WO2012091002A1 - カーボンナノチューブインク組成物とその塗布方法、カーボンナノチューブ含有薄膜の形成方法 - Google Patents

カーボンナノチューブインク組成物とその塗布方法、カーボンナノチューブ含有薄膜の形成方法 Download PDF

Info

Publication number
WO2012091002A1
WO2012091002A1 PCT/JP2011/080193 JP2011080193W WO2012091002A1 WO 2012091002 A1 WO2012091002 A1 WO 2012091002A1 JP 2011080193 W JP2011080193 W JP 2011080193W WO 2012091002 A1 WO2012091002 A1 WO 2012091002A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
ink composition
composition according
carbon
nanotube ink
Prior art date
Application number
PCT/JP2011/080193
Other languages
English (en)
French (fr)
Inventor
遠藤 浩幸
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012550975A priority Critical patent/JP5942854B2/ja
Priority to US13/976,857 priority patent/US9051483B2/en
Publication of WO2012091002A1 publication Critical patent/WO2012091002A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/324Inkjet printing inks characterised by colouring agents containing carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2010-292855 (filed on Dec. 28, 2010), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a carbon nanotube ink composition in which carbon nanotubes are uniformly dispersed as a dispersoid, and more particularly to a carbon nanotube ink composition capable of obtaining an ink excellent in printability from a printing apparatus.
  • the carbon nanotube has a structure in which a graphene sheet is rolled into a cylindrical shape, and generally has a straw-like or straw-like structure.
  • Carbon nanotubes are single-walled carbon nanotubes (SWCNT) consisting of a single tube, double-walled carbon nanotubes (DWCNT) where two tubes with different diameters are stacked, and multi-walls where multiple tubes with different diameters are stacked It is classified into carbon nanotubes (MWCNT), and applied research utilizing the features of each structure is underway.
  • SWCNT has a structure having semiconductor characteristics depending on how the graphene sheet is wound, and high mobility is expected. Therefore, SWCNT is expected to be applied to a thin film transistor (TFT) and is actively researched.
  • TFT thin film transistor
  • reports such as Non-Patent Documents 1 to 4 show that TFTs using carbon nanotubes have silicon or higher performance than silicon.
  • carbon nanotubes When carbon nanotubes are used as a semiconductor material for a channel, one or several carbon nanotubes or a large number of carbon nanotubes are dispersed to manufacture a TFT. When a small number of carbon nanotubes are used, the length of carbon nanotubes is generally about 1 ⁇ m or less, so fine processing is required when fabricating TFTs, so that the so-called channel length between the source electrode and the drain electrode is reduced. Must be manufactured on a micron scale.
  • Non-patent document 5 and the like are mentioned as a report example of manufacturing a TFT by dispersing a large number of carbon nanotubes.
  • DWCNT and MWCNT since they exhibit high electrical conductivity, they are expected to be applied to electrode materials, wiring materials, antistatic films, and transparent electrodes, and are being studied.
  • Non-Patent Documents 6 to 9 report a method of forming a carbon nanotube thin film from a solution or dispersion.
  • the element / device, product substrate, as well as hard materials such as glass, as well as hard materials By applying resin or plastic, it becomes possible to give flexibility to the entire element, device and product. Furthermore, since a coating process can be adopted, there is a possibility that the cost of elements, devices, and products can be reduced by a manufacturing method to which the coating process and the printing process are applied.
  • Patent Document 1 a composition having excellent dispersibility and storage stability of carbon nanotubes and excellent compatibility with a printing apparatus.
  • This is a composition comprising carbon nanotubes, a solvent and glycol ethers.
  • an object of the present invention is to obtain a carbon nanotube composition that is a dispersion containing carbon nanotubes and that is excellent in dispersibility and storage stability of carbon nanotubes.
  • Another object of the present invention is to obtain a carbon nanotube composition that is excellent in printability using a printing apparatus, in particular, drying prevention on the printing apparatus.
  • Patent Document 1 The present inventor has already reported Patent Document 1, but as a result of intensive investigations to solve the above-mentioned problems, by incorporating a compound having a specific structure in the carbon nanotube ink composition, the ink as an ink has been reported. It has been found that the carbon nanotube ink composition is excellent in storage stability and has excellent printing characteristics, in particular, an ink drying prevention property on a printing apparatus, and the present invention has been invented.
  • the carbon nanotube ink composition according to the present invention includes a carbon nanotube, a solvent, an imidazolidinone compound represented by the following chemical formula (1), and propylene urea represented by the following chemical formula (2). And a compound.
  • the carbon nanotube ink composition application method includes a step of spraying the carbon nanotube ink composition according to the first aspect from an inkjet head device.
  • the method for forming a carbon nanotube-containing thin film according to the present invention comprises a step of spraying the carbon nanotube ink composition according to the first aspect from a inkjet head device onto a material substrate, and the carbon nanotube ink composition And heating the material substrate sprayed with an object to evaporate the solvent.
  • a carbon nanotube ink composition comprising the carbon nanotube, a solvent, an imidazolidinone compound represented by the chemical formula (1), and a propylene urea compound represented by the chemical formula (2), wherein the imidazolidinone compound and the propylene urea compound Is a compound having a cyclic imide structure and having a hydrocarbon group, particularly a methyl group, on two nitrogens.
  • Imidazolidinone compounds and propylene urea compounds have similar structures and differ only in the number of carbon atoms constituting the ring.
  • imidazolidinone compounds with small size are particularly stable in dispersion of nanotubes.
  • the propylene urea compound having a large size contributes to the improvement of the anti-drying property on the printing apparatus.
  • the hydrocarbon group contained in the imidazolidinone compound and the propylene urea compound can basically be substituted if it is a linear, branched, saturated or unsaturated hydrocarbon group having an affinity for carbon nanotubes.
  • a linear or branched saturated hydrocarbon group having about 1 to 5 carbon atoms is preferred, and a methyl group-substituted product is most readily available and preferred.
  • urea is often used to prevent ink drying, but in the case of ink in which nanotubes are dispersed, the dispersion stability of the nanotubes is deteriorated, and therefore, drying inhibitors other than urea have been required.
  • the propylene urea compound of the present invention is an ideal additive because it not only acts to prevent drying on the printing apparatus but also does not affect the dispersion stability of the nanotubes.
  • this imidazolidinone compound and propylene urea compound have an imide group part and an alkyl chain part, it is possible to maintain a good dispersion state by having a parent carbon nanotube part and a parent solvent part in the molecule. .
  • R 1 , R 2 , R 3 and R 4 are all methyl groups.
  • the solvent is preferably water or an organic solvent.
  • the carbon nanotube content is preferably 100 ppm (0.01 wt%) to 1 wt%.
  • the total content of the imidazolidinone compound and the propylene urea compound is preferably 100 ppm to 5% by weight.
  • the total weight content of the imidazolidinone compound and the propylene urea compound is larger than the weight content of the carbon nanotubes.
  • polyethylene glycol compound containing an alkoxy group having 10 or more carbon atoms as a substituent it is preferable to further contain a polyethylene glycol compound containing an alkoxy group having 10 or more carbon atoms as a substituent.
  • the weight content of the polyethylene glycol compound is preferably 0.5 to 1.5 times the weight content of the carbon nanotube. Moreover, it is more preferable that it is the same weight content rate.
  • the carbon nanotube content (% by weight) is not particularly limited. However, when the content of the carbon nanotubes exceeds 10%, the ink composition itself becomes more viscous and becomes a paste. In consideration of printing, particularly when using an inkjet apparatus, a concentration of up to about 1% is easy to handle. On the other hand, if it is less than 0.01% (100 ppm), the CNT density in the CNT thin film becomes too small, and a device such as overcoating is required, and the number of steps increases. If it exceeds 1% by weight, the dispersion stability of the ink deteriorates rapidly. Therefore, it is preferably in the range of 0.01 to 1% by weight.
  • the content of the imidazolidinone compound represented by the chemical formula (1) and the propylene urea compound represented by the chemical formula (2) is not particularly limited.
  • the content concentration in the ink is extremely small, the printing stability is lowered and the dispersion is reduced. Since stability is also lowered, the concentration in the ink is preferably about 100 ppm to 5%.
  • the concentration is lower than that of the carbon nanotubes by weight ratio, the dispersion stability is lowered, the carbon nanotubes are precipitated and precipitated, the ink is dried on the printing apparatus, and printing is impossible.
  • the carbon nanotube composition contains an alkoxy group having 10 or more carbon atoms as a substituent.
  • a polyethylene glycol compound By further containing a polyethylene glycol compound, dispersion stability at a higher concentration can be imparted.
  • the alkoxy group having 10 or more carbon atoms may be either a saturated alkoxy group or an unsaturated alkoxy group, and high dispersion stability can be obtained with either a straight-chain alkoxy group or a branched alkoxy group. When 20 straight-chain saturated alkoxy groups are used, the dispersion stability is particularly high.
  • the concentration of carbon nanotubes can be stably dispersed up to 10%.
  • the addition amount of the polyethylene glycol compound containing an alkoxy group having 10 or more carbon atoms as a substituent is not particularly limited, but is preferably about 0.5 to 1.5 times the addition amount of carbon nanotubes by weight. Can maintain high dispersion stability by adding the same amount.
  • the carbon nanotube ink composition of the present invention comprising the carbon nanotube, a solvent, an imidazolidinone compound represented by the chemical formula (1), and a propylene urea compound represented by the chemical formula (2), Since the wettability of the ink composition to the member can be effectively improved, the familiarity with the printing apparatus is very good, and high printing characteristics can be provided when the printing apparatus is used. In particular, when spraying and discharging from an inkjet head device, if the wettability is poor, ink filling into the inkjet head and stable ink spraying and discharging cannot be obtained, but the carbon nanotube ink composition of the present invention is not used. By using it, ink can be easily filled into the ink jet head, and stable ink spraying and ejection can be performed.
  • the solvent is water or an organic solvent.
  • Organic solvents include aliphatic hydrocarbons such as decane and undecane, aromatic hydrocarbons such as toluene and xylene, ketones such as methyl ethyl ketone and cyclohexanone, ethers such as diethyl ether and ethyl methyl ether, ethyl acetate, and methyl propionate.
  • Preferred examples include carboxylic acid alkyl esters such as dichloroethane, N, N-dimethylformamide and the like. These can be used alone or in combination of two or more.
  • the carbon nanotube can be any of SWCNT, DWCNT, and MWCNT, and is not limited to a shape.
  • SWCNT When used as a semiconductor material, SWCNT is used, and when used as a conductive material, SWCNT, DWCNT, and MWCNT are used.
  • There are various carbon nanotube production methods such as CVD and laser ablation, and any carbon nanotube produced by any production method can be used.
  • Example 1 a carbon nanotube ink composition 1 was produced according to the following procedure. First, 10 mg of single wall carbon nanotubes prepared by the Hipco method was weighed in a glass container, and 100 mg of an imidazolidinone compound of the chemical formula (1) was added. Next, 10 g of water was added to the glass container, and ultrasonic treatment was performed for 1 hour using an ultrasonic device. The dispersion immediately after sonication showed a uniform black form, and no residue or precipitate was observed. Further, when this dispersion was observed after 5 days and 10 days, no residue and precipitate were observed as in the case immediately after the treatment.
  • the carbon nanotube ink composition 1 was filled into an ink jet head manufactured by Konica Minolta, and the ink filling state and the spraying state were observed.
  • the ink jet head filled with the carbon nanotube ink composition 1 was operated, a stable ink discharge state was obtained immediately after filling.
  • the inkjet head was left as it was and operated after 5 days, some nozzles were clogged. After 10 days, clogging occurred with more than half of the nozzles.
  • Example 2 a carbon nanotube ink composition 2 was produced according to the following procedure. First, 10 mg of a single-walled carbon nanotube prepared by the Hipco method was weighed in a glass container, and 100 mg of a propylene urea compound represented by the chemical formula (2) was added. Next, 10 g of water was added to the glass container, and ultrasonic treatment was performed for 1 hour using an ultrasonic device. The dispersion immediately after sonication showed a uniform black form, and no residue or precipitate was observed. When this dispersion was observed after 5 days and 10 days, a small amount of precipitate was found at the bottom of the glass container, which was not observed immediately after the treatment.
  • the carbon nanotube ink composition 2 was filled into an ink jet head manufactured by Konica Minolta, and the ink filling state and the spraying state were observed.
  • the ink jet head filled with the carbon nanotube ink composition 1 was operated, a stable ink ejection state was obtained just like the ink composition immediately after filling.
  • the inkjet head was left as it was and operated after 5 days and 10 days, no clogging was observed.
  • Example 3 a carbon nanotube ink composition 3 was produced according to the following procedure. First, 10 mg of single wall carbon nanotubes prepared by the Hipco method was weighed in a glass container, and 100 mg of an imidazolidinone compound of the chemical formula (1) was added. Further, 100 mg of a propylene urea compound represented by the chemical formula (2) was added to obtain an ink composition 3. Next, 10 g of water was added to the glass container, and ultrasonic treatment was performed for 1 hour using an ultrasonic device. The dispersion immediately after sonication showed a uniform black form, and no residue or precipitate was observed. Further, when this dispersion was observed after 5 days and 10 days, no residue and precipitate were observed as in the case immediately after the treatment.
  • the carbon nanotube ink composition 3 was filled into an ink jet head manufactured by Konica Minolta, and the ink filling state and the spraying state were observed.
  • the ink jet head filled with the carbon nanotube ink composition 1 was operated, a stable ink ejection state was obtained just like the ink composition immediately after filling.
  • the inkjet head was left as it was and operated after 5 days and 10 days, no clogging was observed.
  • the ink composition 101 immediately after the ultrasonic treatment showed a uniform black form, and no residue or precipitate was observed.
  • this dispersion was observed after 5 days and 10 days, a small amount of precipitate was found at the bottom of the glass container, which was not observed immediately after the treatment.
  • the carbon nanotube ink composition 101 was filled into an inkjet head made of Konica Minolta, and the ink filling state and the spraying state were observed.
  • an inkjet head made of Konica Minolta
  • the ink jet head filled with the carbon nanotube ink composition 1 was operated, a stable ink ejection state was obtained just like the ink composition immediately after filling.
  • the inkjet head was left as it was and operated after 5 days and 10 days, no clogging was observed.
  • Example 4 a carbon nanotube ink composition 4 was produced according to the following procedure. First, 100 mg of single-walled carbon nanotubes prepared by the Hipco method are weighed in a glass container, 100 mg of the imidazolidinone compound of the chemical formula (1), 100 mg of the propylene urea compound represented by the chemical formula (2), and the terminal 1 g of polyethylene glycol (molecular weight 1000) introduced with C18H37O (laurylalkoxy group) was added.
  • polyethylene glycol molecular weight 1000
  • the carbon nanotube ink composition 4 was filled into an ink jet head manufactured by Konica Minolta, and the ink filling state and the spraying state were observed.
  • the ink jet head filled with the carbon nanotube ink composition 4 was operated, a stable ink ejection state was obtained just like the ink composition immediately after filling.
  • the inkjet head was left as it was and operated after 5 days and 10 days, no clogging was observed.
  • the present invention has been described based on the preferred embodiment examples.
  • the carbon nanotube ink composition according to the present invention is not limited to the configuration of the above embodiment examples, and the configuration of the above embodiment examples.
  • carbon nanotube ink compositions subjected to various modifications and changes are also included in the scope of the present invention.
  • the embodiments and examples can be changed and adjusted based on the basic technical concept.
  • various combinations or selections of various disclosed elements including each element of each claim, each element of each embodiment, each element of each drawing, etc.) are possible within the scope of the claims of the present invention. It is. That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.

Abstract

 カーボンナノチューブを含有する分散液であって、カーボンナノチューブの分散性や保存安定性に優れたカーボンナノチューブ組成物を得る。また、印刷装置を用いた印刷性、特に印刷装置上での乾燥防止にも優れたカーボンナノチューブ組成物を得る。カーボンナノチューブと、溶媒と、化学式(1)で表されるイミダゾリジノン化合物と、化学式(2)で表されるプロピレン尿素化合物と、を含有するカーボンナノチューブインク組成物。

Description

カーボンナノチューブインク組成物とその塗布方法、カーボンナノチューブ含有薄膜の形成方法
 [関連出願についての記載]
 本発明は、日本国特許出願:特願2010-292851号(2010年12月28日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、カーボンナノチューブを分散質として均一に分散させたカーボンナノチューブインク組成物に関し、特に、印刷装置からの印刷性に優れたインクを得ることが可能なカーボンナノチューブインク組成物に関する。
 カーボンナノチューブは、グラフェンシートを円筒状に丸めた構造を有しており、一般的には、ストローもしくは麦わら状の構造を有している。カーボンナノチューブは単一のチューブからなるシングルウォールカーボンナノチューブ(SWCNT)、直径の異なる2本のチューブが積層した構造のダブルウォールカーボンナノチューブ(DWCNT)、直径の異なる多数のチューブが積層した構造のマルチウォールカーボンナノチューブ(MWCNT)に分類され、そのそれぞれの構造において特徴を活かした応用研究が進められている。
 たとえば、SWCNTは、グラフェンシートの巻き方により半導体特性を有する構造が存在し、高い移動度が期待されることから、薄膜トランジスタ(TFT)への応用が期待され活発に研究が進められている。たとえば、非特許文献1~4などの報告では、カーボンナノチューブを用いたTFTがシリコンもしくはシリコン以上の性能を有することが示されている。
 カーボンナノチューブをチャネルの半導体材料として用いる場合、カーボンナノチューブを1本もしくは数本、あるいはカーボンナノチューブを多数本分散させてTFTを製造することになる。カーボンナノチューブを少数本用いる場合、一般的にカーボンナノチューブの長さが1μm程度もしくはそれ以下のものが多いため、TFTを作る際に微細加工が必要となり、ソース電極、ドレイン電極間いわゆるチャネル長をサブミクロンスケールで製造する必要がある。
 これに対して、カーボンナノチューブを多数本用いる場合、カーボンナノチューブのネットワークをチャネルとして利用するため、チャネル長を大きくすることが可能となり、簡便に製造することが出来るようになる。多数本のカーボンナノチューブを分散させてTFTを製造する報告例としては非特許文献5などが挙げられる。
 また、DWCNTやMWCNTの場合、高い電気伝導性を示すため、電極材料や配線材料、帯電防止膜、透明電極への応用が期待され研究が進められている。
 カーボンナノチューブを多数本分散させて薄膜を形成させるためには、カーボンナノチューブの溶液や分散液を用いると容易に薄膜を形成させることが出来る。非特許文献6~9などにカーボンナノチューブの薄膜を溶液、分散液から形成する方法が報告されている。
 半導体層の材料としてカーボンナノチューブを使用し、カーボンナノチューブの薄膜を溶液、分散液を用いた工程で形成することにより、素子・デバイス、製品の基板、材料もガラスなどの硬い材料はもちろんのこと、樹脂やプラスチックを適用することで素子、デバイス、製品全体にフレキシブル性を持たせることが可能となる。さらに、塗布プロセスを採用することができるため、塗布プロセス、印刷プロセスを適用した製造方法により素子・デバイス、製品の低コスト化を実現できる可能性を有している。
 本発明者は、特許文献1において、カーボンナノチューブの分散性と保存安定性に優れるとともに、印刷装置に対する適合性にも優れた組成物を報告している。これはカーボンナノチューブ、溶媒及びグリコールエーテル類を含む組成物である。
特開2010-180263号公報
S.J.Tansら、NATURE、393号、49頁、1998年 R,Martelら、Appl.Phys.Lett.、73巻、17号、2447頁、1998年 S.Windら、Appl.Phys.Lett.、80巻、20号、3817頁、2002年 K.Xiaoら、Appl.Phys.Lett.、83巻、1号、150頁、2003年 S.Kumarら、Appl.Phys.Lett.、89巻、143501頁、2006年 N.Saranら、J.Am.Chem.Soc.、126巻、4462頁、2004年 Z.Wuら、SCIENCE、305号、1273頁、2004年 M.Zhangら、SCIENCE、309号、1215頁、2005年 Y.Zhouら、Appl.Phys.Lett.、88巻、123109頁、2006年
 上記特許文献及び非特許文献の全開示内容はその引用をもって本書に繰込み記載する。
 以下に関連技術の分析を与える。
 しかしながら、カーボンナノチューブの溶液や分散液を作製することは非常に困難であり、保存安定性に優れたカーボンナノチューブの分散液を作製するためには、イオン性の界面活性剤や、特殊な構造を有する分散剤を用いる必要があった。これらの界面活性剤や、分散剤は保存安定性を向上させることは出来るが、この分散液を用いてインクを印刷に用いると印刷性が低下したり、印刷装置に影響を及ぼしたりすることが多かった。
 本発明は、上記に鑑み、カーボンナノチューブを含有する分散液であって、カーボンナノチューブの分散性や保存安定性に優れたカーボンナノチューブ組成物を得ることを目的とする。また、印刷装置を用いた印刷性、特に印刷装置上での乾燥防止にも優れたカーボンナノチューブ組成物を得ることを目的とする。
 本発明者はすでに特許文献1を報告しているが、さらに上述の課題を解決するために鋭意検討した結果、カーボンナノチューブインク組成物に特定の構造を有する化合物を含有させることによって、インクとしての保存安定性に優れ、かつ印刷特性、特に印刷装置上でのインクの乾燥防止性に優れたカーボンナノチューブインク組成物となることを見出し、本発明を発明するに到った。
 第1の視点において、本発明に係るカーボンナノチューブインク組成物は、カーボンナノチューブと溶媒と下記の化学式(1)で表されるイミダゾリジノン化合物と、下記の化学式(2)で表されるプロピレン尿素化合物とを含有することを特徴とする。

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
 第2の視点において、本発明に係るカーボンナノチューブインク組成物の塗布方法は、上記第1の視点に係るカーボンナノチューブインク組成物を、インクジェットヘッド装置から噴霧させる工程を含むことを特徴とする。
 第3の視点において、本発明に係るカーボンナノチューブ含有薄膜の形成方法は、上記第1の視点に係るカーボンナノチューブインク組成物を、インクジェットヘッド装置から材料基板に噴霧させる工程と、該カーボンナノチューブインク組成物を噴霧した該材料基板を加熱して前記溶媒を蒸発させる工程と、を含むことを特徴とする。
 このカーボンナノチューブと溶媒と上記化学式(1)で表されるイミダゾリジノン化合物と上記化学式(2)であらわされるプロピレン尿素化合物とを含有するカーボンナノチューブインク組成物において、イミダゾリジノン化合物及びプロピレン尿素化合物は環状のイミド構造を有し、2つの窒素上に炭化水素基、特にメチル基を有する化合物である。イミダゾリジノン化合物及びプロピレン尿素化合物はそれぞれ類似の構造を有し、環を構成する炭素の数が異なるだけであるが、ナノチューブインクにおいては、大きさの小さいイミダゾリジノン化合物は特にナノチューブの分散安定性に寄与し、大きさの大きいプロピレン尿素化合物は印刷装置上での乾燥防止性の向上に寄与している。
 なお、イミダゾリジノン化合物とプロピレン尿素化合物に含まれる炭化水素基は、カーボンナノチューブと親和性を有する直鎖又は分岐、飽和又は不飽和の炭化水素基であれば基本的に置換可能である。炭素数1~5程度の直鎖又は分岐した飽和炭化水素基が好ましく、メチル基置換体が最も入手容易で好ましい。
 一般に、インクの乾燥防止には、尿素が用いられることが多いが、ナノチューブを分散させたインクの場合、ナノチューブの分散安定性を悪化させてしまうため、尿素以外の乾燥防止剤が求められていた。その点、本発明のプロピレン尿素化合物は印刷装置上での乾燥防止に働くだけでなく、ナノチューブの分散安定性に影響を及ぼさないため、理想の添加剤である。
 このイミダゾリジノン化合物及びプロピレン尿素化合物はイミド基の部分とアルキル鎖の部分とを有するため、分子内に親カーボンナノチューブ部位と親溶媒部位を有することによって、良好な分散状態を保持することが出来る。
(発明の効果)
 以上説明したように、本発明のカーボンナノチューブインク組成物によると、印刷特性に優れかつ分散安定性の優れたカーボンナノチューブインク組成物を提供することができる。
 上記第1の視点において、R,R,R及びRがすべてメチル基であることが好ましい。
 また、前記溶媒が水又は有機溶媒であることが好ましい。
 また、前記カーボンナノチューブの含有率が100ppm(0.01重量%)~1重量%であることが好ましい。
 また、前記イミダゾリジノン化合物と前記プロピレン尿素化合物を合計した含有率が、100ppm~5重量%であることが好ましい。
 また、前記イミダゾリジノン化合物と前記プロピレン尿素化合物を合計した重量含有率が、前記カーボンナノチューブの重量含有率よりも大きいことが好ましい。
 また、炭素数が10以上のアルコキシ基を置換基として含有するポリエチレングリコール化合物をさらに含有することが好ましい。
 また、前記ポリエチレングリコール化合物の重量含有率が、前記カーボンナノチューブの重量含有率の0.5~1.5倍であることが好ましい。また、同程度の重量含有率であることがさらに好ましい。
 本発明のカーボンナノチューブインク組成物において、カーボンナノチューブの含有量(重量%)は特に限定されない。しかしカーボンナノチューブの含有量が10%を超えると、インク組成物そのものが粘ちょう性を増し、ペースト状になってくる。印刷特にインクジェット装置による利用を考慮した場合、1%程度までの濃度が扱いやすい。また、0.01%(100ppm)を下回ると、CNT薄膜中のCNT密度が小さくなりすぎて、重ね塗りなどの工夫が必要で、工程数が増加する。1重量%を上回ると、インクの分散安定性が急激に劣化する。したがって、0.01~1重量%又はでの範囲であることが好ましい。
 化学式(1)で表されるイミダゾリジノン化合物と化学式(2)であらわされるプロピレン尿素化合物の含有量も同じく特に限定されないが、インク中の含有濃度が著しく小さいと印刷安定性が低下し、分散安定性も低下してくるため、インク中の含有濃度として100ppmから5%程度の量が望ましい。重量比でカーボンナノチューブより低濃度になると分散安定性が低下し、カーボンナノチューブの析出、沈殿現象が起こり、さらに印刷装置上でのインク乾燥が起こり、印刷不可能となる。
 また、前記のカーボンナノチューブ組成物に、化学式(1)で表されるイミダゾリジノン化合物と化学式(2)であらわされるプロピレン尿素化合物のほかに、炭素数が10以上のアルコキシ基を置換基として含有するポリエチレングリコール化合物をさらに含有させることにより、より高濃度での分散安定性を付与することが出来る。
 炭素数が10以上のアルコキシ基としては飽和アルコキシ基でも不飽和アルコキシ基でもどちらでもよく、また、直鎖アルコキシ基でも分岐アルコキシ基でも高い分散安定性を得ることができるが、炭素数が18~20の直鎖飽和アルコキシ基を用いた場合に特に高い分散安定性を有する。
 この炭素数が10以上のアルコキシ基を置換基として含有するポリエチレングリコール化合物を添加することにより、カーボンナノチューブの濃度が10%まで安定に分散させることが出来る。また、炭素数が10以上のアルコキシ基を置換基として含有するポリエチレングリコール化合物の添加量に特に限定はないが、重量比でカーボンナノチューブの添加量の0.5倍~1.5倍程度、好ましくは同量程度添加することで高い分散安定性を保持できる。
 これらの、カーボンナノチューブと溶媒と化学式(1)で表されるイミダゾリジノン化合物と化学式(2)であらわされるプロピレン尿素化合物とを含有することを特徴とする本発明のカーボンナノチューブインク組成物は、インク組成物の部材に対する濡れ性を効果的に改善させることが出来るため、印刷装置に対するなじみが非常に良く、印刷装置を使用した場合に高い印刷特性を持たせることが出来る。特にインクジェットヘッド装置からの噴霧、吐出を行う場合に、濡れ性が悪いと、インクジェットヘッド内部へのインク充填、及び安定したインク噴霧、吐出が得られないが、本発明のカーボンナノチューブインク組成物を用いることによって、インクジェットヘッド内部へのインク充填が容易となり、かつ安定したインク噴霧、吐出を行うことが出来るようになる。
 溶媒は水又は有機溶媒が用いられる。有機溶媒としては、デカン、ウンデカンなどの脂肪族炭化水素、トルエン、キシレンなどの芳香族炭化水素、メチルエチルケトン、シクロヘキサノンなどのケトン類、ジエチルエーテル、エチルメチルエーテルなどのエーテル類、酢酸エチル、プロピオン酸メチルなどのカルボン酸アルキルエステル類、ジクロロエタン、N,N-ジメチルホルムアミドなどが好ましいものとして挙げられる。これらは1種類又は2種類以上で用いることができる。
 以下、実施例をもとに本発明を詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
 なお、カーボンナノチューブは、SWCNT、DWCNT、MWCNTのいずれも使用でき、形状に限定されない。半導体材料として用いる場合にはSWCNTを、導電性材料として用いる場合にはSWCNT、DWCNT、MWCNTを用いる。また、カーボンナノチューブの製造方法もCVD法やレーザーアブレーション法等種々存在するが、どの製造方法で製造したカーボンナノチューブでも利用できる。
(実施例1)
 本実施例1では、カーボンナノチューブインク組成物1を以下の手順で作製した。まず、ガラス製の容器にHipco法で作成したシングルウォールカーボンナノチューブを10mg秤量し、化学式(1)のイミダゾリジノン化合物を100mg加えた。ついで、ガラス容器に水を10g添加し、超音波装置を用いて、1時間超音波処理を行った。超音波処理直後の分散液は均一な黒色形態を示し、残留物、沈殿物は見られなかった。また、この分散液を5日後、10日後に観察したところ、処理直後と同様に、残留物、沈殿物は見られなかった。
 このカーボンナノチューブインク組成物1をコニカミノルタ製のインクジェットヘッドに充填し、インクの充填状態、噴霧状態を観察した。カーボンナノチューブインク組成物1を充填したインクジェットヘッドを動作させたところ、充填直後は安定したインク吐出状態が得られた。そのままインクジェットヘッドを放置し、5日後に動作させたところ、一部のノズルに目詰まりが生じた。10日後には半数以上のノズルで目詰まりが生じた。
(実施例2)
 本実施例2では、カーボンナノチューブインク組成物2を以下の手順で作製した。まず、ガラス製の容器にHipco法で作成したシングルウォールカーボンナノチューブを10mg秤量し、化学式(2)であらわされるプロピレン尿素化合物を100mg加えた。ついで、ガラス容器に水を10g添加し、超音波装置を用いて、1時間超音波処理を行った。超音波処理直後の分散液は均一な黒色形態を示し、残留物、沈殿物は見られなかった。この分散液を5日後、10日後に観察したところ、処理直後には見られなかった沈殿物が少量ガラス容器の底部に見られた。
 このカーボンナノチューブインク組成物2をコニカミノルタ製のインクジェットヘッドに充填し、インクの充填状態、噴霧状態を観察した。カーボンナノチューブインク組成物1を充填したインクジェットヘッドを動作させたところ、充填直後はインク組成物と同様に安定したインク吐出状態が得られた。そのままインクジェットヘッドを放置し、5日後及び10日後に動作させたところ、目詰まりは見られなかった。
(実施例3)
 本実施例3では、カーボンナノチューブインク組成物3を以下の手順で作製した。まず、ガラス製の容器にHipco法で作成したシングルウォールカーボンナノチューブを10mg秤量し、化学式(1)のイミダゾリジノン化合物を100mg加えた。さらに化学式(2)であらわされるプロピレン尿素化合物を100mg加えてインク組成物3を得た。ついで、ガラス容器に水を10g添加し、超音波装置を用いて、1時間超音波処理を行った。超音波処理直後の分散液は均一な黒色形態を示し、残留物、沈殿物は見られなかった。また、この分散液を5日後、10日後に観察したところ、処理直後と同様に、残留物、沈殿物は見られなかった。
 このカーボンナノチューブインク組成物3をコニカミノルタ製のインクジェットヘッドに充填し、インクの充填状態、噴霧状態を観察した。カーボンナノチューブインク組成物1を充填したインクジェットヘッドを動作させたところ、充填直後はインク組成物と同様に安定したインク吐出状態が得られた。そのままインクジェットヘッドを放置し、5日後及び10日後に動作させたところ、目詰まりは見られなかった。
(比較例1)
 化合物(2)の代わりに尿素を用いた以外は実施例3と全く同様にカーボンナノチューブインク組成物を作製し、カーボンナノチューブインク組成物101を得た。
 超音波処理直後のインク組成物101は均一な黒色形態を示し、残留物、沈殿物は見られなかった。この分散液を5日後、10日後に観察したところ、処理直後には見られなかった沈殿物が少量ガラス容器の底部に見られた。
 このカーボンナノチューブインク組成物101をコニカミノルタ製のインクジェットヘッドに充填し、インクの充填状態、噴霧状態を観察した。カーボンナノチューブインク組成物1を充填したインクジェットヘッドを動作させたところ、充填直後はインク組成物と同様に安定したインク吐出状態が得られた。そのままインクジェットヘッドを放置し、5日後及び10日後に動作させたところ、目詰まりは見られなかった。
(実施例4)
 本実施例4では、カーボンナノチューブインク組成物4を以下の手順で作製した。まず、ガラス製の容器にHipco法で作成したシングルウォールカーボンナノチューブを100mg秤量し、化学式(1)のイミダゾリジノン化合物を100mg及び、化学式(2)であらわされるプロピレン尿素化合物を100mg及び、末端にC18H37O(ラウリルアルコキシ基)を導入したポリエチレングリコール(分子量1000)を1g加えた。
 ついで、ガラス容器に水を10g添加し、超音波装置を用いて、1時間超音波処理を行い、カーボンナノチューブインク組成物4を得た。超音波処理直後のカーボンナノチューブインク組成物4は均一な黒色形態を示し、残留物、沈殿物は見られなかった。また、このカーボンナノチューブインク組成物11を10日後、30日後に観察したところ、処理直後と同様に、残留物、沈殿物は見られなかった。
 このカーボンナノチューブインク組成物4をコニカミノルタ製のインクジェットヘッドに充填し、インクの充填状態、噴霧状態を観察した。カーボンナノチューブインク組成物4を充填したインクジェットヘッドを動作させたところ、充填直後はインク組成物と同様に安定したインク吐出状態が得られた。そのままインクジェットヘッドを放置し、5日後及び10日後に動作させたところ、目詰まりは見られなかった。
 以上、本発明をその好適な実施形態例に基づいて説明したが、本発明に係るカーボンナノチューブインク組成物は、上記実施形態例の構成にのみ限定されるものではなく、上記実施形態例の構成から種々の修正及び変更を施したカーボンナノチューブインク組成物も、本発明の範囲に含まれる。本発明の全開示(請求の範囲及び図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし、選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。

Claims (10)

  1.  カーボンナノチューブを含有するインク組成物において、少なくともカーボンナノチューブと溶媒と下記化学式(1)で表されるイミダゾリジノン化合物と下記化学式(2)で表されるプロピレン尿素化合物を含有することを特徴とするカーボンナノチューブインク組成物。
    Figure JPOXMLDOC01-appb-I000001

    Figure JPOXMLDOC01-appb-I000002
  2.  R,R,R及びRがすべてメチル基であることを特徴とする、請求項1に記載のカーボンナノチューブインク組成物。
  3.  前記溶媒が水又は有機溶媒であることを特徴とする、請求項1又は2に記載のカーボンナノチューブインク組成物。
  4.  前記カーボンナノチューブの含有率が100ppm~1重量%であることを特徴とする、請求項1~3のいずれか一に記載のカーボンナノチューブインク組成物。
  5.  前記イミダゾリジノン化合物と前記プロピレン尿素化合物を合計した含有率が、100ppm~5重量%であることを特徴とする、請求項1~4のいずれか一に記載のカーボンナノチューブインク組成物。
  6.  前記イミダゾリジノン化合物と前記プロピレン尿素化合物を合計した重量含有率が、前記カーボンナノチューブの重量含有率よりも大きいことを特徴とする、請求項1~5のいずれか一に記載のカーボンナノチューブインク組成物。
  7.  炭素数が10以上のアルコキシ基を置換基として含有するポリエチレングリコール化合物をさらに含有することを特徴とする、請求項1~6のいずれか一に記載のカーボンナノチューブインク組成物。
  8.  前記ポリエチレングリコール化合物の重量含有率が、前記カーボンナノチューブの重量含有率の0.5~1.5倍であることを特徴とする、請求項7に記載のカーボンナノチューブインク組成物。
  9.  カーボンナノチューブ含有薄膜を形成するために、カーボンナノチューブを含有する組成物を材料基板に塗布する方法であって、請求項1~8のいずれか一に記載のカーボンナノチューブインク組成物を、インクジェットヘッド装置から噴霧させる工程を含むことを特徴とする、カーボンナノチューブインク組成物の塗布方法。
  10.  カーボンナノチューブ含有薄膜の形成方法であって、
     請求項1~8のいずれか一に記載のカーボンナノチューブインク組成物を、インクジェットヘッド装置から材料基板に噴霧させる工程と、
     該カーボンナノチューブインク組成物を噴霧した該材料基板を加熱して前記溶媒を蒸発させる工程と、を含むことを特徴とする、カーボンナノチューブ含有薄膜の形成方法。
PCT/JP2011/080193 2010-12-28 2011-12-27 カーボンナノチューブインク組成物とその塗布方法、カーボンナノチューブ含有薄膜の形成方法 WO2012091002A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012550975A JP5942854B2 (ja) 2010-12-28 2011-12-27 カーボンナノチューブインク組成物とその塗布方法、カーボンナノチューブ含有薄膜の形成方法
US13/976,857 US9051483B2 (en) 2010-12-28 2011-12-27 Carbon nanotube ink composition and a coating method thereof and a forming method of a thin film containing carbon nanotubes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-292851 2010-12-28
JP2010292851 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012091002A1 true WO2012091002A1 (ja) 2012-07-05

Family

ID=46383095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080193 WO2012091002A1 (ja) 2010-12-28 2011-12-27 カーボンナノチューブインク組成物とその塗布方法、カーボンナノチューブ含有薄膜の形成方法

Country Status (3)

Country Link
US (1) US9051483B2 (ja)
JP (1) JP5942854B2 (ja)
WO (1) WO2012091002A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529835A (ja) * 2012-07-23 2015-10-08 ヒューレット−パッカード・インデイゴ・ビー・ブイHewlett−Packard Indigo B.V. 静電インク組成物
JPWO2016039225A1 (ja) * 2014-09-08 2017-08-10 富士フイルム株式会社 熱電変換素子、n型熱電変換層、および、n型熱電変換層形成用組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031108A (zh) * 2018-01-11 2019-07-19 清华大学 黑体辐射源及黑体辐射源的制备方法
CN110031106B (zh) * 2018-01-11 2021-04-02 清华大学 黑体辐射源
KR102230238B1 (ko) * 2020-11-09 2021-03-19 (주)케이에이치 케미컬 연속식 탄소나노튜브의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255528A (ja) * 2000-09-18 2002-09-11 Matsushita Electric Ind Co Ltd 微粒子分散液およびその製造方法
JP2009541198A (ja) * 2006-06-30 2009-11-26 ユニバーシティー オブ ウロンゴング ナノ構造複合材
JP2010180263A (ja) * 2009-02-03 2010-08-19 Nec Corp カーボンナノチューブインク組成物及びカーボンナノチューブ膜の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4338948B2 (ja) * 2002-08-01 2009-10-07 株式会社半導体エネルギー研究所 カーボンナノチューブ半導体素子の作製方法
EP1745525A4 (en) * 2004-05-10 2011-03-16 Nippon Catalytic Chem Ind MATERIAL FOR AN ELECTROLYTIC SOLUTION, ION MATERIAL CONTAINING COMPOSITION AND USE THEREOF
WO2009031525A1 (ja) * 2007-09-07 2009-03-12 Nec Corporation カーボンナノチューブ構造物及び薄膜トランジスタ
WO2009031681A1 (ja) * 2007-09-07 2009-03-12 Nec Corporation スイッチング素子及びその製造方法
WO2010053171A1 (ja) * 2008-11-10 2010-05-14 日本電気株式会社 スイッチング素子及びその製造方法
US8870359B2 (en) * 2009-08-03 2014-10-28 Nec Corporation Carbon nanotube ink composition
JP5838815B2 (ja) * 2010-01-19 2016-01-06 日本電気株式会社 カーボンナノチューブ分散液および半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255528A (ja) * 2000-09-18 2002-09-11 Matsushita Electric Ind Co Ltd 微粒子分散液およびその製造方法
JP2009541198A (ja) * 2006-06-30 2009-11-26 ユニバーシティー オブ ウロンゴング ナノ構造複合材
JP2010180263A (ja) * 2009-02-03 2010-08-19 Nec Corp カーボンナノチューブインク組成物及びカーボンナノチューブ膜の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529835A (ja) * 2012-07-23 2015-10-08 ヒューレット−パッカード・インデイゴ・ビー・ブイHewlett−Packard Indigo B.V. 静電インク組成物
US9899124B2 (en) 2012-07-23 2018-02-20 Hewlett-Packard Indigo B.V. Electrostatic ink compositions
JPWO2016039225A1 (ja) * 2014-09-08 2017-08-10 富士フイルム株式会社 熱電変換素子、n型熱電変換層、および、n型熱電変換層形成用組成物

Also Published As

Publication number Publication date
JPWO2012091002A1 (ja) 2014-06-05
US20130273257A1 (en) 2013-10-17
US9051483B2 (en) 2015-06-09
JP5942854B2 (ja) 2016-06-29

Similar Documents

Publication Publication Date Title
Eshkalak et al. A review on inkjet printing of CNT composites for smart applications
JP5942854B2 (ja) カーボンナノチューブインク組成物とその塗布方法、カーボンナノチューブ含有薄膜の形成方法
Ouyang et al. Sorting of semiconducting single-walled carbon nanotubes in polar solvents with an amphiphilic conjugated polymer provides general guidelines for enrichment
US8106430B2 (en) Preparation of thin film transistors (TFTs) or radio frequency identification (RFID) tags or other printable electronics using ink-jet printer and carbon nanotube inks
JP6280500B2 (ja) カーボンナノチューブおよびグラフェンプレートレットを含む分散体
JP5780156B2 (ja) カーボンナノチューブインク組成物
JP5838815B2 (ja) カーボンナノチューブ分散液および半導体装置の製造方法
JP2006104576A (ja) 安定化された銀のナノ粒子及びそれらの利用法
JP2011503243A (ja) カーボン・ナノチューブ・インク
Kim et al. Sheet size-induced evaporation behaviors of inkjet-printed graphene oxide for printed electronics
JPWO2009031525A1 (ja) カーボンナノチューブ構造物及び薄膜トランジスタ
Tran et al. Poly (ionic liquid)-stabilized graphene nanoinks for scalable 3D printing of graphene aerogels
WO2011111736A1 (ja) 電界効果型トランジスタ及びその製造方法
Akindoyo et al. Development of environmentally friendly inkjet printable carbon nanotube‐based conductive ink for flexible sensors: effects of concentration and functionalization
JP2010180263A (ja) カーボンナノチューブインク組成物及びカーボンナノチューブ膜の製造方法
JP5526534B2 (ja) カーボンナノチューブインク組成物及びカーボンナノチューブインク組成物の噴霧方法
JP6187750B2 (ja) 分散剤、分散液、カーボンナノチューブを含む薄膜の製造方法、カーボンナノチューブを含む薄膜、印刷物の製造方法、および印刷物
JP5825066B2 (ja) カーボンナノチューブインク組成物およびカーボンナノチューブインク組成物の噴霧方法
US11767442B2 (en) Nanocarbon ink and method for manufacturing semiconductor device in which same is used
JP5293129B2 (ja) カーボンナノチューブ薄膜
JP2019194308A (ja) 抵抗器用水性カーボンナノ粒子インク組成物
JP5465566B2 (ja) インク塗布方法、及びインク塗布方法で形成された塗膜
Lu Control and Reproducibility in Aerosol Jet Printed Carbon Nanotube Thin-Film Transistors: From Print-in-Place to Water-Based Processes
Graddage Carbon nanotubes as a material for functional inks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550975

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13976857

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852646

Country of ref document: EP

Kind code of ref document: A1