WO2015100873A1 - 无铅无铋无硅黄铜 - Google Patents

无铅无铋无硅黄铜 Download PDF

Info

Publication number
WO2015100873A1
WO2015100873A1 PCT/CN2014/074942 CN2014074942W WO2015100873A1 WO 2015100873 A1 WO2015100873 A1 WO 2015100873A1 CN 2014074942 W CN2014074942 W CN 2014074942W WO 2015100873 A1 WO2015100873 A1 WO 2015100873A1
Authority
WO
WIPO (PCT)
Prior art keywords
free
alloy
lead
silicon
brass
Prior art date
Application number
PCT/CN2014/074942
Other languages
English (en)
French (fr)
Inventor
李家德
Original Assignee
嘉兴艾迪西暖通科技有限公司
浙江艾迪西流体控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴艾迪西暖通科技有限公司, 浙江艾迪西流体控制股份有限公司 filed Critical 嘉兴艾迪西暖通科技有限公司
Priority to JP2015555583A priority Critical patent/JP6057109B2/ja
Priority to US14/354,958 priority patent/US20160362767A1/en
Priority to AU2014202540A priority patent/AU2014202540B2/en
Priority to CN201480000087.0A priority patent/CN103946402B/zh
Priority to KR1020147015581A priority patent/KR20150093100A/ko
Priority to EP14725347.0A priority patent/EP2913415A4/en
Publication of WO2015100873A1 publication Critical patent/WO2015100873A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/005Castings of light metals with high melting point, e.g. Be 1280 degrees C, Ti 1725 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to an environmentally friendly brass alloy, and more particularly to a brass alloy material that is easy to cut and dezincification resistant.
  • silicon appears in the Y phase of the alloy metallographic structure (sometimes a ⁇ phase), and at this time, silicon can replace the role of lead in the alloy to some extent, and improve the machinability of the alloy.
  • the machinability of the alloy increases with the increase of silicon content, but the melting point of silicon is high, the specific gravity is low, and it is easy to be oxidized. Therefore, after the silicon monomer is added into the furnace during the melting of the alloy, silicon floats on the surface of the alloy, when the alloy is molten. Silicon is oxidized to silicon oxide or other oxides, making it difficult to produce a copper-containing copper alloy, and if silicon is added as a Cu-Si alloy, the economic cost is high.
  • niobium to lead can be used as a cutting break in the alloy structure to increase the machinability.
  • the niobium content is too high, hot cracking is likely to occur during forging, which is not conducive to production.
  • the object of the present invention is to provide a brass alloy excellent in tensile strength, elongation, dezincification resistance and machinability, and is suitable as a processed product requiring high strength and abrasion resistance, and forged products and A constituent material such as a cast product is used. It can safely replace alloy copper containing a large amount of lead, and fully meets the requirements of human society for the restriction of lead-containing products.
  • a lead-free, silicon-free, silicon-free machinable brass alloy (hereinafter referred to as Invention 1), comprising: 60-65 wt% copper, 0.01-0.15 wt% bismuth and 0.1-0.5 wt% of the total weight of the brass alloy % magnesium, the remainder being zinc.
  • the present invention 1 controls the copper content to be 60-65 wt%, and adds a small amount of bismuth and magnesium to form an intermetallic compound with copper to increase the machinability of the alloy. It also contributes to the dezincification resistance of the alloy. In other words, the addition of yttrium and magnesium to the Y phase of Invention 1 improves the machinability.
  • the metallographic structure of the alloy mainly includes ⁇ phase, ⁇ phase, Y phase, and soft and brittle intermetallic compounds distributed in the grain boundary or grain, wherein copper and zinc constitute the main component of the brass alloy, and the addition of bismuth and In addition to improving the machinability of the alloy, magnesium also contributes to dezincification resistance.
  • the formed alloy cannot achieve the basic machinability required in industrial production.
  • the machinability of the alloy increases with the increase of the content of niobium and magnesium, but when the niobium content in the alloy is 0.15 wt% and the magnesium content is 0.5%, The improvement of the machinability of gold is saturated.
  • a lead-free, silicon-free, silicon-free machinable brass alloy (hereinafter referred to as Invention 2), comprising: 60-65 wt% of copper, based on the total weight of the brass alloy, 0.01-0.15 wt% of bismuth, 0.1-0.5 wt. % of magnesium, and 0.05 to 0.3% by weight of phosphorus and/or 0.05 to 0.5% by weight of manganese, based on the total weight of the brass alloy, the remainder being zinc.
  • the inventive article 2 further adds 0.05 to 0.3% by weight of phosphorus and/or 0.05 to 0.5% by weight of manganese based on the total weight of the brass alloy on the basis of the invention 1.
  • phosphorus cannot form the Y phase, phosphorus has a function of forming a Y phase distribution of bismuth and magnesium, thereby improving the machinability of the alloy.
  • the Y phase will disperse the crystal grains of the main ⁇ phase, which improves the casting properties and corrosion resistance of the alloy.
  • a lead-free, non-silicon-free, highly machinable brass alloy (hereinafter referred to as Invention 3), comprising: copper in an amount of 60-65 wt% based on the total weight of the brass alloy, 0.01-0.15 wt% of bismuth, 0.1-0.5 wt. % magnesium, and 0.05-0.5 wt% manganese, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, and/or 0.001-0.01 wt%, based on the total weight of the brass alloy Boron, the remainder is zinc.
  • Inventive 3 further adds 0.05-0.5 wt% of manganese, 0.1-0.7 wt% of aluminum, 0.05-0.5 wt% of tin, 0.05-0.3 wt% of phosphorus, based on the total weight of the brass alloy. And / or 0.001-0.01wt% addition of tin in the alloy is also to form the Y phase, improve the machinability of the alloy, and the addition of tin significantly improves the strength of the alloy, and improves its plasticity and corrosion resistance. However, considering the addition of tin, the cost is high. Therefore, adding aluminum while adding tin can improve the alloy's machinability, and also improve alloy strength, wear resistance, casting fluidity and high temperature oxidation resistance.
  • the content range of phosphorus and manganese is the same as that of the invention 2, and the reason is the same as that of the invention 2.
  • the addition of bismuth, magnesium, aluminum, tin, phosphorus, manganese and/or boron is selected according to the difference in machinability requirements of different products.
  • a lead-free, non-silicon-free, highly machinable brass alloy (hereinafter referred to as Invention 4), comprising: 60-65 wt% of copper, based on the total weight of the brass alloy, 0.01-0.15 wt% of bismuth, 0.1-0.5 wt.
  • % magnesium and 0.05-0.5 wt% manganese, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, and/or 0.001-0.01 wt%, based on the total weight of the brass alloy
  • a lead-free, non-silicon-free, highly machinable brass alloy (hereinafter referred to as Invention 5), comprising: 60-65 wt% of copper, based on the total weight of the brass alloy, 0.01-0.15 wt% of bismuth, 0.1-0.5 wt.
  • % magnesium and 0.05-0.5 wt% manganese, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, and/or 0.001-0.01 wt%, based on the total weight of the brass alloy Boron, the remainder being zinc, wherein the total content of manganese, aluminum, tin, phosphorus and/or boron is from 0.2 to 2% by weight based on the total weight of the brass alloy.
  • a lead-free, non-silicon-free, highly machinable brass alloy (hereinafter referred to as Invention 6), comprising: 60-65 wt% of copper, based on the total weight of the brass alloy, 0.01-0.15 wt% of bismuth, 0.1-0.5 wt.
  • the invention 6 includes on the basis of the invention 3 some unavoidable impurities, namely mechanical impurities nickel, chromium and/or iron.
  • a lead-free, non-silicon-free, highly machinable brass alloy (hereinafter referred to as Invention 7), comprising: 60-65 wt% of copper, 0.05-0.5 wt% of tin, and more than two Selected from brass
  • the total weight of gold is 0.1-0.7 wt% aluminum, 0.05-0.3 wt% phosphorus and 0.05-0.5 wt% manganese, and the remainder is zinc.
  • the addition of 0.05-0.5wt% tin, based on the total weight of the alloy can also meet the need for machinability in industrial production, and the content is taken from the range of the invention 3, and the reason is also The reasons stated are the same; the addition of aluminum, phosphorus and manganese is selected according to the requirements of different products for machinability, and the content of the content is the same as that of the invention 3, and the reason is also explained by the invention 3 The reason is the same.
  • a lead-free, non-silicon-free, highly machinable brass alloy (hereinafter referred to as the invention 8) includes: copper, which is 60-65 wt% of the total weight of the brass alloy, and 0.05-0.5 wt% of tin, two or more selected
  • the total weight of the brass alloy is 0.1-0.7 wt% aluminum, 0.05-0.3 wt% phosphorus and 0.05-0.5 wt% manganese element, and 0.01-0.15 wt% ⁇ , 0.1-0.5, based on the total weight of the brass alloy.
  • the addition of strontium, magnesium, aluminum, tin, phosphorus, manganese and/or boron is selected according to the requirements of different products for the machinability.
  • the content of the content is the same as the invention, and the reason and invention The reason stated in item 3 is the same.
  • a lead-free, non-silicon-free, highly machinable brass alloy (hereinafter referred to as the invention 9), comprising: copper, which is 60-65 wt% of the total weight of the brass alloy, 0.05-0.5 wt% of tin, and two or more
  • the total weight of the brass alloy is 0.1-0.7 wt% aluminum, 0.05-0.3 wt% phosphorus and 0.05-0.5 wt% manganese element, and 0.01-0.15 wt% ⁇ , 0.1-0.5, based on the total weight of the brass alloy.
  • Wwt% of magnesium and/or 0.001-0.01 wt% of boron the remainder being zinc and unavoidable impurities, wherein the unavoidable impurities include: nickel of less than 0.25 wt% of the total weight of the brass alloy, less than 0.15 wt% Chromium and/or iron below 0.25 wt%.
  • the invention 9 includes on the basis of the invention 8 some unavoidable impurities, namely mechanical impurities nickel, chromium and/or iron.
  • a lead-free, non-silicon-free, highly machinable brass alloy (hereinafter referred to as the invention 10), comprising: copper, which accounts for 60-65 wt% of the total weight of the brass alloy, 0.01-0.15 wt% of bismuth and 0.1-0.5 And wt% of magnesium, and one or more selected from the group consisting of aluminum in an amount of 0.1-0.7% by weight based on the total weight of the brass alloy, 0.05-0.5% by weight of tin, 0.05-0.3 wt% of phosphorus, 0.05-0.5 wt% of manganese and 0.001-0.01 wt% of boron, the remainder being zinc.
  • the addition or not of aluminum, tin, phosphorus, manganese and/or boron is selected according to the requirements of different products for the machinability.
  • the content of the content is the same as the invention 3, and the reason and the invention The reasons stated in 3 are the same.
  • a lead-free, non-silicon-free, machinable brass alloy (hereinafter referred to as the invention 11), comprising: copper in an amount of 60-65 wt% of the total weight of the brass alloy, 0.01-0.15 wt% of bismuth and 0.1-0.5 The wt% of magnesium, and one or more selected from the group consisting of 0.1-0.7 wt% of aluminum, 0.05-0.5 wt% of tin, 0.05-0.3 wt% of phosphorus, 0.05-0.5 wt% of manganese, and 0.001 - 0.01 wt% of the element of boron, the remainder being zinc and unavoidable impurities, wherein the unavoidable impurities include: nickel of less than 0.25 wt% of the total weight of the brass alloy, chromium of 0.15 wt% or less and/or 0.25 wt Below the iron.
  • the invention 11 includes on the basis of the invention 10 some unavoidable impurities, namely mechanical impurities nickel, chromium and/or iron.
  • the present invention further provides a method for producing a brass alloy, and taking an example of the invention 3 as an example, comprising the following steps:
  • a copper-manganese alloy is provided as a source of copper and manganese elements.
  • the melting furnace used is a high-frequency melting furnace, and the high-frequency melting furnace is lined with graphite crucible.
  • the high frequency melting furnace has the characteristics of fast melting rate, fast heating, clean and pollution-free, and self-stirring in the melting process (ie, affected by magnetic lines of force).
  • the lead-free and antimony-free silicon-free brass alloy described in the present invention is added to a certain proportion in various proportions, and then subjected to a high-frequency melting furnace to produce a mechanical processing property comparable to known lead-containing brass, and is good. It has good tensile strength, elongation, and anti-zinc resistance, and is lead-free. It is suitable for use as an alloy material for replacing known lead-containing brass, such as faucets or bathroom accessories.
  • Fig. 1 is a flow chart showing a method of manufacturing one of the inventions 3.
  • the anti-dezincification corrosion resistance test referred to in this paper is carried out in the form of as-cast according to the AS-2345-2006 specification. 12.8g of copper chloride is added in 1000C.C deionized water, and the measured object is placed therein for 24h. , to determine the depth of dezincification.
  • represents dezincification depth less than ⁇ ⁇ ⁇ ;
  • represents dezincification depth between 100 ⁇ m and 200 ⁇ m; and represents dezincification depth greater than 200 ⁇ m.
  • represents a relative cutting rate greater than 85%; ⁇ represents a relative cutting rate greater than 70%.
  • the tensile strength and elongation tests referred to herein were tested in the as-cast condition at room temperature.
  • the comparative sample is a lead-containing yellow brass of the same specification and the same specification, that is, a C36000 alloy.
  • composition ratio of C36000 alloy material is as follows, the unit is weight percentage (wt%): 1 is a flow chart of a manufacturing method of an embodiment of the invention 3, comprising the following steps: Step S100: Providing copper and manganese. In this step, a copper-manganese alloy can be provided as a source for providing the copper and manganese elements.
  • Step S102 heating the copper-manganese mother alloy to a temperature between 1000 and 1050 ° C to form a copper-manganese alloy melt into a copper-manganese alloy.
  • the copper-manganese alloy can be added to a high-frequency melting furnace, and the melting temperature is raised in the melting furnace to raise the temperature to between 1000-1050 ° C, even up to 1100 ° C, and the process lasts for 5-10 minutes. , melting the copper-manganese alloy into a copper-manganese alloy melt.
  • the above action can prevent the liquid melted by copper and manganese from absorbing a large amount of external gas due to the temperature being too high, resulting in cracking of the formed alloy material.
  • Step S104 Lowering the temperature of the copper-manganese alloy melt to between 950 and 1000 °C. In this step, when the temperature in the melting furnace is raised to between 1000 and 1050 ° C, when it lasts for 5-10 minutes, the power of the high frequency melting furnace is turned off, and the temperature in the melting furnace is lowered to 950-1000 ° C, and The copper-manganese alloy melt is also kept molten.
  • Step S106 covering the glass slagging agent on the surface of the copper-manganese alloy melt.
  • the glass will be The glass slag agent covers the surface of the copper-manganese alloy melt at 950-1000 ° C.
  • This step can effectively block the contact between the liquid and the air, and prevent the zinc added in the next step from melting at 950-1000 ° C due to high temperature melting. Boiling volatile.
  • Step S108 adding zinc to the copper-manganese alloy melt to form a copper-manganese-zinc melt.
  • zinc is added to the melting furnace, and the copper-manganese alloy melt is sunk, and the zinc and the copper-manganese alloy melt are sufficiently melted to form a copper-manganese-zinc melt.
  • Step S110 removing slag from the copper manganese zinc melt.
  • the copper manganese zinc melt can be stirred and mixed by the action of high-frequency induction, and then the slag-forming agent is picked up.
  • the slag remover is then used for slag removal.
  • Step S112 adding lanthanum, aluminum, tin, magnesium to the copper manganese zinc melt to form a molten metal.
  • a copper beryllium mother alloy, a copper aluminum mother alloy, a copper tin alloy, and a copper-magnesium alloy may be added to the copper manganese zinc melt.
  • Step S114 Raising the temperature of the molten metal to between 1000 and 1050 ° C, and adding a copper boron alloy and a phosphor bronze alloy to form a lead-free, non-silicone-free brass alloy melt.
  • Step S116 The brass alloy melt is cast out to form a brass alloy.
  • the furnace temperature is controlled between 1000-1050 ° C, and finally the brass alloy melt is discharged to produce lead-free, silicon-free, silicon-free, and has good processing performance.
  • the invention 1 of five different components prepared according to the above process is numbered 1001-1005, and each component is in weight percent (wt%).
  • the alloys of the above components are tested in the as-cast form at room temperature for cutting performance, dezincification resistance, tensile strength and elongation.
  • the comparative samples are lead-containing brass of the same specification and the same specification.
  • Example 2 Table 2-1 shows Invention 2 of five different components prepared according to the above process, numbered 2001-2005, and each component is in weight percent (wt%).
  • the alloys of the above components are tested in the as-cast form at room temperature for cutting performance, dezincification resistance, tensile strength and elongation.
  • the comparative samples are lead-containing brass of the same specification and the same specification. C36000 alloy.
  • the tensile strength, elongation, cutting performance and resistance to dezincification corrosion are as follows:
  • Table 3-1 there are 8 different components of the invention 3 prepared according to the above process, numbered 3001-3008, and each component is in weight percent (wt%).
  • the alloys of the above components are tested in the as-cast form at room temperature for cutting performance, dezincification resistance, tensile strength and elongation.
  • the comparative samples are lead-containing brass of the same specification and the same specification.
  • the tensile strength, elongation, cutting performance and resistance to dezincification corrosion are as follows: No. Tensile strength elongation (%) Dezincification layer relative cutting rate
  • Table 4-1 shows the inventive compositions 4 of 8 different compositions prepared according to the above process, numbered 4001-4008, and the components are in weight percent (wt%). Table 4-1
  • the alloys of the above components are tested in the as-cast form at room temperature for cutting performance, dezincification resistance, tensile strength and elongation.
  • the comparative samples are lead-containing brass of the same specification and the same specification.
  • the tensile strength, elongation, cutting performance and resistance to dezincification corrosion are as follows: No. Tensile strength elongation (%) Dezincification layer relative cutting rate (N/mm 2 )
  • Table 5-1 shows the inventive compositions 5 of 8 different compositions prepared according to the above process, numbered 5001-5008, and the components are in weight percent (wt%).
  • the alloys of the above components are tested in the as-cast form at room temperature for cutting performance, dezincification resistance, tensile strength and elongation.
  • the comparative samples are lead-containing brass of the same specification and the same specification.
  • Table 6-1 shows the inventive compositions of eight different components prepared according to the above process, numbered 6001-6008, and the components are in weight percent (wt%).
  • the alloys of the above components are tested in the as-cast form at room temperature for cutting performance, dezincification resistance, tensile strength and elongation.
  • the comparative samples are lead-containing brass of the same specification and the same specification.
  • the tensile strength, elongation, cutting performance and resistance to dezincification corrosion are as follows: No. Tensile strength elongation (%) Dezincification layer relative cutting rate
  • Example 7 In Table 7-1, the inventions 7 of the eight different components prepared according to the above process are numbered 7001-7008, and the components are in weight percent (wt%).
  • the alloys of the above components are tested in the as-cast form at room temperature for cutting performance, dezincification resistance, tensile strength and elongation.
  • the comparative samples are lead-containing brass of the same specification and the same specification.
  • the tensile strength, elongation, cutting performance and resistance to dezincification corrosion are as follows: No. Tensile strength elongation (%) Dezincification layer relative cutting rate
  • Table 8-1 shows the eight different compositions of the invention 8 obtained according to the above process, numbered 8001-8008, and each component is in weight percent (wt%).
  • the alloys of the above components are tested in the as-cast form at room temperature for cutting performance, dezincification resistance, tensile strength and elongation.
  • the comparative samples are lead-containing brass of the same specification and the same specification.
  • the tensile strength, elongation, cutting performance and resistance to dezincification corrosion are as follows: No. Tensile strength elongation (%) Dezincification layer relative cutting rate
  • Example 9 C36000 Alloy 394 9 ⁇ Example 9
  • Table 9-1 the inventions 9 of the eight different components prepared according to the above process are numbered 9001-9008, and the components are in weight percent (wt%).
  • the alloys of the above components are tested in the as-cast form at room temperature for cutting performance, dezincification resistance, tensile strength and elongation.
  • the comparative samples are lead-containing brass of the same specification and the same specification.
  • the tensile strength, elongation, cutting performance and resistance to dezincification corrosion are as follows: No. Tensile strength elongation (%) Dezincification layer relative cutting rate
  • Table 10-1 shows the inventive compositions 10 of 8 different compositions prepared according to the above process, numbered 10001-10008, and each component is in weight percent (wt%).
  • the alloys of the above components are tested in the as-cast form at room temperature for cutting performance, dezincification resistance, tensile strength and elongation.
  • the comparative samples are lead-containing brass of the same specification and the same specification.
  • the tensile strength, elongation, cutting performance and resistance to dezincification corrosion are as follows: No. Tensile strength elongation (%) Dezincification layer relative cutting rate
  • Example 11 shows the inventive articles 11 of 8 different compositions prepared according to the above process, numbered 11001-11008, and the units of each component are percentage by weight (wt%).
  • the alloys of the above components are tested in the as-cast form at room temperature for cutting performance, dezincification resistance, tensile strength and elongation.
  • the comparative samples are lead-containing brass of the same specification and the same specification.
  • the tensile strength, elongation, cutting performance and resistance to dezincification corrosion are as follows: No. Tensile strength elongation (%) Dezincification layer relative cutting rate
  • a high-frequency melting furnace is used to produce a mechanical processing property comparable to known lead-containing brass, and good tensile strength, elongation, and dezincification resistance. Excellent, easy to cut, and lead free, suitable for use as an alloying material for known lead-containing brass, such as faucets or accessories for bathroom products.
  • the present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. Any person skilled in the art can make various modifications and refinements without departing from the spirit and scope of the present invention. The scope of protection is subject to the terms of the claims.

Abstract

一种无铅易切削黄铜,其组分为:60〜65wt%的铜、0.01-0.15%的锑及0.1〜0.5wt%的镁,以及选自0.1-0.7wt%的铝、0.05-0.5wt%的锡、0.05-0.3wt%的磷,0.05-0.5wt%的锰和0.001-0.01wt%的硼中的一种以上,余量为锌和不可避免的杂质。

Description

无铅无铋无硅黄铜 技术领域
本发明涉及一种环保黄铜合金, 特别是有关于一种易切削抗脱锌的黄铜 合金材料。
背景技术
一般作为加工用的黄铜, 会添加锌金属的比例为 38-42%。为了让黄铜更 好加工,黄铜里面通常有 2-3 %的铅以增加强度与加工性。含铅黄铜具有优良 成形性 (容易制作各种形状产品)、切削性和耐磨耗性被广泛应用于各种形状的 机械加工零件,在铜行业中占有较大的比例, 是世界上公认的重要基础材料。 但是,含铅黄铜在生产或使用过程中,容易发生铅以固态或气态的形式溶出, 医学研究指出, 铅对人体造血和神经系统特别是儿童的肾脏及其他器官的损 害较大。 世界各国均很重视铅造成的污染和引起的危害, 美国国家卫生基金 会(National Sanitation Foundation, NSF)将铅元素容许量定为 0.25 %以下, 欧盟的危害性物质限制指令 (Restriction of Hazardous Substances Directive, RoHS)等都相继规定, 限制和禁止含高铅黄铜的使用。
另夕卜,当黄铜中的锌含量超过 20wt%时,易发生脱锌 (dezincification)之腐 蚀现象, 特别是当该黄铜接触高氯离子的环境, 例如海水环境时, 会加速脱 锌腐蚀现象的发生。 由于脱锌作用会严重破坏黄铜合金之结构, 使黄铜制品 的表层强度降低, 甚或导致黄铜管穿孔, 大幅缩短黄铜制品的使用寿命, 并 造成应用上的问题。
因此, 便有需要提供一种可替代含高铅黄铜, 并可达到抗脱锌腐蚀, 但 仍须兼顾铸造性能、 锻造性、 切削性、 耐腐蚀性与机械性质的合金配方, 以 解决前述的问题。 发明内容
由现有技术可知,硅在合金金相组织中会以 Y相形式出现(有时为 κ相), 此时硅可以在一定程度上取代铅在合金中的作用, 提高合金的切削性。 合金 的切削性随着硅的含量增加而提高, 但硅的熔点高, 比重低, 且易氧化, 因 此合金熔融过程中将硅单体加入炉内后, 硅浮于合金表面, 当合金熔融时硅 会被氧化成氧化硅或其他氧化物, 不易制得含硅的铜合金, 而如果以 Cu-Si 合金的方式添加硅, 经济成本较高。
而添加铋取代铅可成为合金组织中切削断点, 来增加切削性, 但是铋含 量过高则锻造时容易产生热裂, 不利于生产。
故本发明目的在于提供一种抗拉强度、 延伸率、 抗脱锌性佳和切削性等 性能优异的黄铜合金, 适合作为需要高强度、 耐磨损性的切削加工品, 以及 锻造品和铸造制品等的构成材料使用。 可安全地取代含有大量铅的合金铜, 且完全符合人类社会发展对含铅产品限制的诉求。
为了达成上述目的而提案以下无铅无铋无硅黄铜合金。
一种无铅无铋无硅切削性佳的黄铜合金 (以下简称发明物 1 ),包括: 占黄 铜合金总重量 60-65wt%的铜、 0.01-0.15wt%的锑及 0.1-0.5wt%的镁, 剩余部 分为锌。
本发明物 1在去除铅、 硅和铋的情况下, 控制铜的含量在 60-65wt%, 添 加少量的锑和镁, 使之与铜形成金属间的化合物, 以增加合金的切削性, 同 时也助于合金的抗脱锌性。 换言之, 发明物 1中添加锑和镁形成 Y相改善了 其切削性。 该合金的金相组织主要包括 α相, β相, Y相, 及分布在晶界或 晶粒内软而脆的金属间化合物, 其中铜和锌构成黄铜合金的主要成分, 添加 了锑和镁除了改善合金的切削性外, 同时也助于抗脱锌性。
当锑的含量低于 0.01wt%, 镁的含量低于 0.1wt%时, 形成的合金无法达 到工业生产中所需要的基本切削性。 且合金的切削性会随着锑和镁的含量的 增加而增加, 但是当合金中锑含量为 0.15wt%, 镁含量为 0.5\^%的时候, 合 金的切削性的改善效果达到饱和。
一种无铅无铋无硅切削性佳的黄铜合金(以下简称发明物 2), 包括: 占 黄铜合金总重量 60-65wt%的铜, 0.01-0.15wt%的锑、 0.1-0.5wt%的镁, 及占 黄铜合金总重量 0.05-0.3wt%的磷和 /或 0.05-0.5wt%锰, 剩余部分为锌。
相比较, 发明物 2在发明物 1 的基础上进一步加入占黄铜合金总重量 0.05-0.3wt%的磷和 /或 0.05-0.5wt%的锰。 磷虽然无法形成 Y相, 但磷具有使 锑、 镁形成 Y相分布良好的功能, 由此提高合金的切削性。 同时添加磷后 Y 相将使主要的 α相的结晶粒分散, 提高了合金的铸造性能、耐腐蚀性。 当铜、 锑和镁的含量分别为 60-65wt%, 0.01-0.15wt%¾ 0.1-0.5wt%时, 磷的含量低 于 0.05wt%时, 无法发挥其作用, 但当磷的含量高于 0.3wt%时, 反而会使合 金的铸造性能和耐腐蚀性降低。 而添加锰则有助于增强合金的抗脱锌性及铸 造流动性, 当锰的含量低于 0.05wt%则无法有效的发挥其作用, 且其含量为 0.5wt%时作用的发挥达到饱和值。
一种无铅无铋无硅切削性佳的黄铜合金(以下简称发明物 3 ), 包括: 占 黄铜合金总重量 60-65wt%的铜, 0.01-0.15wt%的锑、 0.1-0.5wt%的镁, 及占 黄铜合金总重量 0.05-0.5wt%的锰、 0.1-0.7wt%的铝、 0.05-0.5wt%的锡、 0.05-0.3wt%的磷和 /或 0.001-0.01wt%的硼, 剩余部分为锌。
发明物 3在发明物 1的基础上进一步加了占黄铜合金总重量 0.05-0.5wt% 的锰、 0.1-0.7wt%的铝、0.05-0.5wt%的锡、0.05-0.3wt%的磷和 /或 0.001-0.01wt% 添加锡于合金中同样是为了形成 Y相, 提高合金的切削性, 且锡的加入 明显地提高了合金的强度, 并使其塑性得到改善, 抗腐蚀性增强。 但是考虑 到添加锡会使得成本较高, 故在添加锡的同时添加铝, 除了改善合金的切削 性外, 也能够提高合金强度、 耐磨损性、 铸造流动性及耐高温氧化性, 为了 较好地发挥上述作用, 锡和铝的含量分别为 0.05-0.5\^%和0.1-0.7\^%。 同时 在合金中加入微量硼来提高合金的耐蚀性能, 且加入硼后能更好的抑制合金 脱锌, 增强其机械强度, 同时能改变铜合金表面氧化亚铜膜的缺陷结构, 使 氧化亚铜膜更均匀, 致密, 抗污性能好。 硼的含量低于 0.001wt%时不能发挥 上述作用, 而高于 0.01wt%时上述性能也无法进一步提高, 故硼的较佳的含 量为 0.001-0.01wt%。 磷和锰的含量区间与发明物 2—致, 其理由与发明物 2 的理由相同。 其中锑、 镁、 铝、 锡、 磷、 锰和 /或硼的添加与否是根据不同的 产品对于切削性要求的高低不同来选择。
一种无铅无铋无硅切削性佳的黄铜合金(以下简称发明物 4), 包括: 占 黄铜合金总重量 60-65wt%的铜, 0.01-0.15wt%的锑、 0.1-0.5wt%的镁, 及占 黄铜合金总重量 0.05-0.5wt%的锰、 0.1-0.7wt%的铝、 0.05-0.5wt%的锡、 0.05-0.3wt%的磷和 /或 0.001-0.01wt%的硼, 剩余部分为锌, 其中锰、 铝、 锡、 磷和 /或硼的总含量不超过该黄铜合金总重量的 2wt%。
一种无铅无铋无硅切削性佳的黄铜合金(以下简称发明物 5), 包括: 占 黄铜合金总重量 60-65wt%的铜, 0.01-0.15wt%的锑、 0.1-0.5wt%的镁, 及占 黄铜合金总重量 0.05-0.5wt%的锰、 0.1-0.7wt%的铝、 0.05-0.5wt%的锡、 0.05-0.3wt%的磷和 /或 0.001-0.01wt%的硼, 剩余部分为锌, 其中锰、 铝、 锡、 磷和 /或硼的总含量占该黄铜合金总重量的 0.2-2wt%。
一种无铅无铋无硅切削性佳的黄铜合金(以下简称发明物 6), 包括: 占 黄铜合金总重量 60-65wt%的铜, 0.01-0.15wt%的锑、 0.1-0.5wt%的镁, 及占 黄铜合金总重量 0.05-0.5wt%的锰、 0.1-0.7wt%的铝、 0.05-0.5wt%的锡、 0.05-0.3wt%的磷和 /或 0.001-0.01wt%的硼,剩余部分为锌及不可避免的杂质, 其中不可避免的杂质包括: 占黄铜合金总重量 0.25wt%以下的镍、 0.15\^%以 下的铬和 /或 0.25wt%以下的铁。
发明物 6在发明物 3的基础上包括了一些不可避免的杂质, 即机械杂质 镍、 铬和 /或铁。
一种无铅无铋无硅切削性佳的黄铜合金(以下简称发明物 7), 包括: 占 黄铜合金总重量 60-65wt%的铜、 0.05-0.5wt%的锡,和两种以上选自占黄铜合 金总重量 0.1-0.7wt%的铝、 0.05-0.3wt%的磷和 0.05-0.5wt%的锰元素,及剩余 部分为锌。
在没有锑和镁的情况下, 添加占合金总重量 0.05-0.5wt%锡, 同样能够满 足工业生产对切削性的需要, 其含量所取区间与发明物 3—致, 理由也与发 明物 3所阐述的理由相同; 其中铝、 磷、 锰的添加与否是根据不同的产品对 于切削性要求的高低来选择, 其含量所取区间与发明物 3—致, 理由也与发 明物 3所阐述的理由相同。
一种无铅无铋无硅切削性佳的黄铜合金(以下简称发明物 8 ), 包括: 占 黄铜合金总重量 60-65wt%的铜、 0.05-0.5wt%的锡,两种以上选自占黄铜合金 总重量 0.1-0.7wt%的铝、 0.05-0.3wt%的磷和 0.05-0.5wt%的锰元素,及占黄铜 合金总重量 0.01-0.15wt%的锑、 0.1-0.5wt%的镁和 /或 0.001-0.01wt%的硼, 剩 余部分为锌。
其中锑、 镁、 铝、 锡、 磷、 锰和 /或硼的添加与否是根据不同的产品对于 切削性要求的高低来选择, 其含量所取区间与发明物 3—致, 理由也与发明 物 3所阐述的理由相同。
一种无铅无铋无硅切削性佳的黄铜合金(以下简称发明物 9), 包括: 占 黄铜合金总重量 60-65wt%的铜、 0.05-0.5wt%的锡,两种以上选自占黄铜合金 总重量 0.1-0.7wt%的铝、 0.05-0.3wt%的磷和 0.05-0.5wt%的锰元素,及占黄铜 合金总重量 0.01-0.15wt%的锑、 0.1-0.5wt%的镁和 /或 0.001-0.01wt%的硼, 剩 余部分为锌及不可避免的杂质, 其中不可避免的杂质包括: 占黄铜合金总重 量 0.25wt%以下的镍、 0.15wt%以下的铬和 /或 0.25wt%以下的铁。
发明物 9在发明物 8的基础上包括了一些不可避免的杂质, 即机械杂质 镍、 铬和 /或铁。
一种无铅无铋无硅切削性佳的黄铜合金 (以下简称发明物 10), 包括: 占黄铜合金总重量 60-65 wt%的铜, 0.01-0.15wt%的锑及 0.1-0.5wt%的镁、 及 一种以上选自占黄铜合金总重量 0.1-0.7wt%的铝、 0.05-0.5wt%的锡、 0.05-0.3wt%的磷、 0.05-0.5 wt%的锰和 0.001-0.01wt%的硼的元素, 剩余部分 为锌。
其中铝、 锡、 磷、 锰和 /或硼的添加与否及其含量是根据不同的产品对于 切削性要求的高低来选择, 其含量所取区间与发明物 3—致, 理由也与发明 物 3所阐述的理由相同。
一种无铅无铋无硅切削性佳的黄铜合金 (以下简称发明物 11 ), 包括: 占黄铜合金总重量 60-65 wt%的铜, 0.01-0.15wt%的锑及 0.1-0.5wt%的镁、 及 一种以上选自占黄铜合金总重量 0.1-0.7wt%的铝、 0.05-0.5wt%的锡、 0.05-0.3wt%的磷、 0.05-0.5 wt%的锰和 0.001-0.01wt%的硼的元素, 剩余部分 为锌及不可避免的杂质, 其中不可避免的杂质包括: 占黄铜合金总重量 0.25wt%以下的镍、 0.15wt%以下的铬和 /或 0.25wt%以下的铁。
发明物 11在发明物 10的基础上包括了一些不可避免的杂质, 即机械杂 质镍、 铬和 /或铁。
本发明进一步提供一种黄铜合金的制造方法, 以发明物 3中的一种方案 为例, 包括下列步骤:
1 )提供铜和锰并升温至 1000-1050°C , 使该铜及该锰形成一铜锰合金熔 液;
2) 降低该铜锰合金熔液的温度至 950-1000°C;
3)覆盖一玻璃造渣剂于该铜锰合金熔液的表面;
4)添加锌至该铜锰合金熔液内, 而形成一铜锰锌熔液;
5)对该铜锰锌熔液进行除渣, 添加锑、铝、 锡、 镁至黄铜合金材料熔液 内, 而形成一金属熔液;
6)升高该金属熔液的温度至 1000-1050°C , 并添加硼铜合金、磷铜合金、 而形成一无铅无铋无硅黄铜合金熔液;
7)该黄铜合金熔液出炉铸造而形成该黄铜合金材料。
优选的是, 上述制造方法中, 提供铜锰合金作为铜、 锰元素的来源。 优选的是, 上述制造方法中, 所用的熔解炉为高周波熔解炉, 且所述高 周波熔解炉内以石墨坩埚为炉衬。 高周波熔解炉具有熔解速率快、 升温快、 洁净无污染及熔解过程自行搅 拌(即受磁力线影响)等特性。
本发明中所述的无铅无铋无硅黄铜合金, 经由各种不同物质依一定比例 添加后, 再经高周波熔解炉而制造出与已知含铅黄铜相当的机械加工性能, 以及良好的抗拉强度、 延伸率、 抗脱锌性佳, 并且不含铅, 适合作为取代已 知含铅黄铜的合金材料而用于制造产品, 例如水龙头或卫浴用品的零配件。
附图说明
图 1为发明物 3中的一种方案的制造方法流程图。
具体实施方式
为了更清楚地说明本发明的技术方案, 下面将通过实施例的方式对本发 明的技术进行描述。
本发明的范围不旨在限于所述示范性实施例。(相关领域以及获悉本公开 内容的技术人员将联想到的)此处说明的本发明特征的变更和另外改动以及 此处说明的本发明原理的其它应用被认为是在本发明范围之内。
本发明数值描述中的以上、 以下均表示包括本数。
本文中所指的抗脱锌腐蚀性能测试是以铸态的形式按照 AS-2345-2006规 范进行, 以 1000C.C去离子水加入 12.8g氯化铜, 并将实测物放置其中, 时 间为 24h, 以测得脱锌深度。 ©代表脱锌深度小于 ΙΟΟ μ πι; 〇代表脱锌深度 介于 100 μ m及 200 μ m之间; 以及 代表脱锌深度大于 200 μ m。 本文中所指的切削性能测试是以铸态的形式进行, 采用相同的刀具, 相 同切削速度和相同进刀量, 切削速度为 25m/min (米 /分钟), 进刀量为 0.2mm/r (毫米 /每刀刃数),切削深度 0.5mm,试棒直径为 20mm, 并以 C36000 合金材料为基准, 经由量测切削阻力求得相对切削率。 相对切削率 = C36000合金材料的切削阻力 /试样切削阻力。
©代表相对切削率大于 85% ; 〇代表相对切削率大于 70%。 本文中所指的抗拉强度及延伸率的测试, 均以铸态的形式在室温下进行 拉伸测试。 延伸率即试样拉伸断裂后标距段的总变形 与原标距长度 L之 比的百分数: S=AL/Lxl00%。 对比试样为同状态同规格的含铅黄黄铜, 即 C36000合金。
其中 C36000合金材料成份配比实测如下, 单位为重量百分比 (wt%):
Figure imgf000010_0001
图 1为发明物 3的一种方案的制造方法流程图, 包括下列步骤: 步骤 S100: 提供铜及锰。 在本步骤中, 可提供铜锰合金作为提供该铜及 锰元素的来源。
步骤 S102: 对铜锰母合金进行加热升温到 1000-1050°C之间, 使铜锰母 合金形成一铜锰合金熔液。在本步骤中,可将该铜锰合金加入高周波熔解炉, 并在熔解炉内进行熔解升温, 将温度升到 1000-1050°C之间, 甚至高达 1100 °C , 其过程持续 5-10分钟, 使铜锰合金熔解成一铜锰合金熔液。 上述的动作 可避免因温度太高而使铜锰熔解的液体吸收大量的外界气体, 导致成型的合 金材料产生裂化作用。
步骤 S104: 降低铜锰合金熔液的温度至 950-1000°C之间。 在本步骤中, 当熔解炉内升温至 1000-1050°C之间, 当持续 5-10分钟时, 关闭高周波熔解 炉的电源, 使熔解炉内的温度下降至 950-1000°C , 同时该铜锰合金熔液还保 持熔融状态。
步骤 S106: 覆盖玻璃造渣剂于铜锰合金熔液的表面。 在本步骤中, 将玻 璃造渣剂覆盖于 950-1000°C的铜锰合金熔液的表面, 此步骤可有效阻隔液体 与空气接触, 并防止下一步所添加的锌在 950-1000°C之间因高温熔解而产生 沸腾挥发。
步骤 S108: 添加锌至铜锰合金熔液内, 而形成一铜锰锌熔液。 在本步骤 中, 添加锌至熔解炉内, 并使沉入铜锰合金熔液, 使锌与铜锰合金熔液之间 充分熔解, 而形成一铜锰锌熔液。
步骤 S110: 对铜锰锌熔液进行除渣。 在本步骤中, 可先将铜锰锌熔液通 过高周波感应的作用予以搅拌混合后, 再将造渣剂捞起。 然后再使用除渣剂 进行除渣。
步骤 S112: 添加锑、 铝、 锡、 镁至铜锰锌熔液内, 而形成一金属熔液。 在本步骤中, 可添加铜锑母合金、 铜铝母合金、 铜锡母合金、 铜镁合金至铜 锰锌熔液内。
步骤 S114: 升高金属熔液的温度至 1000-1050°C之间, 并添加铜硼合金 和磷铜合金, 而形成无铅无铋无硅黄铜合金熔液。
步骤 S116: 将黄铜合金熔液出炉铸造而形成黄铜合金。 在本步骤中, 均 匀搅拌该黄铜合金熔液后,将出炉温度控制在 1000-1050°C之间,最后再将该 黄铜合金熔液出炉铸造出无铅无铋无硅、 加工性能良好、 耐脱锌且机械性能 均佳之黄铜合金。
实施例 1
表 1-1中为按照上述工艺制得的 5种不同组分的发明物 1 , 编号分别为 1001-1005, 各组分单位为重量百分比 (wt%)。 编号 铜 (Cu) 锌 (Zn) 镁 (Mg) 锑 (Sb)
1001 62.605 36.839 0.254 0.010
1002 64.355 34.819 0.402 0.022
1003 65.000 34.198 0.100 0.150
1004 60.000 39.373 0.122 0.103
1005 61.005 38.040 0.500 0.143
对上述组分的合金以铸态的形式在室温下进行切削性能、 抗脱锌腐蚀性 能、 抗拉强度及延伸率的测试, 对比试样为同状态同规格的含铅黄铜, 即
C36000合金。 抗拉强度、 延伸率、 切削性能及抗脱锌腐蚀性能实验结果如下:
Figure imgf000012_0001
实施例 2 表 2-1中为按照上述工艺制得的 5种不同组分的发明物 2, 编号分别为 2001-2005, 各组分单位为重量百分比 (wt%)。
表 2-1
Figure imgf000012_0002
对上述组分的合金以铸态的形式在室温下进行切削性能、 抗脱锌腐蚀性 能、 抗拉强度及延伸率的测试, 对比试样为同状态同规格的含铅黄铜, 即 C36000合金。
抗拉强度、 延伸率、 切削性能及抗脱锌腐蚀性能实验结果如下:
Figure imgf000013_0001
实施例 3
表 3-1中为按照上述工艺制得的 8种不同组分的发明物 3, 编号分别为 3001-3008, 各组分单位为重量百分比 (wt%)。
表 3-1
Figure imgf000013_0002
对上述组分的合金以铸态的形式在室温下进行切削性能、 抗脱锌腐蚀性 能、 抗拉强度及延伸率的测试, 对比试样为同状态同规格的含铅黄铜, 即
C36000合金。
抗拉强度、 延伸率、 切削性能及抗脱锌腐蚀性能实验结果如下: 编号 抗 拉 强 度 延伸率(%) 脱锌层 相对切削率
(N/mm2)
3001 368 12 ◎ ◎
3002 357 1 1 ◎ ◎
3003 335 13 ◎ ◎
3004 381 1 1 ◎ ◎
3005 388 10 ◎ ◎
3006 363 1 1 ◎ ◎
3007 323 15 ◎ 〇
3008 319 17 〇 ◎
C36000合金 394 9 ◎ 实施例 4 表 4-1 中为按照上述工艺制得的 8种不同组分的发明物 4, 编号分别为 4001-4008, 各组分单位为重量百分比 (wt%)。 表 4-1
Figure imgf000014_0001
对上述组分的合金以铸态的形式在室温下进行切削性能、 抗脱锌腐蚀性 能、 抗拉强度及延伸率的测试, 对比试样为同状态同规格的含铅黄铜, 即
C36000合金。
抗拉强度、 延伸率、 切削性能及抗脱锌腐蚀性能实验结果如下: 编号 抗 拉 强 度 延伸率(%) 脱锌层 相对切削率 (N/mm2)
4001 368 12 ◎ ◎
4002 327 1 1 ◎ ◎
4003 335 21 ◎ ◎
4004 381 13 ◎ ◎
4005 388 10 ◎ ◎
4006 377 13 ◎ ◎
4007 301 10 ◎ ◎
4008 391 9 ◎ ◎
C36000合金 394 9 ◎ 实施例 5 表 5-1中为按照上述工艺制得的 8种不同组分的发明物 5, 编号分别为 5001-5008, 各组分单位为重量百分比 (wt%)。
表 5-1
Figure imgf000015_0001
对上述组分的合金以铸态的形式在室温下进行切削性能、 抗脱锌腐蚀性 能、 抗拉强度及延伸率的测试, 对比试样为同状态同规格的含铅黄铜, 即
C36000合金。 抗拉强度、 延伸率、 切削性能及抗脱锌腐蚀性能实验结果如下: 编号 抗 拉 强 度 延伸率(%) 脱锌层 相对切削率
(N/mm2)
5001 368 12 ◎ ◎
5002 297 1 1 ◎ ◎
5003 335 21 ◎ ◎
5004 371 13 ◎ ◎
5005 328 15 ◎ ◎
5006 358 13 ◎ ◎
5007 383 12 ◎ ◎
5008 385 10 ◎ ◎
C36000合金 394 9 ◎ 实施例 6 表 6-1中为按照上述工艺制得的 8种不同组分的发明物 6, 编号分别为 6001-6008, 各组分单位为重量百分比 (wt%)。
表 6-1
Figure imgf000016_0001
对上述组分的合金以铸态的形式在室温下进行切削性能、 抗脱锌腐蚀性 能、 抗拉强度及延伸率的测试, 对比试样为同状态同规格的含铅黄铜, 即
C36000合金。
抗拉强度、 延伸率、 切削性能及抗脱锌腐蚀性能实验结果如下: 编号 抗 拉 强 度 延伸率(%) 脱锌层 相对切削率
(N/mm2)
6001 355 13 ◎ ◎
6002 398 10 ◎ ◎
6003 391 1 1 ◎ ◎
6004 337 13 ◎ ◎
6005 322 16 ◎ ◎
6006 383 13 ◎ ◎
6007 337 12 ◎ ◎
6008 301 17 ◎ ◎
C36000合金 394 9 ◎ 实施例 7 表 7-1中为按照上述工艺制得的 8种不同组分的发明物 7, 编号分别为 7001-7008, 各组分单位为重量百分比 (wt%)。
表 7-1
Figure imgf000017_0001
对上述组分的合金以铸态的形式在室温下进行切削性能、 抗脱锌腐蚀性 能、 抗拉强度及延伸率的测试, 对比试样为同状态同规格的含铅黄铜, 即
C36000合金。
抗拉强度、 延伸率、 切削性能及抗脱锌腐蚀性能实验结果如下: 编号 抗 拉 强 度 延伸率(%) 脱锌层 相对切削率
(N/mm2)
7001 311 12 ◎ ◎
7002 352 1 1 ◎ ◎
7003 365 21 ◎ ◎
7004 334 13 ◎ ◎
7005 295 1 1 〇 ◎
7006 293 10 〇 ◎
7007 354 12 ◎ ◎
7008 389 10 ◎ ◎
C36000合金 394 9 ◎ 实施例 8 表 8-1中为按照上述工艺制得的 8种不同组分的发明物 8, 编号分别为 8001-8008, 各组分单位为重量百分比 (wt%)。
表 8-1
Figure imgf000018_0001
对上述组分的合金以铸态的形式在室温下进行切削性能、 抗脱锌腐蚀性 能、 抗拉强度及延伸率的测试, 对比试样为同状态同规格的含铅黄铜, 即
C36000合金。
抗拉强度、 延伸率、 切削性能及抗脱锌腐蚀性能实验结果如下: 编号 抗 拉 强 度 延伸率(%) 脱锌层 相对切削率
(N/mm2)
8001 374 12 ◎ ◎
8002 299 24 〇 ◎
8003 310 19 ◎ ◎
8004 311 13 ◎ ◎
8005 399 15 ◎ ◎
8006 384 10 ◎ ◎
8007 367 1 1 ◎ ◎
8008 353 14 ◎ ◎
C36000合金 394 9 ◎ 实施例 9 表 9-1中为按照上述工艺制得的 8种不同组分的发明物 9, 编号分别为 9001-9008, 各组分单位为重量百分比 (wt%)。
表 9-1
Figure imgf000019_0001
对上述组分的合金以铸态的形式在室温下进行切削性能、 抗脱锌腐蚀性 能、 抗拉强度及延伸率的测试, 对比试样为同状态同规格的含铅黄铜, 即
C36000合金。
抗拉强度、 延伸率、 切削性能及抗脱锌腐蚀性能实验结果如下: 编号 抗 拉 强 度 延伸率(%) 脱锌层 相对切削率
(N/mm2)
9001 310 12 ◎ ◎
9002 318 1 1 ◎ ◎
9003 320 21 ◎ ◎
9004 341 13 ◎ ◎
9005 387 15 ◎ ◎
9006 379 13 ◎ ◎
9007 311 12 ◎ ◎
9008 386 10 ◎ ◎
C36000合金 394 9 ◎ 实施例 10 表 10-1中为按照上述工艺制得的 8种不同组分的发明物 10,编号分别为 10001-10008, 各组分单位为重量百分比 (wt%)。
表 10-1
Figure imgf000020_0001
对上述组分的合金以铸态的形式在室温下进行切削性能、 抗脱锌腐蚀性 能、 抗拉强度及延伸率的测试, 对比试样为同状态同规格的含铅黄铜, 即
C36000合金。
抗拉强度、 延伸率、 切削性能及抗脱锌腐蚀性能实验结果如下: 编号 抗 拉 强 度 延伸率(%) 脱锌层 相对切削率
(N/mm2)
10001 301 22 ◎ ◎
10002 323 1 1 ◎ ◎
10003 300 20 ◎ ◎
10004 311 13 ◎ ◎
10005 320 10 ◎ ◎
10006 379 13 ◎ ◎
10007 387 12 ◎ ◎
10008 396 10 ◎ ◎
C36000合金 394 9 ◎ 实施例 11 表 11-1中为按照上述工艺制得的 8种不同组分的发明物 11 ,编号分别为 11001-11008, 各组分单位为重量百分比 (wt%)。
表 11-1
Figure imgf000021_0001
对上述组分的合金以铸态的形式在室温下进行切削性能、 抗脱锌腐蚀性 能、 抗拉强度及延伸率的测试, 对比试样为同状态同规格的含铅黄铜, 即
C36000合金。
抗拉强度、 延伸率、 切削性能及抗脱锌腐蚀性能实验结果如下: 编号 抗 拉 强 度 延伸率 (%) 脱锌层 相对切削率
(N/mm2)
11001 317 13 ◎ ◎
11002 320 12 ◎ ◎
11003 305 18 ◎ ◎
11004 374 13 ◎ ◎
11005 378 15 ◎ ◎
11006 381 13 ◎ ◎
11007 369 12 ◎ ◎
11008 391 10 ◎ ◎
C36000合金 394 9 ◎
由上述可知, 经由各种不同物质依一定比例添加后, 再经高周波熔解炉 而制造出与已知含铅黄铜相当之机械加工性能, 以及良好的抗拉强度、 延伸 率、 抗脱锌性佳、 易切削, 并且不含铅, 适合作为取代已知含铅黄铜的合金 材料而用于制造产品, 例如水龙头或卫浴用品的零配件。 虽然本发明以实施方式揭露如上, 然其并非用以限定本发明, 任何熟悉 此项技术的人员, 在不脱离本发明的精神和范围内, 可作各种的改动与润饰, 因此本发明的保护范围当以权利要求书所定为准。

Claims

PCT1406 权 禾 'J 要 求 书
1.一种无铅无铋无硅切削性佳的黄铜合金, 其特征在于, 包括: 占黄铜 合金总重量 60-65wt%的铜、 0.01-0.15wt%的锑及 0.1-0.5wt%的镁, 剩余部分 为锌。
2.如权利要求 1所述的无铅无铋无硅切削性佳的黄铜合金, 其特征在于, 还包括: 占黄铜合金总重量 0.05-0.3wt%的磷和 /或 0.05-0.5wt%的锰。
3.如权利要求 1所述的无铅无铋无硅切削性佳的黄铜合金, 其特征在于, 还包括: 占黄铜合金总重量 0.05-0.5 wt%的锰、 0.1-0.7wt%的铝、 0.05-0.5wt% 的锡、 0.05-0.3wt%的磷和 /或 0.001-0.01wt%的硼。
4.如权利要求 3所述的无铅无铋无硅切削性佳的黄铜合金, 其特征在于, 其中,所述锰、铝、锡、磷和 /或硼的总含量不超过该黄铜合金总重量的 2wt%。
5.如权利要求 4所述的无铅无铋无硅切削性佳的黄铜合金, 其特征在于, 其中,所述锰、铝、锡、磷和 /或硼的总含量不少于该黄铜合金总重量的 0.2wt%。
6.如权利要求 3所述的无铅无铋无硅切削性佳的黄铜合金, 其特征在于, 还包括不可避免的杂质,其中包括占黄铜合金总重量 0.25 wt%以下的镍、 0.15 wt%以下的铬和 /或 0.25 wt%以下的铁。
7.—种无铅无铋无硅切削性佳的黄铜合金, 其特征在于, 包括: 占黄铜 合金总重量 60-65wt%的铜、 0.05-0.5wt%的锡,及两种以上选自占黄铜合金总 重量 0.1-0.7wt%的铝、 0.05-0.3wt%的磷和 0.05-0.5wt%的锰的元素,剩余部分 为锌。
8.如权利要求 7所述的无铅无铋无硅切削性佳的黄铜合金, 其特征在于, 还包括占黄铜合金总重量 0.01-0.15wt%的锑、 0.1-0.5wt%的镁和 /或 0.001-0.01wt%的硼。
9.如权利要求 8所述的无铅无铋无硅切削性佳的黄铜合金, 其特征在于, 还包括不可避免的杂质,其中包括占黄铜合金总重量 0.25 wt%以下的镍、 0.15 wt%以下的铬和 /或 0.25 wt%以下的铁。
10.—种无铅无铋无硅切削性佳的黄铜合金, 其特征在于, 包括: 占黄铜 合金总重量 60-65 wt%的铜, 0.01-0.15wt%的锑及 0.1-0.5wt%的镁, 及一种以 上选自占黄铜合金总重量 0.1-0.7wt%的铝、 0.05-0.5wt%的锡、 0.05-0.3\^%的 磷、 0.05-0.5 wt%的锰和 0.001-0.01wt%的硼的元素, 剩余部分为锌。
11.如权利要求 10所述的无铅无铋无硅切削性佳的黄铜合金, 其特征在 于,还包括不可避免的杂质,其中包括占黄铜合金总重量 0.25 wt%以下的镍、 0.15 wt%以下的铬和 /或 0.25 wt%以下的铁。
PCT/CN2014/074942 2014-01-03 2014-04-09 无铅无铋无硅黄铜 WO2015100873A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015555583A JP6057109B2 (ja) 2014-01-03 2014-04-09 鉛、ビスマスおよびケイ素を含まない黄銅
US14/354,958 US20160362767A1 (en) 2014-01-03 2014-04-09 Lead-free bismuth-free silicon-free brass
AU2014202540A AU2014202540B2 (en) 2014-01-03 2014-04-09 Lead-free bismuth-free silicon-free brass
CN201480000087.0A CN103946402B (zh) 2014-01-03 2014-04-09 无铅无铋无硅黄铜
KR1020147015581A KR20150093100A (ko) 2014-01-03 2014-04-09 리드, 비스무트 및 규소를 함유하지 않는 황동
EP14725347.0A EP2913415A4 (en) 2014-01-03 2014-04-09 STAINLESS, INSULATED, SILICONE-FREE BRASS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410003372.X 2014-01-03
CN201410003372 2014-01-03

Publications (1)

Publication Number Publication Date
WO2015100873A1 true WO2015100873A1 (zh) 2015-07-09

Family

ID=53493076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074942 WO2015100873A1 (zh) 2014-01-03 2014-04-09 无铅无铋无硅黄铜

Country Status (7)

Country Link
US (1) US20160362767A1 (zh)
EP (1) EP2913415A4 (zh)
JP (1) JP6057109B2 (zh)
KR (1) KR20150093100A (zh)
AU (1) AU2014202540B2 (zh)
TW (1) TWI550105B (zh)
WO (1) WO2015100873A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101838173B1 (ko) 2016-11-29 2018-03-13 한국생산기술연구원 쾌삭 황동합금 및 그 제조방법
CN107385273B (zh) * 2017-07-07 2019-03-01 路达(厦门)工业有限公司 一种铸造用环保黄铜合金及其制造方法
DE102021119474A1 (de) 2021-07-27 2023-02-02 Diehl Brass Solutions Stiftung & Co. Kg Blei- und Antimonfreie Messinglegierung
DE102022120122A1 (de) 2022-08-10 2024-02-15 Diehl Brass Solutions Stiftung & Co. Kg Bleifreie Messinglegierung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397817A (ja) * 1989-09-08 1991-04-23 Furukawa Electric Co Ltd:The ワイヤ放電加工用電極線
CN101298643A (zh) * 2008-06-30 2008-11-05 中铝洛阳铜业有限公司 一种环保易切削铜合金材料及加工工艺
CN101423905A (zh) * 2008-12-05 2009-05-06 浙江科宇金属材料有限公司 一种无铅易切削锑镁黄铜合金
TW201100564A (en) * 2009-06-26 2011-01-01 Chan Wen Copper Industry Co Ltd Lead free copper zinc alloy
US20110129384A1 (en) * 2009-11-27 2011-06-02 Chan Wen Copper Industry Co., Ltd. Copper-zinc alloy
CN103205597A (zh) * 2012-01-16 2013-07-17 摩登岛股份有限公司 无铅的锑镍黄铜合金

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934222B2 (ja) * 1981-11-13 1984-08-21 日本鉱業株式会社 ラジエ−タ−用銅合金
JPS6086233A (ja) * 1983-10-14 1985-05-15 Nippon Mining Co Ltd 高力導電銅合金
JPH01272734A (ja) * 1988-04-22 1989-10-31 Kobe Steel Ltd 熱間加工用耐食性銅合金
DE10308779B8 (de) * 2003-02-28 2012-07-05 Wieland-Werke Ag Bleifreie Kupferlegierung und deren Verwendung
CN1291051C (zh) * 2004-01-15 2006-12-20 宁波博威集团有限公司 无铅易切削锑黄铜合金
US20100303667A1 (en) * 2009-03-09 2010-12-02 Lazarus Norman M Novel lead-free brass alloy
US20110129385A1 (en) * 2009-11-27 2011-06-02 Chan Wen Copper Industry Co., Ltd. Copper-zinc alloy
CN102477497B (zh) * 2010-11-30 2013-08-21 逢威工业(惠阳)有限公司 无铅铋易切削锑黄铜合金

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397817A (ja) * 1989-09-08 1991-04-23 Furukawa Electric Co Ltd:The ワイヤ放電加工用電極線
CN101298643A (zh) * 2008-06-30 2008-11-05 中铝洛阳铜业有限公司 一种环保易切削铜合金材料及加工工艺
CN101423905A (zh) * 2008-12-05 2009-05-06 浙江科宇金属材料有限公司 一种无铅易切削锑镁黄铜合金
TW201100564A (en) * 2009-06-26 2011-01-01 Chan Wen Copper Industry Co Ltd Lead free copper zinc alloy
US20110129384A1 (en) * 2009-11-27 2011-06-02 Chan Wen Copper Industry Co., Ltd. Copper-zinc alloy
CN103205597A (zh) * 2012-01-16 2013-07-17 摩登岛股份有限公司 无铅的锑镍黄铜合金

Also Published As

Publication number Publication date
US20160362767A1 (en) 2016-12-15
EP2913415A1 (en) 2015-09-02
TW201527558A (zh) 2015-07-16
EP2913415A4 (en) 2016-10-26
AU2014202540A1 (en) 2015-07-23
AU2014202540B2 (en) 2016-07-07
JP2016507655A (ja) 2016-03-10
KR20150093100A (ko) 2015-08-17
JP6057109B2 (ja) 2017-01-11
TWI550105B (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
TWI550106B (zh) Low lead free bismuth no silicon brass alloy
CA2639394C (en) Tin-free lead-free free-cutting magnesium brass alloy and its manufacturing method
JP6335194B2 (ja) 良好な熱成形性を有する、無鉛の、切断が容易な、耐腐食性真鍮合金
CA2639301C (en) Lead-free free-cutting phosphorous brass alloy and its manufacturing method
JP2007517981A (ja) アンチモンを含む無鉛快削性黄銅合金
WO2006136065A1 (fr) Nouvel alliage de laiton écologique sans plomb à découpe libre qui présente une faible teneur en antimoine et bismuth, et sa préparation
CN102618747A (zh) 易切削的黄铜合金
CN103509967A (zh) 一种重力铸造专用dzr环保黄铜合金锭及其制作工艺
TWI550105B (zh) Lead - free bismuth - free silicon - brass alloy
CN107974573B (zh) 一种含锰易切削硅黄铜合金及其制备方法和应用
CN110747369A (zh) 一种无铅易切削硅镁钙黄铜合金及其制备方法
CN103946402B (zh) 无铅无铋无硅黄铜
CN101921926B (zh) 一种低钙易切削硅黄铜合金及其制备方法
WO2011067682A1 (en) Low lead brass alloy
CN104726743B (zh) 黄铜合金及其制造方法
CN101423905A (zh) 一种无铅易切削锑镁黄铜合金
CN103194643A (zh) 一种含硅与铝的铜基合金管及其制备方法
CA2687452C (en) Brass alloy
CN110938761B (zh) 一种低铅易切削镁黄铜合金及其制备方法
KR101194218B1 (ko) 금형주조용 무연청동 합금 및 그 제조방법
TWI392751B (zh) 低鉛銅合金
CN101514410A (zh) 一种无铅易切削镁锑黄铜合金
TWI500783B (zh) Brass alloy and its manufacturing method
TW201533252A (zh) 環保抗鋅氧化黃銅合金配方及其製造方法
CA2718613A1 (en) Dezincification resistant brass alloy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014202540

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2015555583

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014725347

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014725347

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147015581

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14725347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14354958

Country of ref document: US