WO2012096237A1 - 電子・電気機器用銅合金、銅合金薄板および導電部材 - Google Patents

電子・電気機器用銅合金、銅合金薄板および導電部材 Download PDF

Info

Publication number
WO2012096237A1
WO2012096237A1 PCT/JP2012/050201 JP2012050201W WO2012096237A1 WO 2012096237 A1 WO2012096237 A1 WO 2012096237A1 JP 2012050201 W JP2012050201 W JP 2012050201W WO 2012096237 A1 WO2012096237 A1 WO 2012096237A1
Authority
WO
WIPO (PCT)
Prior art keywords
ratio
copper alloy
content
stress relaxation
alloy
Prior art date
Application number
PCT/JP2012/050201
Other languages
English (en)
French (fr)
Inventor
牧 一誠
広行 森
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201280004657.4A priority Critical patent/CN103282525B/zh
Publication of WO2012096237A1 publication Critical patent/WO2012096237A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Definitions

  • the present invention relates to a copper alloy used as a conductive part for an electronic / electrical device represented by a connector of a semiconductor device and other terminals, and more particularly, Cu— which is obtained by adding Sn to brass (Cu—Zn alloy).
  • the present invention relates to a Zn—Sn-based copper alloy for electronic and electrical equipment, a copper alloy thin plate using the same, and a conductive member.
  • Copper or copper alloys are used as conductive parts for electronic and electrical equipment represented by connectors and other terminals of semiconductor devices.
  • brass Cu—Zn alloy
  • the surface of a base material (base plate) made of a Cu—Zn alloy should be used with tin (Sn) plating, mainly in order to increase the reliability of contact with the mating conductive member. Is increasing.
  • a Cu—Zn alloy as a base material and Sn plating on the surface thereof
  • a Cu—Zn—Sn based alloy to which Sn is added as an alloy component may be used.
  • a copper alloy as a raw material is generally rolled into a thin plate (strip) having a thickness of about 0.05 to 1.0 mm.
  • a predetermined shape is obtained by punching, and at least a part thereof is bent. In that case, it is used to contact the mating conductive member near the bent portion to obtain an electrical connection with the mating conductive member, and to maintain the contact state with the mating conductive material due to the spring property of the bent portion.
  • the electrical conductivity is excellent and the strength is high in order to suppress resistance heat generation during energization.
  • the thin plate strip material
  • the bending workability is excellent in the case of a connector used to maintain the contact state with the mating conductive material in the vicinity of the bent part due to the bending property as described above and the spring property of the bent part.
  • the stress relaxation resistance is excellent so that the contact with the counterpart conductive material in the vicinity of the bent portion can be kept good for a long time (or even in a high temperature atmosphere).
  • Patent Documents 1 to 3 As measures for improving the stress relaxation resistance of Cu—Zn—Sn based alloys used for terminals such as connectors, proposals such as those shown in Patent Documents 1 to 3 have been conventionally made. Further, although different from the use of terminals such as connectors as the main use in the present invention, as a Cu—Zn—Sn alloy for lead frames, Patent Document 4 also shows a measure for improving the stress relaxation resistance. ing.
  • Patent Document 1 it is said that the stress relaxation resistance can be improved by adding Ni to a Cu—Zn—Sn alloy to produce a Ni—P compound, and addition of Fe can also reduce stress relaxation. It has been shown to be effective in improving the characteristics. Further, the proposal of Patent Document 2 describes that strength, elasticity, and heat resistance can be improved by adding Ni and Fe together with P to a Cu—Zn—Sn-based alloy to form a compound. . Although there is no direct description of the stress relaxation resistance here, the above improvement in strength, elasticity, and heat resistance seems to mean an improvement in the stress relaxation resistance.
  • the proposal of Patent Document 3 describes that the stress relaxation resistance can be improved by adding Ni to the Cu—Zn—Sn alloy and adjusting the Ni / Sn ratio within a specific range. Yes. Further, it is described that the addition of a small amount of Fe is effective in improving the stress relaxation resistance. Although the adjustment of the Ni / Sn ratio shown in the proposal of Patent Document 3 is certainly effective in improving the stress relaxation resistance, the relationship between the P compound and the stress relaxation resistance is completely touched on. Not. That is, the P compound seems to have a great influence on the stress relaxation resistance as shown in Patent Documents 1 and 2, but the proposal of Patent Document 3 relates to elements such as Fe and Ni that generate the P compound. The relationship between the content and the stress relaxation resistance is not considered at all, and even in the experiments by the present inventors, the stress relaxation resistance can be sufficiently and reliably improved only by following the proposal of Patent Document 3. It has been found that it cannot be planned.
  • Patent Document 4 for a lead frame, Ni and Fe are added to a Cu—Zn—Sn alloy together with P, and at the same time, the atomic ratio of (Fe + Ni) / P is within a range of 0.2 to 3. It is described that the stress relaxation resistance can be improved by adjusting to produce a Fe—P compound, a Ni—P compound, or a Fe—Ni—P compound.
  • the effect of improving the stress relaxation resistance is still reliable and It is not enough and further improvements are desired. That is, like a connector, it has a bent portion rolled into a thin plate (strip) and subjected to bending, and is brought into contact with the mating conductive member in the vicinity of the bent portion, In parts used to maintain the contact state, the residual stress is relaxed over time or in a high-temperature environment, and the contact pressure with the counterpart conductive member cannot be maintained, resulting in inconvenience such as poor contact There is a problem that is likely to occur early. In order to avoid such a problem, conventionally, the thickness of the material has to be increased, which has led to an increase in material cost and an increase in weight.
  • JP-A-5-33087 JP 2006-283060 A Japanese Patent No. 3953357 Japanese Patent No. 3717321
  • the conventional Cu-Zn-Sn alloy used as the base material for the Sn-plated brass strip is subjected to bending processing such as connectors and other various terminals, and the other side is electrically conductive near the bent portion.
  • a thin plate material (strip material) used to obtain contact with a member it cannot be said that the stress relaxation resistance is still reliable and sufficiently excellent. Therefore, there is a strong demand for further reliable and sufficient improvement of the stress relaxation resistance.
  • the present invention has been made in the background as described above, and as a copper alloy used as a conductive part of an electronic / electric device such as a connector or other terminal, particularly as a Cu-Zn-Sn alloy,
  • a copper alloy that has reliable and sufficiently excellent stress relaxation resistance, can reduce the thickness of component materials, and has excellent properties such as strength, rollability, and conductivity, and the like. It is an object to provide a copper alloy thin plate and a conductive member.
  • the inventors of the present invention simultaneously added Ni (nickel) and Fe (iron) to Cu—Zn—Sn alloy in appropriate amounts, In addition to adding an appropriate amount of P (phosphorus) and adjusting the individual content of each of these alloy elements, the ratio between Ni, Fe, P and Sn in the alloy, especially Fe and The ratio of Ni content Fe / Ni, the ratio of the total content of Ni and Fe (Ni + Fe) to the content of P (Ni + Fe) / P, the content of Sn and the total content of Ni and Fe (Ni + Fe ) And Sn / (Ni + Fe) in the respective atomic ratios are adjusted within appropriate ranges, the stress relaxation resistance can be improved reliably and sufficiently, and the strength, rollability, and conductivity can be improved. , It found that characteristics superior copper alloy required for connector or other terminal can be obtained, it was able to complete the present invention. Furthermore, it has been found that the stress relaxation resistance can be further improved by adding an appropriate amount
  • the copper alloy for electronic / electric equipment according to the basic form of the present invention (first form) is mass%, Zn is 23 to 36.5%, Sn is 0.1 to 0.8%, and Ni is 0. 0.05% or more, less than 0.15%, Fe containing 0.005% or more, less than 0.10%, P containing 0.005 to 0.05%, and Fe content and Ni content
  • the ratio Fe / Ni is the atomic ratio, 0.05 ⁇ Fe / Ni ⁇ 1.5
  • the ratio of the total content of Ni and Fe (Ni + Fe) to the content of P (Ni + Fe) / P is an atomic ratio, 3 ⁇ (Ni + Fe) / P ⁇ 15
  • the ratio Sn / (Ni + Fe) between the Sn content, the Ni content, and the total content of Fe (Ni + Fe) is an atomic ratio, 0.5 ⁇ Sn / (Ni + Fe) ⁇ 5
  • the copper alloy is characterized in that the balance is made of Cu and inevitable impurities.
  • Ni and Fe are simultaneously added together with P in an appropriate amount, and between Sn, Ni, Fe, and P.
  • P is appropriately regulating the addition ratio
  • a Cu—Zn—Sn based alloy having a structure in which [Ni, Fe] —P based precipitates precipitated from the matrix (mainly ⁇ phase) are appropriately present.
  • Such a Cu—Zn—Sn alloy has reliable and sufficiently excellent stress relaxation characteristics, and at the same time, various characteristics required for connectors and other terminals such as strength, rollability, and conductivity.
  • the individual contents of Sn, Ni, Fe, and P within a predetermined range can sufficiently improve the stress relaxation resistance depending on the contents of these elements in the actual material.
  • other characteristics may be insufficient, but by restricting the relative proportions of the contents of these elements within the ranges defined by the above formulas, The stress relaxation characteristics can be reliably and sufficiently improved, and at the same time, various characteristics required for terminal materials such as connectors can be satisfied.
  • the [Ni, Fe] -P-based precipitates are Ni—Fe—P ternary precipitates, or Fe—P or Ni—P binary precipitates, and other elements.
  • the styrene resin may include multi-component precipitates containing Cu, Zn, Sn as main components, O, S, C, Co, Cr, Mo, etc. as impurities.
  • the [Ni, Fe] -P-based precipitates are present in the form of phosphides or alloys in which phosphorus is dissolved.
  • the copper alloy for electronic and electrical equipment according to the second embodiment of the present invention is mass%, Zn is 23 to 36.5%, Sn is 0.1 to 0.8%, Ni is 0.05% or more, 0 Less than 15%, Fe of 0.005% or more, less than 0.10%, Co of 0.005% or more, less than 0.10%, P of 0.005 to 0.05%, and Fe and Co
  • the ratio of the total content of Ni and the content of Ni (Fe + Co) / Ni is an atomic ratio, 0.05 ⁇ (Fe + Co) / Ni ⁇ 1.5
  • the ratio of the total content of Ni, Fe and Co (Ni + Fe + Co) to the content of P (Ni + Fe + Co) / P is an atomic ratio, 3 ⁇ (Ni + Fe + Co) / P ⁇ 15
  • the ratio Sn / (Ni + Fe + Co) of the Sn content and the total content of Ni, Fe and Co (Ni + Fe + Co) is an atomic ratio, 0.5 ⁇ Sn
  • the [Ni, Fe, Co] -P-based precipitate is a quaternary precipitate of Ni-Fe-Co-P, or Ni-Fe-P, Ni-Co-P, or Fe-Co-P.
  • Ternary precipitates or Fe—P, Ni—P, or Co—P binary precipitates, and other elements such as Cu, Zn, Sn as main components, O as impurities, It means what may contain multi-component precipitates containing S, C, Cr, Mo and the like.
  • the [Ni, Fe, Co] -P-based precipitates are present in the form of phosphides or alloys in which phosphorus is dissolved.
  • the copper alloy thin plate for electronic / electrical equipment according to the third aspect of the present invention is made of the rolled material of the copper alloy according to the first or second aspect and has a thickness in the range of 0.05 to 1.0 mm. It is a copper alloy sheet.
  • Such a rolled sheet sheet (strip) having such a thickness can be suitably used for connectors and other terminals.
  • the copper alloy thin plate for electronic / electrical equipment according to the fourth embodiment of the present invention is one in which Sn plating is applied to the surface of the copper alloy thin plate of the third embodiment.
  • the base material of the Sn plating is made of a Cu—Zn—Sn alloy containing 0.1 to 0.8% of Sn
  • used connectors and other parts are made of Sn plating brass. It can be recovered as alloy scrap to ensure good recyclability.
  • the conductive member for electronic / electrical equipment according to the fifth embodiment of the present invention is made of the copper alloy thin plate of the third or fourth embodiment, and is electrically contacted with the counterpart conductive member by contacting with the counterpart conductive member.
  • Inventive Example No. of the embodiment of the present invention. 2 is a structural photograph of a part including precipitates of an alloy of No. 2 observed by FE-SEM (field emission scanning electron microscope). It is a graph which shows the EDX (energy dispersive X-ray spectroscopy) analysis result about the deposit in FIG.
  • the copper alloy for electronic / electric equipment of the present invention basically has an alloy element content of mass%, Zn of 23 to 36.5%, and Sn of 0.1 to 0.8%.
  • Ni is 0.05% or more, less than 0.15%
  • Fe is 0.005% or more, less than 0.10%
  • P is contained in an amount of 0.005 to 0.05%.
  • the ratio Fe / Ni between the Fe content and the Ni content is an atomic ratio, and the following formula (1): 0.05 ⁇ Fe / Ni ⁇ 1.5 ( 1) And the ratio of the total content of Ni and Fe (Ni + Fe) to the content of P (Ni + Fe) / P is an atomic ratio expressed by the following formula (2) 3 ⁇ (Ni + Fe) / P ⁇ 15 (2) Further, the ratio Sn / (Ni + Fe) between the Sn content, the Ni content and the total Fe content (Ni + Fe) is an atomic ratio, and the following formula (3): 0.5 ⁇ Sn / (Ni + Fe) ⁇ 5 (3) And the balance of each alloy element is Cu and inevitable impurities.
  • the copper alloy for electronic / electric equipment of the present invention contains 0.005% or more and less than 0.10% of Co in addition to the above Zn, Sn, Ni, Fe, P, and these
  • the ratio of the total content of Fe and Co to the content of Ni (Fe + Co) / Ni is an atomic ratio expressed by the following formula (1 ′): 0.05 ⁇ (Fe + Co ) / Ni ⁇ 1.5 (1 ')
  • the ratio (Ni + Fe + Co) / P of the total content of Ni, Fe and Co (Ni + Fe + Co) to the content of P is an atomic ratio, and the following (2 ′) formula 3 ⁇ (Ni + Fe + Co) / P ⁇ 15 ...
  • the ratio Sn / (Ni + Fe + Co) between the Sn content and the total content of Ni, Fe and Co (Ni + Fe + Co) is expressed by the following formula (3 ′): 0.5 ⁇ Sn / (Ni + Fe + Co) ) ⁇ 5 ... (3 ')
  • the balance of the above alloy elements may be Cu and inevitable impurities.
  • Zn 23% to 36.5% in mass%
  • Zn is a basic alloy element in the copper alloy (brass) which is the subject of the present invention, and is an element effective in improving the strength and the spring property. Moreover, since Zn is cheaper than Cu, it is effective in reducing the material cost of the copper alloy. If Zn is less than 23%, these effects cannot be obtained sufficiently. On the other hand, if Zn exceeds 36.5%, the stress relaxation resistance is deteriorated. As described later, even if Fe, Ni, and P are added according to the present invention, sufficient stress relaxation resistance can be secured. It becomes difficult, corrosion resistance is lowered, and a large amount of ⁇ phase is produced, so that cold rolling property and bending workability are also lowered. Therefore, the Zn content is set in the range of 23 to 36.5%. The Zn content is preferably within the range of 24 to 36% even within the above range.
  • [Ni, Fe] -P-based precipitates can be precipitated from the parent phase (mainly ⁇ -phase), and Ni coexists with Fe, Co, and P.
  • [Ni, Fe, Co] -P-based precipitates can be precipitated from the matrix (mainly ⁇ -phase), and these [Ni, Fe] -P-based precipitates or [Ni, Fe, Co] Due to the presence of the -P-based precipitate, the stress relaxation resistance can be greatly improved.
  • the addition amount of Ni is less than 0.05%, the stress relaxation resistance cannot be sufficiently improved.
  • the added amount of Ni is 0.15% or more, the solid solution Ni is increased, the electrical conductivity is lowered, and the cost is increased due to the increased amount of expensive Ni raw materials used. Therefore, the amount of Ni added is in the range of 0.05% or more and less than 0.15%. It should be noted that the addition amount of Ni is preferably within a range of 0.05% or more and less than 0.10%, even within the above range.
  • [Ni, Fe] -P-based precipitates can be precipitated from the parent phase (mainly ⁇ -phase), and Fe coexists with Ni, Co and P.
  • the [Ni, Fe, Co] -P-based precipitate can be precipitated from the parent phase (mainly ⁇ -phase).
  • the presence of these [Ni, Fe] -P-based precipitates or [Ni, Fe, Co] -P-based precipitates can greatly improve the stress relaxation resistance of the copper alloy.
  • the addition amount of Fe is set within a range of 0.005% or more and less than 0.10%. Note that the addition amount of Fe is preferably within the range of 0.005% to 0.08% even within the above range.
  • Co mass%, 0.005% or more and less than 0.10%
  • Co is not necessarily an essential additive element, but if a small amount of Co is added together with Ni, Fe and P, [Ni, Fe, Co] -P-based precipitates are generated, and the stress relaxation resistance can be further improved.
  • the amount of Co added is less than 0.005%, the effect of further improving the stress relaxation resistance by adding Co cannot be obtained.
  • the amount of Co added is 0.10% or more, the amount of solid solution Co increases and the electrical conductivity decreases, and the cost increases due to an increase in the amount of expensive Co raw material used. Therefore, when Co is added, the amount of Co added is within the range of 0.005% or more and less than 0.10%.
  • the amount of Co added is preferably within the range of 0.005% to 0.08% even within the above range. Even when Co is not actively added, less than 0.005% Co may be contained as an impurity.
  • P mass%, 0.005 to 0.05%
  • P has a high bondability with Fe, Ni, and Co, and if it contains an appropriate amount of P together with Fe and Ni, a [Ni, Fe] -P-based precipitate can be precipitated. If an appropriate amount of P is contained together with Ni and Co, [Ni, Fe, Co] -P-based precipitates can be precipitated, and the presence of these precipitates improves the stress relaxation resistance of the copper alloy. be able to.
  • the amount of P is less than 0.005%, it is difficult to sufficiently precipitate [Ni, Fe] -P-based precipitates or [Ni, Fe, Co] -P-based precipitates, and the stress resistance is sufficiently high. The relaxation characteristics cannot be improved.
  • the balance of the above elements may basically be Cu and inevitable impurities.
  • inevitable impurities include Mg, Al, Mn, Si, (Co), Cr, Ag, Ca, Sr, Ba, Sc, Y, Hf, V, Nb, Ta, Mo, W, Re, Ru, Os, Se, Te, Rh, Ir, Pd, Pt, Au, Cd, Ga, In, Li, Ge, As, Sb, Ti, Tl, Pb, Bi, S, O, C, Be, N, H, Hg, B, Zr, rare earth and the like can be mentioned.
  • These inevitable impurities are desirably 0.3% by mass or less in total.
  • the stress relaxation resistance of a copper alloy is greatly affected by the Fe / Ni ratio, and when the ratio is within a specific range, the stress relaxation resistance is sufficient only for the first time. It has been found that it can be improved. That is, not only the Fe and Ni coexist and the contents of Fe and Ni are adjusted as described above, but the ratio Fe / Ni is more than 0.05 and 1.5% in terms of atomic ratio. It was found that the stress relaxation resistance can be sufficiently improved when it is within the range below. Here, when the Fe / Ni ratio is 1.5 or more, the stress relaxation resistance is lowered, and even when the Fe / Ni ratio is less than 0.05, the stress relaxation resistance is lowered.
  • the Fe / Ni ratio is regulated within the above range.
  • the Fe / Ni ratio is particularly preferably within the range of 0.1 to 1.2 even within the above range.
  • the stress relaxation resistance of the copper alloy decreases as the proportion of the solid solution P increases, and at the same time, the conductivity decreases due to the solid solution P, and the rollability decreases. As a result, cold rolling cracks are likely to occur, and bending workability is also reduced.
  • the (Ni + Fe) / P ratio is 15 or more, the electrical conductivity of the copper alloy decreases due to an increase in the ratio of Ni and Fe dissolved in the solution. Therefore, the (Ni + Fe) / P ratio is regulated within the above range.
  • the (Ni + Fe) / P ratio is preferably in the range of more than 3 and not more than 10 even in the above range.
  • (1 ′) Formula: 0.05 ⁇ (Fe + Co) / Ni ⁇ 1.5
  • the formula (1 ′) is basically based on the formula (1).
  • the (Fe + Co) / Ni ratio has a large effect on the stress relaxation resistance of the copper alloy, and the stress resistance is not applied until the ratio is within a specific range. The relaxation characteristics can be sufficiently improved.
  • the ratio of the total content of Fe and Co to the Ni content (Fe + Co) When / Ni is in an atomic ratio exceeding 0.05 and less than 1.5, sufficient stress relaxation resistance can be improved.
  • the (Fe + Co) / Ni ratio is 1.5 or more, the stress relaxation resistance is lowered, and even if the (Fe + Co) / Ni ratio is less than 0.05, the stress relaxation resistance is lowered. Therefore, the (Fe + Co) / Ni ratio is regulated within the above range.
  • the (Fe + Co) / Ni ratio is particularly preferably within the range of 0.1 to 1.2 even within the above range.
  • the stress relaxation resistance decreases as the proportion of the solid solution P increases, and at the same time, the conductivity decreases due to the solid solution P, and the rollability decreases, resulting in cold Rolling cracks are likely to occur, and bending workability is also reduced.
  • the (Ni + Fe + Co) / P ratio is 15 or more, the conductivity decreases due to an increase in the ratio of Ni, Fe, and Co dissolved in the solution. Therefore, the (Ni + Fe + Co) / P ratio is regulated within the above range.
  • the (Ni + Fe + Co) / P ratio is preferably in the range of more than 3 and not more than 10 even in the above range.
  • the Sn / (Ni + Fe + Co) ratio is particularly preferably within the range of 1 to 4.5 even within the above range.
  • each alloy element is adjusted not only to the individual content but also to the ratio between each element so that the formulas (1) to (3) or (1 ′) to (3 ′) are satisfied.
  • [Ni, Fe] -P-based precipitates or [Ni, Fe, Co] -P-based precipitates as described above were dispersed and precipitated from the matrix phase (mainly ⁇ phase). It is considered that the stress relaxation resistance is improved by the dispersion precipitation of such precipitates.
  • the crystal grain size of the material has some influence on the stress relaxation resistance. Generally, the smaller the crystal grain size, the lower the stress relaxation resistance, but the strength and bending workability are improved. To do. In the case of the alloy of the present invention, good stress relaxation resistance can be ensured by appropriate adjustment of the component composition and the ratio of each alloy element, so that the crystal grain size can be reduced to improve the strength and bending workability. it can. Although the specific value of the crystal grain size is not particularly limited, it is desirable that the average crystal grain size be 20 ⁇ m or less at the stage after the intermediate heat treatment for recrystallization and precipitation in the manufacturing process described later.
  • a molten copper alloy having the composition described above is melted.
  • 4NCu having a purity of 99.99% or more, for example, oxygen-free copper as the copper raw material among the melted raw materials, but scrap may be used as the raw material.
  • an atmospheric furnace may be used, but in order to suppress oxidation of Zn, a vacuum furnace or an atmosphere furnace that is an inert gas atmosphere or a reducing atmosphere may be used.
  • the copper alloy molten metal whose components are adjusted is cast by an appropriate casting method, for example, a batch casting method such as die casting, a continuous casting method, a semi-continuous casting method, etc., and an ingot (slab-like ingot, etc.) And Thereafter, a homogenization process is performed to eliminate segregation and make the ingot structure uniform as necessary.
  • the conditions for this homogenization treatment are not particularly limited, but it may be usually heated at 600 to 950 ° C. for 5 minutes to 24 hours. If the homogenization temperature is less than 600 ° C. or the homogenization time is less than 5 minutes, a sufficient homogenization effect may not be obtained.
  • the homogenization treatment temperature exceeds 950 ° C.
  • the homogenization treatment time exceeds 24 hours, only the cost rises.
  • the cooling conditions after the homogenization treatment may be determined as appropriate, but usually water quenching may be performed. After homogenization, chamfering is performed as necessary.
  • hot rolling is performed on the ingot to obtain a hot rolled sheet having a thickness of about 0.5 to 50 mm.
  • the conditions for this hot rolling are not particularly limited, but usually it is preferable that the starting temperature is 600 to 950 ° C., the end temperature is 300 to 850 ° C., and the rolling rate is about 10 to 90%.
  • the ingot heating up to the hot rolling start temperature may be performed in combination with the ingot homogenization process described above. That is, hot rolling may be started in a state of being cooled to the hot rolling start temperature without being cooled to near room temperature after the homogenization treatment.
  • primary cold rolling (intermediate rolling) is performed to obtain an intermediate thickness of about 0.05 to 5 mm.
  • the rolling ratio of the primary cold rolling is not particularly limited, but is usually about 20 to 99%.
  • An intermediate heat treatment is performed after the primary cold rolling. This intermediate heat treatment is an important process for recrystallizing the structure and simultaneously dispersing and depositing [Ni, Fe] -P-based precipitates or [Ni, Fe, Co] -P-based precipitates.
  • the conditions of heating temperature and heating time at which precipitates are generated may be applied.
  • the temperature range in which these precipitates are generated is 300 to 800 ° C. Therefore, the intermediate heat treatment may be performed within this temperature range.
  • the heating time in the temperature range may be a time during which these precipitates are sufficiently generated, that is, usually 1 second to 24 hours.
  • the crystal grain size also has some influence on the stress relaxation resistance as described above, it is desirable to measure the recrystallized grains by the intermediate heat treatment and appropriately select the heating temperature and heating time conditions. In addition, you may repeat said cold rolling and intermediate heat processing in multiple times as needed.
  • the preferable heating temperature and heating time of the intermediate heat treatment vary depending on the specific heat treatment method, as will be described below. That is, as a specific method of the intermediate heat treatment, a batch-type heating furnace may be used, or continuous heating may be performed using a continuous annealing line. As a preferable heating condition for the intermediate heat treatment, when a batch type heating furnace is used, it is desirable to heat at a temperature of 300 to 800 ° C. for 5 minutes to 24 hours. In the case of using a continuous annealing line, it is preferable that the heating attainment temperature is 300 to 800 ° C., and that the temperature is within the range without holding or for about 1 second to 5 minutes.
  • the atmosphere for the intermediate heat treatment is preferably a non-oxidizing atmosphere (nitrogen gas atmosphere, inert gas atmosphere, or reducing atmosphere).
  • the cooling condition after the intermediate heat treatment is not particularly limited, but it may be normally cooled at a cooling rate of about 2000 ° C./second to 100 ° C./hour.
  • finish to a product plate thickness (about 0.05 to 1.0 mm)
  • finish cold rolling is performed again to obtain the required strength by work hardening.
  • the rolling ratio of this finish cold rolling is usually preferably 5 to 99%. If the finish cold rolling rate is less than 5%, sufficient strength as the final plate may not be obtained. On the other hand, if it exceeds 99%, ear cracks may occur. If strength is not required, finish cold rolling may be omitted.
  • low-temperature heat treatment (finish annealing) is performed as necessary for strain relief annealing.
  • This low-temperature heat treatment is desirably performed at a temperature in the range of 50 to 500 ° C. for 1 second to 24 hours. If the temperature of the low-temperature heat treatment is less than 50 ° C. or the time of the low-temperature heat treatment is less than 1 second, there is a possibility that a sufficient effect of removing the distortion cannot be obtained. On the other hand, if the temperature of the low-temperature heat treatment exceeds 500 ° C., there is a risk of recrystallization, and if the time of the low-temperature heat treatment exceeds 24 hours, only the cost increases.
  • the [Ni, Fe] -P-based precipitates or [Ni, Fe, Co] -P-based precipitates were dispersed and precipitated from the matrix mainly composed of the ⁇ phase, and the plate thickness was 0.05 to 1.0 mm.
  • a Cu—Zn—Sn alloy thin sheet (strip material) of a certain degree can be obtained.
  • Such a thin plate may be used as it is for a conductive part for electronic or electrical equipment, but usually, Sn plating with a film thickness of about 0.1 to 10 ⁇ m is applied to one or both sides of the plate surface to form Sn.
  • As a plated copper alloy strip it is usually used for conductive parts for electronic and electrical equipment such as connectors and other terminals.
  • the Sn plating method in this case is not particularly limited, but electrolytic plating may be applied according to a conventional method, or depending on circumstances, reflow treatment may be performed after electrolytic plating.
  • the copper alloy of the present invention is optimal for use in such a manner.
  • hot rolling start temperature becomes 850 ° C.
  • hot rolling with a rolling rate of about 50% is performed
  • water quenching is performed from a rolling end temperature of 500 to 700 ° C.
  • a hot-rolled material having a thickness of about 11 mm and a width of about 25 mm was produced.
  • the average grain size after the intermediate heat treatment is set as intermediate heat treatment (recrystallization and precipitation treatment).
  • Heat treatment was performed at 550 ° C. so as to be about 10 ⁇ m.
  • the average crystal grain size was examined as follows. That is, each sample after the intermediate heat treatment was mirror-polished and etched, taken with an optical microscope so that the intermediate rolling direction was beside the photograph, and observed with a 1000 ⁇ field of view (about 300 ⁇ m ⁇ 200 ⁇ m). .
  • draw 5 line segments of predetermined length in the vertical and horizontal directions count the number of crystal grains to be completely cut, and calculate the average value of the cutting length as the average grain size. did.
  • Tables 4 to 6 show the average crystal grain sizes at the stage after the intermediate heat treatment examined as described above.
  • finish cold rolling was performed at the rolling rates shown in Tables 4 to 6, and strips (thin plates) having a thickness of about 0.25 mm and a width of about 25 mm were produced.
  • finishing strain relief annealing low-temperature heat treatment
  • water quenching is performed, surface grinding is performed, and a strip for property evaluation is produced. did.
  • test piece having a width of 10 mm and a length of 60 mm was taken from the strip for characteristic evaluation, and the electrical resistance was determined by a four-terminal method. Moreover, the dimension of the test piece was measured using the micrometer, and the volume of the test piece was calculated. And electrical conductivity was computed from the measured electrical resistance value and volume. In addition, the test piece was extract
  • Stress relaxation resistance In the stress relaxation resistance test, stress was applied by a method according to the cantilevered screw method of Japan Copper and Brass Association Technical Standard JCBA-T309: 2004, and the residual stress ratio after holding for a predetermined time at a temperature of 150 ° C. was measured. .
  • a test method a test piece (width 10 mm) was taken from each specimen in parallel from the longitudinal direction, and the initial deflection displacement was set to 2 mm so that the maximum surface stress of the test piece was 80% of the proof stress. The length was adjusted. The maximum surface stress is determined by the following equation.
  • Residual stress rate (%) (1- ⁇ t / ⁇ 0 ) ⁇ 100 where ⁇ t : Permanent deflection displacement after holding at 150 ° C. for 80 hours (mm) ⁇ 0 : Initial deflection displacement (mm) It is.
  • FIG. 2 shows the analysis results of the precipitates in sample No. 2 by EDX (energy dispersive X-ray spectroscopy).
  • a white oval portion near the center is a precipitate.
  • the precipitate contains Fe and P, that is, a kind of [Ni, Fe] -P-based precipitate that has already been defined. It was confirmed that there was.
  • No. 1-No. No. 16 is an example of the present invention based on a Cu-30Zn alloy containing about 30% Zn
  • No. 16 17-No. No. 27 is an example of the present invention based on a Cu-25Zn alloy containing about 25% Zn
  • No. No. 42 is a comparative example containing 37.1% Zn
  • No. 42. 55 is a comparative example based on a Cu-25Zn alloy containing about 25% Zn.
  • Inventive Example No. 1-No. No. 39 has a residual stress ratio of 60% or more and excellent stress relaxation resistance, and also has a conductivity of 21% IACS or more, and can be applied to connectors and other terminal members sufficiently. It was confirmed that almost no ear cracks occurred at the time, or even if they occurred, the length was less than 3 mm, the rolling property was good, and the strength was not inferior to that of the conventional material. .
  • the comparative example No. No. 41 is a conventional material made of a Cu-30Zn alloy
  • a comparative example No. No. 42 is a conventional material obtained by adding only Sn to a Cu-30Zn alloy. 1-No. Compared to 16, stress relaxation resistance was inferior.
  • the comparative example No. 43 since the Zn content was excessive, cracks occurred during cold rolling (finish rolling), and subsequent low-temperature heat treatment could not be performed, and each performance evaluation could not be performed. Furthermore, No. of the comparative example. In No. 44, the Sn amount was excessive, so that cracking occurred during hot rolling, and the subsequent steps could not be performed, and each performance evaluation could not be performed. On the other hand, no. No. 45 does not contain Sn, so that the present invention example No. 45 based on a Cu-30Zn alloy is used. 1-No. Compared to 16, stress relaxation resistance was inferior. The comparative example No. No. 46 of the present invention No. 46 based on the Cu-30Zn alloy because of the excessive amount of Ni. 1-No.
  • the individual content of each alloy element is within the range defined by the present invention, but the content ratio (atomic ratio) between the alloy elements is outside the range defined by the present invention.
  • the Fe / Ni ratio is lower than the lower limit of the formula (1). 1-No. Compared to 16, stress relaxation resistance was inferior.
  • the Fe / Ni ratio is higher than the upper limit of the formula (1). 1-No. Compared to 16, stress relaxation resistance was inferior.
  • the comparative example No. 54 the (Ni + Fe) / P ratio is lower than the lower limit of the formula (2). 1-No.
  • a copper alloy that is excellent in strength, rollability, electrical conductivity, and excellent in stress relaxation resistance.
  • Such a copper alloy is suitable for a conductive member constituting a connector, other terminals, etc., and can provide a component for electronic / electric equipment having excellent characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 mass%で、Znを23~36.5%、Snを0.1~0.8%、Niを0.05%以上、0.15%未満、Feを0.005%以上、0.10%未満、Pを0.005~0.05%含有し、かつFeの含有量とNiの含有量との比Fe/Niが、原子比で、0.05<Fe/Ni<1.5を満たし、かつNiおよびFeの合計含有量(Ni+Fe)とPの含有量との比(Ni+Fe)/Pが、原子比で、3<(Ni+Fe)/P<15を満たし、さらにSnの含有量とNiおよびFeの合計量(Ni+Fe)との比Sn/(Ni+Fe)が、原子比で、0.5<Sn/(Ni+Fe)<5を満たすように定められ、残部がCuおよび不可避的不純物よりなることを特徴とする電子・電気機器用銅合金。

Description

電子・電気機器用銅合金、銅合金薄板および導電部材
 本発明は、半導体装置のコネクタや、その他の端子で代表される電子・電気機器用の導電部品として使用される銅合金に関し、特に黄銅(Cu-Zn合金)にSnを添加してなるCu-Zn―Sn系の電子・電気機器用銅合金と、それを用いた銅合金薄板および導電部材に関するものである。
 本願は、2011年1月13日に、日本に出願された特願2011-5164号および2011年2月16日に、日本に出願された特願2011-30908号に基づき優先権を主張し、その内容をここに援用する。
半導体装置のコネクタやその他の端子で代表される電子・電気機器用の導電部品としては、銅もしくは銅合金が使用されている。そのうちでも、強度、加工性、コストのバランスなどの観点から、黄銅(Cu-Zn合金)が従来から広く使用されている。またコネクタなどの端子の場合、主として相手側の導電部材との接触の信頼性を高めるため、Cu-Zn合金からなる基材(素板)の表面に錫(Sn)めっきを施して使用することが多くなっている。
 上述のようにCu-Zn合金を基材としてその表面にSnめっきを施したコネクタなどの導電部品においては、Snめっき材のリサイクル性を向上させるとともに、強度を向上させるため、基材のCu-Zn合金自体についても、合金成分としてSnを添加したCu-Zn―Sn系合金を使用する場合がある。
半導体のコネクタやその他の端子で代表される電子・電気機器導電部品の製造プロセスとしては、一般に素材の銅合金を圧延加工によって厚みが0.05~1.0mm程度の薄板(条材)とし、打ち抜き加工によって所定の形状とし、さらにその少なくとも一部に曲げ加工を施すのが通常である。その場合、曲げ部分付近で相手側導電部材と接触させて相手側導電部材との電気的接続を得るとともに、曲げ部分のバネ性により相手側導電材との接触状態を維持させるように使用されることが多い。このようなコネクタやその他の端子においては、通電時の抵抗発熱を抑えるために導電性が優れていること、強度が高いことが望まれる。また薄板(条材)に圧延して打ち抜き加工を施すことから、圧延性や打ち抜き加工性が優れていることが望まれる。さらに、前述のように曲げ加工を施してその曲げ部分のバネ性により、曲げ部分付近で相手側導電材との接触状態を維持するように使用されるコネクタなどの場合は、曲げ加工性がすぐれているばかりでなく、曲げ部分付近での相手側導電材との接触が長時間(あるいは高温雰囲気でも)良好に保たれるように、耐応力緩和特性が優れていることが要求される。すなわち、曲げ部分のバネ性を利用して相手側導電材との接触状態を維持させるコネクタなどの端子においては、耐応力緩和特性が劣っていて経時的に曲げ部分の残留応力が緩和されれば、あるいは高温の使用環境下で曲げ部分の残留応力が緩和されれば、相手側導電部材との接触圧が十分に保たれなくなって、接触不良の問題が早期に生じてしまいやすい。
コネクタなどの端子に使用されるCu-Zn―Sn系合金の耐応力緩和特性を向上させるための方策としては、従来から例えば特許文献1~特許文献3に示すような提案がなされている。さらに本発明で主用途としているコネクタなどの端子の用途とは異なるが、リードフレーム用のCu-Zn―Sn系合金として、特許文献4にも耐応力緩和特性を向上させるための方策が示されている。
特許文献1においては、Cu-Zn―Sn系合金にNiを含有させてNi-P系化合物を生成させることによって耐応力緩和特性を向上させることができるとされ、またFeの添加も耐応力緩和特性の向上に有効であることが示されている。また特許文献2の提案においては、Cu-Zn―Sn系合金に、Ni、FeをPとともに添加して化合物を生成させることにより、強度、弾性、耐熱性を向上させ得ることが記載されている。ここでは耐応力緩和特性の直接的な記載はないが、上記の強度、弾性、耐熱性の向上は、耐応力緩和特性の向上を意味しているものと思われる。
 これらの特許文献1、2の提案に示されるように、Cu-Zn―Sn系合金にNi、Fe、Pを添加することが耐応力緩和特性の向上に有効であること自体は、本発明者等も確認している。しかし、特許文献1、2の提案ではNi、Fe、Pの個別の含有量が考慮されているだけであり、このような個別の含有量の調整だけでは、必ずしも耐応力緩和特性を確実かつ十分に向上させることができないことが、本発明者等の実験、研究によって判明している。
一方特許文献3の提案では、Cu-Zn―Sn系合金にNiを添加するとともに、Ni/Sn比を特定の範囲内に調整することにより耐応力緩和特性を向上させることができると記載されている。またFeの微量添加も耐応力緩和特性の向上に有効である旨、記載されている。
 このような特許文献3の提案に示されているNi/Sn比の調整も、確かに耐応力緩和特性の向上に有効ではあるが、P化合物と耐応力緩和特性との関係についてはまったく触れられていない。すなわちP化合物は、特許文献1、2に示されているように耐応力緩和特性に大きな影響を及ぼすと思われるが、特許文献3の提案では、P化合物を生成するFe、Niなどの元素に関しては、その含有量と耐応力緩和特性との関係が全く考慮されておらず、本発明者等の実験でも、特許文献3の提案に従っただけでは、十分かつ確実な耐応力緩和特性の向上を図り得ないことが判明している。
リードフレームを対象とした特許文献4の提案では、Cu-Zn―Sn系合金に、Ni、FeをPとともに添加し、同時に(Fe+Ni)/Pの原子比を0.2~3の範囲内に調整して、Fe―P系化合物、Ni―P系化合物、もしくはFe―Ni―P系化合物を生成させることにより、耐応力緩和特性の向上が可能となる旨、記載されている。
しかしながら、本発明者等の実験によれば、特許文献4で規定されているようにFe、Ni、Pの合計量と、(Fe+Ni)/Pの原子比とを調整しただけでは、耐応力緩和特性の十分な向上は図り得ないことが判明した。その理由は定かではないが、耐応力緩和特性の確実かつ十分な向上のためには、Fe、Ni、Pの合計量と(Fe+Ni)/Pの調整以外に、Fe/Ni比の調整、さらにはSn/(Ni+Fe)の調整が重要であって、これらの各含有量比率をバランス良く調整しなければ、耐応力緩和特性を確実かつ十分に向上させ得ないことが、本発明者等の実験、研究によって判明している。
以上のように、Cu-Zn―Sn系合金からなる電子・電気機器導電部品用銅合金として、耐応力緩和特性を向上させるための従来の提案では、耐応力緩和特性の向上効果は未だ確実かつ十分とは言えず、さらなる改良が望まれている。すなわち、コネクタのごとく、薄板(条)に圧延して曲げ加工を施した曲げ部分を有しかつその曲げ部分付近で相手側導電部材と接触させて、曲げ部分のバネ性により相手側導電部材との接触状態を維持するように使用される部品では、経時的に、もしくは高温環境で、残留応力が緩和されて相手側導電部材との接触圧が保たれなくなり、その結果、接触不良などの不都合が早期に生じやすいという問題がある。このような問題を回避するために、従来は材料の肉厚を大きくせざるを得ず、そのため材料コストの上昇を招くともに、重量の増大を招いてしまっていた。
特開平5-33087号公報 特開2006-283060号公報 特許第3953357号公報 特許第3717321号公報
 前述のように、Snめっき付き黄銅条の基材として使用されている従来のCu-Zn―Sn系合金は、コネクタやその他の各種端子など、曲げ加工を施しかつその曲げ部付近で相手側導電部材との接触を得るように使用される薄板材料(条材)としては、耐応力緩和特性が、未だ確実かつ十分に優れているとは言えない。そこで耐応力緩和特性のより一層の確実かつ十分な改善が強く望まれている。
 本発明は、以上のような事情を背景としてなされたものであって、コネクタやその他の端子など、電子・電気機器の導電部品として使用される銅合金、特にCu-Zn―Sn系合金として、耐応力緩和特性が確実かつ十分に優れていて、従来よりも部品素材の薄肉化を図ることができ、しかも強度や圧延性、導電率などの諸特性も優れた銅合金、およびそれを用いた銅合金薄板と導電部材を提供することを課題としている。
 本発明者らは、上記課題に対する解決策について、鋭意実験・研究を重ねたところ、Cu-Zn―Sn系合金に、Ni(ニッケル)およびFe(鉄)を適切な量だけ同時に添加するとともに、P(リン)を適切な量だけ添加し、しかもこれらの各合金元素の個別の含有量を調整するだけではなく、合金中におけるNi、Fe、P、およびSnの相互間の比率、とりわけFeおよびNiの含有量の比Fe/Niと、NiおよびFeの合計含有量(Ni+Fe)とPの含有量との比(Ni+Fe)/Pと、Snの含有量とNiおよびFeの合計含有量(Ni+Fe)との比Sn/(Ni+Fe)とを、それぞれ原子比で適切な範囲内に調整することにより、耐応力緩和特性を確実かつ十分に向上させることができ、しかも強度や圧延性、導電率など、コネクタやその他の端子に要求される諸特性も優れた銅合金が得られることを見い出し、本発明をなすに至ったのである。
 またさらに、上記のNi、Fe、Pと同時に適量のCoを添加することにより、耐応力緩和特性をより一層向上させることができることを見い出した。
 本発明の基本的な形態(第1の形態)による電子・電気機器用銅合金は、mass%で、Znを23~36.5%、Snを0.1~0.8%、Niを0.05%以上、0.15%未満、Feを0.005%以上、0.10%未満、Pを0.005~0.05%含有し、かつFeの含有量とNiの含有量との比Fe/Niが、原子比で、
  0.05<Fe/Ni<1.5
を満たし、かつNiの含有量およびFeの含有量の合計量(Ni+Fe)とPの含有量との比(Ni+Fe)/Pが、原子比で、
  3<(Ni+Fe)/P<15
を満たし、さらにSnの含有量とNiの含有量およびFeの含有量の合計量(Ni+Fe)との比Sn/(Ni+Fe)が、原子比で、
  0.5<Sn/(Ni+Fe)<5
を満たすように定められ、残部がCuおよび不可避的不純物よりなることを特徴とする銅合金である。
 このような本発明の基本的な形態によれば、適切な量のSnに加え、NiおよびFeを、Pとともに適切な量だけ同時に添加し、しかもSn、Ni、Fe、およびPの相互間の添加比率を適切に規制することにより、母相(α相主体)から析出した〔Ni,Fe〕-P系析出物が適切に存在する組織のCu-Zn―Sn系合金を得ることができる。このようなCu-Zn―Sn系合金では、耐応力緩和特性が確実かつ十分に優れ、同時に強度や圧延性、導電率などの、コネクタその他の端子に要求される諸特性も優れている。すなわち、単純にSn、Ni、Fe、およびPの個別の含有量を所定の範囲内に調整しただけでは、実際の材料におけるこれらの元素の含有量によっては十分な耐応力緩和特性の改善が図れないことがあり、またその他の特性が不十分となったりすることがあるが、それらの元素の含有量の相対的な比率を、前記各式で規定される範囲内に規制することによって、耐応力緩和特性を確実かつ十分に向上させると同時に、コネクタなどの端子材に要求される諸特性を満足させることが可能となったのである。
 ここで〔Ni,Fe〕-P系析出物とは、Ni―Fe―Pの3元系析出物、あるいはFe―PもしくはNi―Pの2元系析出物であり、さらにこれらに他の元素、例えば主成分のCu、Zn、Sn、不純物のO、S、C、Co、Cr、Moなどを含有した多元系析出物を含むことがあるものを意味している。またこの〔Ni,Fe〕-P系析出物は、リン化物、もしくはリンを固溶した合金の形態で存在するものである。
 本発明の第2の形態による電子・電気機器用銅合金は、mass%で、Znを23~36.5%、Snを0.1~0.8%、Niを0.05%以上、0.15%未満、Feを0.005%以上、0.10%未満、Coを0.005%以上、0.10%未満、Pを0.005~0.05%含有し、かつFeおよびCoの合計含有量とNiの含有量との比(Fe+Co)/Niが、原子比で、
  0.05<(Fe+Co)/Ni<1.5
を満たし、かつNi、FeおよびCoの合計含有量(Ni+Fe+Co)とPの含有量との比(Ni+Fe+Co)/Pが、原子比で、
  3<(Ni+Fe+Co)/P<15
を満たし、さらにSnの含有量とNi、FeおよびCoの合計含有量(Ni+Fe+Co)との比Sn/(Ni+Fe+Co)が、原子比で、
  0.5<Sn/(Ni+Fe+Co)<5
を満たすように定められ、残部がCuおよび不可避的不純物よりなることを特徴とする銅合金である。
 このような第2の形態による電子・電気機器用銅合金では、上述のようなNi、Fe、Pと同時に適量のCoを添加して、〔Ni,Fe,Co〕-P系析出物が適切に存在する組織とすることにより、耐応力緩和特性をより一層向上させることができる。
 ここで〔Ni,Fe,Co〕-P系析出物とは、Ni―Fe―Co―Pの4元系析出物、あるいはNi-Fe―P、Ni―Co―P、もしくはFe-Co―Pの3元系析出物、あるいはFe―P、Ni-P、もしくはCo―Pの2元系析出物であり、さらにこれらに他の元素、例えば主成分のCu、Zn、Sn、不純物のO、S、C、Cr、Moなどを含有した多元系析出物を含むことがあるものを意味している。またこの〔Ni,Fe,Co〕-P系析出物は、リン化物、もしくはリンを固溶した合金の形態で存在するものである。
 また本発明の第3の形態による電子・電気機器用銅合金薄板は、前記第1もしくは第2の形態の銅合金の圧延材からなり、厚みが0.05~1.0mmの範囲内にある銅合金薄板である。
 このような厚みの圧延板薄板(条材)は、コネクタ、その他の端子に好適に使用することができる。
 さらに本発明の第4の形態による電子・電気機器用銅合金薄板は、前記第3の形態の銅合金薄板の表面にSnめっきが施されているものである。
 この場合、Snめっきの下地の基材は0.1~0.8%のSnを含有するCu-Zn―Sn系合金で構成されているため、使用済みのコネクタなどの部品をSnめっき黄銅系合金のスクラップとして回収して良好なリサイクル性を確保することができる。
 また本発明の第5の形態による電子・電気機器用導電部材は、前記第3もしくは第4の形態の銅合金薄板よりなり、かつ相手側導電部材と接触させて相手側導電部材との電気的接続を得るための導電部材であって、しかも板面の少なくとも一部に曲げ加工が施されて、その曲げ部分のバネ性により相手側導電材との接触を維持するように構成された導電部材である。
本発明の実施例の本発明例No.2の合金についての、FE-SEM(電界放出型走査電子顕微鏡)観察による析出物を含む部位の組織写真である。 図1中の析出物についてのEDX(エネルギー分散型X線分光法)分析結果を示すグラフである。
 以下、本発明の電子・電気機器用銅合金についてより詳細に説明する。
 本発明の電子・電気機器用銅合金は、基本的には、合金元素の個別の含有量としては、mass%で、Znを23~36.5%、Snを0.1~0.8%、Niを0.05%以上、0.15%未満、Feを0.005%以上、0.10%未満、Pを0.005~0.05%含有するものであり、さらに各合金元素の相互間の含有量比率として、Feの含有量とNiの含有量との比Fe/Niが、原子比で、次の(1)式
  0.05<Fe/Ni<1.5          ・・・(1)
を満たし、かつNiの含有量およびFeの含有量の合計量(Ni+Fe)とPの含有量との比(Ni+Fe)/Pが、原子比で、次の(2)式
  3<(Ni+Fe)/P<15          ・・・(2)
を満たし、さらにSnの含有量とNiの含有量およびFeの含有量の合計量(Ni+Fe)との比Sn/(Ni+Fe)が、原子比で、次の(3)式
  0.5<Sn/(Ni+Fe)<5        ・・・(3)
 を満たすように定められ、上記各合金元素の残部がCuおよび不可避的不純物とされたものである。
 また、本発明の電子・電気機器用銅合金は、上記のZn、Sn、Ni、Fe、Pのほか、さらにCoを0.005%以上、0.10%未満含有しており、かつこれらの合金元素の相互間の含有量比率として、FeおよびCoの合計含有量とNiの含有量との比(Fe+Co)/Niが、原子比で、次の(1´)式
  0.05<(Fe+Co)/Ni<1.5          ・・・(1´)
を満たし、さらにNi、FeおよびCoの合計含有量(Ni+Fe+Co)とPの含有量との比(Ni+Fe+Co)/Pが、原子比で、次の(2´)式
  3<(Ni+Fe+Co)/P<15       ・・・(2´)
を満たし、さらにSnの含有量とNi、FeおよびCoの合計含有量(Ni+Fe+Co)との比Sn/(Ni+Fe+Co)が、原子比で、次の(3´)式
  0.5<Sn/(Ni+Fe+Co)<5     ・・・(3´)
を満たすように定められ、上記各合金元素の残部がCuおよび不可避的不純物とされたものであってもよい。
 そこで先ずこれらの本発明銅合金の成分組成およびそれらの相互間の比率の限定理由について説明する。
Zn:mass%で、23~36.5%
 Znは、本発明で対象としている銅合金(黄銅)において基本的な合金元素であり、強度およびばね性の向上に有効な元素である。またZnはCuより安価であるため、銅合金の材料コストの低減にも効果がある。Znが23%未満ではこれらの効果が十分に得られない。一方Znが36.5%を越えれば、耐応力緩和特性が低下してしまい、後述するように本発明に従ってFe、Ni、Pを添加しても、十分な耐応力緩和特性を確保することが困難となり、また耐食性が低下するとともに、β相が多量に生じるため冷間圧延性および曲げ加工性も低下してしまう。したがってZnの含有量は23~36.5%の範囲内とした。なおZn量は、上記の範囲内でも特に24~36%の範囲内が好ましい。
Ni:mass%で、0.05%以上、0.15%未満
 Niは、Fe、Pと並んで本発明において特徴的な添加元素であり、Cu-Zn―Sn合金に適量のNiを添加して、NiをFe、Pと共存させることによって、〔Ni,Fe〕-P系析出物を母相(α相主体)から析出させることができ、また、NiをFe、Co,Pと共存させることによって、〔Ni,Fe,Co〕-P系析出物を母相(α相主体)から析出させることができ、これらの〔Ni,Fe〕-P系析出物もしくは〔Ni,Fe,Co〕-P系析出物の存在によって、耐応力緩和特性を大幅に向上させることができる。ここで、Niの添加量が0.05%未満では、耐応力緩和特性を十分に向上させることができない。一方Niの添加量が0.15%以上となれば、固溶Niが多くなって導電率が低下し、また高価なNi原材料の使用量の増大によりコスト上昇を招く。そこでNiの添加量は0.05%以上、0.15%未満の範囲内とした。なおNiの添加量は、上記の範囲内でも特に0.05%以上、0.10%未満の範囲内とすることが好ましい。
Fe:mass%で、0.005%以上、0.10%未満
 Feは、Ni、Pと並んで本発明において特徴的な添加元素であり、Cu-Zn―Sn合金に適量のFeを添加して、FeをNi、Pと共存させることによって、〔Ni,Fe〕-P系析出物を母相(α相主体)から析出させることができ、また、FeをNi、Co,Pと共存させることによって、〔Ni,Fe,Co〕-P系析出物を母相(α相主体)から析出させることができる。これらの〔Ni,Fe〕-P系析出物もしくは〔Ni,Fe,Co〕-P系析出物の存在によって、銅合金の耐応力緩和特性を大幅に向上させることができる。ここで、Feの添加量が0.005%未満では、耐応力緩和特性を十分に向上させることができない。一方Feの添加量が0.10%以上となれば、一層の耐応力緩和特性の向上は認められず、固溶Feが多くなって導電率が低下し、また冷間圧延性も低下してしまう。そこでFeの添加量は0.005%以上、0.10%未満の範囲内とした。なおFeの添加量は、上記の範囲内でも特に0.005%~0.08%の範囲内とすることが好ましい。
Co:mass%で、0.005%以上、0.10%未満
 Coは、必ずしも必須の添加元素ではないが、少量のCoをNi、Fe、Pとともに添加すれば、〔Ni,Fe,Co〕-P系析出物が生成され、耐応力緩和特性をより一層向上させることができる。ここでCo添加量が0.005%未満では、Co添加による耐応力緩和特性のより一層の向上効果が得られない。一方Co添加量が0.10%以上となれば、固溶Coが多くなって導電率が低下し、また高価なCo原材料の使用量の増大によりコスト上昇を招く。そこでCoを添加する場合のCoの添加量は0.005%以上、0.10%未満の範囲内とした。なおCoの添加量は、上記の範囲内でも特に0.005%~0.08%の範囲内とすることが好ましい。なお、Coを積極的に添加しない場合でも、不純物として0.005%未満のCoが含有される場合がある。
P:mass%で、0.005~0.05%
 Pは、Fe、Ni、さらにはCoとの結合性が高く、Fe、Niとともに適量のPを含有させれば、〔Ni,Fe〕-P系析出物を析出させることができ、またFe、Ni、Coとともに適量のPを含有させれば、〔Ni,Fe,Co〕-P系析出物を析出させることができ、そしてこれらの析出物の存在によって銅合金の耐応力緩和特性を向上させることができる。ここで、P量が0.005%未満では、十分に〔Ni,Fe〕-P系析出物または〔Ni,Fe,Co〕-P系析出物を析出させることが困難となり、十分に耐応力緩和特性を向上させることができなくなる。一方P量が0.05%を越えれば、P固溶量が多くなって、銅合金の導電率が低下するとともに圧延性が低下して冷間圧延割れが生じやすくなってしまう。そこでPの含有量は、0.005~0.05%の範囲内とした、なおP量は、上記の範囲内でも特に0.01%~0.04%の範囲内が好ましい。
 なお、Pは、銅合金の溶解原料から不可避的に混入することが多い元素である。従ってP量を上述のように規制するためには、溶解原料を適切に選定することが望ましい。
 以上の各元素の残部は、基本的にはCuおよび不可避的不純物とすればよい。ここで不可避的不純物としては、Mg,Al, Mn, Si, (Co),Cr,Ag,Ca,Sr,Ba,Sc,Y,Hf,V,Nb,Ta,Mo,W,Re,Ru,Os,Se,Te,Rh,Ir,Pd,Pt,Au,Cd,Ga,In,Li,Ge,As,Sb,Ti,Tl,Pb,Bi,S,O,C,Be,N,H,Hg, B、Zr、希土類等が挙げられる。これらの不可避不純物は、総量で0.3質量%以下であることが望ましい。
 さらに本発明の電子・電気機器用銅合金においては、各合金元素の個別の添加量範囲を上述のように調整するばかりではなく、それぞれの元素の含有量の相互の比率が、原子比で、前記(1)~(3)式、あるいは(1´)~(3´)式を満たすように規制することが重要である。そこで以下に(1)~(3)式、(1´)~(3´)式の限定理由を説明する。
(1)式: 0.05<Fe/Ni<1.5
 本発明者等の詳細な実験によれば、銅合金の耐応力緩和特性にはFe/Ni比が大きな影響を与え、その比が特定の範囲内にある場合に、はじめて耐応力緩和特性を十分に向上させ得ることが判明した。すなわち、FeとNiを共存させ、かつFe、Niのそれぞれの含有量を前述のように調整するだけではなく、それらの比Fe/Niを、原子比で、0.05を越えかつ1.5未満の範囲内とした場合に、十分な耐応力緩和特性の向上を図り得ることを見い出した。ここで、Fe/Ni比が1.5以上となれば、耐応力緩和特性が低下し、またFe/Ni比が0.05未満となっても耐応力緩和特性が低下する。また、Fe/Ni比が0.05未満では、高価なNiの原材料使用量が相対的に多くなって、コスト上昇を招く。そこでFe/Ni比は、上記の範囲内に規制することとした。なおFe/Ni比は、上記の範囲内でも、特に0.1~1.2の範囲内が望ましい。
(2)式: 3<(Ni+Fe)/P<15
 NiおよびFeがPと共存することにより、〔Ni,Fe〕-P系析出物が生成されて、その〔Ni,Fe〕-P系析出物の分散により銅合金の耐応力緩和特性を向上させることができる。しかし、(Ni+Fe)に対してPが過剰に含有されれば、固溶Pの割合の増大によって逆に耐応力緩和特性が低下してしまい、またPに対して(Ni+Fe)が過剰に含有されれば、固溶したNi、Feの割合の増大によって耐応力緩和特性が低下してしまうから、耐応力緩和特性の十分な向上のためには、(Ni+Fe)/P比も重要である。(Ni+Fe)/P比が3以下では、固溶Pの割合の増大に伴って銅合金の耐応力緩和特性が低下し、また同時に固溶Pにより導電率が低下するとともに、圧延性が低下して冷間圧延割れが生じやすくなり、さらに曲げ加工性も低下する。一方、(Ni+Fe)/P比が15以上となれば、固溶したNi、Feの割合の増大により銅合金の導電率が低下してしまう。そこで(Ni+Fe)/P比を上記の範囲内に規制することとした。なお(Ni+Fe)/P比は、上記の範囲内でも、特に3を越え、10以下の範囲内が望ましい。
(3)式: 0.5<Sn/(Ni+Fe)<5
 前述のようにSnがNiおよびFeと共存すれば、Snは銅合金の耐応力緩和特性の向上に寄与するが、その耐応力緩和特性向上効果は、Sn/(Ni+Fe)比が特定の範囲内でなければ十分に発揮されない。すなわち、Sn/(Ni+Fe)比が0.5以下では、十分な耐応力緩和特性向上効果が発揮されず、一方Sn/(Ni+Fe)比が5を越えれば、相対的に(Ni+Fe)量が少なくなって、〔Ni,Fe〕-P系析出物の量が少なくなり、耐応力緩和特性が低下してしまう。なおSn/(Ni+Fe)比は、上記の範囲内でも、特に1~4.5の範囲内が望ましい。
(1´)式: 0.05<(Fe+Co)/Ni<1.5
 Coを添加した場合、Feの一部をCoで置き換えたと考えればよく、したがって(1´)式も基本的には(1)式に準じている。すなわち、Fe、Niに加えてCoを添加した場合、銅合金の耐応力緩和特性には(Fe+Co)/Ni比が大きな影響を与え、その比が特定の範囲内にある場合に、はじめて耐応力緩和特性を十分に向上させ得る。したがって、NiとFeおよびCoを共存させ、かつFe、Ni、Coのそれぞれの含有量を前述のように調整するだけではなく、FeとCoの合計含有量とNi含有量との比(Fe+Co)/Niを、原子比で、0.05を越えかつ1.5未満の範囲内とした場合に、十分な耐応力緩和特性の向上を図り得る。ここで、(Fe+Co)/Ni比が1.5以上となれば、耐応力緩和特性が低下し、また(Fe+Co)/Ni比が0.05未満となっても耐応力緩和特性が低下する。そこで(Fe+Co)/Ni比は、上記の範囲内に規制することとした。
 なお(Fe+Co)/Ni比は、上記の範囲内でも、特に0.1~1.2の範囲内が望ましい。
(2´)式: 3<(Ni+Fe+Co)/P<15
 Coを添加する場合の(2´)式も、前記(2)式に準じている。すなわち、Ni、FeおよびCoがPと共存することにより、〔Ni,Fe,Co〕-P系析出物が生成されて、その〔Ni,Fe,Co〕-P系析出物の分散により銅合金の耐応力緩和特性を向上させることができる。他方、(Ni+Fe+Co)に対してPが過剰に含有されれば、固溶Pの割合の増大によって逆に耐応力緩和特性が低下してしまう。従って、耐応力緩和特性の十分な向上のためには、(Ni+Fe+Co)/P比も重要である。(Ni+Fe+Co)/P比が3以下では、固溶Pの割合の増大に伴って耐応力緩和特性が低下し、また同時に固溶Pにより導電率が低下するとともに、圧延性が低下して冷間圧延割れが生じやすくなり、さらに曲げ加工性も低下する。一方、(Ni+Fe+Co)/P比が15以上となれば、固溶したNi、Fe、Coの割合の増大により導電率が低下してしまう。そこで(Ni+Fe+Co)/P比を上記の範囲内に規制することとした。なお(Ni+Fe+Co)/P比は、上記の範囲内でも、特に3を越え、10以下の範囲内が望ましい。
(3´)式: 0.5<Sn/(Ni+Fe+Co)<5
 Coを添加する場合の(3´)式も、前記(3)式に準じている。すなわち、SnがNi、FeおよびCoと共存すれば、Snは銅合金の耐応力緩和特性の向上に寄与するが、その耐応力緩和特性向上効果は、Sn/(Ni+Fe+Co)比が特定の範囲内でなければ十分に発揮されない。具体的には、Sn/(Ni+Fe+Co)比が0.5以下では、十分な耐応力緩和特性向上効果が発揮されず、一方Sn/(Ni+Fe+Co)比が5を越えれば、相対的に(Ni+Fe+Co)量が少なくなって、〔Ni,Fe,Co〕-P系析出物の量が少なくなり、耐応力緩和特性が低下してしまう。なおSn/(Ni+Fe+Co)比は、上記の範囲内でも、特に1~4.5の範囲内が望ましい。
 以上のように各合金元素を、個別の含有量だけではなく、各元素相互の比率として、(1)~(3)式もしくは(1´)~(3´)式を満たすように調整した電子・電気機器用銅合金においては、既に述べたような〔Ni,Fe〕-P系析出物もしくは〔Ni,Fe,Co〕-P系析出物が、母相(α相主体)から分散析出したものとなり、このような析出物の分散析出によって、耐応力緩和特性が向上するものと考えられる。
 なお耐応力緩和特性には、材料の結晶粒径もある程度の影響を与えることが知られており、一般には結晶粒径が小さいほど耐応力緩和特性は低下するが、強度と曲げ加工性は向上する。本発明の合金の場合、成分組成と各合金元素の比率の適切な調整によって良好な耐応力緩和特性を確保できるため、結晶粒径を小さくして、強度と曲げ加工性の向上を図ることができる。具体的な結晶粒径の値は特に限定しないが、後述する製造プロセス中における再結晶および析出のための中間熱処理後の段階で、平均結晶粒径が20μm以下となるようにすることが望ましい。
 次に、本発明の電子・電気機器用銅合金の製造方法の好ましい例について、厚みが0.05~1.0mm程度の薄板(条材)を製造する場合を例にとって説明する。
 先ず前述のような成分組成の銅合金溶湯を溶製する。ここで、溶解原料のうち銅原料としては、純度が99.99%以上とされたいわゆる4NCu、例えば無酸素銅を使用することが望ましいが、スクラップを原料として用いてもよい。また溶解工程では、大気雰囲気炉を用いてもよいが、Znの酸化を抑制するために、真空炉、あるいは、不活性ガス雰囲気又は還元性雰囲気とされた雰囲気炉を用いてもよい。
 次いで成分調整された銅合金溶湯を、適宜の鋳造法、例えば金型鋳造などのバッチ式鋳造法、あるいは連続鋳造法、半連続鋳造法などによって鋳造して、鋳塊(スラブ状鋳塊など)とする。
 その後、必要に応じて偏析を解消して鋳塊組織を均一化するために均質化処理を行なう。この均質化処理の条件は特に限定しないが、通常は600~950℃において5分~24時間加熱すればよい。均質化処理温度が600℃未満、あるいは均質化処理時間が5分未満では、十分な均質化効果が得られないおそれがある。一方均質化処理温度が950℃を越えれば、偏析部位が一部溶解してしまうおそれがあり、さらに均質化処理時間が24時間を越えることはコスト上昇を招くだけである。均質化処理後の冷却条件は、適宜定めれば良いが、通常は水焼入れすればよい。なお均質化処理後には、必要に応じて面削を行なう。
 次いで、鋳塊に対して熱間圧延を行い、板厚0.5~50mm程度の熱延板を得る。この熱間圧延の条件も特に限定されないが、通常は、開始温度600~950℃、終了温度300~850℃、圧延率10~90%程度とすることが好ましい。なお熱間圧延開始温度までの鋳塊加熱は、前述の鋳塊均質化処理と兼ねて行なってもよい。すなわち均質化処理後に室温近くまで冷却せずに、熱間圧延開始温度まで冷却された状態で熱間圧延を開始してもよい。
 熱間圧延後には、一次冷間圧延(中間圧延)を施して、板厚0.05~5mm程度の中間板厚とする。この一次冷間圧延の圧延率は特に限定されないが、通常は20~99%程度とする。一次冷間圧延後には、中間熱処理を施す。この中間熱処理は、組織を再結晶させると同時に、〔Ni,Fe〕-P系析出物もしくは〔Ni,Fe,Co〕-P系析出物を分散析出させるために重要な工程であり、これらの析出物が生成されるような加熱温度、加熱時間の条件を適用すればよい。これらの析出物が生成される温度域は、300~800℃であり、従って中間熱処理は、この温度域内で行なえばよい。またその温度域での加熱時間は、これらの析出物が十分に生成される時間、すなわち通常は1秒~24時間とすればよい。但し、既に述べたように結晶粒径も耐応力緩和特性にある程度の影響を与えるから、中間熱処理による再結晶粒を測定して、加熱温度、加熱時間の条件を適切に選択することが望ましい。なお、必要に応じて、上記の冷間圧延と中間熱処理を、複数回繰り返しても良い。
 中間熱処理の好ましい加熱温度、加熱時間は、次に説明するように、具体的な熱処理の手法によっても異なる。
 すなわち中間熱処理の具体的手法としては、バッチ式の加熱炉を用いても、あるいは連続焼鈍ラインを用いて連続的に加熱しても良い。そして中間熱処理の好ましい加熱条件は、バッチ式の加熱炉を使用する場合は、300~800℃の温度で、5分~24時間加熱することが望ましい。連続焼鈍ラインを用いる場合は、加熱到達温度300~800℃とし、かつその範囲内の温度で、保持なし、もしくは1秒~5分程度保持することが好ましい。またこの中間熱処理の雰囲気は、非酸化性雰囲気(窒素ガス雰囲気、不活性ガス雰囲気、あるいは還元性雰囲気)とすることが好ましい。
 中間熱処理後の冷却条件は、特に限定しないが、通常は2000℃/秒~100℃/時間程度の冷却速度で冷却すればよい。
 中間熱処理の後には、製品板厚(0.05~1.0mm程度)まで仕上げ、同時に加工硬化により所要の強度を得るために、再び冷間圧延(仕上げ冷間圧延)を行なう。この仕上げ冷間圧延の圧延率は、通常は5~99%とすることが好ましい。仕上げ冷間圧延率が5%未満では最終板として十分な強度が得られなくなるおそれがあり、一方99%を越えれば、耳割れ発生のおそれがある。なお強度が必要とされない場合、仕上げ冷間圧延を省略してもよい。
 仕上げ冷間圧延後には、必要に応じて歪み取り焼鈍として、低温熱処理(仕上げ焼鈍)を行なう。この低温熱処理は、50~500℃の範囲内の温度で、1秒~24時間行なうことが望ましい。低温熱処理の温度が50℃未満、または低温熱処理の時間が1秒未満では、十分な歪み取りの効果が得られなくなるおそれがある。一方低温熱処理の温度が500℃を超える場合は再結晶のおそれがあり、さらに低温熱処理の時間が24時間を越えることは、コスト上昇を招くだけである。
 以上のようにして、α相主体の母相から〔Ni,Fe〕-P系析出物もしくは〔Ni,Fe,Co〕-P系析出物が分散析出した、板厚0.05~1.0mm程度のCu-Zn―Sn系合金薄板(条材)を得ることができる。このような薄板は、これをそのまま電子・電気機器用導電部品に使用しても良いが、通常は板面の一方、もしくは両面に、膜厚0.1~10μm程度のSnめっきを施し、Snめっき付き銅合金条として、コネクタその他の端子などの電子・電気機器用導電部品に使用するのが通常である。この場合のSnめっきの方法は特に限定されないが、常法に従って電解めっきを適用したり、また場合によっては電解めっき後にリフロー処理を施してもよい。
 なお実際にコネクタやその他の端子に使用するにあたっては、薄板に曲げ加工を施すのが通常であることは既に述べたとおりである。またその曲げ加工部分付近で、曲げ部分のバネ性により相手側導電部材に圧接させ、相手側導電部材との電気的導通を確保するような態様で使用することが一般的である。このような態様での使用に対して、本発明の銅合金は最適である。
 以下、本発明の効果を確認すべく行った確認実験の結果を本発明の実施例として、比較例とともに示す。なお以下の実施例は、本発明の効果を説明するためのものであって、実施例に記載された構成、プロセス、条件が本発明の技術的範囲を限定するものではない。
 Cu-35%Zn母合金および純度99.99質量%以上の無酸素銅(ASTM B152 C10100)からなる原料を準備し、これを高純度グラファイト坩堝内に装入して、Nガス雰囲気において電気炉を用いて溶解した。銅合金溶湯内に、各種添加元素を添加して、本発明例として表1および表2のNo.1~No.39に示す成分組成の合金、および比較例として表3のNo.41~No.57に示す成分組成の合金溶湯を溶製し、カーボン鋳型に注湯して鋳塊を製出した。なお、鋳塊の大きさは、厚さ約25mm×幅約25mm×長さ約150mmとした。各鋳塊について、表4~表6に示すような条件で処理した。すなわち、先ず鋳塊に対する均質化処理として、Arガス雰囲気中において、850℃で所定時間保持後、水焼き入れを実施した。
 次に、熱間圧延開始温度が850℃となるように再加熱して、圧延率約50%の熱間圧延を行い、圧延終了温度500~700℃から水焼入れを行い、表面研削実施後、厚さ約11mm×幅約25mmの熱間圧延材を製出した。
 その後、一次冷間圧延(表4~表6中の中間圧延)として圧延率約80%の圧延を行なった後、中間熱処理(再結晶および析出処理)として、中間熱処理後の平均結晶粒径が約10μmとなるように、550℃で熱処理を実施した。
 中間熱処理後の段階においては、平均結晶粒径を次のようにして調べた。すなわち、中間熱処理後の各試料において鏡面研磨、エッチングを行い、光学顕微鏡にて、中間圧延方向が写真の横になるように撮影し、1000倍の視野(約300μm×200μm)で観察を行った。次に、JIS H 0501切断法に従い、写真縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を平均結晶粒径とした。このようにして調べた中間熱処理後の段階での平均結晶粒径を表4~表6中に示す。
 その後、表4~表6中に示す圧延率で仕上げ冷間圧延を実施し、厚さ約0.25mm×幅約25mmの条材(薄板)を製出した。
 最後に、仕上げの歪み取り焼鈍(低温熱処理)として、Arガス雰囲気中において、200℃で1時間保持後、水焼き入れを実施し、表面研削を実施した後、特性評価用条材を製出した。
 これらの特性評価用条材について、圧延性、導電率、機械的特性(耐力)を調べるとともに、耐応力緩和特性を調べ、さらに組織観察を行なった。各評価項目についての試験方法、測定方法は次の通りであり、またその結果を表7~表9に示す。
〔圧延性評価〕
 圧延性の評価としては、前述の仕上げ冷間圧延時における耳割れの有無を観察した。目視で耳割れが全く、あるいはほとんど認められなかったものをA、長さ1mm未満の小さな耳割れが発生したものをB、長さ1mm以上3mm未満の耳割れが発生したものをC、長さ3mm以上の大きな耳割れが発生し、特性評価が著しく困難なものをDと、それぞれ評価した。なお、耳割れの長さとは、圧延材の幅方向端部から幅方向中央部に向かう耳割れの長さのことである。
〔機械的特性〕
 特性評価用条材からJIS Z 2201に規定される13B号試験片を採取し、JIS Z 2241のオフセット法により、0.2%耐力σ0.2を測定した。なお、試験片は、引張試験の引張方向が特性評価用条材の圧延方向に対して平行になるように採取した。
〔導電率〕
 特性評価用条材から幅10mm×長さ60mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して平行になるように採取した。
〔耐応力緩和特性〕
 耐応力緩和特性試験は、日本伸銅協会技術標準JCBA-T309:2004の片持はりねじ式に準じた方法によって応力を負荷し、150℃の温度で所定時間保持後の残留応力率を測定した。
 試験方法としては、各供試材から長手方向から平行に試験片(幅10mm)を採取し、試験片の表面最大応力が耐力の80%となるよう、初期たわみ変位を2mmと設定し、スパン長さを調整した。上記表面最大応力は次式で定められる。
表面応力(MPa)=1.5Etδ0/Ls 2ただし、
E:たわみ係数(MPa)
t:試料の厚み(t=0.25mm)
δ:初期たわみ変位(2mm)
:スパン長さ(mm)
である。
 150℃の温度で、80h保持後の曲げ癖から、残留応力率を測定し、その値が70%以上のものをA、60%以上、70%未満のものをB、50%以上、60%未満のものをC、50%未満のものをDとして評価した。なお残留応力率は次式を用いて算出した。
残留応力率(%)=(1-δt0)×100ただし、
δ:150℃で80h保持後の永久たわみ変位(mm)
δ:初期たわみ変位(mm)
 である。
〔析出物の観察〕
 各特性評価用条材について、析出物を確認するため、組織観察を実施した。各試料の圧延面に対して、鏡面研磨、エッチングを行ないFE-SEM(電界放出型走査電子顕微鏡)を用いて、約40000倍で観察を行った。また析出物の成分について、EDX(エネルギー分散型X線分光法)を用いて確認した。
 上記の各評価結果について、表7~表9中に示す。また、上述の組織観察の一例として、本発明例のNo.2の試料のFE-SEM観察写真を図1に示す。さらにその本発明例のNo.2の試料における析出物のEDX(エネルギー分散型X線分光法)による分析結果を図2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 図1において、中央付近の白い楕円状の部分が析出物である。そしてこの図1中の析出物についてのEDXによる分析結果(図2)から、その析出物が、Fe、Pを含有するもの、すなわち既に定義した〔Ni,Fe〕-P系析出物の一種であることが確認された。
 さらに、各試料の評価結果について説明する。なお、No.1~No.16は、30%前後のZnを含有するCu-30Zn合金をベースとする本発明例、No.17~No.27は、25%前後のZnを含有するCu-25Zn合金をベースとする本発明例、No.28~No.39は、35%前後のZnを含有するCu-35Zn合金をベースとする本発明例であり、またNo.41、No.42、No.44~No.54、No.56、No.57は、30%前後のZnを含有するCu-30Zn合金をベースとする比較例、No.42は、37.1%のZnを含有する比較例、No.55は、25%前後のZnを含有するCu-25Zn合金をベースとする比較例である。
 表7、表8に示しているように、各合金元素の個別の含有量が本発明で規定する範囲内であるばかりでなく、各合金成分の相互間の比率が本発明で規定する範囲内である本発明例No.1~No.39は、いずれも残留応力率が60%以上で、耐応力緩和特性が優れており、そのほか導電率も21%IACS以上で、コネクタやその他の端子部材に十分に適用可能であり、さらに仕上げ圧延時の耳割れは、ほとんど発生しないか、または発生しても長さ3mm未満とわずかであって、圧延性が良好であり、また強度も従来材と比して特に遜色ないことが確認された。
 一方、表9に示しているように、比較例のNo.41は、Cu-30Zn合金からなる従来材、比較例のNo.42は、Cu-30Zn合金にSnのみを添加してなる従来材であるが、これらはいずれもCu-30Zn合金をベースとする本発明例No.1~No.16と比較して耐応力緩和特性が劣っていた。
また比較例のNo.43は、Zn量が過剰なため、冷間圧延(仕上げ圧延)時に割れが発生してしまい、その後の低温熱処理は実施不可能となり、また各性能評価も実施できなかった。
 さらに比較例のNo.44は、Sn量が過剰なため、熱間圧延時に割れが発生してしまい、その後の工程は実施不可能となり、また各性能評価も実施できなかった。一方比較例のNo.45は、Snを添加していないため、Cu-30Zn合金をベースとする本発明例No.1~No.16と比較して耐応力緩和特性が劣っていた。
 また比較例のNo.46は、Ni量が過剰なため、Cu-30Zn合金をベースとする本発明例No.1~No.16と比較して耐応力緩和特性が劣っていた。一方比較例のNo.47は、Niを添加しなかったため、Cu-30Zn合金をベースとする本発明例No.1~No.16と比較して耐応力緩和特性が劣っていた。
 また比較例のNo.48は、Fe量が過剰なため、導電率が20%IACS以下と低く、しかもCu-30Zn合金をベースとする本発明例No.1~No.16と比較して耐応力緩和特性も劣っていた。一方比較例のNo.49は、Feを添加しなかったため、Cu-30Zn合金をベースとする本発明例No.1~No.16と比較して耐応力緩和特性が劣っていた。
 比較例のNo.50は、P量が過剰なため、冷間圧延(仕上げ圧延)時に割れが発生してしまい、その後の低温熱処理は実施不可能となり、また各性能評価も実施できなかった。一方比較例のNo.51は、Pを添加しなかったため、Cu-30Zn合金をベースとする本発明例No.1~No.16と比較して耐応力緩和特性が劣っていた。
 比較例のNo.52~No.57はいずれも各合金元素の個別の含有量は本発明で規定する範囲内であるが、各合金元素の相互間の含有量比率(原子比)が、本発明で規定する範囲から外れているものである。
 そのうち先ずNo.52の比較例は、Fe/Ni比が(1)式の下限より低く、この場合はCu-30Zn合金をベースとする本発明例No.1~No.16と比較して耐応力緩和特性が劣っていた。一方No.53の比較例は、Fe/Ni比が(1)式の上限より高く、この場合も、Cu-30Zn合金をベースとする本発明例No.1~No.16と比較して耐応力緩和特性が劣っていた。
 またNo.54の比較例は、(Ni+Fe)/P比が(2)式の下限より低く、この場合はCu-30Zn合金をベースとする本発明例No.1~No.16と比較して耐応力緩和特性が劣っていた。一方No.55の比較例は、(Ni+Fe)/P比が(2)式の上限より高く、この場合も、Cu-25Zn合金をベースとする本発明例No.17~No.27と比較して耐応力緩和特性が劣っていた。
 さらにNo.56の比較例は、Sn/(Ni+Fe)比が(3)式の下限より低く、この場合はCu-30Zn合金をベースとする本発明例No.1~No.16と比較して耐応力緩和特性が劣っていた。
 一方No.57の比較例は、Sn/(Ni+Fe)比が(3)式の上限より高く、この場合も、Cu-30Zn合金をベースとする本発明例No.1~No.16と比較して耐応力緩和特性が劣っていた。
 本発明によれば、強度、圧延性、導電率に優れ、かつ耐応力緩和特性に優れる銅合金を提供できる。このような銅合金は、コネクタ、その他の端子などを構成する導電部材に適し、すぐれた特性の電子・電気機器用部品を提供できる。

Claims (6)

  1.  Znを23~36.5%(mass%、以下同じ)、Snを0.1~0.8%、Niを0.05%以上、0.15%未満、Feを0.005%以上、0.10%未満、Pを0.005~0.05%含有し、かつFeの含有量とNiの含有量との比Fe/Niが、原子比で、
    0.05<Fe/Ni<1.5
    を満たし、かつNiおよびFeの合計含有量(Ni+Fe)とPの含有量との比(Ni+Fe)/Pが、原子比で、
    3<(Ni+Fe)/P<15
    を満たし、さらにSnの含有量とNiおよびFeの合計量(Ni+Fe)との比Sn/(Ni+Fe)が、原子比で、
    0.5<Sn/(Ni+Fe)<5
    を満たすように定められ、残部がCuおよび不可避的不純物よりなることを特徴とする電子・電気機器用銅合金。
  2.  Znを23~36.5%、Snを0.1~0.8%、Niを0.05%以上、0.15%未満、Feを0.005%以上、0.10%未満、Coを0.005%以上、0.10%未満、Pを0.005~0.05%含有し、かつFeおよびCoの合計含有量とNiの含有量との比(Fe+Co)/Niが、原子比で、
    0.05<(Fe+Co)/Ni<1.5
    を満たし、かつNi、FeおよびCoの合計含有量(Ni+Fe+Co)とPの含有量との比(Ni+Fe+Co)/Pが、原子比で、
    3<(Ni+Fe+Co)/P<15
    を満たし、さらにSnの含有量とNi、FeおよびCoの合計含有量(Ni+Fe+Co)との比Sn/(Ni+Fe+Co)が、原子比で、
    0.5<Sn/(Ni+Fe+Co)<5
    を満たすように定められ、残部がCuおよび不可避的不純物よりなることを特徴とする電子・電気機器用銅合金。
  3. 請求項1、請求項2のうちのいずれかの請求項に記載の銅合金の圧延材からなり、厚みが0.05~1.0mmの範囲内にある、電子・電気機器用銅合金薄板。
  4.  請求項3に記載の銅合金薄板の表面にSnめっきが施されている、電子・電気機器用銅合金薄板。
  5.  請求項3に記載の銅合金薄板よりなり、かつ相手側導電部材と接触させて相手側導電部材との電気的接続を得るための導電部材であって、板面の少なくとも一部に曲げ加工が施されて、その曲げ部分のバネ性により相手側導電材との接触を維持するように構成された電子・電気機器用導電部材。
  6.  請求項4に記載の銅合金薄板よりなり、かつ相手側導電部材と接触させて相手側導電部材との電気的接続を得るための導電部材であって、板面の少なくとも一部に曲げ加工が施されて、その曲げ部分のバネ性により相手側導電材との接触を維持するように構成された電子・電気機器用導電部材。
PCT/JP2012/050201 2011-01-13 2012-01-06 電子・電気機器用銅合金、銅合金薄板および導電部材 WO2012096237A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280004657.4A CN103282525B (zh) 2011-01-13 2012-01-06 电子设备用或电气设备用铜合金、铜合金薄板及导电部件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-005164 2011-01-13
JP2011005164 2011-01-13
JP2011030908A JP5088425B2 (ja) 2011-01-13 2011-02-16 電子・電気機器用銅合金、銅合金薄板および導電部材
JP2011-030908 2011-02-16

Publications (1)

Publication Number Publication Date
WO2012096237A1 true WO2012096237A1 (ja) 2012-07-19

Family

ID=46507137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050201 WO2012096237A1 (ja) 2011-01-13 2012-01-06 電子・電気機器用銅合金、銅合金薄板および導電部材

Country Status (4)

Country Link
JP (1) JP5088425B2 (ja)
CN (1) CN103282525B (ja)
TW (1) TWI521074B (ja)
WO (1) WO2012096237A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103149A1 (ja) * 2012-01-06 2013-07-11 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用銅合金の製造方法、電子・電気機器用導電部品および端子
JP5417539B1 (ja) * 2013-01-28 2014-02-19 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
CN105339513A (zh) * 2013-07-10 2016-02-17 三菱综合材料株式会社 电子电气设备用铜合金、电子电气设备用铜合金薄板、电子电气设备用导电元件及端子
EP2940165A4 (en) * 2012-12-26 2016-09-21 Mitsubishi Materials Corp COPPER ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICES, COPPER ALLOY THIN LAYER FOR ELECTRICAL AND ELECTRONIC DEVICES AND CONDUCTIVE PART AND END UNIT FOR ELECTRICAL AND ELECTRONIC DEVICES
EP2940167A4 (en) * 2012-12-28 2016-09-21 Mitsubishi Materials Corp COPPER ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICES, COPPER ALLOY THIN LAYER FOR ELECTRICAL AND ELECTRONIC DEVICES AND CONDUCTIVE PART AND END UNIT FOR ELECTRICAL AND ELECTRONIC DEVICES
EP2940166A4 (en) * 2012-12-28 2016-09-21 Mitsubishi Materials Corp COPPER ALLOY FOR ELECTRICAL AND ELECTRONIC EQUIPMENT, FINE COPPER ALLOY SHEET FOR ELECTRICAL AND ELECTRONIC EQUIPMENT AND CONDUCTIVE PART AND TERMINAL FOR ELECTRICAL AND ELECTRONIC EQUIPMENT
EP2977475A4 (en) * 2013-03-18 2016-12-28 Mitsubishi Materials Corp COPPER ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICES, COPPER ALLOY THINNING LAYER FOR ELECTRICAL AND ELECTRONIC DEVICES AND CONDUCTIVE PART AND CLAMP FOR ELECTRICAL AND ELECTRONIC DEVICES
EP2977476A4 (en) * 2013-03-18 2016-12-28 Mitsubishi Materials Corp COPPER ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICES, COPPER ALLOY THINNING LAYER FOR ELECTRICAL AND ELECTRONIC DEVICES AND CONDUCTIVE PART AND CLAMP FOR ELECTRICAL AND ELECTRONIC DEVICES
EP3020837A4 (en) * 2013-07-10 2017-02-15 Mitsubishi Materials Corporation Copper alloy for electronic/electrical equipment, copper alloy thin sheet for electronic/electrical equipment, conductive component for electronic/electrical equipment, and terminal
WO2017096572A1 (zh) * 2015-12-10 2017-06-15 湖南特力新材料有限公司 一种ods氧化铝弥散强化无铅易切削黄铜及其制造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6097606B2 (ja) * 2012-10-26 2017-03-15 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6166891B2 (ja) * 2012-12-14 2017-07-19 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6304863B2 (ja) * 2012-12-28 2018-04-04 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
TW201428113A (zh) * 2013-01-09 2014-07-16 Mitsubishi Materials Corp 電子/電氣機器用銅合金、電子/電氣機器用銅合金薄板、電子/電氣機器用銅合金之製造方法、電子/電氣機器用導電零件及端子
JP6097576B2 (ja) * 2013-01-28 2017-03-15 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6097575B2 (ja) * 2013-01-28 2017-03-15 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6304865B2 (ja) * 2013-01-31 2018-04-04 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6304867B2 (ja) * 2013-01-31 2018-04-04 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6304864B2 (ja) * 2013-03-18 2018-04-04 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6257912B2 (ja) * 2013-03-25 2018-01-10 Jx金属株式会社 導電性及び応力緩和特性に優れる銅合金板
JP5962707B2 (ja) * 2013-07-31 2016-08-03 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用銅合金塑性加工材の製造方法、電子・電気機器用部品及び端子
JP6101750B2 (ja) * 2015-07-30 2017-03-22 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子
CN105112719A (zh) * 2015-09-08 2015-12-02 张超 一种铜合金
CN105420540A (zh) * 2015-11-02 2016-03-23 苏州金仓合金新材料有限公司 一种可用于高速机车的环保无铅合金新材料合金管
CN105349870A (zh) * 2015-12-02 2016-02-24 苏州龙腾万里化工科技有限公司 一种高性能耐腐蚀耐用金属合金
DE202018100075U1 (de) * 2018-01-09 2019-04-10 Otto Fuchs - Kommanditgesellschaft - Kupfer-Zink-Legierung
CN109338153A (zh) * 2018-12-24 2019-02-15 南通金源智能技术有限公司 激光3d打印喷嘴用高温合金粉末
JP7266540B2 (ja) * 2020-01-14 2023-04-28 株式会社オートネットワーク技術研究所 接続端子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184679A (ja) * 1992-12-18 1994-07-05 Mitsui Mining & Smelting Co Ltd 電気部品用銅合金
JP2001303159A (ja) * 2000-04-27 2001-10-31 Dowa Mining Co Ltd コネクタ用銅合金とその製造法
JP2002003966A (ja) * 2000-06-20 2002-01-09 Furukawa Electric Co Ltd:The 半田接合性に優れる電子電気機器用銅合金
JP2002530523A (ja) * 1998-11-16 2002-09-17 オリン コーポレイション 応力緩和抵抗性の黄銅
JP2003306732A (ja) * 2002-04-17 2003-10-31 Kobe Steel Ltd 電気、電子部品用銅合金
JP2005060773A (ja) * 2003-08-12 2005-03-10 Mitsui Mining & Smelting Co Ltd 特殊黄銅及びその特殊黄銅の高力化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3413864B2 (ja) * 1993-02-05 2003-06-09 三菱伸銅株式会社 Cu合金製電気電子機器用コネクタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184679A (ja) * 1992-12-18 1994-07-05 Mitsui Mining & Smelting Co Ltd 電気部品用銅合金
JP2002530523A (ja) * 1998-11-16 2002-09-17 オリン コーポレイション 応力緩和抵抗性の黄銅
JP2001303159A (ja) * 2000-04-27 2001-10-31 Dowa Mining Co Ltd コネクタ用銅合金とその製造法
JP2002003966A (ja) * 2000-06-20 2002-01-09 Furukawa Electric Co Ltd:The 半田接合性に優れる電子電気機器用銅合金
JP2003306732A (ja) * 2002-04-17 2003-10-31 Kobe Steel Ltd 電気、電子部品用銅合金
JP2005060773A (ja) * 2003-08-12 2005-03-10 Mitsui Mining & Smelting Co Ltd 特殊黄銅及びその特殊黄銅の高力化方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013207042B2 (en) * 2012-01-06 2016-07-21 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method for manufacturing copper alloy for electronic/electric device, and conductive part and terminal for electronic/electric device
JP5303678B1 (ja) * 2012-01-06 2013-10-02 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子
WO2013103149A1 (ja) * 2012-01-06 2013-07-11 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用銅合金の製造方法、電子・電気機器用導電部品および端子
KR101437307B1 (ko) 2012-01-06 2014-09-03 미쓰비시 마테리알 가부시키가이샤 전자·전기 기기용 구리 합금, 전자·전기 기기용 구리 합금 박판, 전자·전기 기기용 구리 합금의 제조 방법, 전자·전기 기기용 도전 부품 및 단자
US8951369B2 (en) 2012-01-06 2015-02-10 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device and terminal
EP2940165A4 (en) * 2012-12-26 2016-09-21 Mitsubishi Materials Corp COPPER ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICES, COPPER ALLOY THIN LAYER FOR ELECTRICAL AND ELECTRONIC DEVICES AND CONDUCTIVE PART AND END UNIT FOR ELECTRICAL AND ELECTRONIC DEVICES
EP2940166A4 (en) * 2012-12-28 2016-09-21 Mitsubishi Materials Corp COPPER ALLOY FOR ELECTRICAL AND ELECTRONIC EQUIPMENT, FINE COPPER ALLOY SHEET FOR ELECTRICAL AND ELECTRONIC EQUIPMENT AND CONDUCTIVE PART AND TERMINAL FOR ELECTRICAL AND ELECTRONIC EQUIPMENT
US9653191B2 (en) 2012-12-28 2017-05-16 Mitsubishi Materials Corporation Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal
EP2940167A4 (en) * 2012-12-28 2016-09-21 Mitsubishi Materials Corp COPPER ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICES, COPPER ALLOY THIN LAYER FOR ELECTRICAL AND ELECTRONIC DEVICES AND CONDUCTIVE PART AND END UNIT FOR ELECTRICAL AND ELECTRONIC DEVICES
WO2014115353A1 (ja) * 2013-01-28 2014-07-31 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP5417539B1 (ja) * 2013-01-28 2014-02-19 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
EP2949769A4 (en) * 2013-01-28 2016-12-28 Mitsubishi Materials Corp COPPER ALLOY FOR AN ELECTRONIC / ELECTRICAL DEVICE, THIN COPPER ALLOY PLATE FOR THE ELECTRONIC / ELECTRICAL DEVICE, ELECTRICALLY CONDUCTIVE COMPONENT AND END DEVICE FOR THE ELECTRONIC / ELECTRICAL DEVICE
EP2977476A4 (en) * 2013-03-18 2016-12-28 Mitsubishi Materials Corp COPPER ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICES, COPPER ALLOY THINNING LAYER FOR ELECTRICAL AND ELECTRONIC DEVICES AND CONDUCTIVE PART AND CLAMP FOR ELECTRICAL AND ELECTRONIC DEVICES
EP2977475A4 (en) * 2013-03-18 2016-12-28 Mitsubishi Materials Corp COPPER ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICES, COPPER ALLOY THINNING LAYER FOR ELECTRICAL AND ELECTRONIC DEVICES AND CONDUCTIVE PART AND CLAMP FOR ELECTRICAL AND ELECTRONIC DEVICES
CN105339513A (zh) * 2013-07-10 2016-02-17 三菱综合材料株式会社 电子电气设备用铜合金、电子电气设备用铜合金薄板、电子电气设备用导电元件及端子
EP3020837A4 (en) * 2013-07-10 2017-02-15 Mitsubishi Materials Corporation Copper alloy for electronic/electrical equipment, copper alloy thin sheet for electronic/electrical equipment, conductive component for electronic/electrical equipment, and terminal
CN105339513B (zh) * 2013-07-10 2017-06-09 三菱综合材料株式会社 电子电气设备用铜合金、电子电气设备用铜合金薄板、电子电气设备用导电元件及端子
US10190194B2 (en) 2013-07-10 2019-01-29 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, and conductive component for electronic and electrical equipment, terminal
WO2017096572A1 (zh) * 2015-12-10 2017-06-15 湖南特力新材料有限公司 一种ods氧化铝弥散强化无铅易切削黄铜及其制造方法
US10851438B2 (en) 2015-12-10 2020-12-01 Hunan Terry New Materials Company Ltd. Oxide dispersion-strengthened alloy (ODS), lead-free and free-cutting brass and producing method thereof

Also Published As

Publication number Publication date
TW201233818A (en) 2012-08-16
JP5088425B2 (ja) 2012-12-05
TWI521074B (zh) 2016-02-11
CN103282525A (zh) 2013-09-04
JP2012158829A (ja) 2012-08-23
CN103282525B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5088425B2 (ja) 電子・電気機器用銅合金、銅合金薄板および導電部材
JP5303678B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子
CN103502487B (zh) 电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金塑性加工材料、及电子设备用组件
JP5690979B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP5572754B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
TWI429764B (zh) Cu-Co-Si alloy for electronic materials
CN104870672B (zh) 电子电气设备用铜合金、电子电气设备用铜合金薄板、电子电气设备用导电元件及端子
JP5417539B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
WO2014109083A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用銅合金の製造方法、電子・電気機器用導電部品および端子
TWI486464B (zh) 電子及電氣機器用銅合金、電子及電氣機器用銅合金薄板、電子及電氣機器用導電零件以及端子
JP2016132816A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP5682278B2 (ja) 電子・電気機器用銅合金
WO2014104130A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
TWI693291B (zh) 電子.電氣機器用銅合金、電子.電氣機器用銅合金薄板、電子.電氣機器用導電構件及端子
JP6304863B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6304865B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6304867B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP2014205903A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12734375

Country of ref document: EP

Kind code of ref document: A1