RU2382099C2 - Литая заготовка из латуни для изготовления колец синхронизаторов - Google Patents
Литая заготовка из латуни для изготовления колец синхронизаторов Download PDFInfo
- Publication number
- RU2382099C2 RU2382099C2 RU2007145286/02A RU2007145286A RU2382099C2 RU 2382099 C2 RU2382099 C2 RU 2382099C2 RU 2007145286/02 A RU2007145286/02 A RU 2007145286/02A RU 2007145286 A RU2007145286 A RU 2007145286A RU 2382099 C2 RU2382099 C2 RU 2382099C2
- Authority
- RU
- Russia
- Prior art keywords
- brass
- titanium
- iron
- manganese
- alloy
- Prior art date
Links
Images
Landscapes
- Mechanical Operated Clutches (AREA)
Abstract
Изобретение относится к области металлообработки, в частности к производству трубных заготовок из медных сплавов. Предложена литая заготовка из латуни для изготовления колец синхронизаторов. Латунь содержит добавки марганца, алюминия, железа, кремния, свинца и титана. Структура состоит из α-фазы, двухфазных областей (α+β')-смеси фаз и силицидов марганца и железа (Fe, Mn)5Si3. Содержание титана в латуни составляет 0,01-0,07 мас.% при содержании титана в двухфазных областях (α+β')-смеси фаз 0,04-0,18 мас.%, а в силицидах марганца и железа (Fe,Mn)5Si3 - 0,06-0,26 мас.%. Повышается технологическая прочность и пластичность литых заготовок. 1 ил., 1 табл.
Description
Предлагаемый объект относится к области металлургии, в частности к производству трубных заготовок из медных сплавов, предназначенных для изготовления колец синхронизаторов коробок передач автомобилей.
Из уровня техники известны составы латуни для изготовления колец синхронизаторов коробок передач автомобилей [1-7]. Как правило, применяют латуни сложного химического состава, в котором функции элементов оказываются различными. Легирование цинком и алюминием позволяет получить прочный медный сплав, а также добиться возможности регулирования его свойств за счет различного распределения фаз. Легирование свинцом улучшает триботехнические свойства изделия.
Введение некоторых элементов позволяет добиться выделения интерметаллидных составляющих, которые в качестве дисперсных твердых частиц резко улучшают характеристики материала. К таким составляющим относят никель, железо, алюминий, кремний, ниобий, марганец и некоторые другие элементы.
Фирма CHUETSU METAL WORKS получила патент № US 5288683 [1] на состав сплава на основе меди, содержащего 28-32% цинка, 3,5-5,5% алюминия, 0,5-2,0% железа, 1-3% никеля, 0,1-1,0% ниобия, 0,4-1,5% титана. В состав сплава входит две составляющие, образующие интерметаллидные соединения: Ti-Ni-Fe-Al и Nb-Fe-Al. Несмотря на наличие титана этот сплав не может являться прототипом, поскольку, в целом, его состав отличен от заявляемого, а упрочняющее действие здесь основано на интерметаллидах иного класса. Недостатком сплава является применение дорогостоящих элементов: никеля или ниобия, что удорожает сплав.
В соответствии с патентом фирмы MITSUBISHI METAL CORP [2] кольцо синхронизатора изготавливают из материала на основе меди, при этом рабочая поверхность кольца может содержать слой оксида алюминия толщиной 0,1-10 мкм. Изготовление самого изделия - синхронизатора не предусмотрено данной заявкой, поэтому этот патент не может быть признан в качестве прототипа.
Фирма MITSUBISHI METAL CORP в патенте № US 5788924 [3] описала заготовку сплав на основе меди, содержащий 20-40% цинка, 2-11% алюминия, и 1-5% металла из группы железа, никеля, кобальта, 0,1-4% титана, 0,01-0,5% магния. Следующий патент № JP 8120427 [4] этой фирмы предполагал наличие в сплаве матрицы на основе α- и β'- фаз в регламентированных пределах. По этому патенту слиток из латуни сложного состава, содержащей алюминий, никель, титан, магний, должен состоять из смеси α- и β-фаз, но содержание титана в фазах не оговаривалось. Сплав не содержит основных элементов, необходимых для получения упрочняющих интерметаллидов в заявляемом составе - марганца и кремния, поэтому также не может являться прототипом.
В патенте Японии JP 2001355030 [5] фирмы MITSUBISHI METAL CORP заявлен сплав для синхронизаторов автомобилей, содержащий 27-33% цинка, 3-4,5% алюминия, и 1,5-3% никеля, 1-2% титана, 0,2-0,7% марганца, 0,005-0,5% железа, 0,01-0,1% кремния. Сплав должен иметь одинаковые по величине зерна α- или β-фаз с равномерно распределенными интерметаллическими частицами. Этот состав предполагает наличие никеля, которого нет в заявляемом сплаве, кроме того, титан здесь содержится в слишком большом количестве, что допустимо, если никель свяжет титан в интерметаллид, но в противном случае свойства материала окажутся неудовлетворительными. Марганца, кремния и железа в сплаве содержится слишком мало для создания достаточного количества упрочняющей фазы.
Большой объем исследований, направленных на улучшение характеристик колец синхронизаторов, представлен фирмой MITSUBISHI METAL CORP в патенте № US 4874439 [6]. Выработаны составы, требования к заготовкам и технологии их производства. В том числе предложена литая заготовка из латуни(прототип), содержащей (мас.%): 17-40% цинка, 2-11% алюминия, 0,1-3,5 Ti или Zr или V, 0-3 Fe или Ni или Со, 0-0,5 Si; 0-4 Mn; 0-1,5 Pb.
Таким образом, в прототипе описана латунь для изготовления колец синхронизаторов, содержащая добавки марганца, алюминия, железа, кремния, свинца и титана. Известно, что высокоцинковые латуни кристаллизуются в виде α-фазы, (α+β') - смеси фаз, а при получении сплава кремний, марганец и железо образуют интерметаллиды: силициды состава (Fe,Mn)5Si3. Поэтому литая заготовка из латуни по прототипу содержит добавки марганца, алюминия, железа, кремния, свинца и титана при наличии α-фазы, (α+β') - смеси фаз и силицидов марганца и железа (Fe,Mn)5Si3. В тексте описания к патенту утверждается, что содержание титана менее 0,1% является незначимым, что, возможно, справедливо в отношении свойств готовых изделий, но не справедливо в отношении технологических свойств литой заготовки.
Недостатком объекта по прототипу является слишком большое содержание титана в сплаве и неконтролируемое содержание титана в фазовых составляющих, что приводит к пониженной технологической прочности сплава. В реальном производстве прочностные свойства определяют возможность осуществления полунепрерывного литья крупногабаритных слитков и их транспортирования без разрушения. Эта задача не была решена в патенте по прототипу, поскольку для получения заготовок использовалось наполнительное литье, имеющее свои особенности, в частности долгое нахождение кристаллизующегося металла в нагретом состоянии, относительно малая масса слитка, но большая масса изложницы и т.д.
Как показали исследования авторов, наибольшее упрочняющее действие при условии сохранения достаточной технологической пластичности титан оказывает при его содержании 0,01-0,07 мас.% и нахождении его не в α-фазе, а в (α+β') - смеси фаз, а также в силициде марганца и железа. Для достижения наибольшей технологической прочности содержание титана должно составлять (мас.%) 0,04-0,18 в (α+β') - смеси фаз и 0,06-0,26 в силициде марганца и железа. Здесь и далее под технологической прочностью будет пониматься временное сопротивление, измеренное не у готового изделия (у него временное сопротивление окажется заведомо выше вследствие применения операций термомеханической обработки), а после определенной технологической операции, в данном случае, после литья. Эта характеристика важна не для потребителя, а для технолога, поскольку она показывает, насколько прочен материал в данном месте технологического процесса. В объекте по прототипу эта характеристика не определялась.
Особенностями структуры сплавов синхронизаторов на основе латуни является наличие α и β фаз, а также присутствие интерметаллидных соединений, упрочняющих такую матрицу. Структурные составляющие матрицы представляют собой α - твердый раствор цинка в меди, имеющий ГЦК (гранецентрированную кубическую)-решетку, β - твердый раствор меди в цинке, имеющий ОЦК (объемно-центрированную кубическую)-решетку, силицидов железа, марганца или других компонентов, имеющих сложную гексагональную кристаллическую решетку. В сплаве фаза β присутствует в виде двухфазной (α+β)-структуры в горячем состоянии (выше температуры 460°С) и в виде двухфазной (α+β')-структуры в холодном состоянии (ниже температуры 460°С).
Таким образом, прочность сплава в холодном состоянии определяется, в основном, фазой β, которая является заведомо более прочной, чем α-фаза. Еще более прочными образованиями являются интерметаллиды в виде силицида марганца и железа. Именно поэтому в данном техническом решении предлагается дополнительно упрочнить эти фазовые составляющие титаном.
На чертеже приведена фотография шлифа литой заготовки из латуни заявляемого состава с указанием места расположения отдельных фаз.
Пример 1. Выплавляли латунь следующего химического состава (мас.%): медь 70,45; алюминий 5,44; железо 1,79; марганец 6,80; свинец 0,86; кремний 2,09; цинк - остальное, при содержании примесей не более 0,3. В этом опыте (№ 1 в таблице) титан в плавку не добавляли с целью определить его роль при последующем легировании. Методом полунепрерывного литья в водоохлаждаемый кристаллизатор получали литую заготовку диаметром 212 мм и разрезали на мерные длины. На вырезанных образцах определили временное сопротивление σв=380 МПа. Из заводской практики известно, что слитки из сплава σв менее 420 МПа склонны к трещинообразованию в транспортных операциях и при нагреве перед прессованием, поэтому этот вариант сплава не является оптимальным.
Зависимость временного сопротивления латуни в литом состоянии от содержания титана в различных фазовых составляющих | ||||
№ опыта | Содержание титана, % | Содержание титана в (α+β') - смеси фаз | Содержание титана в силициде | σв, МПа |
1 | 0 | 0 | 0 | 380 |
2 | 0,01 | 0,04 | 0,06 | 430 |
3 | 0,03 | 0,07 | 0,12 | 425 |
4 | 0,04 | 0,11 | 0,18 | 425 |
5 | 0,07 | 0,18 | 0,26 | 420 |
6 | 0,14 | 0,36 | 0,50 | 329 |
Пример 2. Выплавляли латунь того же химического состава, но в отличие от первого примера добавляли в нее титан из расчета его содержания в сплаве (мас.%) 0,01; 0,03; 0,04; 0,07; 0,14, а также 0,04; 0,07; 0,11; 0,18; 0,36 мас.% в (α+β') - смеси фаз и, соответственно 0,06; 0,12; 0,18; 0,26; 0,50 мас.% в силициде. Регулирование соотношения фаз осуществляли соответствующим набором шихтовых материалов и назначением скоростей охлаждения металла на различных этапах процесса литья. Содержание элементов в фазовых составляющих определяли с использованием микрорентгеноспектрального анализа.
Для варианта достижения содержания титана 0,04 мас.% в сплаве; 0,11 мас.% в (α+β') - смеси фаз и 0,18 мас.% в силициде марганца и железа на чертеже приведена фотография структуры литой заготовки, где обозначено размещение различных фазовых составляющих: 1 - α-фаза; 2 - (α+β') -смесь фаз и 3 - силицид марганца и железа. В этом и других опытах в указанных областях определяли химический состав фазовых составляющих материала.
Результаты, приведенные в таблице (опыты 2-6), показывают, что временное сопротивление увеличивается выше 420 МПа при содержании титана 0,01-0,07 мас.% в сплаве; 0,04-0,18 мас.% в (α+β') - смеси фаз и при 0,06-0,26 мас.% в силициде марганца и железа.
В части содержания титана в латуни, равном 0,14 мас.%, опыт №6 соответствует условиям прототипа, в котором в состав сплава входит 0,1-3,5 мас.% Ti. Обнаружено, что в этом случае временное сопротивление уменьшается ниже допустимого предела, поэтому такой вариант сплава не является рациональным. Кроме того, в опытах выявлено, что если в заявляемом интервале компонентов относительное удлинение δ находится на уровне 2%, то в опыте №6 получен материал, характеризующийся δ=1%, т.е. заявляемый материал имеет пластичность в два раза выше материала по прототипу.
Полученные литые заготовки из латуни заявленного состава подвергнуты прошивке и прессованию при температуре 740°С на горизонтальном прессе с получением трубных заготовок с толщиной стенки 6,9-9,25 мм. После регламентированного режима охлаждения они направлены потребителю, от которого получено положительное заключение.
Технический результат от применения заявляемого объекта заключается в повышении технологической прочности и пластичности литых заготовок.
Литература
1. Патент US 5288683. Wear-resistant copper alloys and synchronizer rings for automobiles, comprising the same. Appl: CHUETSU METAL WORKS (JP). Inv.: NAKASHIMA KUNIO. IPC C22C 9/04. Publ. 1994-02-22.
2. Патент US 4995924. Synchronizer ring in speed variator made of copper alloy. Appl: MITSUBISHI METAL CORP (JP). Inv.: AKUTSU HIDETOSHI. IPC C22C 9/04. Publ. 1991-02-06.
3. Патент US 5788924. Wear resistant copper alloy and synchronizer ring made thereof. Appl.: MITSUBISHI METAL CORP (JP). Inv.: МАЕ YOSHIHARU, KOBAYASHI MASAO. IPC C22C 9/04. Publ. 1998-08-04.
4. Патент JP 8120427. Production of synchronizer ring made of brass type copper alloy for automobile gearbox, excellent in seizure resistance. Appl.: MITSUBISHI METAL CORP (JP). TOYOTA MOTOR CORP (JP). Inv.: KOBAYASHI MASAO, МАЕ YOSHIHARU. IPC C22F 1/08. Publ. 1996-05-14.
5. Патент JP 2001355030. Copper alloy-made hot-die forged synchronizer rings having excellent fatigue strength in chamber part. Appl.: MITSUBISHI METAL CORP (JP). Inv.: KOBAYASHI MASAO. IPC C22C 9/04. Publ. 2001-12-25.
6. Патент US 4874439. Synchronizer ring in speed variator made of wear-resistent copper alloy having high strength and toughness. Appl.: MITSUBISHI METAL CORP (JP). Inv.: AKUTSU HIDETOSHI. IPC C22C 9/00. Publ. 1989-10-17.
7. Патент ЕР 1690952. Synchronizer ring made of copper alloy exhibiting excellent resistance to plastic flow under high exothermic circumstance. Appl.: MITSUBISHI MATERIALS CORP (JP). Inv.: KOBAYASHI MASAO. IPC C22C 9/04; F16D 23/02; F16D 23/06. Publ. 2006-08-16.
Claims (1)
- Литая заготовка из латуни для изготовления колец синхронизаторов, содержащей добавки марганца, алюминия, железа, кремния, свинца и титана, отличающаяся тем, что она имеет структуру, состоящую из α-фазы, двухфазных областей (α+β')-смеси фаз и силицидов марганца и железа (Fe,Mn)5Si3, содержание титана в латуни составляет 0,01-0,07 мас.% при содержании титана в двухфазных областях (α+β')-смеси фаз 0,04-0,18 мас.%, а в силицидах марганца и железа (Fe,Mn)5Si3 - 0,06-0,26 мас.%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2007145286/02A RU2382099C2 (ru) | 2007-12-06 | 2007-12-06 | Литая заготовка из латуни для изготовления колец синхронизаторов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2007145286/02A RU2382099C2 (ru) | 2007-12-06 | 2007-12-06 | Литая заготовка из латуни для изготовления колец синхронизаторов |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2007145286A RU2007145286A (ru) | 2009-06-20 |
RU2382099C2 true RU2382099C2 (ru) | 2010-02-20 |
Family
ID=41025272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2007145286/02A RU2382099C2 (ru) | 2007-12-06 | 2007-12-06 | Литая заготовка из латуни для изготовления колец синхронизаторов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2382099C2 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2613234C2 (ru) * | 2015-05-27 | 2017-03-15 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Литая латунь |
RU2661960C1 (ru) * | 2014-02-04 | 2018-07-23 | Отто Фукс Коммандитгезельшафт | Совместимый со смазочным материалом медный сплав |
RU2684132C1 (ru) * | 2018-04-02 | 2019-04-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Флюс для защитного покрытия расплава латуни |
RU194768U1 (ru) * | 2019-04-17 | 2019-12-23 | Публичное Акционерное Общество "Корпорация Всмпо-Ависма" | Заготовка из высоколегированных алюминиевых сплавов |
US11359263B2 (en) | 2016-05-20 | 2022-06-14 | Otto Fuchs Kommanditgesellschaft | Lead-free high tensile brass alloy and high tensile brass alloy product |
-
2007
- 2007-12-06 RU RU2007145286/02A patent/RU2382099C2/ru not_active IP Right Cessation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2661960C1 (ru) * | 2014-02-04 | 2018-07-23 | Отто Фукс Коммандитгезельшафт | Совместимый со смазочным материалом медный сплав |
RU2613234C2 (ru) * | 2015-05-27 | 2017-03-15 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Литая латунь |
US11359263B2 (en) | 2016-05-20 | 2022-06-14 | Otto Fuchs Kommanditgesellschaft | Lead-free high tensile brass alloy and high tensile brass alloy product |
RU2684132C1 (ru) * | 2018-04-02 | 2019-04-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Флюс для защитного покрытия расплава латуни |
RU194768U1 (ru) * | 2019-04-17 | 2019-12-23 | Публичное Акционерное Общество "Корпорация Всмпо-Ависма" | Заготовка из высоколегированных алюминиевых сплавов |
Also Published As
Publication number | Publication date |
---|---|
RU2007145286A (ru) | 2009-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3805416B1 (en) | Aluminum alloy and preparation method and application thereof | |
JP3905115B2 (ja) | 高強度高靭性マグネシウム合金及びその製造方法 | |
JP5355320B2 (ja) | アルミニウム合金鋳物部材及びその製造方法 | |
AU2016343539B2 (en) | Aluminum alloy | |
EP0669404B1 (en) | Wear-resistant sintered aluminum alloy and method for producing the same | |
WO2016015488A1 (zh) | 铝合金及其制备方法和应用 | |
JP6491452B2 (ja) | アルミニウム合金連続鋳造材及びその製造方法 | |
EP2369025A1 (en) | Magnesium alloy and magnesium alloy casting | |
WO2010056130A1 (en) | Magnesium based alloys and processes for preparation thereof | |
CN110000360A (zh) | 基于挤压铸造工艺的高强韧高模量铝合金材料及其制备 | |
JP4764094B2 (ja) | 耐熱性Al基合金 | |
RU2382099C2 (ru) | Литая заготовка из латуни для изготовления колец синхронизаторов | |
CN114457263A (zh) | 一种高强高韧高导热压铸铝合金及其制造方法 | |
JP2006291327A (ja) | 耐熱マグネシウム合金鋳造品 | |
CN109465563B (zh) | 一种Al-Cu-Si-Ni-Mg-Ti-Bi铝基合金态钎料及其制备方法 | |
JP3548709B2 (ja) | 輸送機器用Al合金の半溶融ビレットの製造方法 | |
JPS60215735A (ja) | Al基合金及び該合金の熱処理方法 | |
WO2019023818A1 (zh) | 易于冷加工成型的变形锌合金材料及其制备方法和应用 | |
JPH07197165A (ja) | 高耐磨耗性快削アルミニウム合金とその製造方法 | |
JP3840400B2 (ja) | 輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法 | |
JP3504917B2 (ja) | 自動車エンジンの可動部品およびケーシング部材用のアルミニウム−ベリリウム−シリコン系合金 | |
JP3920656B2 (ja) | ホウ素含有高剛性Al合金 | |
CN109295404B (zh) | 一种基于硅锰化合物相变控制的耐磨黄铜合金 | |
JPH11152552A (ja) | Al−Zn−Si系合金の加工方法 | |
RU2613234C2 (ru) | Литая латунь |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20111207 |