WO2017096572A1 - 一种ods氧化铝弥散强化无铅易切削黄铜及其制造方法 - Google Patents

一种ods氧化铝弥散强化无铅易切削黄铜及其制造方法 Download PDF

Info

Publication number
WO2017096572A1
WO2017096572A1 PCT/CN2015/096925 CN2015096925W WO2017096572A1 WO 2017096572 A1 WO2017096572 A1 WO 2017096572A1 CN 2015096925 W CN2015096925 W CN 2015096925W WO 2017096572 A1 WO2017096572 A1 WO 2017096572A1
Authority
WO
WIPO (PCT)
Prior art keywords
brass
lead
powder
free
aluminum
Prior art date
Application number
PCT/CN2015/096925
Other languages
English (en)
French (fr)
Inventor
黄劲松
金鑫
李卫
刘彬
张仲灵
李顺
甘子旸
Original Assignee
湖南特力新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南特力新材料有限公司 filed Critical 湖南特力新材料有限公司
Priority to JP2018530035A priority Critical patent/JP6701341B2/ja
Priority to US16/060,914 priority patent/US10851438B2/en
Priority to EP15910047.8A priority patent/EP3360982B1/en
Priority to PCT/CN2015/096925 priority patent/WO2017096572A1/zh
Priority to CN201580084206.XA priority patent/CN108474063B/zh
Publication of WO2017096572A1 publication Critical patent/WO2017096572A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent

Definitions

  • the present invention relates to a metal material and a method of manufacturing the same, particularly a lead-free free-cutting brass and a method of manufacturing the same
  • Lead brass has excellent cold and hot workability, excellent cutting performance and self-lubricating characteristics, and can meet the machining requirements of various shapes and components.
  • Lead brass was once recognized as an important base metal material and is widely used in civil water supply systems, electronics, automotive and machinery manufacturing. Since lead brass is widely used, the number of discarded lead-bronze parts is large, and only a small amount is recycled, and many small pieces are discarded as garbage. The discarded lead brass is in contact with the soil, and the lead contained in the soil enters the soil under the long-term action of rain and the atmosphere, thereby contaminating the soil and water. Abandoned lead brass is used as a waste incineration. Lead vapor is emitted into the atmosphere and is extremely harmful to the human body.
  • Lead is neither dissolved in copper nor forms an intermetallic compound with copper, but exists in the form of elemental microparticles at the grain boundaries, and there are also ruthenium in the crystal.
  • Lead in lead-containing brass is slowly precipitated in the form of ions under the action of impurities and ions in drinking water.
  • Existing lead-containing brass is difficult to meet the requirements of environmental protection laws. In order to reduce the harmful effects of lead, researchers have systematically studied the corrosion mechanism of drinking water on brass and the corrosive effects of added elements on brass. Various measures have been taken.
  • Metal ruthenium is the main element for improving the cutting performance. Because of the high price of bismuth, the market cannot accept high-content brass. Although the cutting performance of low-barium brass is better, there is still a large gap compared with lead brass. On the other hand, the impact of strontium ions on human health is still not clear, and the size of its side effects is inconclusive. In some countries and regions, it is not willing to accept bismuth brass. The limited nature of ⁇ resources is also destined to be a major substitute for lead in free-cutting lead brass. The bismuth will cause brittleness of the brass and seriously deteriorate the thermal processing properties of the brass. The recycled material may even harm the entire copper processing industry, which will seriously reduce the recycling value, which is unfavorable for the market promotion of bismuth-containing free-cutting brass.
  • is a slightly toxic element to the human body, and its leaching concentration in water is very tightly restricted. Although ⁇ brass has better cutting performance, its use is also greatly limited. The hot workability of bismuth brass is not ideal, and it is prone to hot cracking; the price of bismuth is not cheap, and it is not good for its marketing.
  • Magnesium can significantly improve the cutting performance of brass, but its addition amount can not be excessive. When the mass fraction exceeds 0.2%, the elongation of brass begins to decrease. The more the addition amount, the more obvious the elongation performance decreases. It is not good for the performance of brass, which is not conducive to the application of magnesium brass. Magnesium is an element that is very easy to burn, which poses a great challenge to the control of the magnesium content of the yellow copper, and is also disadvantageous for the composition control of its production process.
  • Tin Due to the high price of tin, antimony and selenium, tin brass and antimony and selenium containing brass are difficult to be widely marketed. Tin has a very limited effect on improving the cutting performance of brass.
  • Sulfur or sulfide will react with manganese to form manganese sulfide, which will float in the form of a solid in the brass melt, so that the cutting action of sulfur is obviously weakened until it disappears.
  • the content of zinc in brass is high, zinc is a volatile element, manganese in the brass melt and manganese sulfide formed in sulfur are easily brought to the surface of the melt by high-temperature zinc bubbles, and the brass melt Before the furnace is released, the flame-spraying process is usually used to degas, which will cause the generated manganese sulfide to be taken to the surface of the melt and removed in a clear form, which is also an important reason why manganese and sulfur in the cast brass are difficult to coexist. one.
  • PCT/CN201308296 invention patent "a lead-free free-cutting high-sulfur manganese-containing copper alloy and a manufacturing method thereof" adopts a method of adding a sulfide to maximize the cutting performance of a lead-free copper alloy, and is industrially large The best cutting performance is achieved in mass-produced lead-free free-cutting copper alloys. The cutting performance is still a certain distance compared with lead brass.
  • Some conditions of use, such as the shape of a very complex valve faucet production must be very complex thermal deformation of the copper rod, requiring excellent thermal deformation, and the thermal deformation ability of the alloy is far from ideal, in large deformation conditions Next, the yield rate needs to be improved, resulting in high production costs.
  • the United States inventions 1 j5089354 "Wear-resistant, anti-seizing copper alloy composite materials" two lead-free free-cutting copper alloys,
  • the brass of the invention has 0.7% iron, and its role is generally to refine the grains, mainly forming a heterogeneous core, but this heterogeneous core will reduce the resistance of the brass to dezincification, ammonia Under the condition, the core is prone to microcracks. Once the microcracks are unstable and expand, it will lead to failure, that is, reduce the resistance of the brass to ammonia corrosion stress corrosion.
  • the aluminum in the patent obviously exceeds the oxygen content, which causes uneven distribution of aluminum and oxygen. The added particles are coarse and unevenly distributed. The alumina particles are micron-sized and the interface with brass is not strong.
  • the thermoforming must use a jacket.
  • the brass composite material is added with at least 1% of graphite, and excessive graphite ink not only causes a decrease in the cutting performance, but also causes a decrease in the strength of the brass due to the low strength of the graphite/brass interface.
  • valve faucet Because the valve faucet is directly in contact with water, there are usually various ions and micro-particles in the water. Under long-term action, zinc will enter the water, causing the brass to undergo dezincification corrosion and fail. Therefore, the ability to resist dezincification corrosion is a very important indicator of brass for valve faucets.
  • the service environment of the valve is complicated, such as in the toilet, long-term in the ammonia environment and the brass is prone to stress cracking in the ammonia, resulting in valve failure. Therefore, ammonia-resistant smoke stress corrosion is another important indicator of brass for valve faucets.
  • the valve is a must-have product with a wide range of uses and close contact with daily life and industrial production.
  • the output is large, and its thermal deformation capability is required to meet the industrialized large-scale and high-efficiency production capacity, that is, the valve must be used for production.
  • There is an urgent need in the market for a new lead-free free-cutting brass that has excellent process properties such as hot forging, polishing and plating properties, cutting performance requirements close to that of lead brass, and high strength at the same time. And good anti-dezincification, anti-ammonia and other excellent performance, suitable for For products such as valve faucets.
  • the mass percentage of brass is copper S.O ⁇ -QO.O ⁇ , phosphorus O.OOHO Q ⁇ , ⁇ .15%-0.70%, manganese 0.2.5%-3.0%, aluminum ⁇ . ⁇ - ⁇ ⁇ , HO.10%- 1.5%, 3 ⁇ 40.191%-0.90%, 5 ⁇ .06%-0.80%
  • the ratio of aluminum to oxygen in the same bismuth is not more than 27:24, and the balance is zinc and unavoidable impurities, wherein lead ⁇ 0. 08 ⁇ 3 ⁇ 4.
  • the composition of the brass is: copper SO ⁇ -SO.O ⁇ , ⁇ .01%-0.79%, tin 0.15%-0.60%, SO.30%-2.0%, aluminum OHOH nickel 0.12%-1.3%, 3 ⁇ 40.20%-0.75%, carbon 0.08%-0.70%, the ratio of aluminum to oxygen in the same bismuth does not exceed 27:24, the balance is zinc and unavoidable impurities, of which lead ⁇ 0.07 ⁇ 3 ⁇ 4.
  • the composition of the alloy is: the composition of the brass is copper SS.O ⁇ OO ⁇ , phosphorus O.OHO ⁇ Q tin 0.2 0%-0.55%, manganese 0.35%-1.5%, aluminum O.ra-OH H0.15%-1.0%, 3 ⁇ 40.20%-0.65%, 510.10%-0.60%, the ratio of aluminum to oxygen in the same bismuth does not exceed 27:24, the balance is zinc and unavoidable impurities, of which lead ⁇ 0.06 ⁇ 3 ⁇ 4.
  • composition of the alloy is: copper S.O ⁇ S.O ⁇ , phosphorus O.OHO ⁇ Q tin O ⁇ S ⁇ -O.SO
  • the ratio of aluminum to oxygen in the same bismuth does not exceed 27:24, the balance is zinc and unavoidable impurities, of which lead ⁇ 0.06%.
  • composition of the alloy is: copper S.O ⁇ S.O ⁇ , ⁇ .01%-0.10%, ⁇ .30%-0.50%,
  • the ratio of aluminum to oxygen in the same bismuth does not exceed 27:24, the balance is zinc and unavoidable impurities, of which lead ⁇ 0.05 ⁇ 3 ⁇ 4.
  • the uniformly mixed powder is press-formed and then sintered, and the sintering process is: heating from room temperature to sintering temperature 680-780 ° C, heating the crucible for l-5 h, fully removing the forming agent, holding the crucible 30-180 min
  • the sintering atmosphere is a reducing atmosphere or an inert atmosphere;
  • the sintered brass is recompressed with a pressure of 500-800 MPa or used on a punch for rapid movement of the punch.
  • the forming agent is a paraffin powder and a stearate powder.
  • the stearate powder is zinc stearate powder, lithium stearate powder, sodium stearate powder, magnesium stearate powder, aluminum stearate powder, potassium stearate powder, stearic acid Calcium acid powder.
  • the hot working is hot die forging, hot extrusion or hot rolling.
  • a small amount of aluminum is added to the brass, and the ratio of aluminum to oxygen is not more than 27:24, so that the aluminum is contained in the process of sintering and the oxygen in the copper oxide or the brass powder itself.
  • Oxygen in situ reacts to form alumina. Since the aluminum in the brass powder is dissolved in copper, the cooling ability of the high-pressure water is very strong, and the aluminum which is dissolved in the brass melt at a high temperature is not segregated and is fixed in the solid state. After the oxygen reaction, the nano-size is formed, which is close to the coherent interface structure with brass, and the interface strength is very high.
  • alumina in-situ formation of alumina is very uniform and diffuse, far less than the addition of micron-sized alumina powder. It is an excellent reinforcing phase and high temperature resistant phase, which significantly improves the room temperature strength and high temperature strength of brass. According to the traditional viewpoint of powder metallurgy, the lower the oxygen content in brass, the better. In the present invention, the oxygen content is strictly controlled, and the ratio of aluminum to oxygen is not more than 27:24, so as to ensure the oxygen content in the alloy as much as possible. Aluminum in situ reacts to form alumina, which also ensures its dispersion. This will ensure that the role of oxygen is to strengthen the brass, but not other negative effects.
  • Graphite is a good soft cutting phase for improving cutting performance, but its compatibility with brass is very poor, and the interface strength of graphite/brass is low, so the addition of graphite will destroy the overall structure of brass and reduce Brass strength, Thermal deformation ability.
  • a certain amount of graphite can improve the cutting performance of brass, but the addition amount is too large, which reduces the smoothness of the brass cutting surface, thereby reducing the cutting performance of the brass.
  • some special measures are employed, such as the addition of the graphite fine powder, which is first subjected to purification treatment, followed by activation treatment, and then nickel plating on the surface.
  • the surface is plated with nickel and brass to form a high-strength interdiffusion layer, which is a high-strength metallurgical bond.
  • the selected graphite particle size range is optimized to ensure that the particle diameter does not exceed 10 ⁇ m.
  • the microstructure of the as-sintered brass is finer and more uniform than that of the as-sintered state.
  • the distribution of the alumina hard phase and the graphite soft phase is more diffuse and uniform, and the interface is well combined. The above measures fully ensure the cutting ability of brass and high hardness, high strength and high thermal deformation ability.
  • the action of phosphorus is deoxidation, which improves the casting properties and weldability of the alloy, reduces the oxidation loss of the beneficial elements silicon, tin and magnesium, and refines the grain of the brass.
  • the phosphorus addition amount is controlled in the range of 0.001%-0.99%, and the effect is to lower the melting point of the brass powder during the sintering process, and have a certain activation sintering effect, for improving the strength of the brass.
  • Both tin and nickel strongly enhance the resistance of the copper to dezincification and resistance to ammonia corrosion stress corrosion.
  • Such brass meets the valve industry's requirements for resistance to dezincification and resistance to ammonia corrosion stress corrosion of copper.
  • the ODS alumina dispersion-strengthened lead-free free-cutting brass of the invention has excellent process properties such as excellent cutting processing, hot forging properties and excellent performance properties such as high strength, hardness, resistance to dezincification and resistance to ammonia. , polishing, plating, self-lubricating properties and wear resistance.
  • the brass after recompression and re-baking has good hot working properties such as hot forging, hot extrusion and hot rolling. Hot extruded brass has good cutting performance and high strength.
  • the brass processing method of the present invention can be directly thermoformed without using a jacket, and can be applied to valve faucet production, and the conventional lead-free brass which is thermoformed with a jacket cannot be used for valve faucet production.
  • the brass of the invention does not contain harmful elements such as lead, cadmium, mercury, arsenic, etc., and has no pollution in the production process, and does not contain elements such as chromium, bismuth and antimony, and can fully meet the strict requirements for the leaching of harmful elements in the plumbing and sanitary industry.
  • FIG. 1 List of chemical compositions (mass percentage) of brass powder prepared in Example 1-33;
  • Example 1-33 list of mass percentages of various powders, wherein the amount of copper oxide powder is the actual required amount after deducting the oxygen contained in the brass powder;
  • FIG. 3 Example 1-33 Brass manufacturing process parameter list, where "-" indicates that the process is not performed;
  • Figure 5 List of components and properties of comparative brass.
  • the mass fraction of each element in the brass powder is: copper 56.0%, phosphorus 0.11%, tin 0.20%, manganese 0.50%, aluminum 0.19%, balance zinc and unavoidable impurities.
  • the mass fractions of the various powders are as follows: the content of the graphite fine powder is 0.10%; the content of the nickel powder is 0.13%; the content of the added lithium stearate is 0.5%; the oxygen content in the brass powder is 0.18%; the copper oxide powder The content is 0.10%; the balance is the above brass powder.
  • the powder mixture is mixed for 4.0h, and then pressed after the mixture is finished. After pressing, it is put into the sintering furnace for sintering.
  • the sintering process is: heating from room temperature to sintering temperature, heating the crucible for 5.0h, fully removing the forming agent, The sintering temperature is 680 ° C, and the holding temperature is 180 min.
  • the sintering atmosphere is an inert atmosphere. After sintering, it is cooled to room temperature by water.
  • the sintered brass rod is recompressed with a pressure of 500 MPa, and then re-fired.
  • the reheating process is: heating from room temperature to sintering temperature of 820 ° C, heating for 3.0 h, and holding the crucible for 120 min, the sintering atmosphere is inert atmosphere.
  • the re-fired brass was hot extruded at 800 °C.
  • Tensile strength specimens, cutting performance specimens, anti-dezincification corrosion specimens, and ammonia corrosion stress corrosion specimens were prepared by sampling from extruded bars. The experimental results show that the cutting ability is equivalent to 95% of lead brass.
  • the tensile strength is 605.0 MPa
  • the yield strength is 272.9 MPa
  • the average dezincification corrosion layer thickness is 183.1 ⁇
  • the maximum dezincification layer thickness is 301.7 ⁇
  • the ammonia scent is not split after 16 hours.
  • FIG. 1 The chemical composition (mass percentage) of the brass powder prepared in accordance with Examples 1-33 is shown in FIG. 1, and the mass percentages of the various powders added in the preparation process of the examples 1-33 brass can be found.
  • Figure 2 in all examples, the forming agent was paraffin powder unless otherwise stated.
  • Example 1-33 The list of brass manufacturing process parameters is shown in the table.
  • a sample of tensile strength, a sample of cutting performance, and an anti-deformation are prepared by sampling from a hot extruded rod.
  • Hardness test specimens and friction and wear specimens were taken from hot-extruded copper-tin alloy-based brass rods, and then hardness and friction and wear tests were carried out to obtain the properties of the alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种ODS氧化铝弥散强化无铅易切削黄铜及其制造方法。其质量百分含量为铜52.0%-90.0%,磷0.001%-0.99%,锡0.15%-0.70%,锰0.25%-3.0%,铝0.15%-0.90%,镍0.10%-1.5%,氧0.191%-0.90%,碳0.06%-0.80%,同时铝与氧的含量之比不超过27:24,余量为锌及不可避免的杂质,其中铅≤0.08%。采用粉末冶金法制造,将黄铜粉末、氧化铜粉末和石墨微粉混合均匀,外加0.001%-1.5%的成形剂,混合均匀后,压制成型、烧结,烧结后再进行后处理。

Description

说明书 发明名称:一种 ODS氧化铝弥散强化无铅易切削黄铜及其制造方法 技术领域
[0001] 本发明涉及一种金属材料及其制造方法, 特别是无铅易切削黄铜及其制造方法 背景技术
[0002] 铅黄铜具有优良的冷热加工性能、 极好的切削性能和自润滑等特点, 能满足各 种形状零部件的机加工要求。 铅黄铜一度被公认为一种重要的基础金属材料而 广泛应用到民用供水系统、 电子、 汽车及机械制造等领域。 由于铅黄铜被广泛 使用, 废弃的铅黄铜零配件数量很多,其中只有少量被回收利用, 很多小件被作 为垃圾遗弃。 废弃的铅黄铜与土壤接触, 其所含的铅在雨水及大气的长期作用 下, 进入土壤, 从而污染土壤及水源。 废弃铅黄铜被当作垃圾焚烧吋,铅蒸气散 发于大气之中,对人体产生极大危害, 因而其应用日益受到严格的限制。 铅既不 固溶于铜, 也不与铜形成金属间化合物, 而是以单质微颗粒的形式存在于晶界 , 有吋在晶内也有。 在饮用水中的杂质及离子等的作用下含铅黄铜中的铅以离 子的形式缓慢析出。 现有的含铅黄铜很难满足环保法令的要求, 为了降低铅的 有害作用, 科研人员就饮用水对黄铜的腐蚀机理及添加元素对黄铜的腐蚀性影 响进行了系统的研究, 并采取了多种措施。 如添加少量的锡、 镍等合金元素来 提高铅黄铜的耐蚀性能, 或将一定厚度的可溶性铅溶解去除然后在除铅的表面 再覆盖铬等耐蚀金属或采取其它的方法抑制铅的浸出等。 由于基体黄铜中始终 存在着铅, 所以这些方法无法从根本上消除铅的有害作用。 以铅元素作为一种 主要元素改善黄铜切削性能的铅黄铜在环保法令的规定下, 不得不逐步退出历 史的舞台。
[0003] 无论从国内外的环保法律法规, 还是从技术经济的角度出发, 对铅黄铜再进行 修修补补的改进已无大的价值, 唯有幵发新型无铅易切削黄铜。 人们对金属、 合金、 化合物的研究有一个长期积累的过程, 对其特性的认识已相当丰富。 铋 、 锑、 镁、 磷、 硅、 硫、 钙、 碲、 硒等元素加入到黄铜中对其切削性能的改善 已取得共识, 国内外都有大量的专利公幵。 必须指出的是, 与易切削铅黄铜相 比, 目前所有的无铅易切削黄铜的加工性能、 使用性能及成本, 如: 冷热加工 性能、 切削加工性能等工艺性能或抗脱锌性能、 耐氨薰性能等使用性能或多或 少地存在一些问题, 其综合性能及性价比与铅黄铜相比差距还比较大。
[0004] 以金属铋作为改善切削性能的主要元素吋, 由于铋的价格贵, 市场无法接受高 铋含量的黄铜。 低铋含量黄铜的切削性能虽然也比较好, 但与铅黄铜相比还存 在较大差距。 另一方面, 铋离子对人体健康的影响至今还不是很明确, 其副作 用的大小尚无定论, 在一些国家和地区还不愿意接受铋黄铜。 铋资源的有限性 , 也注定其不能做为易切削铅黄铜中铅的主要替代元素。 铋会使黄铜产生脆性 , 严重恶化黄铜的热加工性能, 其回收料甚至会危害整个铜加工行业, 这会严 重降低其回收价值, 对含铋易切削黄铜的市场推广不利。
[0005] 锑是对人体有微毒的元素, 其在水中的浸出浓度受到非常严格的限制, 尽管锑 黄铜的切削性能较佳, 但其使用亦受到很大的限制。 锑黄铜的热加工性能也不 太理想, 易发生热裂; 锑的价格也不便宜, 对其市场推广也不利。
[0006] 镁能明显改善黄铜的切削性能, 但其添加量不能过多, 当其质量分数超过 0.2% 吋, 黄铜的延伸率幵始下降, 添加量越多, 其延伸性能下降越明显, 对黄铜的 使用性能不利, 这也不利于镁黄铜的应用。 镁是非常容易烧损的元素, 这对黄 铜的镁含量控制带来很大的挑战, 对其生产过程中的成分控制也是不利的。
[0007] 磷添加到黄铜中有利于改善其切削性能, 但同吋降低黄铜的塑性, 低压铸造吋 黄铜热裂倾向增大。 这使磷在黄铜中的添加量受到很大的限制, 也使磷黄铜的 使用受到很大限制。
[0008] 由于锡、 碲、 硒价格高, 锡黄铜以及含碲、 硒黄铜很难在市场广泛推广。 锡对 改善黄铜切削性能的作用亦非常有限。
[0009] 现有的硅黄铜分两种, 一种是低锌硅黄铜, 如 C69300, 由于含铜量高, 密度偏 高, 价格贵, 市场份额不大。 另一种是高锌硅黄铜, 切削性能不足。 硫的熔点 仅为 113°C, 沸点也仅 445°C, 在黄铜的生产过程中很容易进入周围环境而成为污 染源, 在环保法规越来越严格的今天, 其生产的污染治理也是个难题, 这也对 其应用推广极为不利。 黄铜中没有锰吋, 硫在黄铜中通常以低熔点的共晶存在 于晶界, 使黄铜产生脆性, 硫系易切削黄铜进行压力加工的难度一般比较大、 成本也比较高。
[0010] 当黄铜熔体中存在锰吋, 如果加入硫或与硫亲和力小于锰与硫亲和力的硫化物
, 硫或硫化物就会和锰反应生成硫化锰, 在黄铜熔体中以澄的形式浮出, 使硫 的切削作用明显减弱直至消失。
[0011] 黄铜中锌的含量高, 锌是易挥发元素, 黄铜熔体中的锰元素与硫元素生成的硫 化锰很容易被高温锌汽泡带到熔体表面, 而且黄铜熔体在出炉之前通常采用喷 火工艺以脱气, 这会使所生成的硫化锰澄大量被带到熔体表面而以澄的形式去 除, 这也是铸造黄铜中锰与硫很难共存的重要原因之一。 已公幵中国发明专利 2 01110035313.7在实验室小锭制备中有较好的效果, 但是正如其权利要求 3所述, 必须"快速加锌, 加锌完成后立即浇铸成铸锭", 在工业化大规模生产中, 无法满 足上述条件, 硫化锰生成物的易切削作用随着黄铜熔体停留吋间的延长快速减 弱直至消失。 而且随着硫含量增加, 所生成的硫化锰越多, 其变成澄上浮得越 快, 其切削作用的减弱也越明显。 从硫化锰在黄铜中的易切削机理中可知, 在 不显著恶化黄铜的工艺性能和使用性能的条件下, 硫含量越高、 硫化锰生成物 越多, 合金的切削加工性能越好, 但是用熔铸法生产吋, 硫化锰反而更容易浮 出熔体, 使其提高切削性能的作用减弱得越快, 这说明高硫含锰黄铜不宜用熔 铸法生产制造。
[0012] 在实际幵发中, 工程技术人员大多采用合金元素多元化的方法, 在黄铜中复合 添加多种对切削性能有改进作用的合金元素。 但实践证明, 添加多种改善切削 性能元素的方法也并不理想, 一方面, 由于元素之间的相互作用, 有的会相互 降低改善切削性能的效果。 另一方面, 由于添加多种金属元素后, 会产生合金 强化的效果, 使黄铜的强度、 硬度都提高, 一定程度还会降低黄铜的压力加工 和机加工性能。 而且加入稀、 贵元素也会使黄铜的成本快速提高, 对市场推广 应用也不利。 利用多种元素的叠加来改善黄铜的工艺性能与使用性能也有很大 的局限千生。
[0013] PCT/CN201308296发明专利"一种无铅易切削高硫含锰铜合金及其制造方法"采 用添加硫化物的方法最大程度地提高了无铅铜合金的切削性能, 在可工业化大 批量生产的无铅易切削铜合金中有最好的切削性能, 其切削性能与铅黄铜比较 , 依然还有一定的距离。 有的使用条件如外形非常复杂的阀门龙头生产中必须 将铜棒进行非常复杂的热变形, 既要求有优异的热变形能力, 而该合金的热变 形能力还远非理想, 在大变形量条件下, 成材率还有待提高, 导致生产成本偏 高。
[0014] 美国发明专禾1 j5089354"Wear-resistant,anti-seizing copper alloy composite materials "公幵了的两种无铅易切削铜合金,
Figure imgf000005_0001
首先, 该发明公幵的黄铜含有 0.7%的铁, 其作用一般细化晶粒, 主要是形成了 异质核心, 但这种异质核心会降低黄铜的抗脱锌耐能力, 氨熏条件下核心处易 产生微裂纹, 一但微裂纹失稳扩展, 将导致失效, 即降低黄铜的耐氨熏应力腐 蚀能力。 其二, 该专利中黄铜的铝明显超过氧含量, 这会造成铝及氧分布的不 均, 加入的颗粒粗、 分布不均, 氧化铝颗粒为微米级, 与黄铜的界面结合不强 , 降低黄铜的强度, 更严重的是使黄铜的热变形能力严重降低, 所以其热成形 必须采用包套。 此外, 该发明中黄铜复合材料添加了至少 1%的石墨, 过多的石 墨不光造成切削性能下降, 还会因为石墨 /黄铜界面的强度低而造成黄铜的强度 下降。
技术问题
[0015] 阀门龙头由于直接与水接触, 而水里通常有各种离子及微颗粒等其它物质, 在 长期作用下, 锌会进入水中, 使黄铜发生脱锌腐蚀而失效。 因而抗脱锌腐蚀能 力是阀门龙头用黄铜的一个非常重要的指标。 另一方面, 阀门的服役环境复杂 , 比如在厕所中, 长期处于氨的环境中而黄铜在氨中容易发生应力幵裂从而导 致阀门失效。 因此, 耐氨熏应力腐蚀也是阀门龙头用黄铜的另一个重要指标。 阀门是一种用途非常广泛、 跟日常生活和工业生产联系密切的必备品, 产量大 , 要求其热变形能力非常强以满足工业化大规模高效率的生产能力, 即要求阀 门生产用的必须有优秀的热变形能力, 热挤压比高, 更不能使用包套挤压或包 套热锻等热加工方式。 当前市场迫切需要一种新的无铅易切削黄铜, 该黄铜既 有优异的工艺性能如热锻、 抛光与电镀性能, 切削性能要求与铅黄铜切削性能 接近, 同吋又具有高强度以及良好的抗脱锌、 耐氨薰等优良使用性能, 适合应 用于阀门龙头等产品。
问题的解决方案
技术解决方案
[0016] 本发明的目的是提供一种 ODS氧化铝弥散强化无铅易切削黄铜及其制造方法。
黄铜的质量百分含量为铜 S .O^-QO.O^, 磷 O.OOHO Q^, ϋθ.15%-0.70%, 锰 0. 25%-3.0%, 铝 Ο. ^-Ο^Ο^, HO.10%- 1.5%, ¾0.191%-0.90%, 5ΐθ.06%-0.80%
, 同吋铝与氧的含量之比不超过 27:24, 余量为锌及不可避免的杂质, 其中铅≤0. 08<¾。
[0017] 作为本发明的优选, 黄铜的成分为: 铜 S O^-SO.O^, θ.01%-0.79%, 锡 0.15 %-0.60%, SO.30%-2.0%, 铝 OHOH 镍 0.12%- 1.3%, ¾0.20%-0.75%, 碳 0.08%-0.70%, 同吋铝与氧的含量之比不超过 27:24, 余量为锌及不可避免的杂质 , 其中铅≤0.07<¾。
[0018] 进一步, 合金的成分为: 黄铜的成分为铜 SS.O^ O.O^, 磷 O.OHO^Q 锡 0.2 0%-0.55%, 锰 0.35%- 1.5%, 铝 O.ra-OH H0.15%-1.0%, ¾0.20%-0.65%, 510.10%-0.60%, 同吋铝与氧的含量之比不超过 27:24, 余量为锌及不可避免的杂 质, 其中铅≤0.06<¾。
[0019] 进一步, 合金的成分为: 铜 S .O^ S.O^, 磷 O.OHO^Q 锡 O^S^-O.SO
锰 0.40%- 1.0%, g0.18%-0.60%, H0.15%-0.6%, ¾0.20%-0.72%, 碳 0.15<¾-0.50
%, 同吋铝与氧的含量之比不超过 27:24, 余量为锌及不可避免的杂质, 其中铅≤ 0.06%。
[0020] 进一步, 合金的成分为: 铜 S .O^ S.O^, θ.01%-0.10%, ϋθ.30%-0.50%,
S0.50%-0.80%, gO.20%-0.50%, 镍 Q.20%-0.50%, ¾0.22%-0.5%, 碳 0.20<¾-0.3
0%, 同吋铝与氧的含量之比不超过 27:24, 余量为锌及不可避免的杂质, 其中铅 ≤0.05<¾。
[0021] 本发明无铅易切削黄铜工艺流程如下:
[0022] 按铜、 锡、 锰、 磷、 锌、 铝依次熔化, 待合金元素均匀化后, 用水雾化或气雾 化的方法制成黄铜粉末;
[0023] 将镍粉、 黄铜粉末、 氧化铜粉末与粒径小于 ΙΟμηι的石墨微粉配料, 外加成 形剂 Ο.ΟΟΙ^-υ^ , 混合 0.4-5h, 使各种粉末分布均匀;
[0024] 将混合均匀的粉末压制成型, 然后烧结, 烧结工艺为: 从室温幵始加热至烧结 温度 680-780°C, 加热吋间 l-5h, 充分去除成形剂, 保温吋间 30-180min, 烧结气 氛为还原性气氛或者惰性气氛;
[0025] 将烧结后的黄铜用 500-800MPa的压强冷复压, 或者在冲头快速运动的冲床上用
200-400MPa的压强冷模锻, 然后复烧, 复烧工艺为: 从室温幵始加热至烧结温 度 820-870°C, 加热吋间 l-3h, 保温吋间 30-180min, 烧结气氛为还原性气氛或者 惰性气氛。
[0026] 将复压复烧后的黄铜进行热加工, 热加工的温度为 680-870°C。
[0027] 所述的成形剂为石蜡粉和硬脂酸盐粉末。
[0028] 所述的硬脂酸盐粉末为硬脂酸锌粉末、 硬脂酸锂粉末、 硬脂酸钠粉末、 硬脂酸 镁粉末、 硬脂酸铝粉末、 硬脂酸钾粉末、 硬脂酸钙粉末。
[0029] 所述的热加工为热模锻、 热挤压或热轧。
发明的有益效果
有益效果
[0030] 本发明中采用在黄铜中添加少量的铝, 铝与氧的之比不超过 27: 24, 从而使得 铝在烧结的过程中与氧化铜中的氧或黄铜粉末本身所含的氧原位反应生成氧化 铝。 由于黄铜粉末中的铝是固溶在铜中, 高压水的冷却能力非常强, 高温吋固 溶在黄铜熔体中的铝来不及偏析, 就被固定在固态, 这种原子态的铝与氧反应 后生成的是纳米尺寸大小, 与黄铜呈近共格界面结构, 界面强度非常高。 原位 生成的氧化铝分布非常地均匀、 弥散, 远非添加微米的氧化铝粉可比, 是一种 优异的增强相和耐高温相, 使黄铜的室温强度和高温强度都明显提高。 粉末冶 金传统观点认为, 黄铜中的氧含量越低越好, 本发明中, 氧的含量得到严格控 制, 铝与氧的之比不超过 27: 24, 以尽可能保证合金中的氧基本与铝原位反应 生成氧化铝, 同吋也保证了其弥散分布。 这样才能保证氧的作用是对黄铜有强 化作用, 而不是其它负面作用。
[0031] 石墨是一种提高切削性能的良好软质切削相, 但其与黄铜的相溶性很差, 石墨 /黄铜的界面强度低, 故石墨加入后会破坏黄铜的整体结构, 降低黄铜的强度、 热变形能力。 一定量的石墨能改善黄铜的切削性能, 但加入量太大反而降低黄 铜切削表面的光洁度, 从而降低黄铜的切削性能。 本发明中为了最大程度地降 低石墨对强度和热变形能力的不利影响, 采用了一些特殊措施, 如添加的石墨 微粉首先要经过净化处理, 之后再进行活化处理, 然后在表面镀镍。 镍与铜形 成的是无限互溶的固溶体, 表面镀镍与黄铜形成的是强度很高的互扩散层, 这 是一种高强度的冶金结合。 这样石墨 /黄铜的界面干净, 结合强度高, 能保证黄 铜的高强度与高的热变形能力。 选择的石墨粒度范围经过优化, 必须保证其颗 粒直径不超过 10μηι。 烧结态黄铜经过热变形处理后其微观组织比烧结态的更为 细小均匀, 氧化铝硬质相和石墨软质相分布更为弥散、 均匀, 界面结合好。 以 上措施充分地保证了黄铜的切削能力与高硬度高强度高热变形能力。
[0032] 一般认为磷的作用是脱氧, 能改善合金的铸造性能和焊接性能, 减少有益元素 硅、 锡和镁的氧化损失, 细化黄铜的晶粒。 在本发明合金中, 磷添加量控制在 0. 001%-0.99%范围内, 其作用是在烧结的过程中使黄铜粉末的熔点降低, 有一定 的活化烧结作用, 对于提高黄铜的强度有一定的好处。 锡和镍都强烈地提高黄 铜的抗脱锌腐蚀能力和耐氨熏应力腐蚀能力。 这样的黄铜能满足阀门行业对黄 铜的抗脱锌腐蚀能力和耐氨熏应力腐蚀能力的要求。
[0033] 本发明 ODS氧化铝弥散强化无铅易切削黄铜具有优异的工艺性能如优异的切削 加工、 热锻等性能和优良的使用性能如高的强度、 硬度、 抗脱锌、 耐氨薰、 抛 光、 电镀、 自润滑性能和耐磨性能。 复压复烧后的黄铜有良好的热锻、 热挤压 和热轧等热加工性能。 热挤压黄铜的切削性能好、 强度高。 按 ISO6509: 1981 《 金属及合金的腐蚀-黄铜抗脱锌腐蚀性能的测定》 , 热挤压黄铜的抗脱锌性能优 异, 按 GB/T10567.2-2007 《铜及铜合金加工材残余应力检验方法:氨薰试验法》 , 但氨水浓度为 14%, 黄铜最长耐氨薰达 16小吋而没有裂纹, 切削性能最高相当 于 HPb59-l的 100%。
[0034] 本发明的黄铜的加工方法无需用包套可直接热成形, 可适用于阀门龙头生产, 而传统采用包套热成形的无铅黄铜无法用于阀门龙头生产。 且本发明的黄铜不 含铅、 镉、 汞、 砷等有害元素, 生产过程无污染, 同吋不含铬、 铋、 锑等元素 , 完全能满足水暖卫浴行业对有害元素浸出的严格要求。 [0035] 发明书附图
[0036] 图 1 : 实施例 1-33制备的黄铜粉末的化学成分列表 (质量百分含量) ;
[0037] 图 2: 实施例 1-33各种粉末的质量百分含量列表, 其中氧化铜粉的用量为扣除 黄铜粉所含的氧后的实际需要量;
[0038] 图 3: 实施例 1-33黄铜制造工艺参数列表, 其中" -"表示该工序未执行;
[0039] 图 4: 实施例 1-33中黄铜的性能列表;
[0040] 图 5: 对比例黄铜的成分及性能列表。
本发明的实施方式
[0041] 黄铜粉末中各元素的质量分数分别为: 铜 56.0%, 磷 0.11%, 锡 0.20%, 锰 0.50 %, 铝 0.19%, 余量为锌以及不可避免的杂质。 各种粉末的质量分数分别如下: 石墨微粉的含量为 0.10% ; 镍粉的含量为 0.13% ; 外加硬脂酸锂的含量为 0.5% ; 黄铜粉中的氧含量为 0.18% ; 氧化铜粉的含量为 0.10% ; 余量为上述黄铜粉末。 粉末混料吋间 4.0h, 混料结束后即压制, 压制完后即放入烧结炉中烧结, 烧结工 艺为: 从室温幵始加热至烧结温度, 加热吋间 5.0h, 充分去除成形剂, 烧结温度 680°C, 保温吋间 180min, 烧结气氛为惰性气氛, 烧结完后通水冷却到室温。 将 烧结后的黄铜棒用 500MPa的压强复压, 然后复烧, 复烧工艺为: 从室温幵始加 热至烧结温度 820°C, 加热吋间 3.0h, 保温吋间 120min, 烧结气氛为惰性气氛。 将复烧后的黄铜在 800°C热挤压。 从挤压棒上取样制备抗拉强度试样、 切削性能 试样、 抗脱锌腐蚀试样和氨薰应力腐蚀试样。 实验结果发现, 切削能力相当于 铅黄铜的 95%。 抗拉强度为 605.0MPa, 屈服强度 272.9MPa, 平均脱锌腐蚀层厚 度 183.1μηι, 最大脱锌层厚度 301.7μηι, 氨薰 16小吋后不幵裂。
[0042] 实施例 2-实施例 33
[0043] 对应实施例 1-33制备的黄铜粉末的化学成分 (质量百分含量) 列表见图 1, 实 施例 1-33黄铜制备工艺中添加的各种粉末的质量百分含量列表见图 2, 所有实施 例中, 除非特别说明, 成形剂均为石蜡粉。
[0044] 实施例 1-33黄铜制造工艺参数列表见表图。
[0045] 各实施例完成后, 从热挤压棒上取样制备抗拉强度试样、 切削性能试样、 抗脱 锌腐蚀试样和氨薰应力腐蚀试样。 从热挤压铜锡合金为基的黄铜棒上取硬度测 试试样和摩擦磨损试样, 然后分别进行硬度和摩擦磨损实验, 得到合金的性能
。 实施例 1-33中黄铜的性能列表见图 4。
对比例黄铜的成分及性能列表见图 5。

Claims

权利要求书
[权利要求 1] 一种 ODS氧化铝弥散强化无铅易切削黄铜, 其特征在于: 黄铜的质量 百分含量为铜 ss.o^^o.o^, 磷 oono Q^, 锡 O.IS^-OJO 锰 0.
25%-3.0%, 铝 Ο. ^-Ο^Ο HO.10%- 1.5%, ¾0.191%-0.90%, 碳 0.0
6%-0.80%, 同吋铝与氧的含量之比不超过 27:24, 余量为锌及不可避 免的杂质, 其中铅≤0.08<¾。
[权利要求 2] 根据权利要求权 1所述的 ODS氧化铝弥散强化无铅易切削黄铜, 其特 征在于: 黄铜的成分为铜 S O^-SO.O^, θ.01%-0.79%, 锡 0.15<¾-0.
60%, SO.30%-2.0%, 铝 OHOH 镍 0.12%- 1.3%, 氧 0.20<¾-0.75
%, 510.08%-0.70%, 同吋铝与氧的含量之比不超过 27:24, 余量为锌 及不可避免的杂质, 其中铅≤0.07%。
[权利要求 3] 根据权利要求权 2所述的 ODS氧化铝弥散强化无铅易切削黄铜, 其特 征在于: 黄铜的成分为铜 Se.O^ O.O^, θ.01%-0.49%, 锡 0.20<¾-0.
55%, 锰 0.35%- 1.5%, 铝 O.ra-OH 镍 0.15%- 1.0%, 氧 0.20<¾-0.65
%, 510.10%-0.60%, 同吋铝与氧的含量之比不超过 27:24, 余量为锌 及不可避免的杂质, 其中铅≤0.06%。
[权利要求 4] 根据权利要求权 3所述的 ODS氧化铝弥散强化无铅易切削黄铜, 其特 征在于: 黄铜的成分为铜 S .O^ S.O^, θ.01%-0.29%, 锡 0.25<¾-0.
50%, 锰 0.40%- 1.0%, g0.18%-0.60%, H0.15%-0.6%, 氧 0.20<¾-0.59
%, 510.15%-0.50%, 同吋铝与氧的含量之比不超过 27:24, 余量为锌 及不可避免的杂质, 其中铅≤0.06%。
[权利要求 5] 根据权利要求权 4所述的 ODS氧化铝弥散强化无铅易切削黄铜, 其特 征在于: 黄铜的成分为铜 S .O^ S.O^, θ.01%-0.10%, 锡 0.30<¾-0.
50%, 锰 o.so^-o.so 铝 o^o^-o.so 镍 o^o^- so^, 氧 0.22%-
50%, 510.20%-0.30%, 同吋铝与氧的含量之比不超过 27:24, 余量为 锌及不可避免的杂质, 其中铅≤0.05%。
[权利要求 6] 根据权利要求权 1~5所述之一的 ODS氧化铝弥散强化无铅易切削黄铜 制造方法, 其特征在于: 按铜、 锡、 锰、 磷、 锌、 铝依次熔化, 待合 金元素均匀化后, 用水雾化或气雾化的方法制成黄铜粉末;
将镍粉、 黄铜粉末、 氧化铜粉末与粒径小于 ΙΟμηι的石墨微粉配料 , 外加成形剂 0.001<¾-1.5<¾, 混合 0.4-5h, 使各种粉末分布均匀; 将混合均匀的粉末压制成型, 然后烧结, 烧结工艺为: 从室温幵始加 热至烧结温度 680-780°C, 加热吋间 l-5h, 充分去除成形剂, 保温吋 间 30-180min, 烧结气氛为还原性气氛或者惰性气氛;
将烧结后的黄铜用 500-800MPa的压强冷复压, 或者在冲头快速运动 的冲床上用 200-400MPa的压强冷模锻, 然后复烧, 复烧工艺为: 从 室温幵始加热至烧结温度 820-870°C, 加热吋间 l-3h, 保温吋间 30-180 min, 烧结气氛为还原性气氛或者惰性气氛;
将复压复烧后的黄铜进行热加工, 热加工的温度为 680-870°C。
[权利要求 7] 根据权利要求权 6所述的 ODS氧化铝弥散强化无铅易切削黄铜制造方 法, 其特征在于: 所述的成形剂为石蜡粉或硬脂酸盐粉末; 所述硬脂 酸盐粉末为硬脂酸锌粉末、 硬脂酸锂粉末、 硬脂酸钠粉末、 硬脂酸镁 粉末、 硬脂酸铝粉末、 硬脂酸钾粉末、 硬脂酸钙粉末中的一种。
[权利要求 8] 根据权利要求权 6所述的 ODS氧化铝弥散强化无铅易切削黄铜制造方 法, 其特征在于: 所述的热加工为热模锻、 热挤压或者热轧。
[权利要求 9] 权利要求权 1~5所述之一的 ODS氧化铝弥散强化无铅易切削黄铜在制 备阀门龙头产品中的应用。
PCT/CN2015/096925 2015-12-10 2015-12-10 一种ods氧化铝弥散强化无铅易切削黄铜及其制造方法 WO2017096572A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018530035A JP6701341B2 (ja) 2015-12-10 2015-12-10 酸化物分散強化合金(ods)の無鉛快削黄銅、およびその製造方法
US16/060,914 US10851438B2 (en) 2015-12-10 2015-12-10 Oxide dispersion-strengthened alloy (ODS), lead-free and free-cutting brass and producing method thereof
EP15910047.8A EP3360982B1 (en) 2015-12-10 2015-12-10 Aluminum oxide dispersion strengthened (ods) non-lead free cutting brass and manufacturing method therefor
PCT/CN2015/096925 WO2017096572A1 (zh) 2015-12-10 2015-12-10 一种ods氧化铝弥散强化无铅易切削黄铜及其制造方法
CN201580084206.XA CN108474063B (zh) 2015-12-10 2015-12-10 一种氧化铝弥散强化无铅易切削黄铜及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/096925 WO2017096572A1 (zh) 2015-12-10 2015-12-10 一种ods氧化铝弥散强化无铅易切削黄铜及其制造方法

Publications (1)

Publication Number Publication Date
WO2017096572A1 true WO2017096572A1 (zh) 2017-06-15

Family

ID=59012518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096925 WO2017096572A1 (zh) 2015-12-10 2015-12-10 一种ods氧化铝弥散强化无铅易切削黄铜及其制造方法

Country Status (5)

Country Link
US (1) US10851438B2 (zh)
EP (1) EP3360982B1 (zh)
JP (1) JP6701341B2 (zh)
CN (1) CN108474063B (zh)
WO (1) WO2017096572A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557602A (zh) * 2017-10-18 2018-01-09 北京科技大学 一种石墨烯增强ods铜的制备方法
EP3765643A4 (en) * 2018-03-13 2021-12-01 Mueller Industries, Inc. POWDER METALLURGY PROCESS FOR THE MANUFACTURE OF LEAD-FREE BRASS ALLOYS

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20163561A1 (it) * 2016-05-18 2017-11-18 Almag Spa Metodo per la realizzazione di una billetta di ottone senza piombo o a basso contenuto di piombo e billetta così ottenuta
US11459639B2 (en) * 2018-03-13 2022-10-04 Mueller Industries, Inc. Powder metallurgy process for making lead free brass alloys
CN111375774B (zh) * 2020-04-29 2023-02-21 西安稀有金属材料研究院有限公司 一种电子封装用石墨-铜钼基复合材料的制备方法
CN114369739B (zh) * 2021-12-14 2022-08-26 江西理工大学 无铅石墨黄铜复合材料的制备方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089354A (en) * 1990-12-11 1992-02-18 Chuetsu Metal Works, Co., Ltd. Wear-resistant, anti-seizing copper alloy composite materials
CN1546703A (zh) * 2003-12-03 2004-11-17 海亮集团浙江铜加工研究所有限公司 无铅易切削黄铜合金
CN101623759A (zh) * 2009-08-17 2010-01-13 刘丽蓉 用于高速动车组制动闸片的粉末冶金材料
WO2012096237A1 (ja) * 2011-01-13 2012-07-19 三菱マテリアル株式会社 電子・電気機器用銅合金、銅合金薄板および導電部材
CN102634688A (zh) * 2011-02-10 2012-08-15 湖南特力新材料有限公司 一种无铅易切削铜合金及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101363086A (zh) * 2008-10-09 2009-02-11 中南大学 一种无铅易切削黄铜合金
CN101665885B (zh) * 2009-09-11 2011-05-25 中南大学 一种铸造无铅易切削黄铜
JP2013198928A (ja) * 2012-03-26 2013-10-03 Nagoya Institute Of Technology 母相金属と固相微細粒子が複合化した複合材料の製造方法及び当該方法により製造されるメタルボンド砥石
JP6239767B2 (ja) * 2013-09-04 2017-11-29 フナン、テリー、ニュー、マテリアルズ、カンパニー、リミテッドHunan Terry New Materials Company Ltd. 無鉛、高硫黄、かつ易切削性の銅マンガン合金、およびその調製方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089354A (en) * 1990-12-11 1992-02-18 Chuetsu Metal Works, Co., Ltd. Wear-resistant, anti-seizing copper alloy composite materials
CN1546703A (zh) * 2003-12-03 2004-11-17 海亮集团浙江铜加工研究所有限公司 无铅易切削黄铜合金
CN101623759A (zh) * 2009-08-17 2010-01-13 刘丽蓉 用于高速动车组制动闸片的粉末冶金材料
WO2012096237A1 (ja) * 2011-01-13 2012-07-19 三菱マテリアル株式会社 電子・電気機器用銅合金、銅合金薄板および導電部材
CN102634688A (zh) * 2011-02-10 2012-08-15 湖南特力新材料有限公司 一种无铅易切削铜合金及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3360982A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557602A (zh) * 2017-10-18 2018-01-09 北京科技大学 一种石墨烯增强ods铜的制备方法
CN107557602B (zh) * 2017-10-18 2019-03-26 北京科技大学 一种石墨烯增强ods铜的制备方法
EP3765643A4 (en) * 2018-03-13 2021-12-01 Mueller Industries, Inc. POWDER METALLURGY PROCESS FOR THE MANUFACTURE OF LEAD-FREE BRASS ALLOYS

Also Published As

Publication number Publication date
EP3360982A1 (en) 2018-08-15
JP2019504191A (ja) 2019-02-14
EP3360982A4 (en) 2019-05-15
US20180355459A1 (en) 2018-12-13
CN108474063B (zh) 2020-04-28
US10851438B2 (en) 2020-12-01
EP3360982B1 (en) 2020-06-10
CN108474063A (zh) 2018-08-31
JP6701341B2 (ja) 2020-06-10

Similar Documents

Publication Publication Date Title
WO2017096572A1 (zh) 一种ods氧化铝弥散强化无铅易切削黄铜及其制造方法
EP3042971B1 (en) Lead-free high-sulphur easy-cutting alloy containing manganese and copper and preparation method therefor
CN1256004C (zh) 由铁铝金属化合物合金制成的电阻加热元件
CN100469928C (zh) 一种高强耐热铝合金及其管材的制备方法
CN101823190B (zh) 一种铝硅合金焊丝及其制备方法
CN1993486A (zh) 铜合金铸件及其铸造方法
CN101307403B (zh) 一种高强度易切削铝合金
CN110106393A (zh) 一种高锰耐磨铝青铜合金及其制备方法
CN110029252A (zh) 一种5g手机中板用高强高韧抗氧化铝镁合金材料及其制备方法
RU2382099C2 (ru) Литая заготовка из латуни для изготовления колец синхронизаторов
CN101805841B (zh) 一种稀土氧化物无铅易切削黄铜及其制备方法
JP2008231488A (ja) 塑性加工用マグネシウム合金及びマグネシウム合金塑性加工部材
CN103667823B (zh) 一种高强度铝锌镁合金材料及其制备方法和应用
CN111041271A (zh) 一种热锻性能良好的铜锡钛合金
WO2015100873A1 (zh) 无铅无铋无硅黄铜
CN103572096A (zh) 高韧性耐磨锌合金及其制备工艺
RU2303641C2 (ru) Медно-никелевый деформируемый сплав
CN107695339A (zh) 一种铝基粉末冶金锻造发动机连杆的制备方法
CN112695216B (zh) 一种具有三种强化相的锰黄铜合金的制备方法
CA2687452C (en) Brass alloy
KR102245881B1 (ko) 스테인레스강 스크랩을 재활용해 제조한 음용수용 황동 합금 및 그 제조 방법
CN105154690A (zh) 一种耐高温钛铝基合金材料的制备方法
CN104152767A (zh) 一种高塑性Mg-Al-Mn-Se镁合金
KR20080085664A (ko) 소성 가공용 마그네슘 합금 및 마그네슘 합금 소성가공부재
KR20200134786A (ko) 스테인레스강 스크랩을 재활용해 제조한 음용수용 황동 합금 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015910047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2018530035

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE