oil strainer that removes foreign matters during operation of the engine 1, and the piston 1 c, crankshaft 15, connecting rod 16, etc. It is supplied to each part of the engine and used for lubrication and cooling of each part.
  • the lubricating oil supplied in this way is used for lubrication and cooling of each part of the engine, then returned to the oil pan 18 and stored in the oil pan 18 until it is pumped up again by the oil pump. .
  • An intake passage 11 and an exhaust passage 12 are connected to the combustion chamber 1 d of the engine 1.
  • a part of the intake passage 11 is formed by an intake port 110 and an intake manifold 111.
  • the intake passage 11 is provided with a surge tank.
  • an air cleaner 7 that filters intake air (fresh air), a hot-wire air flow meter 404, an intake air temperature sensor 405 (built in the air flow meter 404), a compressor impeller 302 of a turbocharger 300 described later, and a turbocharger 300.
  • An intercooler 8 for forcibly cooling the intake air whose temperature has been raised by supercharging in the engine, a throttle valve 5 for adjusting the intake air amount of the engine 1, and the like are arranged.
  • the throttle opening of the throttle valve 5 is driven and controlled by the ECU 500. Specifically, the optimum intake air amount (in accordance with the operating state of the engine 1 such as the engine speed NE calculated from the output signal of the crank position sensor 401 and the accelerator pedal depression amount (accelerator opening) of the driver).
  • the throttle opening of the throttle valve 5 is controlled so as to obtain a target intake air amount. More specifically, the actual throttle opening of the throttle valve 5 is detected using the throttle opening sensor 406, and the actual throttle opening coincides with the throttle opening (target throttle opening) at which the target intake air amount can be obtained.
  • the throttle motor 6 of the throttle valve 5 is feedback controlled.
  • Such a control system for the throttle valve 5 is referred to as an “electronic throttle system”, and it is also possible to control the throttle opening independently of the driver's accelerator pedal operation during idling operation or the like. .
  • An intake valve 13 is provided between the intake passage 11 and the combustion chamber 1d. By opening and closing the intake valve 13, the intake passage 11 and the combustion chamber 1d are communicated or blocked. Further, an exhaust valve 14 is provided between the exhaust passage 12 and the combustion chamber 1d. By opening and closing the exhaust valve 14, the exhaust passage 12 and the combustion chamber 1d are communicated or blocked. The opening / closing drive of the intake valve 13 and the exhaust valve 14 is performed by each rotation of the intake camshaft 21 and the exhaust camshaft 22 to which the rotation of the crankshaft 15 is transmitted via a timing chain or the like.
  • a cam position sensor 402 In the vicinity of the intake camshaft 21, a cam position sensor 402 is provided that generates a pulse signal when the piston 1c of a specific cylinder (for example, the first cylinder # 1) reaches the compression top dead center (TDC). ing.
  • the cam position sensor 402 is, for example, an electromagnetic pickup, and is disposed so as to face one tooth (not shown) on the outer peripheral surface of the rotor provided integrally with the intake camshaft 21.
  • a pulse signal (voltage pulse) is output. Since the intake camshaft 21 (and the exhaust camshaft 22) rotates at a half speed of the crankshaft 15, the cam position sensor 402 becomes 1 each time the crankshaft 15 rotates twice (720 ° rotation). Two pulse signals are generated.
  • an injector (fuel injection valve) 2 capable of directly injecting fuel into each combustion chamber 1d is disposed.
  • injectors 2... 2 are connected to a common delivery pipe 201.
  • the delivery pipe 201 is supplied with fuel (gasoline) stored in a fuel tank 205 of a fuel supply device 200, which will be described later, so that fuel is injected from the injector 2 into the combustion chamber 1d.
  • This injected fuel is mixed with the intake air introduced into the combustion chamber 1d to become an air-fuel mixture.
  • the air-fuel mixture (fuel + air) mixed in the combustion chamber 1d is ignited by the spark plug 3, and burns and explodes.
  • the piston 1c is reciprocated by the high-temperature and high-pressure combustion gas generated at this time, the crankshaft 15 is rotated, and the driving force (output torque) of the engine 1 is obtained.
  • the combustion gas is discharged into the exhaust passage 12 when the exhaust valve 14 is opened.
  • the engine 1 in this example burns and explodes in the order of the first cylinder # 1, the third cylinder # 3, the fourth cylinder # 4, and the second cylinder # 2.
  • the operating state of the engine 1 is controlled by the ECU 500.
  • the fuel supply device 200 includes a delivery pipe 201 connected in common to the injectors 2... 2 of the cylinders # 1 to # 4, a fuel supply pipe 202 connected to the delivery pipe 201, A high-pressure fuel pump 203, a low-pressure fuel pump 204, a fuel tank 205, and the like are provided.
  • fuel gasoline stored in the fuel tank 205 is supplied to a fuel supply pipe. It can be supplied to the delivery pipe 201 via 202. Then, fuel is supplied to the injectors 2 of the cylinders # 1 to # 4 by the fuel supply device 200 having such a configuration.
  • the exhaust passage 12 includes an exhaust port 120, a divided first exhaust manifold 121 (first exhaust passage) and a second exhaust manifold 122 (second exhaust passage), an exhaust pipe 123, and the like.
  • the first exhaust manifold 121 and the second exhaust manifold 122 are provided to avoid exhaust interference between the cylinders.
  • the first exhaust manifold 121 has two branch pipes (branch pipes) 121a and 121b and a branch aggregate part 121c, and the downstream ends of the branch pipes 121a and 121b are connected to the upstream end of the branch aggregate part 121c. It is connected.
  • branch pipes branch pipes
  • one branch pipe 121a is connected to the exhaust port 120 of the first cylinder # 1
  • the other branch pipe 121b is connected to the fourth cylinder # 4. It is connected to the exhaust port 120.
  • the exhaust gas discharged from the first cylinder # 1 and the exhaust gas discharged from the fourth cylinder # 4 gather in the first exhaust manifold 121, and the exhaust gas after the gathering becomes the branch gathering portion 121c. Then, it flows into a first exhaust gas inlet 311 of a turbocharger 300 to be described later.
  • the second exhaust manifold 122 has two branch pipes (branch pipes) 122a and 122b and a branch aggregate portion 122c, and the downstream ends of the branch pipes 122a and 122b are connected to the upstream end of the branch aggregate portion 122c. It is connected.
  • branch pipes 122a and 122b of the second exhaust manifold 122 one branch pipe 122a is connected to the exhaust port 120 of the second cylinder # 2, and the other branch pipe 122b is connected to the third cylinder # 3. It is connected to the exhaust port 120.
  • the exhaust gas discharged from the second cylinder # 2 and the exhaust gas discharged from the third cylinder # 3 gather in the second exhaust manifold 122, and the exhaust gas after the gathering becomes the branch gathering portion 122c. Then, it flows into a second exhaust gas inlet 312 of a turbocharger 300 described later.
  • the branch collection portion 121 c of the first exhaust manifold 121 (the collection that flows after the exhaust gases from the cylinders # 1 and # 4 of the first cylinder group gather).
  • a first air-fuel ratio sensor (A / F sensor) 411 is arranged, and the exhaust gas from each of the cylinders # 2 and # 3 of the second cylinder group 122c of the second exhaust manifold 122 is provided.
  • a feature is that a second air-fuel ratio sensor (A / F sensor) 412 is arranged in a collecting portion that flows after gathering.
  • the first air-fuel ratio sensor 411 and the second air-fuel ratio sensor 412 employ, for example, a limit current type oxygen concentration sensor, and generate an output voltage corresponding to the air-fuel ratio over a wide air-fuel ratio region. It has become.
  • the first air-fuel ratio sensor 411 and the second air-fuel ratio sensor 412 have the same characteristics such as responsiveness.
  • the output signals of the first air-fuel ratio sensor 411 and the second air-fuel ratio sensor 412 are input to the ECU 500.
  • first air-fuel ratio sensor 411 and the second air-fuel ratio sensor 412 may be referred to as “air-fuel ratio sensors 411, 412”.
  • an upstream S / C catalyst (start catalyst) 91 and a downstream U / F catalyst (underfloor catalyst) 92 are arranged in the exhaust passage 12 (exhaust pipe 123). .
  • Both the S / C catalyst 91 and the U / F catalyst 92 are three-way catalysts.
  • the three-way catalyst has an O 2 storage function (oxygen storage function) for storing (storing) oxygen. Even if the air-fuel ratio shifts from the stoichiometric air-fuel ratio to a certain extent by this oxygen storage function, HC, It is possible to purify CO and NOx. That is, when the air-fuel ratio of the engine 1 becomes lean and oxygen and NOx in the exhaust gas flowing into the S / C catalyst 91 and the U / F catalyst 92 that are three-way catalysts increase, a part of the oxygen is converted into S / C.
  • Occlusion of the C catalyst 91 and the U / F catalyst 92 promotes reduction and purification of NOx.
  • the air-fuel ratio of the engine 1 becomes rich and the exhaust gas flowing into the S / C catalyst 91 and the U / F catalyst 92 contains a large amount of HC and CO
  • the S / C catalyst 91 and the U / F catalyst. 92 releases the oxygen molecules occluded inside, gives oxygen molecules to these HC and CO, and promotes oxidation and purification.
  • the S / C catalyst 91 is provided on the upstream side of the exhaust passage 12 (the side close to the combustion chamber 1d), the S / C catalyst 91 is characterized in that it rises to the activation temperature within a short time after the engine 1 is started.
  • the U / F catalyst 92 is for purifying HC, CO, and NOx that could not be purified by the S / C catalyst 91, and is disposed below the floor panel constituting the vehicle body. Yes.
  • an oxygen sensor (O 2 sensor) 413 is disposed in the exhaust passage 12 (exhaust pipe 123) downstream of the S / C catalyst 91 and upstream of the U / F catalyst 92. .
  • the oxygen sensor 413 is a sensor that exhibits a characteristic (Z characteristic) in which the output value changes stepwise in the vicinity of the theoretical air-fuel ratio (stoichiometric).
  • Z characteristic a characteristic in which the output value changes stepwise in the vicinity of the theoretical air-fuel ratio (stoichiometric).
  • the engine 1 of this example is equipped with a turbocharger (supercharger) 300 that supercharges intake air using exhaust pressure.
  • a turbocharger (supercharger) 300 that supercharges intake air using exhaust pressure.
  • the turbocharger 300 rotates the turbine wheel 301 disposed in the exhaust passage 12, the compressor impeller 302 disposed in the intake passage 11, and the turbine wheel 301 and the compressor impeller 302.
  • a connecting shaft 303 and the like that are integrally connected are provided, and the turbine wheel 301 disposed in the exhaust passage 12 is rotated by the energy of the exhaust, and accordingly, the compressor impeller 302 disposed in the intake passage 11 is rotated. Then, the intake air is supercharged by the rotation of the compressor impeller 302, and the supercharged air is forcibly sent into the combustion chambers 1d of the cylinders # 1 to # 4 of the engine 1.
  • the turbine wheel 301 is accommodated in the turbine housing 310, and the compressor impeller 302 is accommodated in the compressor housing 320.
  • the turbine housing 310 and the compressor housing 320 are attached to both sides of the center housing 330.
  • the compressor impeller 302 and the compressor housing 320 constitute a compressor 300B, and the turbine wheel 301 and the turbine housing 310 constitute a turbine 300A.
  • the turbocharger 300 in this example is a twin entry (twin scroll) turbocharger, and the scroll chamber of the turbine 300A (turbine housing 310) is divided into two by a partition wall 313 (a first scroll chamber 314 and a second scroll chamber). And two exhaust gas inlets (a first exhaust gas inlet 311 and a second exhaust gas inlet 312).
  • the first exhaust gas inlet 311 is connected to the branch assembly 121c of the first exhaust manifold 121, and exhaust gas discharged from the first cylinder # 1 and exhaust gas discharged from the fourth cylinder # 4.
  • the gas merges in the first exhaust manifold 121, passes through the first exhaust gas inlet 311, and flows into the turbine housing 310 (in the first scroll chamber 314 defined by the partition wall 313). As a result, the turbine wheel 301 rotates.
  • a branch aggregate portion 122c of the second exhaust manifold 122 is connected to the second exhaust gas inlet 312, and the exhaust gas discharged from the second cylinder # 2 and the third cylinder # 3 are discharged.
  • the exhaust gas collects in the second exhaust manifold 122 and passes through the second exhaust gas inlet 312 and flows into the turbine housing 310 (in the second scroll chamber 315 defined by the partition wall 313). As a result, the turbine wheel 301 rotates. According to such a twin-entry turbocharger 300, interference of exhaust pulsation between cylinders can be suppressed, and excellent supercharging characteristics can be obtained.
  • an exhaust bypass passage for communicating the upstream side and the downstream side of the turbine wheel 301 (bypassing the turbine wheel 301), and a wastegate valve (WGV) for opening and closing the exhaust bypass passage are provided.
  • the supercharging pressure may be controlled by adjusting the opening degree of the wastegate valve and adjusting the amount of exhaust gas that bypasses the turbine wheel 301.
  • an EGR device (not shown) may be provided in the engine 1 of this example.
  • the EGR device is a device that reduces the combustion temperature in the combustion chamber 1d and reduces the amount of NOx generated by introducing a part of the exhaust gas into the intake air.
  • Examples of the EGR device include an exhaust passage 12 (first exhaust manifold 121 and second exhaust manifold 122) upstream of the turbine wheel 301 of the turbocharger 300 (upstream of the exhaust gas flow), and an intercooler 8 (turbocharger).
  • an EGR passage communicating with the intake passage 11 (intake manifold 111) on the downstream side (downstream of the intake air flow) of the 300 compressor impeller 302), a catalyst provided in the EGR passage, an EGR cooler, an EGR valve, and the like.
  • the EGR rate [EGR amount / (EGR amount + intake air amount (new air amount)) (%)] can be changed by adjusting the opening degree of the EGR valve.
  • the EGR amount (exhaust gas recirculation amount) introduced from the exhaust passage 12 to the intake passage 11 can be adjusted.
  • ECU 500 includes a CPU (Central Processing Unit) 501, a ROM (Read Only Memory) 502, a RAM (Random Access Memory) 503, a backup RAM 504, and the like.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the ROM 502 stores various control programs, maps that are referred to when the various control programs are executed, and the like.
  • the CPU 501 executes various arithmetic processes based on various control programs and maps stored in the ROM 502.
  • the RAM 503 is a memory that temporarily stores the calculation results of the CPU 501, data input from each sensor, and the like.
  • the backup RAM 504 is a nonvolatile memory that stores data to be saved when the engine 1 is stopped, for example. Memory.
  • the CPU 501, ROM 502, RAM 503, and backup RAM 504 are connected to each other via a bus 507 and to an input interface 505 and an output interface 506.
  • the input interface 505 outputs a crank position sensor 401, a cam position sensor 402, a water temperature sensor 403, an air flow meter 404, an intake air temperature sensor 405, a throttle opening sensor 406, and an accelerator opening that outputs a detection signal corresponding to the depression amount of the accelerator pedal.
  • Various sensors such as a degree sensor 407, a first air-fuel ratio sensor 411, a second air-fuel ratio sensor 412, and an oxygen sensor 413 are connected.
  • an ignition switch 408 is connected to the input interface 505. When the ignition switch 408 is turned on, cranking of the engine 1 by a starter motor (not shown) is started.
  • the output interface 506 is connected to the injector 2, the igniter 4 of the spark plug 3, the throttle motor 6 of the throttle valve 5, and the like.
  • the ECU 500 controls the drive of the injector 2 (fuel injection amount adjustment control), the ignition timing control of the spark plug 3, and the drive control of the throttle motor 6 of the throttle valve 5 (intake air) based on the detection signals of the various sensors described above. Various controls of the engine 1 including the amount control) are executed. Further, the ECU 500 executes the following “cylinder discrimination process”, “air-fuel ratio feedback control”, and “inter-cylinder air-fuel ratio imbalance detection process”.
  • each tooth 17a is formed for every 10 ° CA, for example, and two teeth are missing 34. It has the sheet
  • the missing tooth portion 17b of the signal rotor 17 passes in the vicinity of the crank position sensor (electromagnetic pickup or the like) 401, the generation interval of the voltage pulse becomes long.
  • the rotation phase (crank position) of the crankshaft 15 can be detected by the output of a signal (missing tooth signal) corresponding to the missing tooth portion 17b of the signal rotor 17, and the time when each cylinder is located at the top dead center. Can be recognized.
  • the output signal (missing tooth signal) of the crank position sensor 401 corresponding to the missing tooth portion 17b of the signal rotor 17 is a signal for discriminating the top dead center position of cylinder discrimination, that is, a “top dead center position judging signal”. It has become.
  • the crank position sensor 401 outputs the missing tooth signal once (twice in one cycle of the engine cycle) once while the crankshaft 15 makes one rotation (360 ° CA).
  • the crank position sensor 401 outputs a missing tooth signal at a predetermined crank angle before the top dead center of the first cylinder # 1 and the fourth cylinder # 4.
  • the cam position sensor 402 outputs a voltage pulse once during the rotation of the crankshaft 15 (once in one cycle of the engine cycle).
  • the cam position sensor 402 outputs a voltage pulse when the first cylinder # 1 is located at the compression top dead center and the fourth cylinder # 4 is located at the exhaust top dead center.
  • the cam position sensor 402 if the cam position sensor 402 generates a voltage pulse when the crank position sensor 401 outputs a missing tooth signal, the first cylinder # 1 is positioned at the compression top dead center, and the fourth Cylinder # 4 is positioned at the exhaust top dead center.
  • the crank position sensor 401 outputs a missing tooth signal and the cam position sensor 402 does not generate a voltage pulse, the first cylinder # 1 is located at the exhaust top dead center, and the fourth cylinder # 4 is compressed. It will be located at the dead center.
  • the voltage pulse generated by the cam position sensor 402 in this manner is a signal for performing cylinder discrimination, that is, a “cylinder discrimination signal”.
  • crank position sensor 401 first detection of the top dead center position determination signal
  • the presence or absence of the generation of the cylinder determination signal (voltage pulse) of the cam position sensor 402 corresponding to the detection.
  • cylinder discrimination crank angle determination
  • Such cylinder discrimination makes it possible to recognize the piston positions (intake strokes, compression strokes, explosion strokes, exhaust strokes) of the cylinders # 1 to # 4 at the time of engine start, operation after the start, and the like.
  • engine operation control such as precise fuel injection control and ignition timing control can be performed.
  • crank angle determination crank angle determination
  • piston position recognition of each cylinder # 1 to # 4 are performed from the output signals of the crank position sensor 401 and the cam position sensor 402.
  • the cylinder discrimination (crank angle determination) and the piston positions of the cylinders # 1 to # 4 may be recognized by these means.
  • -Air-fuel ratio feedback control- ECU 500 calculates the oxygen concentration in the exhaust gas based on the outputs of air-fuel ratio sensors 411, 412 and oxygen sensor 413 disposed in exhaust passage 12 of engine 1, and the actual air-fuel ratio obtained from the calculated oxygen concentration.
  • the air-fuel ratio feedback control (stoichiometric control) is executed to control the fuel injection amount injected from the injector 2 into the combustion chamber 1d so that the air-fuel ratio matches the target air-fuel ratio (for example, the stoichiometric air-fuel ratio). Specific processing of the air-fuel ratio feedback control will be described.
  • the S / C catalyst 91 takes oxygen molecules from NOx and stores these oxygen molecules. At the same time, NOx is reduced, thereby purifying NOx. Further, when the air-fuel ratio of the engine 1 becomes rich and the exhaust gas flowing into the S / C catalyst 91 contains a large amount of HC and CO, the S / C catalyst 91 gives oxygen molecules stored therein to these. Oxidizes, thereby purifying HC and CO.
  • the S / C catalyst (three-way catalyst) 91 in order for the S / C catalyst (three-way catalyst) 91 to efficiently purify a large amount of continuously flowing HC and CO, the S / C catalyst 91 must store a large amount of oxygen. On the contrary, in order to efficiently purify a large amount of continuously flowing NOx, the S / C catalyst 91 needs to be in a state where it can sufficiently store oxygen. As is clear from the above, the purification capability of the S / C catalyst 91 depends on the maximum amount of oxygen that can be stored by the S / C catalyst 91 (maximum oxygen storage amount).
  • the S / C catalyst (three-way catalyst) 91 deteriorates due to poisoning due to lead, sulfur, etc. contained in the fuel, or heat applied to the catalyst, and the maximum oxygen storage amount gradually decreases accordingly. . In this way, even when the maximum oxygen storage amount is reduced, in order to maintain good emission, the air-fuel ratio of the gas discharged from the S / C catalyst 91 is very close to the stoichiometric air-fuel ratio. Need to control.
  • air-fuel ratio feedback control is performed. Specifically, based on the outputs of the air-fuel ratio sensors 411 and 412, the air-fuel ratio of the exhaust gas upstream of the S / C catalyst (three-way catalyst) 91 (upstream of the exhaust gas flow) is made the stoichiometric air-fuel ratio.
  • the main feedback control for approaching and the sub feedback control for compensating for the deviation of the main feedback control based on the output of the oxygen sensor 413 are executed in combination.
  • the increase / decrease in the fuel injection amount from the injector 2 is adjusted so that the air-fuel ratio of the exhaust gas detected based on the outputs of the air-fuel ratio sensors 411, 412 matches the theoretical air-fuel ratio. More specifically, if the detected air-fuel ratio of the exhaust gas is richer than the stoichiometric air-fuel ratio, the fuel injection amount is adjusted to decrease, and conversely, if the exhaust gas air-fuel ratio is leaner than the stoichiometric air-fuel ratio. The fuel injection amount is adjusted to increase.
  • the air-fuel ratio of the exhaust gas flowing into the S / C catalyst 91 can be maintained at the stoichiometric air-fuel ratio. If the state is strictly maintained, the stored oxygen amount of the S / C catalyst 91 is maintained at a substantially constant amount, so that exhaust gas containing unpurified components is present downstream of the S / C catalyst 91. It can be completely prevented from flowing out.
  • the main feedback control when the main feedback control is executed, the main feed control of the air-fuel ratio of the first cylinder # 1 and the fourth cylinder # 4, and the second In the main feed control of the air-fuel ratio of the cylinder # 2 and the third cylinder # 3, separate maps are used, and the maps for the first and fourth cylinders are referred to based on the output of the first air-fuel ratio sensor 411.
  • the main feedback control is executed, and based on the output of the second air-fuel ratio sensor 412, the main feedback control is executed with reference to the maps for the second and third cylinders.
  • the ECU 500 can recognize the exhaust strokes of the respective cylinders # 1 to # 4 by the above-described cylinder discrimination processing, and therefore the first cylinder # 1 and the fourth cylinder # 4.
  • the ECU 500 can recognize the exhaust strokes of the respective cylinders # 1 to # 4 by the above-described cylinder discrimination processing, and therefore the first cylinder # 1 and the fourth cylinder # 4.
  • the output of the second air-fuel ratio sensor 412 can be grasped.
  • the output of the air-fuel ratio sensors 411 and 412 includes a certain amount of error.
  • exhaust gas containing unpurified components may flow out downstream of the S / C catalyst 91.
  • the air-fuel ratio of the exhaust gas upstream of the S / C catalyst 91 may be biased to the rich side or the lean side as a whole.
  • a rich exhaust gas containing HC and CO or a lean exhaust gas containing NOx may flow out downstream.
  • the oxygen sensor 413 When such exhaust gas flows out, the oxygen sensor 413 generates a rich output or a lean output according to the air-fuel ratio of the exhaust gas.
  • a rich output is generated from the oxygen sensor 413, it can be determined that the air-fuel ratio of the exhaust gas upstream of the S / C catalyst 91 is biased to the rich side as a whole, and from the oxygen sensor 413,
  • the lean output is generated, it can be determined that the air-fuel ratio of the exhaust gas upstream of the S / C catalyst 91 is biased to the lean side as a whole.
  • the sub-feedback control when the output of the oxygen sensor 413 becomes a value representing an air / fuel ratio leaner than the stoichiometric air / fuel ratio, the difference between the output of the oxygen sensor 413 and the target value substantially corresponding to the stoichiometric air / fuel ratio is proportional / integrated ( PID processing) to obtain the sub feedback correction amount. Then, the outputs of the air-fuel ratio sensors 411 and 412 are corrected by this sub-feedback correction amount, whereby the actual air-fuel ratio of the engine 1 is apparently leaner than the detected air-fuel ratio of the air-fuel ratio sensors 411 and 412. Feedback control is performed so that the corrected apparent air-fuel ratio becomes the target air-fuel ratio (the target air-fuel ratio of the engine 1, here the theoretical air-fuel ratio).
  • the output of the oxygen sensor 413 becomes a value representing an air / fuel ratio richer than the stoichiometric air / fuel ratio
  • the deviation between the output of the oxygen sensor 413 and the target value substantially corresponding to the stoichiometric air / fuel ratio is proportionally integrated (PID process).
  • the sub feedback correction amount is obtained.
  • the outputs of the air-fuel ratio sensors 411 and 412 are corrected by this sub-feedback correction amount, whereby the actual air-fuel ratio of the engine 1 is apparently richer than the detected air-fuel ratio of the air-fuel ratio sensors 411 and 412.
  • feedback control is performed so that the corrected apparent air-fuel ratio becomes the target air-fuel ratio (the target air-fuel ratio of the engine 1, here the theoretical air-fuel ratio).
  • the air-fuel ratio of the exhaust gas downstream of the S / C catalyst (three-way catalyst) 91 coincides with the target air-fuel ratio (substantially theoretical air-fuel ratio) at the same site.
  • the main feedback control of the air-fuel ratio is performed. Since the absolute value of the correction amount becomes large, the abnormality can be detected by monitoring this with the ECU 500.
  • the feedback correction amount in the main feedback control is a value for correcting the deviation amount of 5%, that is, a correction amount corresponding to ⁇ 5%. It can be detected that the fuel supply system or the air system is shifted by 5%. When the feedback correction amount becomes equal to or greater than a predetermined determination threshold, it can be detected that the fuel supply system or the air system is abnormal.
  • the fuel supply system and the air system may not be displaced as a whole, but the air-fuel ratio between cylinders may vary (imbalance).
  • the output waveforms of the first air-fuel ratio sensor 411 and the second air-fuel ratio sensor 412 have waveforms as shown in FIG. 5, for example.
  • the output waveforms (A / F waveforms) of the air-fuel ratio sensors 411 and 412 tend to oscillate around the stoichiometry, but when an air-fuel ratio imbalance between cylinders occurs, the degree of imbalance As a result, the amplitude of vibration increases.
  • FIG. 5 shows a case where only the first cylinder # 1 of the four cylinders # 1 to # 4 of the engine 1 is shifted to the rich side, and the first air-fuel ratio sensor 411 (first The A / F sensor output waveform (FIG. 5 (A)) of the air-fuel ratio sensor of the cylinder group of the first cylinder # 1 and the fourth cylinder # 4 is the second air-fuel ratio sensor 412 (second cylinder # 2 and third cylinder).
  • the amplitude of vibration is larger than the output waveform of the A / F sensor of the # 3 cylinder group air-fuel ratio sensor (FIG. 5B: waveform when there is no imbalance between cylinders).
  • the A / F sensor output waveform a2 shows a case where the exhaust gas air-fuel ratio of the first cylinder # 1 is shifted to the rich side with an imbalance rate of + 50%. Yes.
  • the reason why the A / F sensor output waveform is shifted to the rich side is that the outputs of the air-fuel ratio sensors 411 and 412 tend to be larger on the rich side than on the lean side due to the influence of hydrogen. It depends.
  • the ECU 500 monitors the imbalance between cylinders. Can be detected. An example of a method for detecting the imbalance abnormality will be described below.
  • inter-cylinder air-fuel ratio imbalance detection process executed by the ECU 500 corresponds to “an imbalance detection unit that detects whether an air-fuel ratio imbalance between cylinders is occurring”.
  • the ECU 500 monitors each A / F sensor output waveform (see FIGS. 5A and 5B above) based on the output signals of the air-fuel ratio sensors 411 and 412 and outputs those A / F sensor outputs.
  • the peak value of the waveform (for example, the peak value on the rich side: see FIG. 5A) is sequentially acquired. Then, the peak value of each A / F sensor output waveform is compared with a predetermined determination threshold value. If the peak value of the A / F sensor output waveform is equal to or greater than the predetermined determination threshold value, an imbalance abnormality occurs between the cylinders. Recognize (detect) occurrence.
  • the determination threshold value set for the peak value of the A / F sensor output waveform is a range that can be absorbed by air-fuel ratio feedback control even when an air-fuel ratio imbalance occurs between cylinders (permissible cylinder variation degree), Also, considering the purification performance of the three-way catalyst (S / C catalyst 91, U / F catalyst 92), etc., a value that does not cause deterioration of exhaust emission (allowable deviation from stoichiometry) is obtained through experiments and calculations. It is only necessary to acquire the value and set a suitable value (determination threshold) based on the result.
  • ECU 500 monitors each A / F sensor output waveform (see FIGS. 5A and 5B above) based on the output signals of air-fuel ratio sensors 411 and 412, and these A / F sensors.
  • the slope of the output waveform (for example, the slope when changing from the lean side to the rich side: see FIG. 5A) is sequentially acquired.
  • the inclination of each A / F sensor output waveform is compared with a predetermined determination threshold (inclination), and if the inclination of the sensor output waveform exceeds a predetermined determination threshold, an imbalance abnormality occurs between the cylinders. Is recognized (detected).
  • the determination threshold value set for the peak value of the A / F sensor output waveform is a range that can be absorbed by air-fuel ratio feedback control even when an air-fuel ratio imbalance occurs between cylinders (permissible cylinder variation degree),
  • a value (slope) that does not cause deterioration of exhaust emission is obtained in experiments and calculations.
  • a suitable value (determination threshold value) may be set based on the result.
  • the air-fuel ratio imbalance between the cylinders can be detected in an on-vehicle state based on the outputs of the air-fuel ratio sensors 411 and 412 (inter-cylinder air-fuel ratio imbalance detection OBD).
  • a part of the exhaust passage 12 (upstream side of the turbocharger 300) is constituted by the divided first exhaust manifold 121 and the second exhaust manifold 122, and the first thereof.
  • the branch gathering part 121c of the exhaust manifold 121 is connected to the first exhaust gas inlet 311 of the turbocharger 300
  • the branch gathering part 122c of the second exhaust manifold 122 is connected to the second exhaust gas inlet 312 of the turbocharger 300.
  • the first air-fuel ratio sensor 411 is disposed in the branch aggregate portion 121 c of the first exhaust manifold 121
  • the second air-fuel ratio sensor 412 is disposed in the branch aggregate portion 122 c of the second exhaust manifold 122.
  • the first air-fuel ratio sensor 411 is disposed at a position after the exhaust gases from the first cylinder # 1 and the fourth cylinder # 4 gather (branch gathering part 121c),
  • the second air-fuel ratio sensor 412 is disposed at a position after the exhaust gases from the second cylinder # 2 and the third cylinder # 3 gather (branch gathering part 122c)
  • the element parts of the air-fuel ratio sensors 411, 412 The exhaust gas per gas becomes good.
  • the air-fuel ratio sensor is arranged upstream of the turbocharger 300, when the exhaust gas from the four cylinders # 1 to # 4 is detected by one air-fuel ratio sensor, the per unit gas against the element portion of the air-fuel ratio sensor Since a bad cylinder and a cylinder with good gas are inevitably formed, the detection accuracy of the air-fuel ratio of the exhaust gas is lowered. Further, since the air-fuel ratio of the four cylinders # 1 to # 4 must be detected by one exhaust sensor, the air-fuel ratio sensor is required to have high responsiveness.
  • the air-fuel ratio sensors 411 and 412 are arranged for the two cylinders (first cylinder # 1 and fourth cylinder # 4, second cylinder # 2 and third cylinder # 3), respectively. Since the arrangement positions of the air-fuel ratio sensors 411 and 412 need only be determined in consideration of only the exhaust gas flows from the two cylinders (exhaust gas flows inside the branch assembly portions 121c and 122c), The degree of freedom of the arrangement position is increased, and the element portions of the respective air-fuel ratio sensors 411 and 412 can be arranged at positions with good gas contact (a place where the flow of exhaust gas from each cylinder is smooth).
  • the first air-fuel ratio sensor 411 only needs to detect the air-fuel ratio of the first cylinder # 1 and the air-fuel ratio of the fourth cylinder # 4 whose exhaust strokes are not adjacent to each other. However, since it is only necessary to detect the air-fuel ratio of the second cylinder # 2 and the air-fuel ratio of the third cylinder # 3 whose exhaust strokes are not adjacent to each other, one air-fuel ratio sensor is provided for the four cylinders # 1 to # 4. Since the time interval for detecting the exhaust gas air-fuel ratio becomes longer (doubled) than when it is provided, the outputs of the air-fuel ratio sensors 411 and 412 can be reliably separated for each cylinder.
  • the air-fuel ratio upstream of the S / C catalyst 91 can be accurately detected for each cylinder, so that the air-fuel ratio imbalance between the cylinders can be accurately detected, and an imbalance abnormality has occurred.
  • the abnormality can be reliably detected. As a result, it becomes possible to comply with the above-mentioned OBD regulation for detecting the air-fuel ratio imbalance among cylinders.
  • an exhaust gas introduction passage to the exhaust turbine of the exhaust turbocharger is formed by the first and second exhaust passages.
  • a wall portion is provided at a gathering portion of the first and second exhaust passages, and an exhaust sensor is exposed to the wall portion so as to be exposed to an exhaust flow flowing through the first and second exhaust passages.
  • an imbalance detection process (lean-side imbalance detection process) when the fuel injection amount of some of the four cylinders # 1 to # 4 of the engine 1 is shifted to the lean side from the stoichiometric amount. ).
  • a fuel injection system of a certain cylinder for example, the first cylinder # 1
  • the injector 2 is clogged
  • the fuel injection amount of the cylinder corresponds to the stoichiometry.
  • the engine rotation speed in the explosion stroke of the cylinder decreases.
  • the time required for the crankshaft 15 to rotate at a constant crank angle is the explosion of the other cylinders (for example, the second cylinder # 2 to the fourth cylinder # 4). It will be longer than that time during the journey. Therefore, it is possible to recognize (detect) the air-fuel ratio imbalance between the cylinders by measuring and comparing these times.
  • the ECU 500 takes in the output signals of the crank position sensor 401 and the cam position sensor 402 at every predetermined crank angle (for example, every 30 ° CA), and the first cylinder # 1 performs an explosion stroke based on these signals.
  • an elapsed time T1 required for the crankshaft 15 to rotate at a constant crank angle (for example, 180 ° CA) and one time before the explosion stroke of the first cylinder # 1 ( Calculate the difference from the elapsed time T2 required for the crankshaft 15 to rotate at a certain crank angle (for example, 180 ° CA) during the explosion stroke of the second cylinder # 2 that had reached the explosion stroke before 360 ° CA).
  • ECU 500 compares the rotational fluctuation amounts ⁇ NE1 to NE4 of the respective cylinders # 1 to # 4 obtained by the above calculation with a predetermined determination threshold, and there is a cylinder in which rotational fluctuation amount ⁇ NE exceeds the predetermined determination threshold. In this case, it is recognized (detected) that “the air-fuel ratio imbalance abnormality between cylinders has occurred”.
  • the determination threshold value set for the rotational fluctuation amount ⁇ NE is a range that can be absorbed by air-fuel ratio feedback control even when an air-fuel ratio imbalance occurs between cylinders (allowable variation between cylinders), and a three-way catalyst ( In consideration of the purification performance of the S / C catalyst 91 and the U / F catalyst 92), a value (rotation fluctuation amount) that does not cause deterioration of exhaust emission is obtained by experiment and calculation, and the result is obtained. What is necessary is just to set the value (judgment threshold value) suitable for the basis.
  • the lean-side imbalance detection may be detected based on the outputs of the first air-fuel ratio sensor 411 and the second air-fuel ratio sensor 412.
  • the present invention is applied to an in-cylinder four-cylinder gasoline engine.
  • the present invention is not limited to this, and a gasoline engine having any other number of cylinders such as a six-cylinder gasoline engine, for example. It is also applicable to.
  • the present invention is applied to a port-injection multi-cylinder gasoline engine and a dual-injection multi-cylinder gasoline engine having an in-cylinder injector and an intake port injector. Is possible.
  • the present invention can also be applied to a gas engine or an engine using biomass-derived fuel.
  • the present invention can be used for an internal combustion engine (engine) equipped with a supercharger. More specifically, the present invention is effectively used for a technique for accurately detecting the air-fuel ratio of the exhaust gas upstream of the catalyst of the air-fuel ratio sensor. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Silencers (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 ターボチャージャを備えた多気筒の内燃機関において、ターボチャージャとして、タービンに2つの排気ガス流入口が設けられたツインエントリターボを用いるとともに、内燃機関の第1気筒群から排出される排気ガスをターボチャージャの一方の排気ガス流入口に導く第1排気通路と、前記内燃機関の第2気筒群から排出される排気ガスがターボチャージャの他方の排気ガス流入口に導く第2排気通路とを設け、第1排気通路の排気ガス集合部と第2排気通路の排気ガス集合部にそれぞれ空燃比センサを配置する。このような構成により、空燃比センサの素子部に排気ガスを効率よく当てることができるようになり、触媒上流側の排気ガスの空燃比を各気筒毎に精度よく検出することが可能になる。

Description

過給機付き内燃機関
 本発明は、過給機付き内燃機関に関し、さらに詳しくは、排気ガスの空燃比を検出する空燃比センサを備えた過給機付き多気筒内燃機関に関する。
 自動車等に搭載される内燃機関(以下、エンジンともいう)においては、排気通路に配置した空燃比センサにて検出される空燃比(実空燃比)と目標空燃比(例えば理論空燃比)との偏差に基づいて、インジェクタ(燃料噴射弁)から噴射される燃料の量(燃料噴射量)をフィードバック制御している(空燃比フィードバック制御)。こうした空燃比フィードバック制御を行うことにより、空燃比を精度よく制御することができ、排気エミッションの向上を図ることができる。
 ところで、複数の気筒を有する多気筒内燃機関においては、通常、全気筒に対し同一の制御量を用いて空燃比制御を行うため、空燃比制御を実行したとしても、実際の空燃比が気筒間でばらつくことがある(A/Fインバランス)。その空燃比ばらつきの程度が小さい場合、空燃比フィードバック制御によって吸収可能であり、また、触媒でも排気ガス中の有害成分を浄化することが可能であるので、排気エミッションに影響を与えず、特に問題とはならない。しかしながら、例えば、内燃機関の複数気筒のうちの一部の気筒の燃料噴射系が故障するなどして、気筒間の空燃比が大きくばらつくと、排気エミッションが悪化してしまう(例えば、特許文献1参照)。こうした観点から、自動車の分野では、排ガスが悪化した状態での走行を未然に防止するため、車載状態で気筒間の空燃比ばらつき(A/Fインバランス)の異常を検出すること(OBD:On Board Diagnosis)が法規化されている。
 一方、自動車等に搭載される内燃機関には、排気のエネルギを利用した過給機(以下、ターボチャージャともいう)が装備されている。ターボチャージャは、一般に、内燃機関の排気通路を流れる排気ガスによって回転するタービンホイールと、吸気通路内の空気を強制的にエンジンの燃焼室へと送り込むコンプレッサインペラと、これらタービンホイールとコンプレッサインペラとを連結する連結シャフトとを備えている。このような構造のターボチャージャにおいては、排気通路に配置のタービンホイールが排気のエネルギによって回転し、これに伴って吸気通路に配置のコンプレッサインペラが回転することによって吸入空気が過給され、エンジンの各気筒の燃焼室に過給空気が強制的に送り込まれる。
 また、ターボチャージャとしては、タービン(タービンハウジング)に2つの排気ガス流入口を備えたツインエントリターボチャージャが知られている(例えば、特許文献2及び3参照)。このツインエントリターボチャージャは、多気筒内燃機関の排気脈動が相互に干渉することを防止し、高出力化を図るなどの目的で採用される。ツインエントリターボチャージャを備えた多気筒内燃機関(過給機付き多気筒内燃機関)においては、複数の気筒を、排気行程が隣り合わない気筒群に分け、排気ガスを各気筒群ごとに独立してタービンの排気ガス流入口まで導くように構成されている。
特開2009-281328号公報 特開2007-32476号公報 実開昭62-162349号公報
 ところで、過給機付きの多気筒内燃機関において、触媒上流側の排気ガスの空燃比を検出する空燃比センサ(A/Fセンサ)は、ターボチャージャのタービンと触媒との間に配置されている。このため、空燃比センサの素子部への排気ガスが、その上流側のターボチャージャで攪拌され空燃比が平均化されてしまうので、各気筒の空燃比を正確に検出できなくなることが懸念される。各気筒の空燃比を正確に検出できないと、上記した気筒間の空燃比ばらつきを精度良く検出できなくなり、OBD法規に対応できなくなる場合がある。
 本発明は、そのような実情を考慮してなされたもので、触媒上流側の排気ガスの空燃比を各気筒毎に正確に検出することが可能な過給機付き内燃機関を提供することを目的とする。
 本発明は、複数の気筒を有する内燃機関の第1気筒群から排出される排気ガスが流れる第1排気通路と、前記内燃機関の第2気筒群から排出される排気ガスが流れる第2排気通路と、タービン及びコンプレッサを有し、前記タービンに2つの排気ガス流入口が設けられた過給機(ツインエントリターボチャージャ)とを備え、前記第1排気通路が前記タービンの一方の排気ガス流入口に接続され、前記第2排気通路が前記タービンの他方の排気ガス流入口に接続された過給機付き内燃機関を前提としている。そして、このような過給機付き内燃機関において、前記過給機の上流側(排気ガス流れの上流側)の前記第1排気通路であって前記第1気筒群からの排気ガスが集合して流れる集合部と、前記過給機の上流側(排気ガス流れの上流側)の前記第2排気通路であって前記第2気筒群からの排気ガスが集合して流れる集合部とに、それぞれ、空燃比センサが設けられていることを技術的特徴とする。
 本発明の具体的な構成として、上記第1排気通路が、第1気筒群の各排気ポートに接続された複数のブランチ管とブランチ集合部とを有し、それら複数のブランチ管の下流側端部がブランチ集合部の上流側端部に接続された第1排気マニホールドであって、当該第1排気マニホールドのブランチ集合部に空燃比センサが設けられているとともに、上記第2排気通路が、第2気筒群の各排気ポートに接続された複数のブランチ管とブランチ集合部とを有し、それら複数のブランチ管の下流側端部がブランチ集合部の上流側端部に接続された第2排気マニホールドであって、当該第2排気マニホールドのブランチ集合部に空燃比センサが設けられているという構成を挙げることができる。
 本発明によれば、過給機の上流側(排気ガス流れの上流側)で、第1気筒群の複数気筒(例えば、第1気筒#1及び第4気筒#4)からの排気ガスが集合した後の位置(第1排気マニホールドのブランチ集合部)に空燃比センサを配置し、第2気筒群の複数気筒(例えば第2気筒#2及び第3気筒#3)からの排気ガスが集合した後の位置(第2排気マニホールドのブランチ集合部)に空燃比センサを配置しているので、各空燃比センサの素子部への排気ガスのガス当たりが良好となる。
 すなわち、第1及び第2の各気筒群(例えば、第1気筒と第4気筒、第2気筒と第3気筒)に対してそれぞれ空燃比センサを配置することにより、それら分割した気筒群(2つの気筒)からの排気ガスの流れ(第1排気通路及び第2排気通路の各集合部内の排気ガス流れ)のみを考慮して空燃比センサの配置位置を決定すればよいので、空燃比センサの配置位置の自由度が高くなり、それぞれの空燃比センサの素子部を、ガス当たりの良い位置(各気筒からの排気ガスの流れがスムーズな場所)に配置することができる。
 しかも、第1排気通路に配置の空燃比センサ及び第2排気通路に配置の空燃比センサは、それぞれ、排気行程が隣り合わない気筒(例えば、第1気筒と第4気筒、第2気筒と第3気筒)の空燃比を検出すればよいことから、内燃機関の全ての気筒に対して1つの空燃比センサを設けた場合と比較して、排気ガスの空燃比検出の時間間隔が長くなる(2倍になる)ので、空燃比センサの出力を各気筒毎に確実に分離することができる。これによって、触媒上流側の排気ガスの空燃比を各気筒毎に正確に検出することが可能となり、気筒間の空燃比インバランスを精度良く検出することができる。その結果として、上記した気筒間の空燃比インバランス検出のOBD法規に対応することが可能になる。
 本発明において、上記第1排気通路に設けた空燃比センサ及び上記第2排気通路に設けた空燃比センサの各出力に基づいて、気筒間の空燃比インバランスが発生しているか否かを検出するように構成する。この場合の具体的な構成として、各空燃比センサの出力波形(例えばセンサ出力波形の傾き:図5(A)参照)に基づいて気筒間の空燃比インバランスが発生しているか否かを検出するという構成を挙げることができる。
 このような構成によれば、空燃比インバランス検出に第1排気通路(第1気筒群)及び第2排気通路(第2気筒群)のそれぞれに設けた空燃比センサを用いているので、上述の如く、触媒上流側の排気ガスの空燃比を各気筒毎に正確に検出することが可能となり、気筒間の空燃比インバランスの発生を精度良く検出することができる。
 本発明によれば、触媒上流側の排気ガスの空燃比を各気筒毎に正確に検出することができるので、気筒間の空燃比インバランスを精度良く検出することが可能になる。
本発明を適用する多気筒エンジンの一例を示す概略構成図である。 図1のエンジンの1気筒のみを示す概略構成図である。 図1のエンジンに装備されるターボチャージャの一部の構成を示す断面図である。 ECU等の制御系の構成を示すブロック図である。 空燃比センサの出力波形を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 まず、本発明を適用する内燃機関(以下、エンジンともいう)について説明する。
 -エンジン-
 図1及び図2は本発明を適用するエンジンの概略構成を示す図である。なお、図2にはエンジンの1気筒の構成のみを示している。また、図2においてターボチャージャの図示は省略している。
 この例のエンジン1は、自動車に搭載される筒内噴射式4気筒ガソリンエンジンであって、その各気筒#1,#2,#3,#4を構成するシリンダブロック1a内には上下方向に往復動するピストン1cが設けられている。ピストン1cはコネクティングロッド16を介してクランクシャフト15に連結されており、ピストン1cの往復運動がコネクティングロッド16によってクランクシャフト15の回転へと変換される。
 クランクシャフト15にはシグナルロータ17が取り付けられている。シグナルロータ17の外周面には複数の歯(突起)17aが等角度(この例では、例えば10°CA(クランク過度))ごとに設けられている。また、シグナルロータ17は、歯17aの2枚分が欠落した欠歯部17bを有している。
 シグナルロータ17の側方近傍には、クランク角を検出するクランクポジションセンサ401が配置されている。クランクポジションセンサ401は、例えば電磁ピックアップであって、クランクシャフト15が回転する際にシグナルロータ17の歯17aに対応するパルス状の信号(電圧パルス)を発生する。このクランクポジションセンサ401の出力信号からエンジン回転数NEを算出することができる。
 エンジン1のシリンダブロック1aにはエンジン冷却水の水温を検出する水温センサ403が配置されている。また、シリンダブロック1aの上端にはシリンダヘッド1bが設けられており、このシリンダヘッド1bとピストン1cとの間に燃焼室1dが形成されている。エンジン1の燃焼室1dには点火プラグ3が配置されている。点火プラグ3の点火タイミングはイグナイタ4によって調整される。イグナイタ4はECU(Electronic Control Unit)500によって制御される。
 エンジン1のシリンダブロック1aの下部には、潤滑油(エンジンオイル)を貯留するオイルパン18が設けられている。オイルパン18に貯留された潤滑油は、エンジン1の運転時に、異物を除去するオイルストレーナを介してオイルポンプ(図示せず)によって汲み上げられて、ピストン1c、クランクシャフト15、コネクティングロッド16などのエンジン各部に供給され、その各部の潤滑・冷却等に使用される。そして、このようにして供給された潤滑油は、エンジン各部の潤滑・冷却等のために使用された後、オイルパン18に戻され、再びオイルポンプによって汲み上げられるまでオイルパン18内に貯留される。
 エンジン1の燃焼室1dには吸気通路11と排気通路12とが接続されている。吸気通路11の一部は吸気ポート110及び吸気マニホールド111によって形成されている。なお、図示はしないが、吸気通路11にはサージタンクが設けられている。
 吸気通路11には、吸入空気(新気)を濾過するエアクリーナ7、熱線式のエアフロメータ404、吸気温センサ405(エアフロメータ404に内蔵)、後述するターボチャージャ300のコンプレッサインペラ302、ターボチャージャ300での過給によって昇温した吸入空気を強制冷却するためのインタークーラ8、エンジン1の吸入空気量を調整するためのスロットルバルブ5などが配置されている。
 スロットルバルブ5のスロットル開度はECU500によって駆動制御される。具体的には、クランクポジションセンサ401の出力信号から算出されるエンジン回転数NE、及び、ドライバのアクセルペダル踏み込み量(アクセル開度)等のエンジン1の運転状態に応じた最適な吸入空気量(目標吸気量)が得られるようにスロットルバルブ5のスロットル開度を制御している。より詳細には、スロットル開度センサ406を用いてスロットルバルブ5の実際のスロットル開度を検出し、その実スロットル開度が、上記目標吸気量が得られるスロットル開度(目標スロットル開度)に一致するようにスロットルバルブ5のスロットルモータ6をフィードバック制御している。なお、こうしたスロットルバルブ5の制御システムは、「電子スロットルシステム」と称されており、アイドリング運転時などにおいて、ドライバのアクセルペダルの操作とは独立してスロットル開度を制御することも可能である。
 吸気通路11と燃焼室1dとの間に吸気バルブ13が設けられており、この吸気バルブ13を開閉駆動することにより、吸気通路11と燃焼室1dとが連通または遮断される。また、排気通路12と燃焼室1dとの間に排気バルブ14が設けられており、この排気バルブ14を開閉駆動することにより、排気通路12と燃焼室1dとが連通または遮断される。これら吸気バルブ13及び排気バルブ14の開閉駆動は、クランクシャフト15の回転がタイミングチェーン等を介して伝達される吸気カムシャフト21及び排気カムシャフト22の各回転によって行われる。
 吸気カムシャフト21の近傍には、特定の気筒(例えば第1気筒#1)のピストン1cが圧縮上死点(TDC)に達したときにパルス状の信号を発生するカムポジションセンサ402が設けられている。カムポジションセンサ402は、例えば電磁ピックアップであって、吸気カムシャフト21に一体的に設けられたロータ外周面の1個の歯(図示せず)に対向するように配置されており、その吸気カムシャフト21が回転する際にパルス状の信号(電圧パルス)を出力する。なお、吸気カムシャフト21(及び排気カムシャフト22)は、クランクシャフト15の1/2の回転速度で回転するので、クランクシャフト15が2回転(720°回転)するごとにカムポジションセンサ402が1つのパルス状の信号を発生する。
 このようなカムポジションセンサ402及び上記クランクポジションセンサ401の各出力信号から、エンジン運転時において、各気筒#1~#4のピストン位置(吸入行程・圧縮行程・爆発行程・排気行程)を認識することができ、精密な燃料噴射制御や点火時期制御などのエンジン運転制御を行うことができる。なお、この点(気筒判別処理等)については後述する。
 そして、エンジン1の各気筒#1~#4には、それぞれ、各燃焼室1d内に燃料を直接噴射することが可能なインジェクタ(燃料噴射弁)2が配置されている。これらインジェクタ2・・2は共通のデリバリパイプ201に接続されている。デリバリパイプ201には、後述する燃料供給装置200の燃料タンク205に貯留の燃料(ガソリン)が供給され、これによって、インジェクタ2から燃焼室1d内に燃料が噴射される。この噴射燃料は燃焼室1d内に導入された吸入空気と混合されて混合気となる。燃焼室1d内で混合された混合気(燃料+空気)は点火プラグ3にて点火されて燃焼・爆発する。このときに生じた高温高圧の燃焼ガスによりピストン1cが往復動され、クランクシャフト15が回転されてエンジン1の駆動力(出力トルク)が得られる。燃焼ガスは、排気バルブ14の開弁にともない排気通路12に排出される。なお、この例のエンジン1は、第1気筒#1→第3気筒#3→第4気筒#4→第2気筒#2の順で燃焼・爆発する。以上のエンジン1の運転状態はECU500によって制御される。
 上記燃料供給装置200は、図2に示すように、各気筒#1~#4のインジェクタ2・・2に共通に接続されたデリバリパイプ201、このデリバリパイプ201に接続された燃料供給管202、高圧燃料ポンプ203、低圧燃料ポンプ204、及び、燃料タンク205などを備えており、低圧燃料ポンプ204及び高圧燃料ポンプ203の駆動により、燃料タンク205内に貯留の燃料(ガソリン)を、燃料供給管202を介してデリバリパイプ201に供給することができる。そして、このような構成の燃料供給装置200によって各気筒#1~#4のインジェクタ2に燃料が供給される。
 一方、排気通路12は、排気ポート120、分割型の第1排気マニホールド121(第1排気通路)及び第2排気マニホールド122(第2排気通路)、並びに、排気管123などによって構成されている。それら第1排気マニホールド121及び第2排気マニホールド122は気筒間の排気干渉を避けるために設けられている。
 第1排気マニホールド121は、2つのブランチ管(枝管)121a,121bと、ブランチ集合部121cとを有し、それらブランチ管121a,121bの下流端部がブランチ集合部121cの上流側端部に接続されている。この第1排気マニホールド121の2つのブランチ管121a,121bのうち、一方のブランチ管121aは第1気筒#1の排気ポート120に接続されており、他方のブランチ管121bは第4気筒#4の排気ポート120に接続されている。これにより、第1気筒#1から排出された排気ガスと、第4気筒#4から排出された排気ガスとが第1排気マニホールド121において集合し、その集合した後の排気ガスがブランチ集合部121cから、後述するターボチャージャ300の第1排気ガス流入口311に流入する。
 第2排気マニホールド122は、2つのブランチ管(枝管)122a,122bと、ブランチ集合部122cとを有し、それらブランチ管122a,122bの下流端部がブランチ集合部122cの上流側端部に接続されている。この第2排気マニホールド122の2つのブランチ管122a,122bのうち、一方のブランチ管122aは第2気筒#2の排気ポート120に接続されており、他方のブランチ管122bは第3気筒#3の排気ポート120に接続されている。これにより、第2気筒#2から排出された排気ガスと、第3気筒#3から排出された排気ガスとが第2排気マニホールド122において集合し、その集合した後の排気ガスがブランチ集合部122cから、後述するターボチャージャ300の第2排気ガス流入口312に流入する。
 そして、この例においては、図1及び図3に示すように、第1排気マニホールド121のブランチ集合部121c(第1気筒群の各気筒#1、#4からの排気ガスが集合した後に流れる集合部)に、第1空燃比センサ(A/Fセンサ)411が配置されており、第2排気マニホールド122のブランチ集合部122c(第2気筒群の各気筒#2、#3からの排気ガスが集合した後に流れる集合部)に、第2空燃比センサ(A/Fセンサ)412が配置されている点に特徴がある。
 これら第1空燃比センサ411及び第2空燃比センサ412は、例えば、限界電流式の酸素濃度センサが適用されており、広い空燃比領域に亘って空燃比に対応した出力電圧を発生する構成となっている。この例では、第1空燃比センサ411及び第2空燃比センサ412として、応答性などの特性が同じものを用いている。これら第1空燃比センサ411及び第2空燃比センサ412の各出力信号はECU500に入力される。
 なお、以下の説明において、「第1空燃比センサ411及び第2空燃比センサ412」を「空燃比センサ411,412」と言う場合もある。
 また、排気通路12(排気管123)には、図1に示すように、前段のS/C触媒(スタート触媒)91と後段のU/F触媒(アンダーフロア触媒)92とが配置されている。
 S/C触媒91及びU/F触媒92はともに三元触媒である。三元触媒は、酸素を貯蔵(吸蔵)するO2ストレージ機能(酸素貯蔵機能)を有しており、この酸素貯蔵機能により、空燃比が理論空燃比からある程度まで偏移したとしても、HC,CO及びNOxを浄化することが可能となっている。すなわち、エンジン1の空燃比がリーンとなって、三元触媒であるS/C触媒91及びU/F触媒92に流入する排気ガス中の酸素及びNOxが増加すると、酸素の一部をS/C触媒91及びU/F触媒92が吸蔵することでNOxの還元・浄化を促進する。一方、エンジン1の空燃比がリッチになって、S/C触媒91及びU/F触媒92に流入する排気ガスにHC,COが多量に含まれると、S/C触媒91及びU/F触媒92は内部に吸蔵している酸素分子を放出し、これらのHC,COに酸素分子を与え、酸化・浄化を促進する。
 上記S/C触媒91は、排気通路12の上流側(燃焼室1dに近い側)に設けられているため、エンジン1の始動後、短時間のうちに活性温度まで上昇するという特徴がある。また、U/F触媒92は、S/C触媒91で浄化することのできなかったHC,CO及びNOxを浄化するためのものであり、車体を構成するフロアパネルの下側に配設されている。
 さらに、上記排気通路12(排気管123)には、S/C触媒91の下流側であって、かつ、U/F触媒92の上流側に酸素センサ(O2センサ)413が配置されている。酸素センサ413は、理論空燃比(ストイキ)近傍で出力値がステップ状に変化する特性(Z特性)を示すセンサであって、この例では、例えば起電力式(濃淡電池式)の酸素濃度センサが適用されている。
 -ターボチャージャ-
 この例のエンジン1には、排気圧を利用して吸入空気を過給するターボチャージャ(過給機)300が装備されている。
 ターボチャージャ300は、図1及び図3に示すように、排気通路12に配置されたタービンホイール301、吸気通路11に配置されたコンプレッサインペラ302、及び、これらタービンホイール301とコンプレッサインペラ302とを回転一体に連結する連結シャフト303などを備えており、排気通路12に配置のタービンホイール301が排気のエネルギによって回転し、これに伴って吸気通路11に配置のコンプレッサインペラ302が回転する。そして、コンプレッサインペラ302の回転により吸入空気が過給され、エンジン1の各気筒#1~#4の燃焼室1dに過給空気が強制的に送り込まれる。
 タービンホイール301はタービンハウジング310内に収容されており、コンプレッサインペラ302はコンプレッサハウジング320内に収容されている。これらタービンハウジング310とコンプレッサハウジング320とはセンターハウジング330の両側に取り付けられている。そして、上記コンプレッサインペラ302及びコンプレッサハウジング320などによってコンプレッサ300Bが構成されており、また、上記タービンホイール301及びタービンハウジング310などによってタービン300Aが構成されている。
 この例のターボチャージャ300は、ツインエントリ(ツインスクロール)ターボチャージャであって、タービン300A(タービンハウジング310)のスクロール室が仕切壁313によって2つに区画(第1スクロール室314と第2スクロール室315とに区画)されており、2つの排気ガス流入口(第1排気ガス流入口311及び第2排気ガス流入口312)を備えている。
 第1排気ガス流入口311には、上記第1排気マニホールド121のブランチ集合部121cが接続されており、第1気筒#1から排出される排気ガスと、第4気筒#4から排出される排気ガスとは、第1排気マニホールド121において合流し、第1排気ガス流入口311を通過してタービンハウジング310内(上記仕切壁313にて区画された第1スクロール室314内)に流入する。これによってタービンホイール301が回転する。また、第2排気ガス流入口312には、第2排気マニホールド122のブランチ集合部122cが接続されており、第2気筒#2から排出される排気ガスと、第3気筒#3から排出される排気ガスとは、第2排気マニホールド122において集合し、第2排気ガス流入口312を通過してタービンハウジング310内(上記仕切壁313にて区画された第2スクロール室315内)に流入する。これによってタービンホイール301が回転する。このようなツインエントリ型のターボチャージャ300によれば、気筒間の排気脈動の干渉を抑制することができ、優れた過給特性を得ることができる。
 なお、この例のターボチャージャ300において、タービンホイール301の上流側と下流側とを連通(タービンホイール301をバイパス)する排気バイパス通路と、この排気バイパス通路を開閉するウエストゲートバルブ(WGV)とを設けておき、そのウエストゲートバルブの開度を調整し、タービンホイール301をバイパスする排気ガス量を調整することにより過給圧を制御するように構成してもよい。
 また、この例のエンジン1にEGR装置(図示せず)を設けておいてもよい。EGR装置は、吸入空気に排気ガスの一部を導入することで、燃焼室1d内の燃焼温度を低下させてNOxの発生量を低減させる装置である。EGR装置としては、例えば、ターボチャージャ300のタービンホイール301よりも上流側(排気ガス流れの上流)の排気通路12(第1排気マニホールド121及び第2排気マニホールド122)と、インタークーラ8(ターボチャージャ300のコンプレッサインペラ302)の下流側(吸入空気流れの下流側)の吸気通路11(吸気マニホールド111)とを連通するEGR通路、このEGR通路に設けられた触媒、EGRクーラ及びEGRバルブなどを備えた構成を挙げることができる。そして、このような構成のEGR装置において、EGRバルブの開度を調整することにより、EGR率[EGR量/(EGR量+吸入空気量(新規空気量))(%)]を変更することができ、排気通路12から吸気通路11に導入されるEGR量(排気還流量)を調整することができる。
 -ECU-
 ECU500は、図4に示すように、CPU(Central Processing Unit)501、ROM(Read Only Memory)502、RAM(Random Access Memory)503、及び、バックアップRAM504などを備えている。
 ROM502は、各種制御プログラムや、それら各種制御プログラムを実行する際に参照されるマップ等が記憶されている。CPU501は、ROM502に記憶された各種制御プログラムやマップに基づいて各種の演算処理を実行する。また、RAM503は、CPU501での演算結果や各センサから入力されたデータ等を一時的に記憶するメモリであり、バックアップRAM504は、例えばエンジン1の停止時にその保存すべきデータ等を記憶する不揮発性のメモリである。
 以上のCPU501、ROM502、RAM503及びバックアップRAM504は、バス507を介して互いに接続されるとともに、入力インターフェース505及び出力インターフェース506と接続されている。
 入力インターフェース505には、クランクポジションセンサ401、カムポジションセンサ402、水温センサ403、エアフロメータ404、吸気温センサ405、スロットル開度センサ406、アクセルペダルの踏み込み量に応じた検出信号を出力するアクセル開度センサ407、第1空燃比センサ411、第2空燃比センサ412、及び、酸素センサ413などの各種センサ類が接続されている。また、入力インターフェース505にはイグニッションスイッチ408が接続されており、イグニッションスイッチ408がオン操作されると、スタータモータ(図示せず)によるエンジン1のクランキングが開始される。
 出力インターフェース506には、インジェクタ2、点火プラグ3のイグナイタ4、及び、スロットルバルブ5のスロットルモータ6などが接続されている。
 そして、ECU500は、上記した各種センサの検出信号に基づいて、インジェクタ2の駆動制御(燃料噴射量調整制御)、点火プラグ3の点火時期制御、スロットルバルブ5のスロットルモータ6の駆動制御(吸入空気量制御)、などを含むエンジン1の各種制御を実行する。さらに、ECU500は、下記の「気筒判別処理」、「空燃比フィードバック制御」、及び、「気筒間の空燃比インバランス検出処理」を実行する。
 -気筒判別処理-
 ECU500が実行する気筒判別処理について説明する。
 まず、この例に適用するクランク角の検出に用いるシグナルロータ17には、図2に示すように、各歯17aが例えば10°CA毎に形成されており、2枚の歯分が欠落した34枚の歯17aを有している。このシグナルロータ17の欠歯部17bがクランクポジションセンサ(電磁ピックアップ等)401の近傍を通過する際には、電圧パルスの発生間隔が長くなる。こうしたシグナルロータ17の欠歯部17bに対応した信号(欠歯信号)の出力によって、クランクシャフト15の回転位相(クランク位置)を検出することができ、各気筒が上死点に位置する時期を認識することができる。このようなシグナルロータ17の欠歯部17bに対応したクランクポジションセンサ401の出力信号(欠歯信号)は、気筒判別の上死点位置を判別するための信号すなわち「上死点位置判別信号」となっている。
 ここで、4サイクル機関(4気筒エンジン)では、ピストンの昇降に応じて回転するクランクシャフトの2回転(720°CA)が機関サイクルの1周期となっており、各気筒は機関サイクルの1周期毎に2度ずつ上死点に位置する。そのため、上記のようなクランクポジションセンサ401の出力信号(欠歯信号)だけでは、2度の上死点うちの、いずれの上死点にあるのかを判別することはできない。つまり、気筒判別を行うことはできない。そこで、この例では、クランクポジションセンサ401の出力信号(欠歯信号)に、カムポジションセンサ402の出力信号(電圧パルス)を組み合わせることで気筒判別を可能としている。その気筒判別について以下に説明する。
 まず、クランクポジションセンサ401は、上記したように、クランクシャフト15が1回転(360°CA)する間に1回(機関サイクルの1周期に2回)、上記欠歯信号を出力する。この例では、第1気筒#1及び第4気筒#4の上死点前の所定クランク角でクランクポジションセンサ401が欠歯信号を出力する構成となっている。
 また、カムポジションセンサ402は、上記したように、クランクシャフト15が2回転する間に1回(機関サイクルの1周期に1回)、電圧パルスを出力する。この例では、第1気筒#1が圧縮上死点に位置し、第4気筒#4が排気上死点に位置したときにカムポジションセンサ402が電圧パルスを出力する構成となっている。
 そして、このような構成において、クランクポジションセンサ401が欠歯信号を出力したときに、カムポジションセンサ402が電圧パルスを発生すれば、第1気筒#1が圧縮上死点に位置し、第4気筒#4が排気上死点に位置することになる。また、クランクポジションセンサ401が欠歯信号を出力したときに、カムポジションセンサ402が電圧パルスを発生しないときには、第1気筒#1が排気上死点に位置し、第4気筒#4が圧縮上死点に位置することになる。このようにカムポジションセンサ402が発生する電圧パルスは、気筒判別を行うための信号すなわち「気筒判別信号」となっている。
 このように、クランクポジションセンサ401の欠歯信号(上死点位置判別信号の最初の検出)と、その検出に対応したカムポジションセンサ402の気筒判別信号(電圧パルス)の発生の有無とに基づいて、遅くともクランクシャフト15が1回転する間において気筒判別(クランク角確定)を行うことができる。そして、そのような気筒判別により、機関始動時・始動後の運転時等において、各気筒#1~#4のピストン位置(吸入行程・圧縮行程・爆発行程・排気行程)を認識することができ、精密な燃料噴射制御や点火時期制御などのエンジン運転制御を行うことができる。
 なお、以上の処理では、クランクポジションセンサ401及びカムポジションセンサ402の出力信号から気筒判別(クランク角確定)及び各気筒#1~#4のピストン位置の認識等を行っているが、他の公知の手段によって気筒判別(クランク角確定)及び各気筒#1~#4のピストン位置の認識等を行うようにしてもよい。
 -空燃比フィードバック制御-
 ECU500は、エンジン1の排気通路12に配置した空燃比センサ411,412及び酸素センサ413の各出力に基づいて排気ガス中の酸素濃度を算出し、その算出した酸素濃度から得られる実際の空燃比が目標空燃比(例えば理論空燃比)に一致するように、インジェクタ2から燃焼室1d内に噴射する燃料噴射量を制御する空燃比フィードバック制御(ストイキ制御)を実行する。その空燃比フィードバック制御の具体的な処理について説明する。
 まず、上記S/C触媒91は、三元触媒であるので、空燃比がほぼ理論空燃比(ストイキ、例えばA/F=14.6±0.2程度)のときに未燃成分(HC,CO)を酸化し、同時に窒素酸化物(NOx)を還元する機能を発揮する。さらに、S/C触媒(三元触媒)91は、上述したように、酸素を吸蔵する機能(酸素吸蔵機能、O2ストレージ機能)を有し、この酸素吸蔵機能により、空燃比が理論空燃比からある程度まで偏移したとしても、HC,CO及びNOxを浄化することができる。すなわち、エンジン1の空燃比がリーンとなってS/C触媒91に流入する排気ガスにNOxが多量に含まれると、S/C触媒91はNOxから酸素分子を奪ってこの酸素分子を吸蔵するとともにNOxを還元し、これによりNOxを浄化する。また、エンジン1の空燃比がリッチになってS/C触媒91に流入する排気ガスにHC,COが多量に含まれると、S/C触媒91はこれらに吸蔵している酸素分子を与えて酸化し、これによりHC,COを浄化する。
 したがって、S/C触媒(三元触媒)91が、連続的に流入する多量のHC,COを効率的に浄化するには、このS/C触媒91が酸素を多量に貯蔵していなければならず、逆に、連続的に流入する多量のNOxを効率的に浄化するには、S/C触媒91が酸素を十分に吸蔵できる状態にあることが必要となる。以上のことから明らかなように、S/C触媒91の浄化能力は、このS/C触媒91が吸蔵し得る最大の酸素量(最大酸素吸蔵量)に依存する。
 一方、S/C触媒(三元触媒)91は燃料中に含まれる鉛や硫黄等による被毒、あるいは、触媒に加わる熱により劣化し、これに伴って最大酸素吸蔵量が次第に低下していく。このように最大酸素吸蔵量が低下した場合であっても、エミッションを良好に維持するには、S/C触媒91から排出されるガスの空燃比が、理論空燃比に極めて近い状態となるように制御する必要がある。
 そこで、この例では、空燃比フィードバック制御を行っている。具体的には、上記空燃比センサ411,412の出力に基づいて、S/C触媒(三元触媒)91の上流側(排気ガス流れの上流側)の排気ガスの空燃比を理論空燃比に近づけるためのメインフィードバック制御と、上記酸素センサ413の出力に基づいて、上記メインフィードバック制御のずれを補償するためのサブフィードバック制御とを組み合わせて実行する。
 メインフィードバック制御では、空燃比センサ411,412の出力を基礎として検知される排気ガスの空燃比が、理論空燃比と一致するように、インジェクタ2からの燃料噴射量の増減が調整される。より具体的には、検知された排気ガスの空燃比が理論空燃比よりリッチであれば、燃料噴射量が減量調整され、逆に、その排気ガスの空燃比が理論空燃比よりリーンであれば、燃料噴射量が増量調整される。
 このようなメインフィードバック制御によれば、理想的には、S/C触媒91に流れ込む排気ガスの空燃比を理論空燃比に維持することができる。そして、その状態が厳密に維持されれば、S/C触媒91の吸蔵酸素量がほぼ一定量に保たれるため、S/C触媒91の下流側に、未浄化の成分を含む排気ガスが流出するのを完全に阻止することができる。
 ここで、この例では2つの空燃比センサ411,412を設けているので、上記メインフィードバック制御の実行時には、第1気筒#1及び第4気筒#4の空燃比のメインフィード制御と、第2気筒#2及び第3気筒#3の空燃比のメインフィード制御とにおいて、それぞれ個別のマップを用い、第1空燃比センサ411の出力に基づいて、第1及び第4気筒用のマップを参照してメインフィードバック制御を実行し、第2空燃比センサ412の出力に基づいて、第2及び第3気筒用のマップを参照してメインフィードバック制御を実行する。なお、このようなメインフィードバック制御時において、ECU500は、上記した気筒判別処理により、各気筒#1~#4の排気行程を認識することができるので、第1気筒#1、第4気筒#4の各気筒から排出された排気ガスの空燃比と第1空燃比センサ411の出力との関係、及び、第2気筒#2、第3気筒#3の各気筒から排出された排気ガスの空燃比と第2空燃比センサ412の出力との関係を把握することができる。
 ところで、空燃比センサ411,412の出力にはある程度の誤差が含まれている。また、インジェクタ2の噴射特性にもある程度のばらつきがある。このため、現実的には、メインフィードバック制御を実行するだけでは、S/C触媒91の上流側の排気ガスの空燃比を厳密に理論空燃比に制御することは困難である。
 このような理由により、メインフィードバック制御が実行されていても、S/C触媒91の下流側には、未浄化の成分を含む排気ガスが流出してくることがある。つまり、メインフィードバック制御が実行されていても、S/C触媒91の上流側の排気ガスの空燃比は、全体としてリッチ側もしくはリーン側に偏ることがあり、その結果、S/C触媒91の下流側には、HCやCOを含むリッチな排気ガス、あるいは、NOxを含むリーンな排気ガスが流出することがある。
 こうした排気ガスの流出が生じると、酸素センサ413は、排気ガスの空燃比に応じてリッチ出力またはリーン出力を発生する。酸素センサ413からリッチ出力が発せられた場合には、S/C触媒91の上流側の排気ガスの空燃比が、全体としてリッチ側に偏っていたと判断することができ、また、酸素センサ413からリーン出力が発せられた場合には、S/C触媒91の上流側の排気ガスの空燃比が、全体としてリーン側に偏っていたと判断することができる。
 サブフィードバック制御では、酸素センサ413の出力が理論空燃比よりリーンの空燃比を表す値となると、この酸素センサ413の出力と理論空燃比に略相当する目標値との偏差を比例・積分処理(PID処理)してサブフィードバック補正量を求める。そして、このサブフィードバック補正量分だけ空燃比センサ411,412の出力を補正し、これにより、エンジン1の実際の空燃比が、空燃比センサ411,412の検出空燃比よりも見かけ上リーン側であるように設定し、その補正した見かけ上の空燃比が目標空燃比(エンジン1の目標空燃比、ここでは理論空燃比)となるようにフィードバック制御する。
 同様に、酸素センサ413の出力が理論空燃比よりリッチの空燃比を表す値となると、この酸素センサ413の出力と理論空燃比に略相当する目標値との偏差を比例積分処理(PID処理)してサブフィードバック補正量を求める。そして、このサブフィードバック補正量分だけ空燃比センサ411,412の出力を補正し、これによってエンジン1の実際の空燃比が、空燃比センサ411,412の検出空燃比よりも見かけ上リッチ側であるように設定し、その補正した見かけ上の空燃比が目標空燃比(エンジン1の目標空燃比、ここでは理論空燃比)となるようにフィードバック制御する。
 以上により、S/C触媒(三元触媒)91の下流側の排気ガスの空燃比が、同部位における目標空燃比(略理論空燃比)と一致するようになる。
 -気筒間の空燃比インバランス検出処理-
 次に、気筒間の空燃比インバランス検出処理について説明する。
 まず、例えば、インジェクタ2などの燃料供給系やエアフロメータ404などの空気系に、エンジン1の全気筒#1~#4に影響を及ぼすような異常が発生した場合、空燃比のメインフィードバック制御の補正量の絶対値が大きくなるため、これをECU500でモニタすることで、その異常を検出できる。
 例えば、空燃比フィードバック制御中(ストイキ制御中)において、燃料噴射量が全体的にストイキ相当量に対して5%ずれている場合(すなわち、全ての気筒#1~#4において燃料噴射量がストイキ相当量に対して5%ずつ、ずれている場合)、メインフィードバック制御におけるフィードバック補正量はその5%のずれ量を補正するような値、つまり、-5%相当の補正量となり、これによって、燃料供給系もしくは空気系が5%ずれていることを検出することができる。そして、このフィードバック補正量が所定の判定閾値以上となったときに、燃料供給系もしくは空気系が異常であることを検出することができる。
 一方、燃料供給系や空気系が全体的にずれているのではなく、気筒間の空燃比にばらつき(インバランス:imbalance)が発生している場合がある。気筒間に空燃比インバランスが発生した場合、上記第1空燃比センサ411及び第2空燃比センサ412の各出力波形は、例えば図5に示すような波形となる。
 図5に示すように、空燃比センサ411,412の出力波形(A/F波形)は、ストイキを中心として振動する傾向にあるが、気筒間の空燃比インバランスが発生すると、そのインバランス度合いに応じて振動の振幅が大きくなる。
 ここで、図5に示す例では、エンジン1の4つの気筒#1~#4のうち、第1気筒#1のみがリッチ側にずれた場合を示しており、第1空燃比センサ411(第1気筒#1及び第4気筒#4の気筒群の空燃比センサ)のA/Fセンサ出力波形(図5(A))は、第2空燃比センサ412(第2気筒#2及び第3気筒#3の気筒群の空燃比センサ)のA/Fセンサ出力波形(図5(B):気筒間インバランスがない場合の波形)よりも振動の振幅が大きくなっている。また、図5(A)に示すA/Fセンサ出力波形a1は、第1気筒#1の排気ガス空燃比が+20%のインバランス率(ストイキ相当量(燃料量)に対する燃料噴射量の割合)でリッチ側にずれている場合を示しており、A/Fセンサ出力波形a2は、第1気筒#1の排気ガス空燃比が+50%のインバランス率でリッチ側にずれている場合を示している。なお、図5において、A/Fセンサ出力波形がリッチ側にずれている理由は、空燃比センサ411,412の出力は、水素の影響によりリーン側よりもリッチ側の方が大きくなる傾向にあることによる。
 以上のように、気筒間の空燃比インバランスが大ききほど、空燃比センサ411,412の出力波形の振動の振幅が大きくなるので、これをECU500でモニタすることにより、気筒間のインバランス異常を検出することができる。そのインバランス異常の検出方法の例について以下に説明する。
 なお、ECU500が実行する気筒間の空燃比インバランス検出処理が、「気筒間の空燃比インバランスが発生しているか否かを検出するインバランス検出手段」に相当する。
 (1)ECU500は、空燃比センサ411,412の出力信号に基づいて、その各A/Fセンサ出力波形(上記図5(A)及び(B)参照)をモニタし、それらA/Fセンサ出力波形のピーク値(例えば、リッチ側のピーク値:図5(A)参照)を順次取得していく。そして、その各A/Fセンサ出力波形のピーク値と所定の判定閾値とを比較し、A/Fセンサ出力波形のピーク値が所定の判定閾値以上になった場合は気筒間にインバランス異常が発生していると認識(検出)する。
 なお、上記A/Fセンサ出力波形のピーク値に対して設定する判定閾値については、気筒間に空燃比インバランスが生じても空燃比フィードバック制御によって吸収可能な範囲(許容気筒間ばらつき度合い)、及び、三元触媒(S/C触媒91、U/F触媒92)の浄化性能などを考慮して、排気エミッションの悪化が生じないような値(ストイキに対する乖離許容値)を実験・計算等によって取得しておき、その結果を基にして適合した値(判定閾値)を設定すればよい。
 (2)上述の如く、気筒間の空燃比インバランスが大ききほど、空燃比センサ411,412の出力波形の振動の振幅が大きくなる点、つまり、上記インバランス率が大きいほど、A/Fセンサ出力波形の傾きが大きくなる点(図5(A)参照)を利用して、A/Fセンサ出力波形の傾きから気筒間の空燃比のインバランス異常を検出する。
 具体的に、ECU500は、空燃比センサ411,412の出力信号に基づいて、その各A/Fセンサ出力波形(上記図5(A)及び(B)参照)をモニタし、それらA/Fセンサ出力波形の傾き(例えば、リーン側からリッチ側に変動する際の傾き:図5(A)参照)を順次取得していく。そして、その各A/Fセンサ出力波形の傾きと所定の判定閾値(傾き)とを比較し、センサ出力波形の傾きが所定の判定閾値以上になった場合は気筒間にインバランス異常が発生していると認識(検出)する。
 なお、上記A/Fセンサ出力波形のピーク値に対して設定する判定閾値については、気筒間に空燃比インバランスが生じても空燃比フィードバック制御によって吸収可能な範囲(許容気筒間ばらつき度合い)、及び、三元触媒(S/C触媒91、U/F触媒92)の浄化性能などを考慮して、排気エミッションの悪化が生じないような値(傾き)を実験・計算等に取得しておき、その結果を基に適合した値(判定閾値値)を設定すればよい。
 以上のように、この実施形態では、空燃比センサ411,412の出力に基づいて、気筒間の空燃比インバランスを車載状態で検出することができる(気筒間空燃比インバランス検出OBD)。
 ここで、本実施形態では、上述したように、排気通路12の一部(ターボチャージャ300の上流側)を分割型の第1排気マニホールド121及び第2排気マニホールド122によって構成するとともに、その第1排気マニホールド121のブランチ集合部121cをターボチャージャ300の第1排気ガス流入口311に接続し、第2排気マニホールド122のブランチ集合部122cをターボチャージャ300の第2排気ガス流入口312に接続している。そして、第1排気マニホールド121のブランチ集合部121cに第1空燃比センサ411を配置し、第2排気マニホールド122のブランチ集合部122cに第2空燃比センサ412を配置している。
 このように、ターボチャージャ300の上流側で、第1気筒#1及び第4気筒#4からの排気ガスが集合した後の位置(ブランチ集合部121c)に第1空燃比センサ411を配置し、第2気筒#2及び第3気筒#3からの排気ガスが集合した後の位置(ブランチ集合部122c)に第2空燃比センサ412を配置することによって、各空燃比センサ411,412の素子部への排気ガスのガス当たりが良好となる。
 すなわち、ターボチャージャ300の上流側に空燃比センサを配置したとしても、4つの気筒#1~#4からの排気ガスを1つの空燃比センサで検出する場合、空燃比センサの素子部に対するガス当たり悪い気筒と、ガス当たりの良い気筒とが、どうしてもできてしまうため、排気ガスの空燃比の検出精度が低くなる。さらに、4つの気筒#1~#4の空燃比を1つの排気センサで検出しなればならないので、空燃比センサに高い応答性が要求される。
 これに対し、上述の如く、2つの気筒(第1気筒#1と第4気筒#4、第2気筒#2と第3気筒#3)に対してそれぞれ空燃比センサ411,412を配置した場合、それら2つの気筒からの排気ガスの流れ(各ブランチ集合部121c,122c内部の排気ガス流れ)のみを考慮して空燃比センサ411,412の配置位置を決定すればよいので、空燃比センサの配置位置の自由度が高くなり、それぞれの空燃比センサ411,412の素子部を、ガス当たりの良い位置(各気筒からの排気ガスの流れがスムーズな場所)に配置することができる。しかも、第1空燃比センサ411においては、排気行程が隣り合わない第1気筒#1の空燃比と第4気筒#4の空燃比とを検出すればよく、また、第2空燃比センサ412においても、排気行程が隣り合わない第2気筒#2の空燃比と第3気筒#3の空燃比とを検出すればよいので、4つの気筒#1~#4に対して1つの空燃比センサを設けた場合と比較して、排気ガス空燃比を検出する時間間隔が長くなる(2倍になる)ため、空燃比センサ411,412の各出力を各気筒毎に確実に分離することができる。これによって、S/C触媒91の上流側の空燃比を各気筒毎に正確に検出することができるので、気筒間の空燃比インバランスを精度良く検出することができ、インバランス異常が発生したときには、その異常を確実に検出することができる。その結果として、上記した気筒間空燃比インバランス検出のOBD法規に対応することが可能になる。
 なお、上記した特許文献3(実開昭62-162349号公報(全文))には、排気ターボ過給機の排気タービンへの排気ガス導入通路を第1及び第2の排気通路によって形成した過給機付きエンジンにおいて、上記第1及び第2の排気通路の集合部に壁部を設けるとともに、その壁部に排気センサを、それら第1及び第2の排気通路を流れる排気流にさらされるように配置した構造が開示されている。
 しかし、この特許文献3に記載の構造によれば、上記壁部の下流側において第1の排気通路と第2の排気通路とが合流しているため、第1の排気通路を流れる排気ガスが第2の排気通路内に回り込む(第2の排気通路を流れる排気ガスが第1の排気通路内に回り込む)ため、各気筒毎に空燃比を正確に検出することは難しい。また、4つの気筒に対して1つ排気センサを設けているので、排気センサの配置の自由度が少なくて、排気センサの素子部に、第1及び第2の排気通路を流れる排気ガスを効率よく当てることは難しい。さらに、4つの気筒の空燃比を1つの排気センサで検出しなければならないので、排気センサ出力を各気筒毎に確実に分離するには、排気センサに高い応答性が要求される。
 -リーン側のインバランス検出処理-
 次に、エンジン1の4つの気筒#1~#4のうち、一部の気筒の燃料噴射量がストイキ相当量よりもリーン側にずれた場合のインバランス検出処理(リーン側のインバランス検出処理)について説明する。
 まず、4つの気筒#1~#4のうち、ある気筒(例えば第1気筒#1)の燃料噴射系が故障(例えばインジェクタ2の詰まり)等が生じて、当該気筒の燃料噴射量がストイキ相当量に対してリーン側にずれた場合(リーン側インバランスが発生した場合)、その気筒(複数の気筒の場合も含む)の爆発行程におけるエンジン回転速度が低下するので、この空燃比インバランスが生じた気筒(第1気筒#1)の爆発行程中においてクランクシャフト15が一定クランク角度を回転するのに要する時間が、他の気筒(例えば第2気筒#2~第4気筒#4)の爆発行程時におけるその時間よりも長くなる。したがって、これらの時間を計測して比較することにより気筒間の空燃比インバランスを認識(検出)することが可能になる。
 その具体的な処理の一例について説明する。まず、ECU500は、クランクポジションセンサ401及びカムポジションセンサ402の各出力信号を所定のクランク角度毎(例えば30°CA毎)に取り込み、それらの各信号に基づいて、第1気筒#1が爆発行程にあるときに、この爆発行程中において、クランクシャフト15が一定クランク角度(例えば180°CA)を回転するのに要する経過時間T1と、この第1気筒#1の爆発行程よりも1回前(360°CA前)に爆発行程を迎えていた第2気筒#2の爆発行程中においてクランクシャフト15が一定のクランク角度(例えば180°CA)を回転するのに要する経過時間T2との差を演算して、第1気筒#1の回転変動量ΔNE1(=T1-T2)を得る。
 また、同様にして、エンジン1の各気筒#2~#4の爆発行程中においてクランクシャフト15が一定クランク角度(例えば180°CA)を回転するのに要する経過時間T3(第3気筒#3)、T4(第4気筒#4)、T2(第2気筒#2)を順次演算して、第3気筒#3の回転変動量ΔNE3(=T3-T1)、第4気筒#4の回転変動量ΔNE4(=T4-T3)、及び、第2気筒#2の回転変動量ΔNE2(=T2-T4)を得る。
 そして、ECU500は、上記演算により求めた各気筒#1~#4の回転変動量ΔNE1~NE4と所定の判定閾値とを比較し、回転変動量ΔNEが所定の判定閾値を超えている気筒がある場合は「気筒間の空燃比インバランス異常が発生している」と認識(検出)する。
 なお、回転変動量ΔNEに対して設定する判定閾値については、気筒間に空燃比インバランスが生じても空燃比フィードバック制御によって吸収可能な範囲(許容気筒間ばらつき度合い)、及び、三元触媒(S/C触媒91、U/F触媒92)の浄化性能などを考慮して、排気エミッションの悪化が生じないような値(回転変動量)を実験・計算等によって取得しておき、その結果を基に適合した値(判定閾値)を設定すればよい。
 ここで、このようなリーン側のインバランス検出についても、第1空燃比センサ411及び第2空燃比センサ412の各出力に基づいて検出するようにしてもよい。
 -他の実施形態-
 以上の例では、筒内噴射式4気筒ガソリンエンジンに本発明を適用した場合について説明したが、本発明はこれに限られることなく、例えば6気筒ガソリンエンジンなど他の任意の気筒数のガソリンエンジンにも適用可能である。また、筒内噴射式多気筒ガソリンエンジンのほか、ポート噴射式多気筒ガソリンエンジンや、筒内噴射用インジェクタと吸気ポート噴射用インジェクタとを備えたデュアル噴射式多気筒ガソリンエンジンにも本発明は適用可能である。さらに、ガスエンジンや、バイオマス由来燃料を用いるエンジンにも適用可能である。
 本発明は、過給機を備えた内燃機関(エンジン)に利用可能であり、さらに詳しくは、空燃比センサの触媒の上流側の排気ガスの空燃比を正確に検出する技術に有効に利用することができる。
 1 エンジン
 #1~#4 気筒
 1d 燃焼室
 2 インジェクタ(燃料噴射弁)
 91 S/C触媒
 11 吸気通路
 12 排気通路
 120 排気ポート
 121 第1排気マニホールド(第1排気通路)
 121a,121b ブランチ管
 121c ブランチ集合部
 122 第2排気マニホールド(第2排気通路)
 122a,122b ブランチ管
 122c ブランチ集合部
 300 ターボチャージャ
 300A タービン
 301 タービンホイール
 310 タービンハウジング
 311 第1排気ガス流入口
 312 第2排気ガス流入口
 313 仕切壁
 314 第1スクロール室
 315 第2スクロール室
 300B コンプレッサ
 302 コンプレッサインペラ
 303 連結シャフト
 401 クランクポジションセンサ
 402 カムポジションセンサ
 411 第1空燃比センサ(A/Fセンサ)
 412 第2空燃比センサ(A/Fセンサ)
 413 酸素センサ
 500 ECU

Claims (4)

  1.  複数の気筒を有する内燃機関の第1気筒群から排出される排気ガスが流れる第1排気通路と、前記内燃機関の第2気筒群から排出される排気ガスが流れる第2排気通路と、
     タービンとコンプレッサとを有し、前記タービンに2つの排気ガス流入口が設けられた過給機とを備え、
     前記第1排気通路が前記タービンの一方の排気ガス流入口に接続され、前記第2排気通路が前記タービンの他方の排気ガス流入口に接続された過給機付き内燃機関において、
     前記過給機の上流側の前記第1排気通路であって前記第1気筒群からの排気ガスが集合して流れる集合部と、前記過給機の上流側の前記第2排気通路であって前記第2気筒群からの排気ガスが集合して流れる集合部とに、それぞれ、空燃比センサが設けられていることを特徴とする過給機付き内燃機関。
  2.  請求項1記載の過給機付き内燃機関において、
     前記第1排気通路は、第1気筒群の各排気ポートに接続された複数のブランチ管と、ブランチ集合部とを有し、前記複数のブランチ管の下流側端部が前記ブランチ集合部の上流側端部に接続された第1排気マニホールドであって、当該第1排気マニホールドの前記ブランチ集合部に前記空燃比センサが設けられており、
     前記第2排気通路は、第2気筒群の各排気ポートに接続された複数のブランチ管と、ブランチ集合部とを有し、前記複数のブランチ管の下流側端部が前記ブランチ集合部の上流側端部に接続された第2排気マニホールドであって、当該第2排気マニホールドの前記ブランチ集合部に前記空燃比センサが設けられていることを特徴とする過給機付き内燃機関。
  3.  請求項1または2記載の過給機付き内燃機関において、
     前記第1排気通路に設けられた空燃比センサ及び第2排気通路に設けられた空燃比センサの各出力に基づいて、気筒間の空燃比インバランスが発生しているか否かを検出するインバランス検出手段を備えていることを特徴とする過給機付き内燃機関。
  4.  請求項3記載の過給機付き内燃機関において、
     前記インバランス検出手段は、前記2つの空燃比センサの出力波形に基づいて、気筒間の空燃比インバランスが発生しているか否かを検出することを特徴とする過給機付き内燃機関。
PCT/JP2011/050752 2011-01-18 2011-01-18 過給機付き内燃機関 WO2012098644A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/979,703 US9228522B2 (en) 2011-01-18 2011-01-18 Supercharger-equipped internal combustion engine
JP2012553494A JP5720700B2 (ja) 2011-01-18 2011-01-18 過給機付き内燃機関
PCT/JP2011/050752 WO2012098644A1 (ja) 2011-01-18 2011-01-18 過給機付き内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/050752 WO2012098644A1 (ja) 2011-01-18 2011-01-18 過給機付き内燃機関

Publications (1)

Publication Number Publication Date
WO2012098644A1 true WO2012098644A1 (ja) 2012-07-26

Family

ID=46515296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050752 WO2012098644A1 (ja) 2011-01-18 2011-01-18 過給機付き内燃機関

Country Status (3)

Country Link
US (1) US9228522B2 (ja)
JP (1) JP5720700B2 (ja)
WO (1) WO2012098644A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114774A (ja) * 2012-12-11 2014-06-26 Mazda Motor Corp ターボ過給機付きエンジン

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678010B1 (ko) * 2009-09-10 2016-11-21 보르그워너 인코퍼레이티드 배기가스 터보차저의 터빈 휠의 배기가스 공급 장치
JP5850009B2 (ja) * 2013-08-22 2016-02-03 トヨタ自動車株式会社 内燃機関の制御装置
DE102014203015A1 (de) * 2014-02-19 2015-08-20 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Führen eines Abgasstroms eines Verbrennungsmotors mit einem lastabhängigen Wärmeübergangskoeffizienten
DE102015205998A1 (de) * 2015-04-02 2016-10-06 Ford Global Technologies, Llc Aufgeladene Brennkraftmaschine mit zweiflutiger Turbine und gruppierten Zylindern
GB201712182D0 (en) 2017-07-28 2017-09-13 Cummins Ltd Diffuser space for a turbine of a turbomachine
CN110735673B (zh) * 2019-11-18 2021-10-26 大连海事大学 一种双通道涡壳
JP7405065B2 (ja) * 2020-12-09 2023-12-26 トヨタ自動車株式会社 内燃機関の排気通路構造
US11965472B1 (en) * 2022-12-09 2024-04-23 Ford Global Technologies, Llc Vehicle control with individual engine cylinder enablement for air-fuel ratio imbalance monitoring and detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301720A (ja) * 2002-04-10 2003-10-24 Honda Motor Co Ltd 内燃機関の排気系構造
JP2007247409A (ja) * 2006-03-13 2007-09-27 Toyota Motor Corp 内燃機関
JP2009270543A (ja) * 2008-05-09 2009-11-19 Honda Motor Co Ltd 気筒間の空燃比の不均衡を判断するための装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162349U (ja) 1986-04-07 1987-10-15
US5954039A (en) * 1998-04-01 1999-09-21 Ford Global Technologies, Inc. Air/fuel ratio control system
US6668812B2 (en) * 2001-01-08 2003-12-30 General Motors Corporation Individual cylinder controller for three-cylinder engine
US6543219B1 (en) * 2001-10-29 2003-04-08 Ford Global Technologies, Inc. Engine fueling control for catalyst desulfurization
US7027910B1 (en) * 2005-01-13 2006-04-11 General Motors Corporation Individual cylinder controller for four-cylinder engine
JP2007032476A (ja) 2005-07-28 2007-02-08 Toyota Motor Corp 内燃機関の制御装置
JP2009281328A (ja) 2008-05-23 2009-12-03 Toyota Motor Corp 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
DE102009018104A1 (de) * 2008-11-10 2010-05-12 Friedrich Boysen Gmbh & Co. Kg Abgaskrümmer
US8365528B2 (en) * 2009-01-06 2013-02-05 Ford Global Technologies, Llc Engine valve duration control for improved scavenging
JP5278053B2 (ja) 2009-03-06 2013-09-04 日産自動車株式会社 エンジンの制御装置
JP4962656B2 (ja) * 2009-12-09 2012-06-27 トヨタ自動車株式会社 内燃機関の空燃比気筒間インバランス判定装置
US8682569B2 (en) * 2009-12-17 2014-03-25 GM Global Technology Operations LLC Systems and methods for diagnosing valve lift mechanisms and oil control valves of camshaft lift systems
US8567189B2 (en) * 2010-06-14 2013-10-29 Ford Global Technologies, Llc Twin scroll turbocharger with EGR takeoffs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301720A (ja) * 2002-04-10 2003-10-24 Honda Motor Co Ltd 内燃機関の排気系構造
JP2007247409A (ja) * 2006-03-13 2007-09-27 Toyota Motor Corp 内燃機関
JP2009270543A (ja) * 2008-05-09 2009-11-19 Honda Motor Co Ltd 気筒間の空燃比の不均衡を判断するための装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114774A (ja) * 2012-12-11 2014-06-26 Mazda Motor Corp ターボ過給機付きエンジン

Also Published As

Publication number Publication date
US20130283787A1 (en) 2013-10-31
JP5720700B2 (ja) 2015-05-20
US9228522B2 (en) 2016-01-05
JPWO2012098644A1 (ja) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5720700B2 (ja) 過給機付き内燃機関
JP5099266B2 (ja) 気筒間空燃比ばらつき異常検出装置
JP5772634B2 (ja) 多気筒内燃機関の制御装置
JP5067509B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
US10006382B2 (en) Apparatus for detecting inter-cylinder air-fuel ratio imbalance in multi-cylinder internal combustion engine
US8443656B2 (en) Inter-cylinder air-fuel ratio imbalance abnormality detection device for multi-cylinder internal combustion engine and abnormality detection method therefor
US8620564B2 (en) Abnormality detection apparatus and abnormality detection method for multi-cylinder internal combustion engine
US20120209497A1 (en) Inter-cylinder air-fuel ratio imbalance abnormality determination device
US20120330533A1 (en) Apparatus for and method of detecting abnormal air-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
JP4760633B2 (ja) 内燃機関
JP4733003B2 (ja) 内燃機関の排ガス浄化装置
JP5999008B2 (ja) 多気筒内燃機関の気筒間空燃比インバランス検出装置
JP4747079B2 (ja) 内燃機関の排ガス浄化装置
JP6107378B2 (ja) 空燃比インバランス判定装置
JP2012145054A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2012167607A (ja) 過給機付き内燃機関の制御装置
JP4989954B2 (ja) 内燃機関の排ガス浄化装置
JP4468287B2 (ja) 内燃機関の排ガス浄化装置
JP2014214676A (ja) 内燃機関の制御装置
US20160369729A1 (en) Control apparatus and control method for internal combustion engine
US8833150B2 (en) Apparatus and method for detecting abnormality of imbalance of air-fuel ratios among cylinders
JP4487838B2 (ja) 電動機付き過給機を有する内燃機関の制御装置
JP5262992B2 (ja) 内燃機関の制御装置
JP7401176B2 (ja) 空燃比センサの取付構造
JP2022083541A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856530

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012553494

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13979703

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856530

Country of ref document: EP

Kind code of ref document: A1