WO2012096327A1 - イオン交換クロマトグラフィー用溶離液及び核酸鎖の分析方法 - Google Patents

イオン交換クロマトグラフィー用溶離液及び核酸鎖の分析方法 Download PDF

Info

Publication number
WO2012096327A1
WO2012096327A1 PCT/JP2012/050426 JP2012050426W WO2012096327A1 WO 2012096327 A1 WO2012096327 A1 WO 2012096327A1 JP 2012050426 W JP2012050426 W JP 2012050426W WO 2012096327 A1 WO2012096327 A1 WO 2012096327A1
Authority
WO
WIPO (PCT)
Prior art keywords
eluent
exchange chromatography
nucleic acid
ion
ion exchange
Prior art date
Application number
PCT/JP2012/050426
Other languages
English (en)
French (fr)
Inventor
卓也 與谷
牛澤 幸司
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Priority to CN201280005112.5A priority Critical patent/CN103314290B/zh
Priority to KR1020137020764A priority patent/KR101943119B1/ko
Priority to EP12734660.9A priority patent/EP2672265B1/en
Priority to US13/979,241 priority patent/US9481881B2/en
Priority to JP2012552751A priority patent/JP6090985B2/ja
Publication of WO2012096327A1 publication Critical patent/WO2012096327A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/101Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by chromatography, e.g. electrophoresis, ion-exchange, reverse phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Definitions

  • the present invention relates to an eluent for ion exchange chromatography used for separation and detection of a target nucleic acid such as a PCR amplification product of a nucleic acid, a restriction enzyme fragment of the PCR amplification product, or a restriction enzyme fragment of a nucleic acid.
  • the present invention also relates to a method for analyzing a nucleic acid chain by ion exchange chromatography using the eluent.
  • Ion exchange chromatography is a method for separating a measurement target substance by using an electrostatic interaction between an ion exchange group of a column packing material and ions in the measurement target substance.
  • it is excellent in the separation of biopolymers such as nucleic acids, proteins, and polysaccharides, and thus is used in fields such as biochemistry and medicine.
  • ion exchange chromatography There are two types of ion exchange chromatography: anion exchange and cation exchange.
  • Anion exchange can separate anionic materials using a cationic column packing.
  • cation exchange can separate cationic materials using anionic column packing.
  • the cationic functional group of the anion exchange column filler includes a weak cationic group such as diethylaminoethyl group and a strong cationic group such as quaternary ammonium group, and anion exchange having these cationic functional groups.
  • Column fillers are already commercially available and are used in various research fields.
  • Nucleic acids are biopolymers in which nucleotides composed of bases, sugars, and phosphates are linked by phosphate ester bonds, and are classified into deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) depending on the sugar structure.
  • target nucleic acids such as PCR amplification products of nucleic acids, restriction enzyme fragments of the PCR amplification products, and restriction enzyme fragments of nucleic acids are separated using ion exchange chromatography, phosphorous contained in the target nucleic acid molecules Anion exchange liquid chromatography utilizing the negative charge of the acid is used, and target nucleic acids such as PCR amplification products and nucleic acid fragments can be separated and detected according to chain length.
  • Non-Patent Document 1 discloses a method for separating nucleic acid-related compounds by high-performance liquid chromatography. By using this method, nucleic acid chains can be separated and detected by chain length in a short time without requiring complicated operations. can do. However, since there is a problem that it is difficult to sufficiently separate the approaching chain length differences, further improvement in separation performance is required.
  • the present invention provides an ion exchange chromatography capable of performing separation detection of a target nucleic acid such as a PCR amplification product of a nucleic acid, a restriction enzyme fragment of the PCR amplification product, a restriction enzyme fragment of a nucleic acid, etc. in a short time with high separation performance. It is an object to provide an eluent for use. Another object of the present invention is to provide a method for analyzing a nucleic acid chain by ion exchange chromatography using the eluent.
  • the present invention is an eluent for ion-exchange chromatography containing a guanidine salt derived from guanidine represented by the following formula (1).
  • the present invention is described in detail below.
  • the present inventors have found that the separation performance of samples having different nucleic acid chains can be improved by adding a guanidine salt to an eluent used for ion exchange chromatography, and the present invention has been completed.
  • the eluent for ion exchange chromatography of the present invention contains a guanidine salt derived from guanidine represented by the above formula (1).
  • the guanidine salt include guanidine hydrochloride, guanidine sulfate, guanidine nitrate, guanidine carbonate, guanidine phosphate, guanidine thiocyanate, guanidine sulfamate, aminoguanidine hydrochloride, aminoguanidine bicarbonate, and the like. Can be mentioned. Of these, guanidine hydrochloride and guanidine sulfate are preferably used.
  • the concentration of the guanidine salt in the eluent for ion exchange chromatography of the present invention during analysis may be appropriately adjusted according to the analysis target, but is desirably 2000 mmol / L or less. Specifically, a method of performing gradient elution with a guanidine salt concentration in the range of 0 to 2000 mmol / L can be mentioned. Therefore, the concentration of guanidine salt at the start of analysis need not be 0 mmol / L, and the salt concentration of guanidine salt at the end of analysis need not be 2000 mmol / L.
  • the gradient elution method may be a low pressure gradient method or a high pressure gradient method, but a method of elution while performing precise concentration adjustment by the high pressure gradient method is preferred.
  • the guanidine salt may be added to the eluent alone or in combination with other salts.
  • the salt that can be used in combination with the guanidine salt include, for example, a salt formed of a halide such as sodium chloride, potassium chloride, sodium bromide, potassium bromide and an alkali metal, calcium chloride, calcium bromide, chloride.
  • a salt formed of a halide such as sodium chloride, potassium chloride, sodium bromide, potassium bromide and an alkali metal, calcium chloride, calcium bromide, chloride.
  • examples include salts composed of halides and alkaline earth metals such as magnesium and magnesium bromide, and inorganic acid salts such as sodium perchlorate, potassium perchlorate, sodium sulfate, potassium sulfate, ammonium sulfate, sodium nitrate, and potassium nitrate. It is done.
  • organic acid salts such as sodium acetate, potassium acetate, sodium succinate
  • buffers and organic solvents can be used. Specifically, for example, Tris-HCl buffer, TE buffer composed of Tris and EDTA, and the like. Liquid, TAE buffer composed of Tris, acetic acid and EDTA, TBA buffer composed of Tris, boric acid and EDTA, and the like.
  • the pH of the eluent is not particularly limited as long as the nucleic acid chain can be separated by anion exchange.
  • the method for analyzing a nucleic acid strand using the eluent for ion exchange chromatography of the present invention is also one aspect of the present invention.
  • the column used in the method for analyzing a nucleic acid chain of the present invention may be an anion exchange column packed with a cationic filler.
  • An anion exchange column using a filler having a group can be used.
  • target nucleic acids detection targets
  • target nucleic acids detection targets
  • target nucleic acids include PCR amplification products of nucleic acids, restriction enzyme fragments of the PCR amplification products, or restriction enzyme fragments of nucleic acids.
  • Human-derived polymorphisms that are suspected of being polymorphic, that is, human-derived DNA for distinguishing virus-derived nucleic acids (DNA and RNA) and gene polymorphisms (single nucleotide polymorphisms) for identifying the presence and type of viruses Can be illustrated.
  • the DNA or RNA is extracted and purified by a known method, and then amplified by a PCR (Polymerase Chain Reaction) method, if necessary, and the amplified product is ion exchanged using the eluent for ion exchange chromatography of the present invention. Subject to chromatography.
  • RNA virus When the virus is an RNA virus, a PCR amplification product can be obtained by subjecting the extracted and purified RNA to RT-PCR (Reverse Transcription Polymerase Chain Reaction) reaction.
  • RT-PCR Reverse Transcription Polymerase Chain Reaction
  • a known technique can be applied as a PCR-RFLP (Restriction Fragment Length Polymorphism) method.
  • a restriction enzyme that recognizes a gene mutation in a PCR amplification product is present, a primer is set at the common sequence site, and amplified inside the PCR amplification product with a polymorphism,
  • the obtained PCR amplification product is cleaved with the above restriction enzyme, and the presence or absence of a polymorphism is determined based on the length of the fragment.
  • the number and size of the fragments that are generated differ depending on whether the restriction enzyme cleavage occurs or not. Based on this, it is possible to know whether or not the cleavage has occurred, and what was the base at the target position. .
  • the amplification region by the primer has a size, preferably small, so that two fragments generated when cleavage by a restriction enzyme occurs can be clearly detected by ion exchange chromatography using the eluent for ion exchange chromatography of the present invention.
  • the other fragment is set to 1 bp or more, more preferably 20 bp or more.
  • the size difference between the two fragments generated is preferably set to 1 bp or more, more preferably 20 bp or more, so that it can be clearly detected by the nucleic acid chain analysis method of the present invention.
  • the upper limit of the size of the amplification region is not particularly limited, but if it is too large, it takes time and cost for PCR, and there is no advantage, so it is preferably 1000 bp or less.
  • the base length of the primer is not particularly limited as long as each function is exhibited. Examples of the base length of the primer are 15 to 30 bp, preferably 20 to 25 bp.
  • Amplification by the PCR method may be performed in one step, but in order to further increase the sensitivity, a wider region is amplified in the first step PCR, and the obtained PCR amplification product is used as a template.
  • the region contained in can be further amplified by second-stage PCR (nested PCR).
  • both primers used for the second stage PCR may be different from the primers used for the first stage PCR, or only one primer was used and the other was used for the first stage PCR.
  • the same primer may be used (hemi-nested PCR).
  • PCR method itself is known, and kits for separation and detection by the PCR method are also commercially available, and can be easily implemented.
  • the primer design and DNA amplification conditions used in the PCR method were as follows: Molecular Cloning: A Laboratory Manual (3rd ed.), Volume 2, Chapter 8, pp. Refer to 8.1-8.126, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001.
  • ion exchange that can perform separation and detection of a target nucleic acid such as a PCR amplification product of a nucleic acid, a restriction enzyme fragment of the PCR amplification product, or a restriction enzyme fragment of a nucleic acid in a short time with high separation performance.
  • a chromatographic eluent can be provided.
  • FIG. 2 is a chromatogram obtained using the ion-exchange chromatography eluent of Example 1 and column 1.
  • FIG. 2 is a chromatogram obtained using the eluent for ion exchange chromatography of Example 1 and column 2.
  • FIG. 3 is a chromatogram obtained using the ion-exchange chromatography eluent of Example 2 and column 2.
  • FIG. 2 is a chromatogram obtained using the ion-exchange chromatography eluent of Comparative Example 1 and column 1.
  • FIG. 2 is a chromatogram obtained using the ion-exchange chromatography eluent of Comparative Example 1 and column 2.
  • FIG. 3 is a chromatogram obtained using the ion-exchange chromatography eluent of Comparative Example 2 and column 1.
  • FIG. 3 is a chromatogram obtained using the ion-exchange chromatography eluent of Comparative Example 2 and column 2.
  • FIG. 4 is a chromatogram obtained using the ion-exchange chromatography eluent of Comparative Example 3 and column 2.
  • Examples 1 and 2 and Comparative Examples 1 to 3 The salts shown in Table 1 were added to a 25 mmol / L Tris-HCl buffer so as to have a concentration of 1000 mmol / L to prepare eluents for ion exchange chromatography according to Examples 1 and 2 and Comparative Examples 1 to 3. The pH of all obtained eluents was 7.5.
  • anion exchange column 1 (Preparation of anion exchange column 1) The following column (anion exchange column 1) was prepared as a commercially available column.
  • the obtained coated polymer particles were measured with a particle size distribution analyzer (manufactured by Particle Sizing Systems, “Accumizer 780”), and the average particle size was 10 ⁇ m.
  • 10 g of the obtained coated polymer particles were immersed in 300 mL of ozone water having a dissolved ozone gas concentration of 100 ppm and stirred for 30 minutes. After completion of stirring, the mixture was centrifuged using a centrifuge (“Himac CR20G” manufactured by Hitachi, Ltd.), and the supernatant was removed. This operation was repeated twice, and the coated polymer particles were treated with ozone water to obtain a packing material for ion exchange chromatography in which a quaternary ammonium group and a carboxy group coexist.
  • ozone water is 400 hollow-tube ozone gas permeable membranes having an inner diameter of 0.5 mm, a thickness of 0.04 mm, and a length of 350 cm made of perfluoroalkoxy resin in a jacket having a cylindrical shape with an inner diameter of 15 cm and a length of 20 cm. It was prepared using an ozone water production system (manufactured by Sekisui Chemical Co., Ltd.) containing the accommodated ozone dissolution module. The following column (anion exchange column 2) was prepared using the obtained packing material for ion exchange chromatography. Column size: inner diameter 4.6 mm x 20 mm Ion exchange group: quaternary ammonium group
  • Specimen 20 bp DNALadder marker (Takara Bio, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 300, 400, 500 bp fragment included)
  • Flow rate 0.5 mL / min (anion exchange column 1), 1.0 mL / min (anion exchange column 2)
  • Detection wavelength 260 nm
  • Sample injection volume 10 ⁇ L
  • FIG. 1 The chromatogram obtained using the eluent for ion exchange chromatography of Example 1 and column 1 is shown in FIG. 1, and the chromatogram obtained using the eluent for ion exchange chromatography of Example 1 and column 2 is used.
  • FIG. 2 the chromatogram obtained using the ion exchange chromatography eluent of Example 2 and column 2 is obtained using FIG. 3, the ion exchange chromatography eluent of Comparative Example 1 and column 1.
  • the chromatogram obtained using the eluent for ion exchange chromatography of Comparative Example 2 and column 2 is shown in FIG. 7, showing a chromatogram obtained using an ion exchange chromatography eluate and column 2 of Comparative Example 3 in FIG. 8.
  • the numerical values in the graphs of FIGS. 1 to 8 are the base length (bp) values of the fragments. 1 to 8, it was possible to separate all the fragments contained in the sample when the eluent for ion exchange chromatography of the example was used. Therefore, it was found that the separation performance is effectively improved regardless of the column type.
  • ion exchange that can perform separation and detection of a target nucleic acid such as a PCR amplification product of a nucleic acid, a restriction enzyme fragment of the PCR amplification product, or a restriction enzyme fragment of a nucleic acid in a short time with high separation performance.
  • a chromatographic eluent can be provided.

Abstract

核酸のPCR増幅産物や、該PCR増幅産物の制限酵素断片や、核酸の制限酵素断片等の標的核酸の分離検出を、短時間かつ高い分離性能で行うことができるイオン交換クロマトグラフィー用溶離液を提供する。また、該溶離液を用いたイオン交換クロマトグラフィーによる核酸鎖の分析方法を提供する。 下記式(1)で示されるグアニジンから誘導されるグアニジン塩を含有するイオン交換クロマトグラフィー用溶離液。

Description

イオン交換クロマトグラフィー用溶離液及び核酸鎖の分析方法
本発明は、核酸のPCR増幅産物、該PCR増幅産物の制限酵素断片、又は核酸の制限酵素断片等の標的核酸の分離検出に用いるイオン交換クロマトグラフィー用溶離液に関する。また本発明は、該溶離液を用いたイオン交換クロマトグラフィーによる核酸鎖の分析方法に関する。
イオン交換クロマトグラフィーは、カラム充填剤のイオン交換基と測定対象物質中のイオンとの間に働く静電的相互作用を利用して測定対象物質を分離する方法である。
特に、核酸、タンパク質、多糖類といった生体高分子の分離に優れているため、生化学や医学等の分野で利用されている。
イオン交換クロマトグラフィーには、アニオン交換によるものとカチオン交換によるものとがある。アニオン交換は、カチオン性のカラム充填剤を用いて、アニオン性の物質を分離することができる。逆に、カチオン交換は、アニオン性のカラム充填剤を用いて、カチオン性の物質を分離することができる。
アニオン交換カラム充填剤のカチオン性の官能基としては、ジエチルアミノエチル基のような弱カチオン性基、4級アンモニウム基のような強カチオン性基があり、これらのカチオン性の官能基を有するアニオン交換カラム充填剤は既に市販され、各種研究分野で使用されている。
核酸とは、塩基、糖、リン酸からなるヌクレオチドがリン酸エステル結合で連なった生体高分子であり、糖構造の違いによってデオキシリボ核酸(DNA)とリボ核酸(RNA)とに分類される。
核酸のPCR増幅産物や、該PCR増幅産物の制限酵素断片や、核酸の制限酵素断片等の標的核酸を、イオン交換クロマトグラフィーを用いて分離する場合には、該標的核酸分子中に含まれるリン酸のマイナス電荷を利用したアニオン交換液体クロマトグラフィーが用いられ、該PCR増幅産物や核酸断片等の標的核酸を鎖長別に分離検出することができる。
核酸鎖を鎖長別に分離する方法としては、ゲル電気泳動法が汎用されているが、作業が煩雑であったり、測定に時間がかかったりするなど、改善の余地が多くみられる。非特許文献1には、核酸関連化合物を高速液体クロマトグラフィーで分離する方法が開示されており、この方法を用いれば、煩雑な作業を必要とせずに短時間で核酸鎖を鎖長別に分離検出することができる。しかしながら、接近する鎖長差を充分に分離することが難しいという問題があるため、更なる分離性能の向上が要求されている。
「ライフサイエンスのための高速液体クロマトグラフィー 基礎と実験」、廣川書店、p.323
本発明は、核酸のPCR増幅産物や、該PCR増幅産物の制限酵素断片や、核酸の制限酵素断片等の標的核酸の分離検出を、短時間かつ高い分離性能で行うことができるイオン交換クロマトグラフィー用溶離液を提供することを目的とする。また、本発明は、該溶離液を用いたイオン交換クロマトグラフィーによる核酸鎖の分析方法を提供することを目的とする。
本発明は、下記式(1)で示されるグアニジンから誘導されるグアニジン塩を含有するイオン交換クロマトグラフィー用溶離液である。以下に本発明を詳述する。
Figure JPOXMLDOC01-appb-C000002
本発明者らは、イオン交換クロマトグラフィーに用いる溶離液に、グアニジン塩を添加することにより、核酸鎖が異なる試料の分離性能を向上させることができることを見出し、本発明を完成させるに至った。
本発明のイオン交換クロマトグラフィー用溶離液は、上記式(1)で示されるグアニジンから誘導されるグアニジン塩を含有する。
上記グアニジン塩としては、例えば、グアニジン塩酸塩、グアニジン硫酸塩、グアニジン硝酸塩、グアニジン炭酸塩、グアニジンリン酸塩、グアニジンチオシアン酸塩、グアニジンスルファミン酸塩、アミノグアニジン塩酸塩、アミノグアニジン重炭酸塩等が挙げられる。なかでも、グアニジン塩酸塩、グアニジン硫酸塩が好適に用いられる。
本発明のイオン交換クロマトグラフィー用溶離液におけるグアニジン塩の分析時の濃度は、分析対象物に合わせて、適宜調整すればよいが、2000mmol/L以下であることが望ましい。
具体的には、グアニジン塩の濃度を0~2000mmol/Lの範囲でグラジエント溶出させる方法を挙げることができる。従って、分析開始時のグアニジン塩の濃度は0mmol/Lである必要はなく、また、分析終了時のグアニジン塩の塩濃度も2000mmol/Lである必要はない。
上記グラジエント溶出の方法は、低圧グラジエント法であっても高圧グラジエント法であっても良いが、高圧グラジエント法による精密な濃度調整を行いながら溶出させる方法が好ましい。
上記グアニジン塩は、溶離液に単独で添加してもよいし、他の塩と組み合わせて添加してもよい。上記グアニジン塩に組み合わせて用いることができる塩としては、例えば、塩化ナトリウム、塩化カリウム、臭化ナトリウム、臭化カリウム等のハロゲン化物とアルカリ金属とからなる塩や、塩化カルシウム、臭化カルシウム、塩化マグネシウム、臭化マグネシウム等のハロゲン化物とアルカリ土類金属とからなる塩や、過塩素酸ナトリウム、過塩素酸カリウム、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム、硝酸ナトリウム、硝酸カリウム等の無機酸塩等が挙げられる。また、酢酸ナトリウム、酢酸カリウム、コハク酸ナトリウム、コハク酸カリウム等の有機酸塩を用いてもよい。
本発明のイオン交換クロマトグラフィー用溶離液に用いる緩衝液としては、公知の緩衝液類や有機溶媒類を用いることができ、具体的には例えば、トリス塩酸緩衝液、トリスとEDTAからなるTE緩衝液、トリスと酢酸とEDTAからなるTAE緩衝液、トリスとホウ酸とEDTAからなるTBA緩衝液等が挙げられる。
上記溶離液のpHは特に制限されず、アニオン交換によって核酸鎖を分離できる範囲であればよい。
本発明のイオン交換クロマトグラフィー用溶離液を用いる核酸鎖の分析方法もまた、本発明の一つである。
本発明の核酸鎖の分析方法に用いるカラムは、カチオン性充填剤が充填されたアニオン交換カラムであればよく、市販されているものや、基材微粒子の表面に強カチオン性基と弱アニオン性基とを有する充填剤を用いたアニオン交換カラム等を用いることができる。
本発明の核酸鎖の分析方法が適用可能な標的核酸(検出対象)としては、核酸のPCR増幅産物、該PCR増幅産物の制限酵素断片、又は核酸の制限酵素断片が挙げられ、ウイルス由来又は遺伝子多型の疑われるヒト由来のもの、即ち、ウイルスの存在や型を判別するためのウイルス由来の核酸(DNAやRNA)や遺伝子多型(一塩基多型)を判別するためのヒト由来のDNAを例示することができる。
上記DNA又は上記RNAは、公知の方法により抽出、精製した後、必要によりPCR(Polymerase Chain Reaction)法等により増幅し、該増幅産物を本発明のイオン交換クロマトグラフィー用溶離液を用いたイオン交換クロマトグラフィーに供する。
ウイルスがRNAウイルスである等の場合は、抽出、精製したRNAに対してRT-PCR(Reverse Transcription Polymerase Chain Reaction)反応を行い、PCR増幅産物を得ることができる。
また、本発明の核酸鎖の分析方法を用いて遺伝子多型を判別する場合には、PCR-RFLP(Restriction Fragment Length Polymorphism:制限酵素断片長多型)法として公知の技術を応用することができる。RFLP法は、PCR増幅産物中の遺伝子変異部を認識する制限酵素が存在する場合、共通配列部位にプライマーを設定し、その内側、即ち、PCR増幅産物内に多型性をもたせて増幅し、得られたPCR増幅産物を上記制限酵素で切断し、その断片の長さにより、多型の有無を判定する方法である。制限酵素による切断が起きた場合と起きなかった場合とでは、生じる断片の数もサイズも異なるので、それに基づいて切断が起きたか否か、ひいては目的の位置の塩基が何であったかを知ることができる。
プライマーによる増幅領域は、制限酵素による切断が起きた場合に生じる2個の断片が、それぞれ本発明のイオン交換クロマトグラフィー用溶離液を用いたイオン交換クロマトグラフィーで明瞭に検出できるサイズ、好ましくは小さい方の断片が1bp以上、より好ましくは20bp以上となるように設定する。また、生じる2個の断片のサイズの差が、本発明の核酸鎖の分析方法で明瞭に検出できるように、好ましくは1bp以上、より好ましくは20bp以上になるように設定する。増幅領域のサイズの上限は特にないが、あまりに大きいとPCRの時間もコストもかかり、また、それによる利点もないので、好ましくは1000bp以下である。プライマーの塩基長は、それぞれの機能が発揮される長さであればよく、プライマーの塩基長の例としては15~30bp、好ましくは20~25bpである。
上記PCR法による増幅は、1段階で行ってもよいが、感度をより高めるために、第1段階のPCRでより広い範囲の領域を増幅し、得られたPCR増幅産物を鋳型として、その中に含まれる領域を第2段階のPCRでさらに増幅してもよい(nested PCR)。この場合、第2段階のPCRに用いるプライマーは両方とも、第1段階のPCRに用いるプライマーと異なるものであってもよいし、一方のみ異なるプライマーを用い、他方は第1段階のPCRで用いたプライマーと同じものを用いてもよい(hemi-nested PCR)。
上記PCR法自体は、公知であり、PCR法による分離検出のためのキットも市販されているので、容易に実施することができる。PCR法に用いるプライマーの設計やDNAの増幅の条件は、Molecular Cloning:A Laboratory Manual(3rd ed.),Volume 2,Chapter 8,pp.8.1-8.126,Cold Spring Harbor Laboratory Press,Cold Sping Harbor,2001を参照できる。
本発明によれば、核酸のPCR増幅産物や、該PCR増幅産物の制限酵素断片や、核酸の制限酵素断片等の標的核酸の分離検出を、短時間かつ高い分離性能で行うことができるイオン交換クロマトグラフィー用溶離液を提供することができる。また、本発明によれば、上記イオン交換クロマトグラフィー用溶離液を用いたイオン交換クロマトグラフィーにより、標的核酸を短時間で精度よく分析できる核酸鎖の分析方法を提供することができる。
実施例1のイオン交換クロマトグラフィー用溶離液とカラム1とを用いて得られたクロマトグラムである。 実施例1のイオン交換クロマトグラフィー用溶離液とカラム2とを用いて得られたクロマトグラムである。 実施例2のイオン交換クロマトグラフィー用溶離液とカラム2とを用いて得られたクロマトグラムである。 比較例1のイオン交換クロマトグラフィー用溶離液とカラム1とを用いて得られたクロマトグラムである。 比較例1のイオン交換クロマトグラフィー用溶離液とカラム2とを用いて得られたクロマトグラムである。 比較例2のイオン交換クロマトグラフィー用溶離液とカラム1とを用いて得られたクロマトグラムである。 比較例2のイオン交換クロマトグラフィー用溶離液とカラム2とを用いて得られたクロマトグラムである。 比較例3のイオン交換クロマトグラフィー用溶離液とカラム2とを用いて得られたクロマトグラムである。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1、2及び比較例1~3)
25mmol/Lトリス塩酸緩衝液に表1に示す塩を濃度が1000mmol/Lとなるように添加し、実施例1、2及び比較例1~3に係るイオン交換クロマトグラフィー用溶離液を調製した。得られた溶離液のpHは全て7.5であった。
<評価>
(分離性能の確認)
以下の方法を用いて、実施例及び比較例で調製したイオン交換クロマトグラフィー用溶離液を用いて標的核酸を分離検出した場合の分離性能を比較した。
(アニオン交換カラムの準備)
(アニオン交換カラム1)
市販されているカラムとして、以下のカラム(アニオン交換カラム1)を準備した。
品名:TSK-gel DNA-STAT(東ソー株式会社製)
カラムサイズ:内径4.6mm×長さ100mm
イオン交換基:4級アンモニウム基
(アニオン交換カラム2)
攪拌機付き反応器中にて、3重量%ポリビニルアルコール(日本合成化学社製)水溶液に、テトラエチレングリコールジメタクリレート(新中村化学工業社製)300g、トリエチレングリコールジメタクリレート(新中村化学工業社製)100g及び過酸化ベンゾイル(キシダ化学社製)1.0gの混合物を添加した。攪拌しながら加熱し、窒素雰囲気下にて80℃で1時間重合した。次に、強カチオン性のイオン交換基(4級アンモニウム基)を有する単量体として、メタクリル酸エチルトリメチルアンモニウムクロリド(和光純薬工業社製)100gをイオン交換水に溶解し、得られた溶液を上記反応器中にさらに添加した。次いで、攪拌しながら窒素雰囲気下にて80℃で2時間重合した重合体組成物を得た。得られた重合体組成物を水及びアセトンで洗浄することにより、基材微粒子の表面にイオン交換基を有する親水性の被覆重合体粒子を得た。得られた被覆重合体粒子について、粒度分布計(Particle Sizing Systems社製、「Accusizer780」)を用いて測定したところ、平均粒子径は10μmであった。
得られた被覆重合体粒子10gを溶存オゾンガス濃度100ppmのオゾン水300mLに浸漬し、30分間攪拌した。攪拌終了後、遠心分離機(日立製作所社製、「Himac CR20G」)を用いて遠心分離し、上澄みを除去した。この操作を2回繰り返し、被覆重合体粒子にオゾン水処理を施し、4級アンモニウム基とカルボキシ基が共存するイオン交換クロマトグラフィー用充填剤を得た。
なお、オゾン水は、内径15cm×長さ20cmの円柱形を有する外套内に、パーフルオロアルコキシ樹脂からなる内径0.5mm×厚さ0.04mm×長さ350cmの中空管状のオゾンガス透過膜400本収容されたオゾン溶解モジュールを含むオゾン水製造システム(積水化学工業社製)を用いて調製した。
得られたイオン交換クロマトグラフィー用充填剤を用いて以下のカラム(アニオン交換カラム2)を準備した。
カラムサイズ:内径4.6mm×20mm
イオン交換基:4級アンモニウム基
準備したアニオン交換カラムを用いて、以下の条件で標的核酸を分離検出した。
システム:LC-20Aシリーズ(島津製作所社製)
溶離液:A液 25mmol/Lトリス塩酸緩衝液(pH7.5)、B液 実施例及び比較例で調製した溶離液
溶出法:表1に示すグラジエント条件により、0分から20分にかけて、B液の混合比率を直線的に増加させた。
検体:20bpDNALadderマーカー(タカラバイオ社製、20、40、60、80、100、120、140、160、180、200、300、400、500bpの断片が含まれる)
流速:0.5mL/min(アニオン交換カラム1)、1.0mL/min(アニオン交換カラム2)
検出波長:260nm
試料注入量:10μL
Figure JPOXMLDOC01-appb-T000003
実施例1のイオン交換クロマトグラフィー用溶離液とカラム1とを用いて得られたクロマトグラムを図1、実施例1のイオン交換クロマトグラフィー用溶離液とカラム2とを用いて得られたクロマトグラムを図2、実施例2のイオン交換クロマトグラフィー用溶離液とカラム2とを用いて得られたクロマトグラムを図3、比較例1のイオン交換クロマトグラフィー用溶離液とカラム1とを用いて得られたクロマトグラムを図4、比較例1のイオン交換クロマトグラフィー用溶離液とカラム2とを用いて得られたクロマトグラムを図5、比較例2のイオン交換クロマトグラフィー用溶離液とカラム1とを用いて得られたクロマトグラムを図6、比較例2のイオン交換クロマトグラフィー用溶離液とカラム2とを用いて得られたクロマトグラムを図7、比較例3のイオン交換クロマトグラフィー用溶離液とカラム2とを用いて得られたクロマトグラムを図8に示した。なお、図1~8のグラフ中の数値は断片の塩基長(bp)の値である。
図1~8より、実施例のイオン交換クロマトグラフィー用溶離液を用いた場合は、検体に含まれるすべての断片を分離することができた。従って、カラムの種類に依らず、分離性能が効果的に向上することがわかった。一方で、比較例のイオン交換クロマトグラフィー用溶離液を用いた場合は、カラムの種類や添加した塩の種類によって多少の違いが見られるものの、140bp以降の断片の分離が不充分であることがわかった。
本発明によれば、核酸のPCR増幅産物や、該PCR増幅産物の制限酵素断片や、核酸の制限酵素断片等の標的核酸の分離検出を、短時間かつ高い分離性能で行うことができるイオン交換クロマトグラフィー用溶離液を提供することができる。また、本発明によれば、上記イオン交換クロマトグラフィー用溶離液を用いたイオン交換クロマトグラフィーにより、核酸鎖を短時間で精度よく分析できる分析方法を提供することができる。

Claims (3)

  1. 下記式(1)で示されるグアニジンから誘導されるグアニジン塩を含有することを特徴とするイオン交換クロマトグラフィー用溶離液。
    Figure JPOXMLDOC01-appb-C000001
  2. グアニジン塩は、グアニジン塩酸塩又はグアニジン硫酸塩であることを特徴とする請求項1記載のイオン交換クロマトグラフィー用溶離液。
  3. 請求項1又は2記載のイオン交換クロマトグラフィー用溶離液を用いることを特徴とする核酸鎖の分析方法。
     
PCT/JP2012/050426 2011-01-12 2012-01-12 イオン交換クロマトグラフィー用溶離液及び核酸鎖の分析方法 WO2012096327A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280005112.5A CN103314290B (zh) 2011-01-12 2012-01-12 核酸链的分离方法
KR1020137020764A KR101943119B1 (ko) 2011-01-12 2012-01-12 이온 교환 크로마토그래피용 용리액 및 핵산 사슬의 분석 방법
EP12734660.9A EP2672265B1 (en) 2011-01-12 2012-01-12 Eluent for ion-exchange chromatography, and method of analyzing nucleic acid chains
US13/979,241 US9481881B2 (en) 2011-01-12 2012-01-12 Eluent for ion-exchange chromatography, and method of analyzing nucleic acid chains
JP2012552751A JP6090985B2 (ja) 2011-01-12 2012-01-12 核酸鎖の分離方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-004216 2011-01-12
JP2011004216 2011-01-12

Publications (1)

Publication Number Publication Date
WO2012096327A1 true WO2012096327A1 (ja) 2012-07-19

Family

ID=46507219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050426 WO2012096327A1 (ja) 2011-01-12 2012-01-12 イオン交換クロマトグラフィー用溶離液及び核酸鎖の分析方法

Country Status (6)

Country Link
US (1) US9481881B2 (ja)
EP (1) EP2672265B1 (ja)
JP (1) JP6090985B2 (ja)
KR (1) KR101943119B1 (ja)
CN (2) CN103314290B (ja)
WO (1) WO2012096327A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012133834A1 (ja) * 2011-03-31 2014-07-28 積水メディカル株式会社 一塩基多型検出用の試料核酸、一塩基多型検出試料調製用のpcrプライマー及びイオン交換クロマトグラフィー分析に用いる一塩基多型検出用試料の調製方法
JP2020085623A (ja) * 2018-11-22 2020-06-04 フォーデイズ株式会社 核酸(dna及びrna)由来のヌクレオチド、ヌクレオシド及び/又は塩基の定量方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140147842A1 (en) 2011-01-12 2014-05-29 Sekisui Medical Co. Ltd Method for detecting single nucleotide polymorphisms
KR20220000144A (ko) 2020-06-25 2022-01-03 주식회사 엑소코바이오 엑소좀 군집 내에서 엑소좀 아집단을 분리하는 방법 및 이의 응용

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187897A (ja) * 1994-02-11 2002-07-05 Diagen Gmbh 二本鎖/単鎖核酸構造物の分離方法
JP2004180637A (ja) * 2002-12-06 2004-07-02 Fuji Photo Film Co Ltd 核酸の分離精製装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098988A (ja) * 1983-11-01 1985-06-01 Chemo Sero Therapeut Res Inst Lpf−haの精製法
IL101356A (en) 1991-04-03 1996-08-04 Perkin Elmer Corp Solvents for the separation of nucleic acids by replacing anions
US5438128A (en) 1992-02-07 1995-08-01 Millipore Corporation Method for rapid purifiction of nucleic acids using layered ion-exchange membranes
SE9600590D0 (sv) 1996-02-19 1996-02-19 Pharmacia Biotech Ab Sätt för kromatografisk separation av peptider och nukleinsyra samt ny högaffin jonbytesmatris
US6265168B1 (en) 1998-10-06 2001-07-24 Transgenomic, Inc. Apparatus and method for separating and purifying polynucleotides
WO2001027331A2 (en) 1999-10-12 2001-04-19 Transgenomic, Inc. Detection of nucleic acid heteroduplex molecules by anion-exchange chromatography
AU2001286966B2 (en) 2000-08-30 2007-03-01 Avi Biopharma, Inc. Method for analysis of oligonucleotide analogs
CN1451762A (zh) 2002-04-12 2003-10-29 刘湘军 通过pcr产物不同长度测定snp
JP4228041B2 (ja) 2003-07-08 2009-02-25 東洋紡績株式会社 塩基多型の検出方法
JP4491276B2 (ja) 2004-05-17 2010-06-30 日本製粉株式会社 標的dna配列において一塩基変異多型の存在を検出する方法及びキット
JP2006075126A (ja) 2004-09-13 2006-03-23 National Institute Of Advanced Industrial & Technology 一塩基変異を検出する方法および検出用プローブ
AU2006239721B2 (en) 2005-04-26 2011-07-14 Boehringer Ingelheim Rcv Gmbh & Co Kg Production of recombinant proteins by autoproteolytic cleavage of a fusion protein
US20070154892A1 (en) 2005-12-30 2007-07-05 Simon Wain-Hobson Differential amplification of mutant nucleic acids by PCR in a mixure of nucleic acids
CN1880480A (zh) 2006-04-12 2006-12-20 重庆医科大学 检测等位基因特异引物-pcr方法及其在检测克老素基因多态性中的应用
GB2445442A (en) 2006-09-26 2008-07-09 Ge Healthcare Bio Sciences Nucleic acid purification using anion exchange
GB2443505B (en) 2006-09-26 2008-12-31 Ge Healthcare Bio Sciences Nucleic acid purification method
CN101323852B (zh) 2007-06-11 2013-01-23 北京东胜创新生物科技有限公司 一种在自动化核酸提取工作站上进行基因组提取的试剂盒及方法
US20090053719A1 (en) 2007-08-03 2009-02-26 The Chinese University Of Hong Kong Analysis of nucleic acids by digital pcr
CN101899437B (zh) 2010-04-15 2012-04-25 浙江大学 用于甜瓜枯萎病抗性鉴定的功能性分子标记及其用途
CN101899511B (zh) 2010-07-09 2012-08-08 华中农业大学 应用as-pcr检测牛白细胞粘附缺陷的方法
JPWO2012133834A1 (ja) 2011-03-31 2014-07-28 積水メディカル株式会社 一塩基多型検出用の試料核酸、一塩基多型検出試料調製用のpcrプライマー及びイオン交換クロマトグラフィー分析に用いる一塩基多型検出用試料の調製方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187897A (ja) * 1994-02-11 2002-07-05 Diagen Gmbh 二本鎖/単鎖核酸構造物の分離方法
JP2004180637A (ja) * 2002-12-06 2004-07-02 Fuji Photo Film Co Ltd 核酸の分離精製装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Molecular Cloning: A Laboratory Manual (3rd ed.", vol. 2, 2001, COLD SPRING HARBOR LABORATORY PRESS, pages: 8.1 - 8.126
"Raifusaiensu Notameno Kosoku Ekitai Kuromatogurafi - Kiso To Jikken", HIROKAWA SHOTEN, pages: 323
D'ANNA ET AL.: "Histones H10a and H10b Are the Same as CHO Histones HI(III) and H1(IV): New Features of H10 Phosphorylation during the Cell Cycle", BIOCHEMISTRY, vol. 20, no. 15, 21 July 1981 (1981-07-21), pages 4501 - 4505, XP055091605 *
GHRIST ET AL.: "Predicting Bandwidth in the High-Performance Liquid Chromatographic Separation of Large Biomolecules. I. Size-Exclusion Studies and the Role of Solute Stokes Diameter versus Particle Pore Diameter", JOURNAL OF CHROMATOGRAPHY, vol. 387, 1987, pages 1 - 19, XP026554861 *
INY ET AL.: "Isolation of a thermophilic alkaline phosphatase by either hydrophobic or Procion red Sepharose chromatography", JOURNAL OF CHROMATOGRAPHY, vol. 360, 1986, pages 437 - 442, XP026487360 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012133834A1 (ja) * 2011-03-31 2014-07-28 積水メディカル株式会社 一塩基多型検出用の試料核酸、一塩基多型検出試料調製用のpcrプライマー及びイオン交換クロマトグラフィー分析に用いる一塩基多型検出用試料の調製方法
JP2020085623A (ja) * 2018-11-22 2020-06-04 フォーデイズ株式会社 核酸(dna及びrna)由来のヌクレオチド、ヌクレオシド及び/又は塩基の定量方法

Also Published As

Publication number Publication date
CN104946626A (zh) 2015-09-30
KR101943119B1 (ko) 2019-01-28
US9481881B2 (en) 2016-11-01
JPWO2012096327A1 (ja) 2014-06-09
CN103314290A (zh) 2013-09-18
KR20140041418A (ko) 2014-04-04
US20130330735A1 (en) 2013-12-12
JP6090985B2 (ja) 2017-03-08
EP2672265A1 (en) 2013-12-11
EP2672265B1 (en) 2017-08-02
CN103314290B (zh) 2015-07-01
EP2672265A4 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
KR102168723B1 (ko) 이온 교환 크로마토그래피용 충전제 및 핵산 사슬의 분리 검출 방법
US9447460B2 (en) Method for detecting single nucleotide polymorphisms
US20170037463A1 (en) Methods and kits for nucleic acid sequencing
JP6090985B2 (ja) 核酸鎖の分離方法
WO2012133834A1 (ja) 一塩基多型検出用の試料核酸、一塩基多型検出試料調製用のpcrプライマー及びイオン交換クロマトグラフィー分析に用いる一塩基多型検出用試料の調製方法
JP5812464B2 (ja) 標的核酸の分離検出方法、標的核酸分離検出用イオン交換クロマトグラフィー用充填剤、及び標的核酸分離検出用イオン交換クロマトグラフィー用カラム
Smerkova et al. Isolation of Xis Gen Fragment of λ Phage from Agarose Gel Using Magnetic Particles for Subsequent Enzymatic DNA Sequencing
Smerkova et al. Helena Skutkova, Marketa Ryvolova, Vojtech Adam, Ivo Provaznik & Rene Kizek

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012552751

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012734660

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012734660

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137020764

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13979241

Country of ref document: US