WO2012090995A1 - 口腔状態の判定方法、並びにそのために用いられる分析用具、装置、及びプログラム - Google Patents

口腔状態の判定方法、並びにそのために用いられる分析用具、装置、及びプログラム Download PDF

Info

Publication number
WO2012090995A1
WO2012090995A1 PCT/JP2011/080180 JP2011080180W WO2012090995A1 WO 2012090995 A1 WO2012090995 A1 WO 2012090995A1 JP 2011080180 W JP2011080180 W JP 2011080180W WO 2012090995 A1 WO2012090995 A1 WO 2012090995A1
Authority
WO
WIPO (PCT)
Prior art keywords
risk
parameter
measuring
oral
parameters
Prior art date
Application number
PCT/JP2011/080180
Other languages
English (en)
French (fr)
Inventor
英司 西永
章 内山
苗穂 鈴木
深澤 哲
利一 牧
大久保 章男
功 福田
Original Assignee
ライオン株式会社
アークレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライオン株式会社, アークレイ株式会社 filed Critical ライオン株式会社
Priority to KR1020137017847A priority Critical patent/KR101958699B1/ko
Priority to CN201180063591.1A priority patent/CN103282774B/zh
Priority to EP11852613.6A priority patent/EP2660597B1/en
Priority to JP2012550968A priority patent/JP5981350B2/ja
Priority to US13/976,643 priority patent/US9500649B2/en
Publication of WO2012090995A1 publication Critical patent/WO2012090995A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56955Bacteria involved in periodontal diseases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/18Dental and oral disorders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease

Definitions

  • the present invention relates to a method for determining the oral condition of a subject, and an analysis tool, apparatus, and program that can be used for the method.
  • Oral disease risk is, for example, caries risk, i.e., how susceptible the oral cavity is to caries, and periodontal disease risk, i.e., how susceptible the oral cavity is to periodontal disease Say, etc.
  • diagnosis of oral disease risk and oral hygiene status is performed by measuring individual components or properties that reflect oral disease risk and oral hygiene status using saliva and gargle collected from the subject as samples. Based on the results, doctors etc.
  • the number of mutans bacteria in saliva or the acid buffer capacity of saliva is known to reflect caries risk. If the number of mutans bacteria is high or the acid buffer capacity is low, the caries risk Is considered high.
  • detection methods using antibodies Patent Document 1
  • detection methods using resazurin which is an oxidation-reduction indicator (Non-Patent Document 1), and the like are already known.
  • occult blood, white blood cells, or alkaline phosphatase are known to reflect the periodontal disease risk. That is, when the gum tissue is destroyed due to periodontal disease, occult blood is detected in the saliva, and leukocytes collect at the affected area of periodontal disease. Alkaline phosphatase is also produced in large quantities from bacteria associated with periodontal disease.
  • a hemoglobin contact activation method is known (Patent Document 2).
  • a detection method using leukocyte esterase activity or protease activity is known (Patent Document 3).
  • an inspection system related to periodontal disease a system is known that can determine whether or not there is periodontal disease by detecting occult blood in saliva. According to this system, an examination in a short time of 5 minutes is possible, but items other than occult blood cannot be examined.
  • a system for detecting mutans bacteria and periodontal disease bacteria by PCR using saliva collected at a dental clinic as a sample is known. According to this system, two items, the number of mutans bacteria and the number of periodontal disease bacteria, can be examined simultaneously, but it takes 6 business days to understand the results.
  • a detection system for mutans bacteria a system capable of detecting mutans bacteria by measuring the reduction reaction of resazurin by mutans bacteria is known.
  • this system can only measure mutans bacteria and requires temperature control at 37 ° C., which takes 15 minutes.
  • Non-patent document 2 a system is known in which mutans bacteria in saliva are cultured in a selective medium, and the number of mutans bacteria is determined based on the density of formed colonies.
  • this system can only measure mutans bacteria and requires temperature control at 37 ° C., which takes 48 hours.
  • JP 2005-241335 A JP-A-2-232561 JP-A-5-168497
  • the data obtained by the above method or system only shows information on individual components and properties of the oral cavity, and does not provide any further information. That is, when the above method or system is used, only one or two components or properties are measured for each disease such as “cavities” and “periodontal disease”, and a plurality of parameters are measured for an arbitrary disease. The risk level was not determined based on the measurement results, and the parameters reflecting each of the plurality of diseases were measured, and the risk level was not determined based on the measurement results.
  • a doctor or a dental hygienist transmits the measurement result obtained by the above method or system to the subject as it is, or adds knowledge based on experience and judges the measurement result to determine the subject.
  • a doctor or the like has been useful for the treatment and prevention of oral diseases. Therefore, the objectivity and accuracy of diagnosis depend on the skills of doctors and the like, and objective and comprehensive diagnosis of oral disease risk and oral hygiene conditions that do not require special skills have not been achieved.
  • the measurement time for each item is long, and it was impossible to perform diagnosis and subsequent care guidance in one visit.
  • An object of the present invention is to provide means for determining a subject's oral condition, that is, oral disease risk and / or oral hygiene condition.
  • the present inventors measured a parameter reflecting caries risk, a parameter reflecting periodontal disease risk, and a parameter reflecting oral cleanliness, and caries risk, periodontal disease risk based on the measurement results. By determining the level of oral cleanliness and providing the determination results to doctors, etc., the doctors can objectively and comprehensively evaluate the oral disease risk and oral hygiene status of the subject without special skills. I thought I could diagnose it. Further, the present inventors have completed the present invention because it is considered that measurement can be performed in a short time and in one inspection by using an analytical tool equipped with a reagent for measuring each of the above parameters.
  • the present invention can be exemplified as follows.
  • An analytical tool comprising the following (A), (B), and (C).
  • A A reagent for measuring one or more parameters reflecting caries risk for a test sample obtained from the oral cavity.
  • B A reagent for measuring one or more parameters reflecting periodontal disease risk for a test sample obtained from the oral cavity.
  • C A reagent for measuring one or more parameters that reflect oral cleanliness for a test sample obtained from the oral cavity.
  • the analysis tool according to [1] wherein the analysis tool is a test piece including a support carrier and an absorbent carrier that holds the reagent carried on the support carrier.
  • the analytical tool according to [1] or [2], wherein the parameter reflecting the caries risk includes at least the number of mutans bacteria.
  • the parameter reflecting caries risk is a parameter selected from the group consisting of the number of mutans bacteria, pH, and acid buffer capacity
  • the parameter reflecting periodontal disease risk is a parameter selected from the group consisting of calcium concentration, total protein concentration, occult blood volume, and white blood cell count
  • the parameter reflecting oral cleanliness is based on the ammonia concentration and total protein concentration.
  • the analytical tool according to any one of [1] to [4] which has one or more characteristics selected from the following (a), (b), and (c).
  • (A) The parameter reflecting the caries risk consists of two or more parameters.
  • the parameter reflecting the periodontal disease risk is composed of two or more parameters.
  • the parameter reflecting the oral cleanliness is composed of two or more parameters.
  • (C) A step of measuring one or more parameters reflecting oral cleanliness for a test sample obtained from the oral cavity, and determining the level of oral cleanliness using the measured parameters as an index. [7] The method according to [6], further comprising displaying the determined level. [8] The method according to [6] or [7], further comprising displaying a comment based on the determined level.
  • parameters reflecting the oral condition that is, oral disease risk and / or oral hygiene condition can be measured, and the oral condition can be determined based on the measurement result.
  • the caries risk, periodontal disease risk, and / or oral cleanliness level can be determined, and the determination result can be provided to, for example, a doctor or the like and / or the subject. Doctors and the like can objectively and comprehensively diagnose the oral disease risk and / or oral hygiene status of the subject based on the determination result without requiring special skills. Objective explanations can be given to the examiner.
  • the subject can objectively understand his / her oral condition based on the determination result. Therefore, the present invention has a great effect on the assistance of diagnosis and treatment by a doctor, and the subject's awareness of prevention and health is also increased.
  • the analysis tool or analysis instrument of the present invention it is possible to measure a plurality of components or properties that reflect the oral condition in a short time and a single examination, and immediately have a caries risk and a periodontal disease risk. And / or the level of oral cleanliness.
  • a doctor or the like and / or the subject it is possible to perform diagnosis of oral condition and subsequent care guidance in one visit, which has been impossible in the past.
  • FIG. 1 (A) is a plan view showing an embodiment of the analytical tool of the present invention
  • FIG. 1 (B) is a front view showing an embodiment of the analytical tool of the present invention
  • FIG. 2 is a front view showing the structure of the absorbent carrier portion in one embodiment of the analytical tool of the present invention
  • FIG. 3 is a block diagram illustrating functions in an embodiment of the apparatus of the present invention.
  • FIG. 4 is a flowchart in one embodiment of the program of the present invention.
  • FIG. 5 is a graph showing the correlation between the number of mutans bacteria and the reflectance when methoxy PMS is added and not added.
  • the oral condition determined in the present invention means an oral disease risk and / or oral hygiene condition.
  • the oral disease risk determined in the present invention refers to, for example, a caries risk and a periodontal disease risk.
  • the oral hygiene state determined in the present invention refers to, for example, oral cleanliness.
  • oral cleanliness does not mean the risk of a specific disease, but in the present invention, the term "risk” collectively refers to caries risk, periodontal disease risk, and oral cleanliness.
  • the caries risk level, periodontal disease risk level, and oral cleanliness level may be collectively referred to as “risk level”. For convenience of explanation, it is referred to as “level” in this specification, but it does not have to be a numerical value and may be divided into arbitrary stages.
  • the caries risk is a risk that indicates the susceptibility to caries and the ease of progress of caries.
  • the caries risk includes not only the potential for the development of potential caries, but also the already developed condition.
  • Parameters reflecting caries risk include, for example, the number of mutans bacteria, pH, acid buffer capacity, glucosyltransferase activity, sucrose concentration, glucose concentration, organic acid concentration, lactic acid concentration, and reactivity with mutans antibodies. Can be mentioned.
  • one, two or more parameters selected from these parameters are preferably measured.
  • the parameter reflecting caries risk it is preferable to measure 1 or 2 or more parameters selected from the group consisting of the number of mutans bacteria, pH, and acid buffering capacity.
  • three parameters are measured: number, pH, and acid buffer capacity. Further, as a parameter reflecting caries risk, it is preferable to measure at least the number of mutans bacteria. Measuring a plurality of parameters improves the reliability in determining the level of caries risk.
  • Mutans bacteria are so-called carious fungi and are the causative bacteria of caries. Specific examples of mutans bacteria include Streptococcus mutans and Streptococcus sobrinus (S. sobrinus). The higher the number of mutans bacteria, the higher the caries risk.
  • the pH of saliva is lowered by the acid produced by mutans bacteria.
  • the enamel on the tooth surface dissolves and caries progresses. That is, it is considered that the lower the saliva pH, the higher the caries risk.
  • Acid buffering capacity indicates resistance to acid produced by mutans bacteria, and therefore, the lower the acid buffering capacity, the higher the caries risk.
  • Periodontal disease risk is a risk that indicates the likelihood of developing periodontal disease and the ease of progression of periodontal disease.
  • the periodontal disease risk includes not only the risk of developing a potential periodontal disease but also a state in which it has already developed.
  • Parameters reflecting periodontal disease risk include, for example, calcium concentration, total protein concentration, occult blood volume, white blood cell count, alkaline phosphatase activity, nitrite concentration, lactate dehydrogenase activity, lipopolysaccharide concentration, and periodontal disease antibody Examples include reactivity, ⁇ -GTP concentration, albumin concentration, degree of antioxidant, and ⁇ 1-antitrypsin concentration.
  • the parameter reflecting periodontal disease risk is 1 or 2 selected from the group consisting of calcium concentration, total protein concentration, occult blood volume, white blood cell count, alkaline phosphatase activity, and lactate dehydrogenase activity, or It is preferable to measure the above parameters, and it is more preferable to measure one or two or more parameters selected from the group consisting of calcium concentration, total protein concentration, occult blood volume, and white blood cell count, It is more preferable to measure one, two, or more parameters selected from the group consisting of occult blood volume and white blood cell count, and it is particularly preferable to measure three parameters: total protein concentration, occult blood volume, and white blood cell count. If a plurality of parameters are measured, the reliability in determining the periodontal disease risk level is improved.
  • the degree of destruction of the periodontal tissue can be measured by measuring the degree of occult blood. The more occult blood, the higher the degree of periodontal tissue destruction and the higher the risk of periodontal disease.
  • the degree of inflammation of periodontal tissue can be measured by measuring leukocytes. It is considered that the greater the white blood cell count, the higher the degree of inflammation of the periodontal tissue and the higher the risk of periodontal disease.
  • Oral cleanliness is the risk of reflecting oral hygiene status regardless of disease.
  • parameters that reflect oral cleanliness include ammonia concentration, total protein concentration, total bacterial count, turbidity, viscosity, and secretion amount.
  • one, two or more parameters selected from these parameters are preferably measured.
  • a parameter reflecting oral cleanliness it is preferable to measure at least one parameter selected from the group consisting of ammonia and total protein concentration, and it is more preferable to measure both parameters of ammonia and total protein concentration. preferable. If a plurality of parameters are measured, the reliability in determining the level of oral cleanliness is improved.
  • High ammonia concentration indicates that bacteria are actively breeding in the oral cavity. Moreover, the greater the number of bacteria, the higher the total protein concentration. Therefore, the higher the ammonia concentration and the higher the total protein concentration, the lower the oral cleanliness, that is, the higher the risk.
  • the total protein concentration is measured at least once. That's fine. That is, the measurement result of the total protein concentration can be commonly used as the measurement result of the parameter reflecting the periodontal disease risk and the measurement result of the parameter reflecting the oral cleanliness.
  • caries risk level is determined by combining one or more parameters reflecting caries risk with one or more parameters reflecting periodontal disease risk and / or oral cleanliness. It is expected to improve the accuracy of determination of the risk level of eating.
  • the caries risk level may be determined by combining the number of mutans bacteria, pH, acid buffer capacity, occult blood volume, white blood cell count, ammonia concentration, and total protein concentration. The above description can be applied mutatis mutandis to the determination of periodontal disease risk and oral cleanliness level.
  • the caries risk level, periodontal disease risk level, and / or oral cleanliness level an improvement in judgment accuracy is expected.
  • Specific examples of the personal data of the subject include age, sex, and the presence or absence of smoking.
  • “measuring a parameter” may include a step of acquiring data for calculating an arbitrary parameter, and may include a step of calculating the value of the parameter itself. , It does not have to be included. That is, the value of each parameter can be quantified by each measurement method described later, but quantifying the parameter value itself is not an essential component of the present invention.
  • “measuring the number of mutans bacteria” means data used for calculating the number of mutans bacteria, for example, reflectance at an arbitrary wavelength indicating the result of a color reaction reflecting the number of mutans bacteria. It is only necessary to acquire data, and it is not necessary to calculate the number of mutans bacteria from there.
  • Measured parameters can be used for risk level judgment.
  • “determination” refers to determining a risk level or the like by comparison with a threshold value using a measured parameter as an index. Further, based on the determined risk level, a doctor or the like can diagnose the subject's oral disease risk and / or oral hygiene status. “Diagnosis” means comprehensive judgment by a doctor or the like. Further, “care guidance” refers to guidance based on a diagnosis result performed by a doctor or the like, for example.
  • the present invention provides an analysis tool that can be suitably used to measure a parameter reflecting the oral condition.
  • the 1st aspect of the analysis tool of this invention is an analysis tool provided with the following (A), (B), and (C).
  • C Oral cleanliness for the test sample obtained from the oral cavity
  • FIG. 1 shows a test piece 1 which is an embodiment of the first aspect of the analysis tool of the present invention and is configured to measure all three of caries risk, periodontal disease risk, and oral cleanliness. Illustrate.
  • FIG. 1A is a plan view of the test piece 1
  • FIG. 1B is a front view of the test piece 1.
  • FIG. 2 is a front view showing the structure of the absorbent carrier portion of the test piece in one embodiment of the analysis tool of the present invention.
  • the test piece 1 includes a support carrier 10, a caries risk measurement unit 11 carried on the support carrier 10, a periodontal disease risk measurement unit 12, and an oral cleanliness measurement unit 13.
  • the positional relationship of the measurement parts 11, 12, and 13 is arbitrary.
  • the caries risk measurement unit 11 is a part for measuring a parameter reflecting the caries risk of the subject, and includes absorbent carriers 11A, 11B, and 11C.
  • the absorbent carriers 11A, 11B, and 11C are absorbent carriers that hold reagents for measuring parameters that reflect caries risk.
  • the absorptive carrier 11A holds, for example, a reagent for measuring the number of mutans bacteria for a test sample.
  • the absorptive carrier 11B holds, for example, a reagent for measuring the pH of a test sample.
  • the absorptive carrier 11C holds, for example, a reagent for measuring the acid buffer capacity of a test sample.
  • the caries risk measurement unit 11 includes three absorbent carriers 11A, 11B, and 11C.
  • the number of absorbent carriers included in the caries risk measurement unit 11 should be measured. It is increased or decreased depending on the number of parameters reflecting the risk of eating, and usually at least one absorbent carrier is provided for each parameter to be measured.
  • the periodontal disease risk measurement unit 12 is a part for measuring a parameter reflecting the periodontal disease risk of the subject and includes absorbent carriers 12A, 12B, and 12C.
  • the absorptive carriers 12A, 12B, and 12C are absorptive carriers that hold reagents for measuring parameters that reflect periodontal disease risk.
  • the absorbent carrier 12A holds, for example, a reagent for measuring the total protein concentration for a test sample.
  • the absorbent carrier 12B holds, for example, a reagent for measuring occult blood for a test sample.
  • the absorbent carrier 12C holds, for example, a reagent for measuring the white blood cell count for a test sample.
  • the periodontal disease risk measurement unit 12 includes three absorptive carriers 12A, 12B, and 12C, but the number of absorptive carriers included in the periodontal disease risk measurement unit 12 is measured. It is increased or decreased depending on the number of parameters reflecting the periodontal disease risk, and usually at least one absorbent carrier is provided for each parameter to be measured.
  • the oral cleanliness measuring unit 13 is a part for measuring a parameter reflecting the oral cleanliness of the subject, and includes absorbent carriers 13A and 13B.
  • the absorptive carriers 13A and 13B are absorptive carriers that hold reagents for measuring parameters that reflect oral cleanliness.
  • the absorbent carrier 13A holds, for example, a reagent for measuring the ammonia concentration for a test sample.
  • the absorptive carrier 13B holds, for example, a reagent for measuring the total protein concentration for a test sample.
  • the oral cleanliness measuring unit 13 includes two absorbent carriers 13A and 13B, but the number of the absorbent carriers included in the oral cleanliness measuring unit 13 is the oral cleanliness to be measured. Is increased or decreased depending on the number of parameters reflecting, and usually at least one absorbent carrier is provided for each parameter to be measured.
  • parameters reflecting caries risk, parameters reflecting periodontal disease risk, and parameters reflecting oral cleanliness are merely examples, and are not limited to the above parameters. Details of each parameter will be described later.
  • FIG. 1 shows an embodiment in which an absorbent carrier for measuring each parameter is aligned by being divided into a caries risk measuring unit 11, a periodontal disease risk measuring unit 12, and an oral cleanliness measuring unit 13.
  • the positional relationship of the absorbent carrier for measuring each parameter is arbitrary. That is, the absorptive carrier for measuring each parameter does not have to be divided into each risk measuring unit and aligned.
  • the absorbent carriers for measuring each parameter may be linearly aligned or may be aligned in any other sequence.
  • the positional relationship of the absorptive carrier for measuring each parameter can be appropriately set according to, for example, whether detection is performed with the naked eye or a detection device is used, and the type of detection device used.
  • various reflectance measuring devices can be suitably used as the detecting device.
  • Pocket Chem UA PU-4010 manufactured by ARKRAY, Inc.
  • absorption for each parameter measurement is performed.
  • the sex carriers are preferably aligned in a straight line.
  • the test piece of the present invention may include an arbitrary absorbent carrier, for example, a dummy absorbent carrier that is not used for measurement, in addition to the absorbent carrier that holds the measurement reagent for each parameter.
  • the analysis tool of the present invention has at least one What is necessary is just to provide the absorptive carrier for total protein concentration measurement. That is, the carrier for measuring the total protein concentration can be commonly used as a carrier for measuring parameters reflecting the periodontal disease risk and a carrier for measuring parameters reflecting the oral cleanliness.
  • any carrier can be used as long as it can hold a reagent for measuring each parameter and does not interfere with the measurement. That is, as the absorbent carrier, for example, paper, cellulose, porous ceramic, chemical fiber, synthetic resin woven fabric and nonwoven fabric can be used, and filter paper or glass fiber filter paper is preferable. As filter paper or glass fiber filter paper, for example, commercially available ones can be suitably used.
  • the support carrier a film, sheet, or plate carrier can be preferably used.
  • the support carrier is preferably made of plastic, and various plastics such as polyethylene, polypropylene, polyester, and polyvinyl chloride can be used as the plastic.
  • a polyethylene terephthalate (PET) film is particularly preferable.
  • PET polyethylene terephthalate
  • the support carrier may be a composite material, and a composite material of polyester and polyethylene, a composite material in which polyethylene and aluminum are laminated, and other various composite materials can be used.
  • the thickness of the support carrier is preferably 10 to 500 ⁇ m, more preferably 50 to 300 ⁇ m.
  • the absorptive carrier holding the reagent may also serve as an absorptive carrier for spotting the test sample.
  • an absorbent carrier for spotting the test sample may be provided.
  • FIG. 2 as an example in which an absorptive carrier for spotting a test sample is provided separately from the absorptive carrier for retaining a reagent, an absorptive carrier 14A for retaining a reagent and a test sample are spotted.
  • An example in which the absorbent carrier 14 ⁇ / b> B that forms a layered structure is shown.
  • the absorptive carrier for holding the reagent and the absorptive carrier for spotting the test sample are in principle. Although it is in contact, for example, when measurement is required without directly contacting the test sample and the reagent, both absorbent carriers can be installed without contacting each other.
  • both absorbent carriers can be installed without contacting each other.
  • an aspect to install without contacting each other for example, an aspect in which both absorptive carriers are installed with a gap, or an aspect in which another layer is sandwiched between both absorptive carriers, for example, a PET made with fine holes
  • interpose a film etc. are mentioned.
  • test piece of the present invention may include an arbitrary member, for example, a PET film or the like, between the absorbent carrier holding the reagent and the support carrier.
  • the method for producing the test piece of the present invention is not particularly limited, and the test piece of the present invention can be produced by supporting each absorbent carrier on which a measuring reagent for each parameter is held in advance on a support carrier. it can.
  • the method of holding the reagent for measuring each parameter on the absorbent carrier is not particularly limited.
  • the absorbent carrier may be immersed in the reagent solution, or the reagent solution is spotted or applied to the absorbent carrier. Also good. Of the above, it is preferable to immerse the absorbent carrier in the reagent solution.
  • the reagent solution is a solution containing a reagent for measuring an arbitrary parameter.
  • the step of holding the reagent on the absorbent carrier may include a plurality of steps such as dipping, spotting or coating.
  • the absorbent carrier holding each reagent can be dried and used in the subsequent steps.
  • the test piece of the present invention can be produced by cutting the absorbent carrier holding each reagent, if necessary, and supporting it on a support carrier.
  • the test piece of the present invention may be manufactured by holding a reagent for measuring each parameter on each absorbent carrier previously supported on a support carrier. In this case, it is preferable that the reagent for measuring each parameter is held on the absorbent carrier by spotting or applying the reagent solution to the absorbent carrier and then dried.
  • the method for supporting the absorbent carrier on the support carrier is not particularly limited, and for example, a commonly used adhesion technique can be suitably used. For example, it may be affixed with an adhesive tape or an adhesive.
  • each absorptive carrier provided in the test piece of the present invention an absorptive carrier designed according to the measurement method of each parameter can be used. Further, as each absorptive carrier provided in the test piece of the present invention, a known test piece for quantitatively measuring a parameter reflecting caries risk, periodontal disease risk, or oral cleanliness, for example, urine in general A dry test piece used in a test or the like, or a dry test piece used in a blood biochemistry general test or the like may be appropriately modified and used as necessary.
  • each measurement reagent may be directly held on the test piece instead of the absorbent carrier.
  • maintained directly on a test piece the aspect by which the reagent is hold
  • Such a test strip can be produced, for example, by spotting or applying a reagent directly on a support carrier.
  • maintained directly on a test piece may be mixed.
  • kits including an analysis tool provided with a reagent for measuring each parameter are kits including an analysis tool provided with a reagent for measuring each parameter.
  • a test paper for each parameter measurement can be cited.
  • a kit including a test paper for measuring each parameter to be measured may be used as the analysis tool of the present invention.
  • a test kit for parameter measurement reflecting caries risk, a test paper for parameter measurement reflecting periodontal disease risk, and a test kit for parameter measurement reflecting oral cleanliness It is included in the scope of the analytical tool of the invention.
  • the analysis tool included in the measurement kit may be, for example, an analysis tool configured to measure each parameter in any combination.
  • the analysis tool for parameter measurement reflecting caries risk may be an analysis tool for measuring two or more parameters reflecting caries risk.
  • the analysis tool for parameter measurement reflecting periodontal disease risk may be an analysis tool for measuring two or more parameters reflecting periodontal disease risk.
  • the analytical tool for parameter measurement that reflects the oral cleanliness may be an analytical tool for measuring two or more parameters that reflect the oral cleanliness.
  • the measurement kit may include an analytical tool for measuring one or more parameters reflecting caries risk and one or more parameters reflecting periodontal disease risk.
  • One or more parameters reflecting caries risk and an analytical tool for measuring one or more parameters reflecting oral cleanliness may be included, one or more reflecting oral cleanliness
  • An analytical tool for measuring one or more parameters reflecting the above parameters and periodontal disease risk may be included.
  • an analytical tool provided with a reagent for measuring each parameter for example, an arbitrary reaction system for measuring each parameter can be mentioned. That is, for example, if the reaction with a reagent is carried out in a container such as a tube, the analysis tool of the present invention can be used with a kit including a reaction container such as a reaction tube containing a reagent for measuring each parameter. Good.
  • a reaction tube containing a parameter measurement reagent that reflects caries risk a reaction tube containing a parameter measurement reagent that reflects periodontal disease risk
  • a parameter measurement reagent that reflects oral cleanliness The measurement kit including the reaction tube is included in the scope of the analysis tool of the present invention.
  • the method for measuring each parameter is not particularly limited, and can be appropriately set by those skilled in the art.
  • a newly developed method may be used, or a known method may be used.
  • a method for measuring parameters that can be measured in the present invention will be exemplified.
  • the number of mutans bacteria is not particularly limited, and can be measured by, for example, a method using a resazurin reduction reaction or a method using an antibody against mutans.
  • the number of mutans bacteria is preferably measured by a method using a reduction reaction of resazurin.
  • the method using the reduction reaction of resazurin is referred to as resazurin method.
  • Resazurin is a redox indicator and is usually present as resazurin (maximum absorption wavelength 605 nm) which is an oxidized blue pigment, but is reduced by NADH produced by the metabolism of Gram-positive bacteria including mutans bacteria, and a red-purple pigment ( It is converted into resorufin having a maximum absorption wavelength of 573 nm. That is, resazurin reduction proceeds according to the number of viable mutans bacteria.
  • the measurement reagent when the resazurin method is used preferably further contains 1-methoxy-5-methylphenazinium methyl sulfate (methoxy PMS).
  • methoxy PMS When methoxy PMS is contained, it is effective for measurement under reaction conditions for a short time at room temperature as compared with the case where methoxy PMS is not contained.
  • concentration of the reagent can be appropriately set, but the concentration of methoxy PMS in the reagent solution in which the absorbent carrier is immersed is preferably 0.1 to 1 mM, more preferably 0.1 to 0.5 mM. is there.
  • a test paper prepared by the following procedure can be used on a support carrier.
  • the reagent solution contains 30 mM sucrose, 0.2% polyvinyl alcohol, 100 mM phosphate buffer (pH 6), 0.1 mM methoxy PMS, and 0.12 mM resazurin.
  • the filter paper is dried at 50 ° C. for 15 minutes.
  • the reaction time can be appropriately set, but is preferably 1-10 minutes.
  • the detection conditions at the time of detecting with a detection apparatus can be set suitably.
  • the measurement wavelength is 635 nm and the reference wavelength is 760 nm with a reaction time of 5 minutes.
  • the progress of the resazurin reduction reaction is detected as a decrease in absorbance at 635 nm, that is, as an increase in reflectance when irradiated with 635 nm light.
  • the consumption of resazurin can be calculated, and the number of mutans bacteria can be calculated from the consumption of resazurin.
  • all of the resazurin reduction reactions may be mutans bacteria.
  • the pH of saliva is not particularly limited, but it is preferably measured with a pH indicator, for example.
  • a pH indicator any known pH indicator can be used. It is preferable to use a pH indicator having a color change range in the range of pH 2 to 9, and a pH indicator having a color change range in the range of pH 3 to 8 is used. Is more preferable.
  • a pH indicator a plurality of pH indicators may be mixed and used as necessary. For example, a composite reagent of bromocresol green and bromoxylenol blue can be suitably used. The concentration of the pH indicator can be appropriately set.
  • the concentration of bromocresol green in the reagent solution in which the absorbent carrier is immersed is preferably 0.1 to 0.6 mM, more preferably 0.1 to 0.
  • the concentration of bromoxylenol blue is preferably 0.6 to 2 mM, more preferably 0.8 to 1.8 mM.
  • test paper for measuring pH of Auston Sticks can be used as an absorptive carrier for measuring pH with a pH indicator.
  • the test paper contains 0.07 mg of bromocresol green and 0.72 mg of bromoxylenol blue per 100 sheets.
  • the reaction time can be appropriately set, but is preferably 30 seconds to 5 minutes.
  • the detection conditions at the time of detecting with a detection apparatus can be set suitably.
  • a test paper for pH measurement of Aushon Sticks manufactured by ARKRAY, Inc.
  • Pocket Chem UA PU-4010 manufactured by ARKRAY, Inc.
  • measurement can be performed at a measurement wavelength of 635 nm and a reference wavelength of 760 nm. Based on the measurement result, the pH can be calculated.
  • the acid buffering ability of saliva is not particularly limited, but for example, it is preferably measured using a pH indicator.
  • a pH indicator As a measurement principle, by contacting a test sample with an absorbent carrier containing an acidic buffer and a pH indicator in advance, the indicator pH of the indicator approaches the original pH of saliva as the acid buffering capacity increases, The lower, the closer to the acidic range than the original pH of saliva is utilized.
  • the pH indicator any known pH indicator can be used. It is preferable to use a pH indicator having a color change range in the range of pH 2 to 9, and a pH indicator having a color change range in the range of pH 3 to 8 is used. Is more preferable.
  • a pH indicator a plurality of pH indicators may be mixed and used as necessary.
  • a composite reagent of bromocresol green and bromoxylenol blue can be suitably used.
  • the acidic buffer for example, a non-volatile organic acid can be preferably used.
  • the non-volatile organic acid include citric acid, malic acid, tartaric acid, malonic acid, oxalic acid, sulfosalicylic acid, sulfanilic acid, benzoic acid, and tricarballylic acid. Of these, tartaric acid is more preferable.
  • an inorganic acid such as metaphosphoric acid can be used.
  • the acidic buffer may be a buffer such as a mixture of potassium hydrogen phthalate and potassium phosphate.
  • concentration of the reagent can be appropriately set.
  • the concentration of bromocresol green in the reagent solution in which the absorbent carrier is immersed is preferably 0.1 to 0.6 mM, more preferably 0.1 to 0.00. 4 mM
  • the concentration of bromoxylenol blue is preferably 0.6-2 mM, more preferably 0.8-1.8 mM
  • the concentration of tartaric acid is preferably 0.1-10 mM, more preferably 1-6 mM. is there.
  • a test paper prepared by the following procedure can be used by placing it on a support carrier.
  • the reagent solution contains 0.2 mM bromocresol green, 1.2 mM bromoxylenol blue, 0.05% polyoxyethylene sorbitan monolaurate, 0.5% hydroxypropylcellulose, 2 mM tartaric acid.
  • the filter paper is dried at 50 ° C. for 15 minutes.
  • the reaction time can be appropriately set, but is preferably 30 seconds to 5 minutes.
  • the detection conditions at the time of detecting with a detection apparatus can be set suitably.
  • the pH measurement test paper of Aushon Sticks (Arkray Co., Ltd.) is used as an absorbent carrier for acid buffer capacity measurement as described above, and Pocket Chem UA PU-4010 (Arkray Co., Ltd.) is used as a detection device.
  • the measurement of the calcium concentration is not particularly limited, but is preferably performed by, for example, a chelate method.
  • the chelate method is a calcium measurement method that utilizes the change in color tone when calcium binds to a chelating color former.
  • the O-CPC method is preferably used.
  • the O-CPC method is a measurement method using ortho-cresolphthalein complexone (O-CPC) as a chelating color former, and O-CPC reacts with calcium under alkaline conditions to form a deep red chelate compound Is generated.
  • an absorptive carrier for calcium concentration measurement by the chelate method for example, a test paper contained in Spotchem II calcium (manufactured by Arkray, Inc.), which is a calcium concentration measurement kit, can be used.
  • the test paper contains 2.6 mg of O-CPC per 100 sheets.
  • the reaction time can be appropriately set, but is preferably 1 to 5 minutes.
  • the detection conditions at the time of detecting with a detection apparatus can be set suitably.
  • a test paper contained in Spotchem II calcium (Arkray Co., Ltd.) as an absorbent carrier for measuring calcium concentration and using Pocket Chem UA PU-4010 (Arkray Co., Ltd.) as a detection device
  • measurement can be performed with a measurement wavelength of 565 nm and a reference wavelength of 760 nm. Based on the measurement result, the amount of the chelate compound can be calculated, and the calcium concentration can be calculated from the amount of the chelate compound.
  • occult blood is not particularly limited, but is preferably performed by, for example, a hemoglobin contact activity method.
  • Hemoglobin contact activation method is the ability of blood components hemoglobin, myoglobin, or their degradation products to catalyze the transfer of oxygen from oxygen donors such as peroxides to the oxygen acceptor (peroxidase-like activity) ) Is used.
  • oxygen donors such as peroxides to the oxygen acceptor (peroxidase-like activity)
  • occult blood can be detected through detection of hemoglobin and the like by measuring the color reaction.
  • the indicator is not particularly limited as long as it exhibits a color reaction with blood components such as hemoglobin, myoglobin, or their degradation products.
  • anilines, phenols, o-toluidine, p-toluidine, o-phenylenediamine, N, N′-dimethyl-p-phenylenediamine, N, N′-diethyl-p-phenylenediamine, p-anisidine, dianisidine, o-tolidine, o-cresol, m-cresol, p-cresol, ⁇ -naphthol, ⁇ -naphthol, catechol, guaiacol, pyrogallol and the like can be used.
  • the phenol for example, 3,3 ′, 5,5′-tetramethylbenzidine (TMBZ) can be preferably used.
  • oxygen donor peroxides
  • peroxides for example, cumene hydroperoxide, diisopropylbenzene peroxide, paramentane hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide and the like are preferable.
  • cumene hydroperoxide can be suitably used as the oxygen donor.
  • test paper for measuring occult blood of AUTION Sticks can be used as an absorptive carrier for measuring occult blood by the hemoglobin contact activity method.
  • the test paper contains 30.0 mg cumene hydroperoxide and 15.0 mg TMBZ per 100 sheets.
  • the reaction time can be appropriately set, but is preferably 30 seconds to 5 minutes.
  • the detection conditions at the time of detecting with a detection apparatus can be set suitably.
  • Measurement can be performed at a measurement wavelength of 635 nm with a reaction time of 60 seconds. Based on the measurement result, the hemoglobin concentration can be calculated, and the occult blood volume can be calculated from the hemoglobin concentration.
  • the measurement of the white blood cell count is not particularly limited, but it is preferably performed by, for example, the white blood cell esterase method.
  • the leukocyte count can be calculated by measuring the esterase activity.
  • the leukocyte esterase method directly colors the alcohol (phenol) component produced by hydrolysis of the ester compound used as a substrate by the esterase (leukocyte esterase) produced by leukocytes, or This is a technique for measuring the white blood cell count by coupling with a diazonium salt to cause coloration.
  • ester compound used as a substrate sulfophthalein esters or azo dye esters can be used for direct coloring, and phenoxy-amino acid for coupling with other indicators for coloring.
  • Esters, indoxyl esters, phenylpyroxyl esters, and the like can be used.
  • indoxyl esters for example, 3- (N-toluenesulfonyl-L-alanyloxy) indole (TAI) can be preferably used.
  • a diazonium salt can be used as an indicator in the case of color formation by coupling.
  • 2-methoxy-4- (N-morpholino) benzenediazonium salt can be preferably used.
  • the indoxyl produced by the reaction is coupled with, for example, 2-methoxy-4- (N-morpholino) benzenediazonium salt (MMB). It can be colored by ringing.
  • MMB 2-methoxy-4- (N-morpholino) benzenediazonium salt
  • a test paper for leukocyte measurement of Auston Sticks (manufactured by ARKRAY, Inc.) can be used.
  • the test paper contains TAI 0.49 mg and MMB 0.17 mg per 100 sheets.
  • the reaction time can be appropriately set, but is preferably 30 seconds to 5 minutes.
  • the detection conditions at the time of detecting with a detection apparatus can be set suitably.
  • a white blood cell measurement test paper manufactured by Ortion Sticks manufactured by ARKRAY, Inc.
  • Pocket Chem UA PU-4010 manufactured by ARKRAY, Inc.
  • measurement can be performed at a measurement wavelength of 565 nm and a reference wavelength of 760 nm. Based on the measurement results, the esterase activity can be calculated, and the white blood cell count can be calculated from the esterase activity.
  • the measurement of the total protein concentration is not particularly limited, but is preferably performed by, for example, a protein error method.
  • the protein error method is a protein measurement method that utilizes the fact that a pH indicator shows a pH higher than the true pH of a solution in proportion to the protein concentration.
  • pH indicators examples include tetrabromophenol blue (TBPB), tetrabromophenol phthalene, 5 ′, 5 ′′ -dinitro-3 ′, 3 ′′ -diiodo-3,4,5,6.
  • TBPB tetrabromophenol blue
  • DIDNTB tetrabromophenol sulfophthalein
  • Coomassie brilliant blue first green FCF, light green SF and the like (for example, see US Patent No. 40141316)
  • tetrabromophenol blue is preferably used.
  • the indicator is insoluble in water
  • the reagent solution may be prepared using an organic solvent such as acetone, ethanol, methyl cellosolve, or the like.
  • an acidic buffer as a pH buffer.
  • a non-volatile organic acid can be preferably used.
  • the non-volatile organic acid include citric acid, malic acid, tartaric acid, malonic acid, oxalic acid, sulfosalicylic acid, sulfanilic acid, benzoic acid, A tricarballylic acid is mentioned.
  • an inorganic acid such as metaphosphoric acid can be used as the acidic buffer.
  • the acidic buffer may be a buffer such as a mixture of potassium hydrogen phthalate and potassium phosphate.
  • concentration of the acidic buffer is preferably sufficient to prevent the protein error indicator from discoloring when in contact with the sample, even if no significant amount of protein is present in the sample. Or 50 to 1500 mM, more preferably 1000 to 1200 mM, in the reagent solution to be applied.
  • a test paper for protein measurement of AUTION Sticks (manufactured by ARKRAY Inc.) can be used.
  • the test paper contains 0.35 mg of TBPB per 100 sheets.
  • the reaction time can be appropriately set, but is preferably 30 seconds to 5 minutes.
  • the detection conditions at the time of detecting with a detection apparatus can be set suitably.
  • the protein measurement test paper of Aushon Sticks As an absorbent carrier for protein measurement
  • Pocket Chem UA PU-4010 As a detection device
  • measurement can be performed at a measurement wavelength of 635 nm and a reference wavelength of 760 nm. Based on the measurement result, the total protein concentration can be calculated.
  • the quantification of ammonia is not particularly limited, but is preferably performed by, for example, a micro-diffusion method (Conway method).
  • the micro-diffusion method is a method used for quantification of ammonia nitrogen, and is a method of trapping a component that volatilizes from a sample in an absorption solution or the like and quantifying it by a method such as colorimetry.
  • the absorption of spotting the test sample is separated from the absorbent carrier (reagent layer) holding the reagent at the ammonia determination site in the test piece of the present invention.
  • An absorptive carrier (sample layer) is provided, and both absorptive carriers are placed so as not to contact each other. Both absorptive carriers are installed so as not to contact each other, for example, by sandwiching a PET film having fine holes between both absorptive carriers.
  • the sample layer also holds an alkaline buffer, such as a borate buffer. When the test sample is spotted on the sample layer of the test piece, the alkaline buffer in the sample layer is dissolved, and the sample becomes alkaline. Ammonium ions in the sample become ammonia molecules under alkaline conditions, volatilize as ammonia gas, and move to the reagent layer through, for example, a hole in the spacer. The indicator in the reagent layer reacts with ammonia gas and develops color.
  • any known pH indicator can be used.
  • the pH indicator for example, bromcresol green, bromcresol purple, chlorophenol red and the like are used, and bromcresol green is preferably used.
  • a test paper included in Amicheck which is an ammonia measurement kit
  • the test paper contains 42.6 mg boric acid and 18.7 mg sodium hydroxide per 100 sheets, and 4.0 mg bromcresol green in the reagent layer.
  • the reaction time can be appropriately set, but is preferably 10 seconds to 5 minutes.
  • the detection conditions at the time of detecting with a detection apparatus can be set suitably.
  • a test paper included in Amicheck Arkray Co., Ltd.
  • Pocket Chem UA PU-4010 Arkray Co., Ltd.
  • the sample layer and the spacer are peeled off from the reagent layer 20 seconds after the sample is spotted on the sample layer, and after 60 seconds, the reagent layer can be measured at a measurement wavelength of 635 nm. Based on the measurement result, the ammonia concentration can be calculated.
  • the measurement of lactate dehydrogenase activity is not particularly limited, and is performed, for example, by the formazan method.
  • the formazan method is a technique in which lactate dehydrogenase uses NAD as a coenzyme, and NADH produced by oxidizing lactate dissolves diaphorase to reduce the tetrazolium salt to formazan, which is a color substance.
  • tetrazolium violet can be suitably used as the tetrazolium salt.
  • alkaline phosphatase activity is not particularly limited, but is performed, for example, by the p-nitrophenyl phosphate method.
  • the p-nitrophenyl phosphate method is a technique for quantifying p-nitrophenol, which is a color substance, produced by hydrolysis of p-nitrophenyl phosphate, which is a substrate by alkaline phosphatase.
  • the above measurement methods can be preferably used in the absorbent carrier provided on the test piece of the present invention.
  • each of the above measuring methods is not limited to the case of using a test piece provided with an absorbent carrier, for example, when using a test piece not provided with an absorbent carrier or when reacting with a sample in a container such as a tube.
  • the reagent concentration, reaction time, etc. can be appropriately set and used. Therefore, the analysis tool of the present invention is preferably used for measuring parameters reflecting caries risk, periodontal disease risk, and oral cleanliness in a short time and in one inspection. Further, if the analysis tool of the present invention is used, objective, reproducible and reliable measurement can be performed without depending on the inspection technique of an inspection engineer or a doctor.
  • the analysis tool of the present invention is configured to be able to measure parameters reflecting caries risk, periodontal disease risk, and oral cleanliness as described above. That is, for example, the analysis tool of the present invention can measure one or more parameters selected from the group consisting of the number of mutans bacteria, pH, and acid buffering capacity as parameters that reflect caries risk, and thereby the risk of periodontal disease.
  • One or more parameters selected from the group consisting of calcium concentration, total protein concentration, occult blood volume, and white blood cell count can be measured as parameters that reflect the amount of ammonia, and ammonia concentration and total protein concentration as parameters that reflect oral cleanliness
  • one or more parameters selected from the group consisting of can be measured.
  • the analytical tool of the present invention can measure the number of mutans bacteria, pH, and acid buffering capacity as parameters reflecting caries risk, and the calcium concentration, total protein concentration, occult blood volume as parameters reflecting periodontal disease risk It is also preferable that the white blood cell count can be measured and the ammonia concentration and the total protein concentration can be measured as parameters reflecting the oral cleanliness. Moreover, it is particularly preferable that the analysis tool of the present invention is configured to measure all seven parameters including the number of mutans bacteria, pH, acid buffer capacity, occult blood volume, white blood cell count, ammonia concentration, and total protein concentration.
  • the second aspect of the analysis tool of the present invention is an analysis tool provided with a reagent for measuring two or more parameters reflecting caries risk for a test sample obtained from the oral cavity.
  • a third aspect of the analysis tool of the present invention is an analysis tool provided with a reagent for measuring two or more parameters reflecting periodontal disease risk for a test sample obtained from the oral cavity, for example. .
  • a fourth aspect of the analysis tool of the present invention is an analysis tool provided with a reagent for measuring two or more parameters that reflect oral cleanliness, for example, for a test sample obtained from the oral cavity.
  • the first aspect of the measuring device of the present invention is that (A) the test sample obtained from the oral cavity has one or more parameters reflecting the caries risk, the risk of periodontal disease. One or more parameters to reflect and a measurement unit that measures one or more parameters that reflect oral cleanliness, (B) from the results measured by the measurement unit, caries risk, periodontal disease risk, and It is a measuring apparatus provided with the display part which displays the risk level determined by the risk level determination part which determines the level of oral cleanliness, (C) risk level determination part as a character, a figure, a symbol, color, or these combination.
  • the measurement apparatus of the present invention is a measurement apparatus further including (D) a display unit that displays a comment based on the risk level determined by the risk level determination unit.
  • D a display unit that displays a comment based on the risk level determined by the risk level determination unit.
  • the measuring device 2 includes a measuring unit 21.
  • the measurement unit 21 is a part that acquires measurement data of each parameter. For example, when measuring each parameter using the test piece of the present invention, the measurement unit 21 measures the progress of the color reaction in each absorbent carrier provided in the test piece of the present invention.
  • the progress of the color reaction can be measured based on the absorbance at a specific wavelength.
  • reflectance data correlated with the progress of the color reaction may be acquired.
  • the reflectance data may be, for example, a reflectance value at a specific wavelength after a predetermined time has elapsed since the test sample was brought into contact with the measurement reagent of each parameter.
  • the reflectance value can be obtained by irradiating a colored portion, for example, an absorbent carrier portion spotted with a test sample, and measuring the reflected light.
  • the reflectance data may be, for example, a value obtained by dividing the reflectance value obtained as described above from 100%. Note that the higher the absorbance at a specific wavelength, the lower the reflectance value at the specific wavelength, and the lower the absorbance at the specific wavelength, the higher the reflectance value at the specific wavelength.
  • the fixed time may be, for example, the reaction time in each parameter measurement method as described above, and may be set as appropriate according to the type of parameter to be measured and the measurement method.
  • the reflectance data may be, for example, a change value of the reflectance over a certain time at a specific wavelength.
  • the reflectance change value can be obtained by irradiating a colored portion, for example, an absorbent carrier portion spotted with a test sample, and measuring the increase or decrease of the reflected light. .
  • An increase in absorbance at a specific wavelength can be measured as a decrease in reflectance at the specific wavelength.
  • the decrease in absorbance at a particular wavelength can be measured as an increase in reflectance at that particular wavelength.
  • the certain period of time may be from the time immediately after the test sample is deposited until a certain time elapses, or from a certain time after the test sample is deposited until a certain time elapses. .
  • the change value of the reflectance can be calculated as a difference between measured values obtained by measuring the reflectance at least twice. Further, the change value of the reflectivity over a certain period of time may be calculated as the change rate of the reflectivity based on the reflectivity measured a plurality of times. It should be noted that immediately after the test sample is deposited or after the test sample is deposited, such as when the reflectance is assumed to be constant immediately after the test sample is deposited or at a certain time after the test sample is deposited. If it is not necessary to measure the reflectance at the time, the number of reflectance measurements may be reduced.
  • Which of the above values should be used as the reflectance data may be appropriately set according to the type of parameter to be measured and the measurement method. For example, when measuring the number of mutans bacteria by the resazurin method, it is preferable to measure the change in reflectance. Specifically, for example, when the number of mutans bacteria is measured by the resazurin method, if the reaction time is 5 minutes, the change in reflectance during 4 minutes from 1 to 5 minutes after the start of the reaction may be measured. . Also, for example, when measuring a parameter whose reflectance decreases as the parameter deteriorates at a specific wavelength, the reflectance value is used. When measuring a parameter whose reflectance increases as the parameter deteriorates, for example.
  • the reflectance at a measurement wavelength of 635 nm increases as the pH deteriorates, that is, becomes acidic.
  • the wavelength of the light source used to acquire the reflectance data can be set as appropriate based on the measurement method of each parameter and the detection device used. Further, the measurement wavelength and the reference wavelength for removing the influence of the background may be individually set and used.
  • Each parameter may be measured sequentially, or a plurality of parameters may be measured simultaneously by an apparatus having a plurality of photometric parts.
  • the measuring device 2 includes a control unit 23.
  • the control unit 23 includes a CPU and a RAM, and a risk level determination unit including a rank determination unit 231A and two risk level determination units 231B and 231C, which will be described later, by the CPU interpreting and executing a program expanded in the RAM. 231 and the comment determination unit 232.
  • the program is stored in a program storage unit 241 of the storage unit 24 described later.
  • the risk level determination unit 231 is included in the control unit 23, and includes a rank determination unit 231A and two risk level determination units 231B and 231C.
  • the rank determination unit 231A is based on a table in which the correlation between the rank of the parameter reflecting the caries risk, periodontal disease risk, or oral cleanliness stored in the storage unit 24 to be described later and the reflectance data is set.
  • the rank of each parameter is determined for the test sample.
  • the rank of the mutans bacteria count is determined for the test sample based on a table in which the correlation between the rank of the mutans bacteria count and the reflectance data is set.
  • the rank to be judged is two or more levels, preferably 3 to 8 levels.
  • the risk level determination unit 231B is a parameter determined by the rank determination unit 231A based on a table in which the correlation between the rank of each parameter stored in the storage unit 24 described later and the level of risk reflected by the parameter is set. It is determined which risk level corresponds to the risk that the parameter reflects. For example, based on a table showing the correlation between the rank of the number of mutans bacteria and the level of caries risk, the determination rank of the number of mutans bacteria determined by the rank determination unit 231A corresponds to which risk level in the caries risk. To determine.
  • the risk level determination unit 231C calculates the level of the risk for each risk based on the risk level in the risk of the parameter reflecting the risk determined by the risk level determination unit 231B.
  • the caries risk level of the subject is determined based on the risk level in the caries risk of the mutans bacteria count, pH, and acid buffer capacity determined by the risk level determination unit 231B.
  • the risk level is 2 or more, preferably 3 to 6.
  • the risk level determination unit 231 is shown as an aspect including a rank determination unit 231A and two risk level determination units 231B and 231C, but each risk is obtained by the measurement unit 21.
  • the risk level is determined based on the measurement result of the parameter reflecting the risk, any mode may be used.
  • the risk level is determined directly from each reflectance data without determining the rank. May be.
  • the risk level determination unit 231 may determine the risk level of a certain risk by combining a parameter corresponding to a certain risk and a parameter corresponding to another risk. For example, the risk level determination unit 231 combines the one or more parameters that reflect the caries risk with one or more parameters that reflect the periodontal disease risk and / or oral cleanliness. A determination may be made. Moreover, the risk level determination part 231 may determine the risk level of each risk by combining the parameter corresponding to each risk and the personal data of the subject.
  • the comment determination unit 232 is included in the control unit 23, and the risk level determined by the risk level determination unit 231C based on a table indicating the correlation between the risk level and the comment in each risk stored in the storage unit 24 described later. Select the comment corresponding to.
  • the measuring device 2 includes a display unit 22.
  • the display unit 22 is an aspect of the output in the present invention.
  • the measurement value obtained by the measurement unit 21, the rank determined by the rank determination unit 231A, the risk level determined by the risk level determination unit 231C, and the comment determination unit This is a part for displaying the comment selected in H.232.
  • the display unit 22 is not particularly limited as long as it can display information such as characters and images. For example, a liquid crystal display including an LED backlight is preferably used.
  • the display by the display unit 22 is performed in any format such as characters, figures, symbols, colors, or combinations thereof.
  • the display unit 22 can individually display information such as measurement results of each parameter, determination rank, each risk level, and comments corresponding thereto, if necessary.
  • the information may be collectively displayed in an arbitrary form such as a character, a figure, a symbol, a color, or a combination thereof so as to assist in the diagnosis.
  • the display unit 22 is adopted as one aspect of the output in the present invention, but the output may be any output form that can be recognized by a doctor, a dental hygienist, or a subject, for example, printing Or may be output by voice.
  • information may be output by arbitrarily combining visual display on the display unit, output by printing, output by sound, and the like.
  • the parameter value is calculated from the reflectance data of each parameter obtained by the measuring unit 21 based on calibration curve data (not shown) indicating the correlation between the parameter and the reflectance data. May be. That is, for example, the number of mutans bacteria in a test sample may be calculated based on calibration curve data (not shown) indicating the correlation between the number of mutans bacteria and reflectance data.
  • a comment corresponding to the rank of each parameter determined by the rank determination unit 231A may be selected based on a table indicating the correlation between the rank of each parameter and the comment. Further, the selected comment may be output.
  • the measuring device 2 includes a storage unit 24.
  • the storage unit 24 includes a program storage unit 241 and a measurement data storage unit 242.
  • the program storage unit 241 stores a program developed in the RAM of the control unit 23 and executed by the CPU.
  • the measurement data storage unit 242 stores measurement value data obtained by the measurement unit 21. It is also preferable that the storage unit 24 further stores the results determined by the rank determination unit 231A and the risk level determination units 231B and 231C. Further, the storage unit 24 may store basic information such as that stored in a conventional measuring apparatus such as subject information such as the name of the subject and contact information.
  • the reflectance measuring device for urine test paper or blood test paper can be customized according to the analytical tool of the present invention and its measurement items.
  • a reflectance measuring instrument for urine test paper for example, Pocketchem UA PU-4010 (manufactured by ARKRAY, Inc.) can be used.
  • Pocket Chem UA PU-4010 it is possible to perform measurement by two-wavelength reflection photometry.
  • the photometry unit irradiates the colored part with two types of light having different wavelengths from the multi-LED, that is, the light of the measurement wavelength and the light of the reference wavelength. Color development can be measured.
  • the measuring device of the present invention may or may not be a stand-alone device. That is, each unit may be physically independent as long as data can be transmitted and received with each other.
  • the measurement data may be transmitted to another device using an electric communication line or the like, and the risk level may be determined by the other device.
  • the determined risk level may be transmitted to another device using a telecommunication line or the like, and information such as a risk level determined by the other device and a comment based thereon may be displayed.
  • reflectance data for measuring each parameter using a test piece including an absorbent carrier that holds a reagent for measuring each parameter which is an embodiment of the analysis tool of the present invention.
  • the method for measuring each parameter is not limited to the case of using a test piece with an absorbent carrier, for example, when using a test piece without an absorbent carrier or in a container such as a tube.
  • it can also be used when reacting with a sample. That is, without using the test piece of the present invention, for example, by adding a test sample into a reaction tube containing a reagent for measuring an arbitrary parameter, the color reaction proceeds to obtain reflectance data. Is also possible. Therefore, in the present invention, the step of “measuring parameters” can be performed using the analytical tool of the present invention.
  • a second aspect of the measuring apparatus of the present invention is a measuring apparatus provided with the following (A) to (C).
  • a third aspect of the measuring apparatus of the present invention is a measuring apparatus provided with the following (A) to (C), for example.
  • a fourth aspect of the measuring apparatus of the present invention is a measuring apparatus provided with the following (A) to (C), for example.
  • the 1st aspect of the program of this invention is a program which makes a computer perform the following steps (A) and (B).
  • the program of the present invention may further cause the computer to execute the following step (C).
  • step (C) A step of displaying a comment on the display unit based on the level determined in step (A).
  • the program of the present invention can cause the measuring apparatus of the present invention to execute the above steps, for example.
  • FIG. 4 shows steps executed by a computer according to the present invention in an embodiment of the program according to the present invention.
  • the analysis tool of the present invention is set in the apparatus 2, and the reflectance data of each absorbent carrier is measured by the measuring unit 21.
  • the measured reflectance data is stored in the measurement data storage unit 242.
  • step S1 each risk level is determined based on the data acquired by the measurement unit 21.
  • Step S1 includes steps S11, S12, and S13.
  • the rank determination unit 231A is based on a table in which correlation between the rank of the parameter reflecting the caries risk, periodontal disease risk, or oral cleanliness stored in the storage unit 24 and the reflectance data is set. Then, the rank of each parameter is determined for the test sample.
  • the rank to be judged is two or more levels, preferably 3 to 8 levels.
  • the reflectance data value of an arbitrary parameter acquired by the measurement unit 21 is x, and the rank is divided into n stages (n is an arbitrary integer). , Any integer satisfying n ⁇ m), and the threshold value of the reflectance data value is t m .
  • step S11 ends, the process proceeds to step S12.
  • step 12 the risk level determination unit 231B determines the risk level corresponding to the parameter based on a preset table for the rank of the parameter determined in step 11. .
  • step S13 the risk level determination unit 231C determines the risk level of the risk reflected by the parameter based on the risk level of the parameter determined in step S12.
  • the risk level is 2 or more, preferably 3 to 6.
  • the largest value is used as p among the corresponding risk levels.
  • the risk level corresponding to the rank of mutans bacteria is 4
  • the risk level corresponding to the pH rank is 2
  • the risk level corresponding to the acid buffer capacity rank is 3.
  • the risk level of the risk is determined based on the parameter having the maximum corresponding risk level. Is not particularly limited as long as the risk level is determined based on a parameter reflecting an arbitrary risk. For example, an average value of risk levels corresponding to the rank of the one or more parameters is calculated, and the risk level is calculated based on the average value. May be determined. Further, when an arbitrary risk level is determined based on the measurement results of a plurality of parameters, the measurement results of the plurality of parameters may be handled with equal weights or may be handled with weights. . The weighting can be set based on, for example, the importance of the parameter for an arbitrary risk.
  • the measurement result of the mutans bacteria count is more strongly reflected than the measurement results of the other two parameters.
  • the level of erosion risk may be determined.
  • the contents of the determination step can be set as appropriate. Good.
  • step S1 the process proceeds to step S2.
  • step S2 the display unit 22 displays the risk level determined in step S13 in an arbitrary format.
  • Examples of the format in which the risk level is displayed include numerical values, figures, and tables.
  • the graphic is not particularly limited, and can be displayed as a graphic in an arbitrary format such as a bar graph or a radar chart.
  • step S1 ends, the process proceeds to step S3.
  • the comment determination unit 232 selects a comment corresponding to the risk level determined in step S13, and the display unit 22 displays the selected comment.
  • the comment indicates, for example, what kind of response should be taken clinically for each risk.
  • a comment regarding caries risk, it can be said that “Muscle toothbacteria are detected at a high level, the acid buffering capacity of saliva is weak, and the risk of tooth decay is high. Be sure to clean the mouth after meals.
  • step S ⁇ b> 1 includes step S ⁇ b> 11, step S ⁇ b> 12, and step S ⁇ b> 3 is shown, but for each risk, the measurement result of the parameter that reflects the risk obtained by the measurement unit 21.
  • step S1 may be in any form.
  • the risk level may be determined from the reflectance data without determining the rank.
  • Correlation data used for each process such as the correlation between the rank of parameters for determining the rank and the reflectance data, the correlation between the rank and the risk level for determining the risk level from the rank, is used for oral examination and dental practice.
  • the measured value of each parameter of the oral test sample obtained from a large number of subjects and each risk are compared with the diagnosis of the dentist and statistical processing is performed.
  • the numerical value of each risk level and the test sample It is created by associating with the measured value of each parameter.
  • Table 1 shows an example of the value of each parameter and the corresponding risk level when the risk level is classified into three levels for each parameter.
  • the value of the acid buffer capacity indicates the final pH value when a sample obtained from the oral cavity is spotted on a test paper holding a certain amount of acid.
  • the program of the present invention may cause the computer to execute a step of displaying each parameter reflecting each risk as a numerical value, a figure, or a table based on the determined rank.
  • the program of this invention may make a computer perform the step which displays a comment also about each parameter reflecting each risk based on the determined rank.
  • the comment about a parameter explains the measurement result of each parameter, for example. Examples of comments on the parameters are: “There are few worms in saliva and it is in good condition.” “The acidity of saliva is near neutral. Let's keep this state by daily care.” “There is occult blood in saliva. There is a possibility of bleeding from the gingiva, and care is needed.” And “A salmon ammonia concentration is high and bacteria are actively breeding. Need care, "and so on.
  • the reflectance data is measured in the measurement unit 21 and the measured reflectance data is stored in the measurement data storage unit 242, but instead of the measurement in the measurement unit 21,
  • the result of the color reaction in the analysis tool of the present invention may be observed with the naked eye, and the subsequent processing may be performed using the result as reflectance data. That is, the progress of the color reaction in the analytical tool of the present invention can be observed under an arbitrary light source, and data for measuring each parameter can be acquired.
  • the arbitrary light source may be, for example, natural light, a fluorescent light, an incandescent light bulb, or the like, or may be a light source limited to a specific wavelength. Therefore, in the present invention, the step of “measuring parameters” can be performed without using a detection device.
  • each step may be executed by a single computer or may be executed by a plurality of physically independent computers.
  • the measurement data may be transmitted to another device using an electric communication line or the like, and the risk level may be determined by the other device. Further, the determined risk level may be transmitted to another device using a telecommunication line or the like, and information such as a risk level determined by the other device and a comment based thereon may be displayed.
  • the measurement data is input on the WEB
  • the measurement data is transmitted to the risk level determination server
  • the risk level is determined by the determination server
  • the determination result is further executed. Can be illustrated on the WEB.
  • a charging system based on data transmission / reception using a telecommunication line or the like may be employed.
  • a billing system for example, there is a system that charges when a user displays a risk level judgment result on a WEB browser or when a file containing a risk level judgment result is downloaded. Can be mentioned. Charging can be performed by an arbitrary method such as a display / download pay-as-you-go system and a flat-rate system in which charging is performed according to a period such as day, week, or month.
  • the program of the present invention may be provided by being recorded on a computer-readable recording medium.
  • the computer-readable recording medium is such that information such as data and programs is accumulated by electrical, magnetic, optical, mechanical, chemical action, etc., and the accumulated information is read from the computer.
  • a recording medium for example, floppy (registered trademark) disk, magneto-optical disk, CD-ROM, CD-R / W, DVD-ROM, DVD-R / W, DVD-RAM, DAT, 8 mm tape, memory
  • a recording medium for example, floppy (registered trademark) disk, magneto-optical disk, CD-ROM, CD-R / W, DVD-ROM, DVD-R / W, DVD-RAM, DAT, 8 mm tape, memory
  • a card a hard disk, a ROM (read only memory), an SSD, and the like.
  • the program of the present invention may be recorded as a separate program for each step executed by the computer.
  • the 2nd aspect of the program of this invention is a program which makes a computer perform the following steps (A) and (B).
  • the 3rd aspect of the program of this invention is a program which makes a computer perform the following steps (A) and (B), for example.
  • the 4th aspect of the program of this invention is a program which makes a computer perform the following steps (A) and (B), for example.
  • a parameter reflecting the oral condition of the subject is measured, and based on the measurement result, the oral condition, that is, oral disease risk and / or oral hygiene condition Can be determined. That is, the present invention provides a method for determining the oral condition of a subject.
  • a first aspect of the method of the present invention is a method for determining the oral condition of a subject, and includes the following (A), (B), and (C): It is the method of including.
  • B A step of measuring one or more parameters reflecting the periodontal disease risk for a test sample obtained from the oral cavity and determining the level of periodontal disease risk using the measured parameter as an index.
  • C A step of measuring one or more parameters reflecting oral cleanliness for a test sample obtained from the oral cavity, and determining the level of oral cleanliness using the measured parameters as an index.
  • steps (A) to (C) may be executed simultaneously or individually.
  • the second aspect of the method of the present invention is to measure two or more parameters reflecting caries risk for a test sample obtained from the oral cavity, and use the measured parameters as an index for caries risk.
  • a method for determining a caries risk of a subject including a step of determining a level.
  • the third aspect of the method of the present invention is, for example, for a test sample obtained from the oral cavity, measuring two or more parameters reflecting periodontal disease risk, and using the measured parameters as indices,
  • a method for determining a periodontal disease risk comprising a step of determining a level of a periodontal disease risk.
  • the fourth aspect of the method of the present invention is, for example, for a test sample obtained from the oral cavity, measuring two or more parameters reflecting oral cleanliness, and using the measured parameters as an index, It is a method of determining oral cleanliness including the step of determining the degree level.
  • the method of the present invention is not particularly limited, but can be suitably implemented using, for example, the analysis tool, analysis device, program, etc. of the present invention described above.
  • the description of the analysis tool, analysis apparatus, program, etc. of the present invention described above can be applied to the method of the present invention by changing where it should be changed.
  • the method of the present invention may further include a step of displaying the determined level, and may include a step of displaying a comment based on the determined level, and the comment based on the measurement result of the parameter.
  • the process of displaying may be included.
  • the test sample obtained from the oral cavity is not particularly limited as long as the target parameter can be measured, for example, saliva at rest, gargle with purified water, or gum saliva collected by stimulation with gum Can be used.
  • a rinse solution with purified water is preferable.
  • the gargle with purified water can be obtained, for example, by containing 3 ml of purified water in the mouth for 10 seconds and discharging it into a container. The volume of purified water and the time for the mouth can be changed as needed.
  • the obtained test sample can be used for subsequent operations without any special pretreatment.
  • the test sample is spotted on an absorbent carrier that holds each measurement reagent provided on the test piece, or a sample that is provided in contact with the absorbent carrier that holds each measurement reagent. It is possible to directly react with each reagent for measurement by spotting on an absorbent carrier. However, when the quantitative determination of ammonia is performed by the micro-diffusion method, the absorbent carrier that holds the measurement reagent and the absorbent carrier that deposits the test sample are installed without being in contact with each other. The test sample is not in direct contact with the measurement reagent. Further, when each parameter is measured without using a test piece, for example, the color reaction can be advanced by adding a test sample to a liquid reaction system including an arbitrary parameter measurement reagent.
  • the following procedure shows an example of a procedure in which a test sample is measured using a test piece of the present invention, a measuring apparatus of the present invention, and a program of the present invention, and a doctor or the like makes a diagnosis.
  • a test sample obtained from the oral cavity a gargle with 3 ml of purified water is collected.
  • the test sample was changed to each absorbent carrier of the test piece of the present invention or, if an absorbent carrier for spotting the sample was provided, spotted on the carrier and changed at a predetermined time.
  • the color tone is measured with the measuring apparatus of the present invention.
  • each risk level is judged and displayed. Furthermore, comments are displayed for each of caries risk, periodontal disease risk, and oral cleanliness based on each risk level. 4). Based on the displayed information, a doctor or the like diagnoses the subject's oral disease risk and oral hygiene status.
  • an absorptive carrier for measuring mutans bacteria a test piece provided with an absorptive carrier prepared by immersing in a reagent solution for measuring mutans bacteria was used as a test group.
  • the reagent solution contains 30 mM sucrose, 0.2% polyvinyl alcohol, 100 mM phosphate buffer (pH 6), 0.1 mM methoxy PMS, and 0.12 mM resazurin.
  • the test piece which installed the absorbent carrier produced by immersing in the reagent solution which does not add methoxy PMS was used as a control group.
  • each mutans bacterium level in the oral cavity was determined to be high, medium or low Hired.
  • gargle liquid obtained from each subject by using 3 ml of purified water in the mouth for 10 seconds and discharging it into a container was used.
  • a carrier containing methoxy PMS prepared in Test Example 1 was used as an absorptive carrier containing a reagent for measuring mutans bacteria.
  • Tests for measuring pH, occult blood, white blood cell count and total protein concentration of commercially available AUTION Sticks (trade name, manufactured by ARKRAY, Inc.) as a carrier for measuring pH, occult blood, white blood cell count and total protein concentration Paper was diverted.
  • As the acid buffering capacity measurement carrier 7 ⁇ l of 1 mM tartaric acid was spotted on one piece of pH measurement test paper of AUTION Sticks (trade name, manufactured by ARKRAY, Inc.) and dried.
  • a carrier for measuring ammonia a commercially available carrier of Amicheck (trade name, manufactured by ARKRAY, Inc.) was diverted.
  • a carrier for measuring calcium concentration a commercially available reagent pad of Spotchem II calcium (trade name, manufactured by ARKRAY, Inc.) was used.
  • Each of the above carriers is affixed to a support carrier made of PET, and a test piece provided with reagents for measuring the number of mutans bacteria, pH, acid buffer capacity, occult blood volume, white blood cell count, ammonia concentration, total protein concentration, and calcium concentration Manufactured.
  • the carrier for measuring the total protein concentration can be commonly used for determination of periodontal disease risk and determination of oral cleanliness.
  • Example 2 Risk of oral disease and prediction of oral cleanliness by saliva testing system (1)
  • the measurement results of the parameters used in the determination method of the present invention it was examined whether or not the diagnosis result of oral disease risk and cleanliness by the dentist can be predicted.
  • DMFT is an index indicating caries experience, and is expressed as the total number of untreated caries, number of teeth lost due to caries, and number of teeth treated with caries in permanent teeth.
  • CPI is an index indicating the necessity of treatment of periodontal disease, and is calculated based on a criterion obtained by scoring the test results of periodontal tissue using a WHO periodontal probe. For CPI, the upper and lower jaws were divided into six parts, the right molar part, the anterior tooth part, and the left molar part, and the average of the maximum values of each part was used for evaluation.
  • OHI-DI is an index indicating the state of cleaning of the mouth, and is calculated based on a standard that scores the state of plaque deposition on the tooth surface. About OHI-DI, it divided into 6 site
  • the prediction accuracy was improved by combining a plurality of saliva component measurement values corresponding to a certain oral condition (Table 4). Moreover, it became clear that prediction accuracy (multiple correlation coefficient) is further improved by combining personal data (Table 5). Moreover, it became clear that the prediction accuracy (multiple correlation coefficient) is further improved by combining the saliva component measurement value corresponding to one oral condition and the saliva component measurement value corresponding to another oral condition. (Table 6). Therefore, prediction accuracy is improved by a combination of saliva component measurement values and the like, and it is possible to determine caries risk, periodontal disease risk, and oral cleanliness with high accuracy.
  • DNA was extracted from saliva using a DNA extraction kit (Nexttec), and three species known as periodontal disease representative bacteria, namely Porphyromonas gingivalis (Pg), Tannerella forsythensis (Tf), and Treponema
  • Pg Porphyromonas gingivalis
  • Tf Tannerella forsythensis
  • Treponema The number of bacteria of denticola (Td) was measured by real-time PCR, and the total value was used for evaluation.
  • the reaction composition and reaction conditions of real-time PCR were carried out under the conditions shown in Tables 7 and 8 for all bacterial species.
  • Tables 9 and 10 show the sequences of the primers and TaqMan probes used.
  • the number of colonies was counted after applying saliva diluted 100-10,000 times in MSB plate medium and culturing at 37 ° C under anaerobic conditions for 3 days.
  • the total number of bacteria the number of colonies was counted after applying saliva diluted 10000 to 100,000 times in a blood plate medium and culturing at 37 ° C. under anaerobic conditions for 1 week.
  • the composition of each medium is shown in Tables 11 and 12.
  • the prediction accuracy was improved by combining a plurality of saliva component measurement values corresponding to a certain oral condition (Table 14). It was also revealed that the prediction accuracy (multiple correlation coefficient) was further improved by combining personal data (Table 15). Moreover, it became clear that the prediction accuracy (multiple correlation coefficient) is further improved by combining the saliva component measurement value corresponding to one oral condition and the saliva component measurement value corresponding to another oral condition. (Table 16). Therefore, prediction accuracy is improved by a combination of saliva component measurement values and the like, and it is possible to determine caries risk, periodontal disease risk, and oral cleanliness with high accuracy.
  • parameters reflecting the oral condition that is, oral disease risk and / or oral hygiene condition can be measured, and the oral condition of the subject can be determined based on the measurement result.
  • a plurality of components or properties reflecting the oral disease risk and oral hygiene state can be measured in a short time and once, and each risk level can be determined.
  • a doctor or the like can objectively and comprehensively diagnose the oral disease risk and oral hygiene status of the subject based on the determined risk level. Therefore, the present invention is useful for performing diagnosis of oral hygiene and subsequent care guidance in one visit.
  • control unit 231 ... risk level judging unit 231A ... rank judging Part 31B ⁇ risk level determination section 231C ⁇ risk level determination section 232 ... Comments determining section 24 ... storage unit 241 ... program storage unit 242 ... data storage unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Sustainable Development (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 被検者の口腔状態を判定する手段を提供する。以下の(A)、(B)、および(C)を備える分析用具を用いて被検者の口腔状態を判定する。 (A)口腔から得られる被検試料について、う蝕リスクを反映する1またはそれ以上のパラメータを測定するための試薬、 (B)口腔から得られる被検試料について、歯周病リスクを反映する1またはそれ以上のパラメータを測定するための試薬、及び (C)口腔から得られる被検試料について、口腔清潔度を反映する1またはそれ以上のパラメータを測定するための試薬。

Description

口腔状態の判定方法、並びにそのために用いられる分析用具、装置、及びプログラム
 本発明は、被検者の口腔状態を判定する方法、並びにそのために用いることができる分析用具、装置、及びプログラムに関する。
 口腔状態、すなわち口腔疾患リスクや口腔衛生状態を知ることは、種々の口腔疾患の予防又は治療のためにきわめて重要であり、口腔疾患リスクや口腔衛生状態を判定する手法の開発が強く望まれている。口腔疾患リスクとは、例えば、う蝕リスク、すなわち口腔がどの程度虫歯に罹患しやすい状態にあるか、及び、歯周病リスク、すなわち口腔がどの程度歯周病に罹患しやすい状態にあるか、等のことを言う。従来、口腔疾患リスクや口腔衛生状態の診断は、被検者から採取された唾液やうがい液を試料として用いて、口腔疾患リスクや口腔衛生状態を反映する個々の成分あるいは性質を測定し、測定結果を基に医師等が行っていた。
 例えば、唾液中のミュータンス菌数または唾液の酸緩衝能等は、う蝕リスクを反映すると知られており、それぞれ、ミュータンス菌数が高ければ、あるいは酸緩衝能が低ければ、う蝕リスクは高いと考えられる。ここで、ミュータンス菌の検出法としては、抗体を用いた検出法(特許文献1)や酸化還元指示薬であるレサズリンを用いた検出法(非特許文献1)等が既に知られている。
 また、例えば、潜血、白血球、またはアルカリフォスファターゼ等は、歯周病リスクを反映すると知られている。すなわち、歯周病に伴い歯茎の組織が破壊されると唾液中に潜血が検出され、また歯周病の罹患部位には白血球が集まる。また、アルカリフォスファターゼは歯周病に関連する細菌から多く産生される。ここで、潜血の検出法としては、例えばヘモグロビン接触活性法が知られている(特許文献2)。また、白血球の検出法としては、白血球のエステラーゼ活性やプロテアーゼ活性を利用した検出法が知られている(特許文献3)。
 また、現在実用化されている口腔疾患検査システムとしては以下のようなものがある。
 歯周病菌に関する検査システムとしては、自宅で血液を採取し、専用容器で郵送することで、4種類の歯周病菌の血漿抗体価が測定され、歯周病菌への感染度や感染タイプを評価できるシステムが知られている。しかしながら、本システムにより行えるのは歯周病菌に関する検査のみであり、また、結果が分かるまでに6営業日が必要である。
 また、歯周病に関する検査システムとしては、唾液中の潜血を検出することで歯周病への罹患の有無を判定できるシステムが知られている。本システムによれば5分という短時間での検査が可能であるが、潜血以外の項目を検査することはできない。
 また、う蝕及び歯周病に関する検査システムとしては、歯科医院で採取した唾液を試料とし、PCR法によりミュータンス菌及び歯周病菌を検出するシステムが知られている。本システムによればミュータンス菌数と歯周病菌数の2項目を同時に検査できるが、結果が分かるまでに6営業日が必要である。
 また、ミュータンス菌の検出システムとしては、ミュータンス菌によるレサズリンの還元反応を測定することで、ミュータンス菌を検出できるシステムが知られている。しかしながら、本システムにより行えるのはミュータンス菌の測定のみであり、また、37℃の温調が必要であり15分と時間がかかる。
 また、ミュータンス菌の検出システムとしては、上記以外にも、唾液中のミュータンス菌を選択培地で培養し、形成されたコロニーの密度によりミュータンス菌数を判定するシステムが知られている(非特許文献2)。しかしながら、本システムにより行えるのはミュータンス菌の測定のみであり、また、37℃の温調が必要であり48時間と時間がかかる。
特開2005-241335号公報 特開平2-232561号公報 特開平5-168497号公報
口腔衛生会誌 1982; 32(4): p.121-122 ジャーナル・オブ・デンタル・リサーチ(J Dent Res) 1989; 68: p.468-471
 以上の通り、口腔状態、すなわち口腔疾患リスクや口腔衛生状態を反映する個々の成分を検出する方法やシステムとしては、既にいくつかの方法やシステムが知られている。
 しかしながら、それら既存のシステムには、技術者や医師等の高度な検査技術や、特異的PCR法等のための高度な検査機器が必要である点で改良の余地があった。また、上記方法あるいはシステムにより得られるデータは、口腔の個々の成分や性質の情報を示すのみであって、それ以上の情報を提供することはない。すなわち、上記方法あるいはシステムを利用した場合、「虫歯」、「歯周病」等の疾患別に1~2項目の成分または性質を測定するのみであって、任意の疾患について複数のパラメータを測定し、測定結果に基づきリスクレベルを判定することはなく、また、複数の疾患についてそれぞれを反映するパラメータを測定し、測定結果に基づきリスクレベルを判定することもなかった。そのため、医師又は歯科衛生士(以下、医師等とも言う)は、上記方法やシステムによる測定結果をそのまま被検者に伝えるか、あるいは、経験に基づく知見を加えて測定結果を判断し被検者の口腔疾患の治療や予防に役立ててきた。そのため、診断の客観性や精度は医師等のスキルに依存し、特別なスキルを必要としない客観的且つ総合的な口腔疾患リスクや口腔衛生状態の診断は達成されていなかった。さらに、既存のシステムを利用する場合、項目ごとの測定時間が長く、1回の来院では診断とその後のケア指導までを行うことが不可能であった。
 本発明の課題は、被検者の口腔状態、すなわち口腔疾患リスクおよび/または口腔衛生状態を判定する手段を提供することである。
 本発明者らは、う蝕リスクを反映するパラメータ、歯周病リスクを反映するパラメータ、及び口腔清潔度を反映するパラメータを測定し、それらの測定結果に基づいてう蝕リスク、歯周病リスク、及び口腔清潔度のレベルを判定し、判定結果を医師等に提供することで、医師等が被検者の口腔疾患リスクや口腔衛生状態を特別なスキルを必要とせず客観的且つ総合的に診断できると考えた。さらに、上記各パラメータを測定するための試薬を備える分析用具を用いることにより、短時間かつ一度の検査で測定することが可能となると考え、本発明を完成させるに至った。
 すなわち本発明は、以下の通り例示できる。
[1]
 以下の(A)、(B)、および(C)を備える分析用具。
(A)口腔から得られる被検試料について、う蝕リスクを反映する1またはそれ以上のパラメータを測定するための試薬。
(B)口腔から得られる被検試料について、歯周病リスクを反映する1またはそれ以上のパラメータを測定するための試薬。
(C)口腔から得られる被検試料について、口腔清潔度を反映する1またはそれ以上のパラメータを測定するための試薬。
[2]
 前記分析用具が、支持担体と、該支持担体に担持される前記試薬を保持する吸収性担体とを備える試験片である、[1]に記載の分析用具。
[3]
 前記う蝕リスクを反映するパラメータが、少なくともミュータンス菌数を含む、[1]または[2]に記載の分析用具。
[4]
 う蝕リスクを反映するパラメータが、ミュータンス菌数、pH、及び酸緩衝能からなる群から選ばれるパラメータであり、
 歯周病リスクを反映するパラメータが、カルシウム濃度、総タンパク質濃度、潜血量、及び白血球数からなる群から選ばれるパラメータであり、かつ
 口腔清潔度を反映するパラメータが、アンモニア濃度及び総タンパク質濃度からなる群から選ばれるパラメータである、[1]~[3]のいずれかに記載の分析用具。
[5]
 以下の(a)、(b)、及び(c)から選択される1またはそれ以上の特徴を有する、[1]~[4]のいずれかに記載の分析用具。
(a)前記う蝕リスクを反映するパラメータが、2またはそれ以上のパラメータからなる。
(b)前記歯周病リスクを反映するパラメータが、2またはそれ以上のパラメータからなる。
(c)前記口腔清潔度を反映するパラメータが、2またはそれ以上のパラメータからなる。
[6]
 [1]~[5]のいずれかに記載の分析用具を使用して被検者の口腔状態を判定する方法であって、以下の(A)、(B)、および(C)を含む方法。
(A)口腔から得られる被検試料について、う蝕リスクを反映する1またはそれ以上のパラメータを測定し、測定されたパラメータを指標として、う蝕リスクのレベルを判定する工程。
(B)口腔から得られる被検試料について、歯周病リスクを反映する1またはそれ以上のパラメータを測定し、測定されたパラメータを指標として、歯周病リスクのレベルを判定する工程。
(C)口腔から得られる被検試料について、口腔清潔度を反映する1またはそれ以上のパラメータを測定し、測定されたパラメータを指標として、口腔清潔度のレベルを判定する工程。
[7]
 さらに、判定されたレベルを表示する工程を含む、[6]に記載の方法。
[8]
 さらに、判定されたレベルに基づきコメントを表示する工程を含む、[6]または[7]に記載の方法。
 本発明により、口腔状態、すなわち、口腔疾患リスクおよび/または口腔衛生状態を反映するパラメータを測定し、測定結果に基づき口腔状態を判定することができる。具体的には、う蝕リスク、歯周病リスク、および/または口腔清潔度のレベルを判定することができ、判定結果は例えば医師等および/または被検者に提供することができる。医師等は、判定結果に基づき、被検者の口腔疾患リスクおよび/または口腔衛生状態を特別なスキルを必要とせず客観的且つ総合的に診断することができ、被検者の口腔状態について被検者に客観的な説明を行うことができる。また、被検者は、判定結果に基づき、自身の口腔状態について客観的に理解できる。よって、本発明は、医師による診断や治療の補助に大きな効果をもたらし、また、被検者においても予防や健康への意識が高まる。
 また、特に本発明の分析用具や分析機器を用いることで、口腔状態を反映する複数の成分又は性質を、短時間かつ一度の検査で測定することができ、直ちにう蝕リスク、歯周病リスク、および/または口腔清潔度のレベルを判定できる。判定結果を医師等および/または被検者に提供することにより、従来不可能であった、1回の来院で口腔状態の診断とその後のケア指導までを行うことが可能となる。
図1(A)は、本発明の分析用具の一実施形態を示す平面図であり、図1(B)は、本発明の分析用具の一実施形態を示す正面図である。 図2は、本発明の分析用具の一実施形態における吸収性担体部分の構造を示す正面図である。 図3は、本発明の装置の一実施形態における機能を示すブロック図である。 図4は、本発明のプログラムの一実施形態におけるフローチャートである。 図5は、メトキシPMSを添加した場合と添加しない場合における、ミュータンス菌数と反射率の相関を示した図である。
 以下、本発明を詳細に説明する。
 本発明において判定される口腔状態とは、口腔疾患リスクおよび/または口腔衛生状態をいう。本発明において判定される口腔疾患リスクとは、例えば、う蝕リスク及び歯周病リスクをいう。また、本発明において判定される口腔衛生状態とは、例えば、口腔清潔度をいう。なお、これらのうち口腔清潔度は、特定の疾患のリスクを意味するものではないが、本発明においては、う蝕リスク、歯周病リスク、及び口腔清潔度を総称して「リスク」という場合がある。また、同様に、本発明においては、う蝕リスクのレベル、歯周病リスクのレベル、及び口腔清潔度のレベルを総称して「リスクレベル」という場合がある。なお、説明の便宜上、本明細書においては「レベル」と称するが、数値である必要はなく、任意の段階に区分されていればよい。
 う蝕リスクとは、虫歯への罹患しやすさ、及び虫歯の進行しやすさを示すリスクである。なお、本発明において、う蝕リスクには潜在的な虫歯の発症の危険性だけでなく、既に発症している状態を含む。う蝕リスクを反映するパラメータとしては、例えば、ミュータンス菌数、pH、酸緩衝能、グルコシルトランスフェラーゼ活性、スクロース濃度、グルコース濃度、有機酸濃度、乳酸濃度、及びミュータンス菌抗体との反応性が挙げられる。本発明においては、これらのパラメータから選択される1若しくは2、またはそれ以上のパラメータが測定されるのが好ましい。本発明において、う蝕リスクを反映するパラメータとしては、ミュータンス菌数、pH、及び酸緩衝能からなる群から選ばれる1若しくは2、またはそれ以上のパラメータを測定するのが好ましく、ミュータンス菌数、pH、及び酸緩衝能の3パラメータを測定するのがより好ましい。また、う蝕リスクを反映するパラメータとしては、少なくともミュータンス菌数を測定するのが好ましい。複数のパラメータを測定すれば、う蝕リスクのレベルを判定する際の信頼性が向上する。
 ミュータンス菌とはいわゆる虫歯菌であり、う蝕の原因菌である。ミュータンス菌としては、具体的には、ストレプトコッカス・ミュータンス(Streptococcus mutans)及びストレプトコッカス・ソブリヌス(S. sobrinus)等が挙げられる。ミュータンス菌数が多い程、う蝕リスクが高まると考えられる。
 唾液のpHは、ミュータンス菌により生成される酸によって低下する。酸が大量に生成すると、歯の表面のエナメル質が溶け、う蝕が進行する。すなわち、唾液のpHが低いほど、う蝕リスクが高まると考えられる。
 酸緩衝能は、ミュータンス菌の生成する酸に対する抵抗力を示し、よって、酸緩衝能が低いほど、う蝕リスクが高まると考えられる。
 歯周病リスクとは、歯周病への罹患しやすさ、及び歯周病の進行しやすさを示すリスクである。なお、本発明において、歯周病リスクには潜在的な歯周病の発症の危険性だけでなく、既に発症している状態を含む。歯周病リスクを反映するパラメータとしては、例えば、カルシウム濃度、総タンパク質濃度、潜血量、白血球数、アルカリフォスファターゼ活性、亜硝酸濃度、乳酸脱水素酵素活性、リポ多糖濃度、歯周病菌抗体との反応性、γ-GTP濃度、アルブミン濃度、抗酸化度、及びα1-アンチトリプシン濃度が挙げられる。本発明においては、これらのパラメータから選択される1若しくは2、またはそれ以上のパラメータが測定されるのが好ましい。本発明において、歯周病リスクを反映するパラメータとしては、カルシウム濃度、総タンパク質濃度、潜血量、白血球数、アルカリフォスファターゼ活性、及び乳酸脱水素酵素活性からなる群から選ばれる1若しくは2、またはそれ以上のパラメータを測定するのが好ましく、カルシウム濃度、総タンパク質濃度、潜血量、及び白血球数からなる群から選ばれる1若しくは2、またはそれ以上のパラメータを測定するのがより好ましく、総タンパク質濃度、潜血量、及び白血球数からなる群から選ばれる1若しくは2、またはそれ以上のパラメータを測定するのがさらに好ましく、総タンパク質濃度、潜血量、及び白血球数の3パラメータを測定するのが特に好ましい。複数のパラメータを測定すれば、歯周病リスクのレベルを判定する際の信頼性が向上する。
 唾液中の総タンパク質濃度が高いほど、歯周病リスクが高いと考えられる。
 また、歯周病に伴い歯茎の組織が破壊されると唾液中に潜血が検出されることから、潜血の程度を測定することにより、歯周組織の破壊度を測定することができる。潜血が多いほど、歯周組織の破壊度が高く、歯周病リスクが高いと考えられる。
 また、歯周病の罹患部位には白血球が集まることから、白血球を測定することにより、歯周組織の炎症度を測定することができる。白血球数が多いほど、歯周組織の炎症度が高く、歯周病リスクが高いと考えられる。
 口腔清潔度とは、疾患を問わず、口腔衛生状態を反映するリスクである。口腔清潔度を反映するパラメータとしては、例えば、アンモニア濃度、総タンパク質濃度、総菌数、濁度、粘度、及び分泌量が挙げられる。本発明においては、これらのパラメータから選択される1若しくは2、またはそれ以上のパラメータが測定されるのが好ましい。本発明において、口腔清潔度を反映するパラメータとしては、アンモニア及び総タンパク質濃度からなる群から選ばれる少なくとも1のパラメータを測定するのが好ましく、アンモニア及び総タンパク質濃度の両パラメータを測定するのがより好ましい。複数のパラメータを測定すれば、口腔清潔度のレベルを判定する際の信頼性が向上する。
 高いアンモニア濃度は、口腔で菌が活発に繁殖している状態を示す。また、菌数が多い程、総タンパク質濃度も高くなる。よって、アンモニア濃度が高い程、及び総タンパク質濃度が高い程、口腔清潔度が低い、すなわちリスクが高いと考えられる。
 なお、歯周病リスクを反映するパラメータとして少なくとも総タンパク質濃度が選択され、且つ、口腔清潔度を反映するパラメータとして少なくとも総タンパク質濃度が選択されている場合、総タンパク質濃度は少なくとも1回測定されればよい。すなわち、総タンパク質濃度の測定結果は、歯周病リスクを反映するパラメータの測定結果および口腔清潔度を反映するパラメータの測定結果として共通に利用できる。
 また、本発明においては、あるリスクに対応するパラメータと、別のリスクに対応するパラメータとを組み合わせてリスクレベルの判定を行うことにより、当該あるリスクのリスクレベルの判定精度の向上が期待される。例えば、う蝕リスクを反映する1またはそれ以上のパラメータと、歯周病リスクおよび/または口腔清潔度を反映する1またはそれ以上のパラメータを組み合わせてう蝕リスクレベルの判定を行うことにより、う蝕リスクレベルの判定精度の向上が期待される。具体的には、例えば、ミュータンス菌数、pH、酸緩衝能、潜血量、白血球数、アンモニア濃度、および総タンパク質濃度を組み合わせてう蝕リスクレベルの判定を行ってもよい。以上の記載は歯周病リスクや口腔清潔度のレベルの判定を行う場合にも準用できる。
 また、本発明においては、上述したようなパラメータの測定結果と、被検者の個人データを組み合わせることにより、う蝕リスクのレベル、歯周病リスクのレベル、および/または口腔清潔度のレベルの判定精度の向上が期待される。被検者の個人データとして、具体的には、例えば、年齢、性別、喫煙の有無が挙げられる。
 なお、本発明において、「パラメータを測定する」とは、任意のパラメータを算出するためのデータを取得する工程を含んでいればよく、当該パラメータの値自体を算出する工程は含んでいてもよく、含んでいなくてもよい。すなわち、各パラメータの値は、後述する各測定法により定量することができるが、パラメータの値自体を定量することは本発明の必須の構成要件ではない。例えば、本発明において、「ミュータンス菌数を測定する」とは、ミュータンス菌数の算出に用いられるデータ、例えばミュータンス菌数を反映する呈色反応の結果を示す任意の波長における反射率データを取得すればよく、そこからミュータンス菌数自体を算出する必要はない。
 測定されたパラメータは、リスクレベルの判定に用いることができる。なお、本発明において、「判定」とは、測定されたパラメータを指標として、閾値との比較によりリスクレベル等を決定することをいう。また、判定されたリスクレベルに基づき、医師等は被検者の口腔疾患リスクおよび/または口腔衛生状態を診断することができる。なお、「診断」とは、医師等による総合的な判断のことをいう。また、「ケア指導」とは、例えば、医師等が行う、診断結果に基づく指導のことをいう。
(1)本発明の分析用具
 本発明は、口腔状態を反映するパラメータを測定するために好適に用いることができる分析用具を提供する。本発明の分析用具の第1の態様は、以下の(A)、(B)、および(C)を備える分析用具である。
(A)口腔から得られる被検試料について、う蝕リスクを反映する1またはそれ以上のパラメータを測定するための試薬、
(B)口腔から得られる被検試料について、歯周病リスクを反映する1またはそれ以上のパラメータを測定するための試薬、及び
(C)口腔から得られる被検試料について、口腔清潔度を反映する1またはそれ以上のパラメータを測定するための試薬。
 以下、本発明の分析用具について、図面を参照して説明する。
 本発明の分析用具の一実施形態は、試験片である。本発明の分析用具の一実施形態である試験片を、本発明の試験片とも称する。図1には、う蝕リスク、歯周病リスク、および口腔清潔度の3つ全てを測定できるよう構成された、本発明の分析用具の第1の態様の一実施形態である試験片1を例示する。図1(A)は、試験片1の平面図であり、図1(B)は、試験片1の正面図である。図2は、本発明の分析用具の一実施形態における、試験片の吸収性担体部分の構造を示す正面図である。
 試験片1は、支持担体10と、支持担体10に担持されるう蝕リスク測定部11、歯周病リスク測定部12、及び口腔清潔度測定部13を備える。なお、測定部11、12、13の位置関係は任意である。
 う蝕リスク測定部11は、被検者のう蝕リスクを反映するパラメータを測定するための部位であり、吸収性担体11A、11B、11Cを備える。吸収性担体11A、11B、11Cは、う蝕リスクを反映するパラメータを測定するための試薬を保持する吸収性担体である。吸収性担体11Aは、例えば、被検試料について、ミュータンス菌数を測定するための試薬を保持する。吸収性担体11Bは、例えば、被検試料について、pHを測定するための試薬を保持する。吸収性担体11Cは、例えば、被検試料について、酸緩衝能を測定するための試薬を保持する。
 なお、図1に示す実施形態では、う蝕リスク測定部11は3つの吸収性担体11A、11B、11Cを備えるが、う蝕リスク測定部11が備える吸収性担体の数は、測定すべきう蝕リスクを反映するパラメータの数に応じて増減され、通常、測定すべきパラメータ1種につき少なくとも1つの吸収性担体が備えられる。
 歯周病リスク測定部12は、被検者の歯周病リスクを反映するパラメータを測定するための部位であり、吸収性担体12A、12B、12Cを備える。吸収性担体12A、12B、12Cは、歯周病リスクを反映するパラメータを測定するための試薬を保持する吸収性担体である。吸収性担体12Aは、例えば、被検試料について、総タンパク質濃度を測定するための試薬を保持する。吸収性担体12Bは、例えば、被検試料について、潜血を測定するための試薬を保持する。吸収性担体12Cは、例えば、被検試料について、白血球数を測定するための試薬を保持する。
 なお、図1に示す実施形態では、歯周病リスク測定部12は3つの吸収性担体12A、12B、12Cを備えるが、歯周病リスク測定部12が備える吸収性担体の数は、測定すべき歯周病リスクを反映するパラメータの数に応じて増減され、通常、測定すべきパラメータ1種につき少なくとも1つの吸収性担体が備えられる。
 口腔清潔度測定部13は、被検者の口腔清潔度を反映するパラメータを測定するための部位であり、吸収性担体13A、13Bを備える。吸収性担体13A、13Bは、口腔清潔度を反映するパラメータを測定するための試薬を保持する吸収性担体である。吸収性担体13Aは、例えば、被検試料について、アンモニア濃度を測定するための試薬を保持する。吸収性担体13Bは、例えば、被検試料について、総タンパク質濃度を測定するための試薬を保持する。
 なお、図1に示す実施形態では、口腔清潔度測定部13は2つの吸収性担体13A、13Bを備えるが、口腔清潔度測定部13が備える吸収性担体の数は、測定すべき口腔清潔度を反映するパラメータの数に応じて増減され、通常、測定すべきパラメータ1種につき少なくとも1つの吸収性担体が備えられる。
 なお、う蝕リスクを反映するパラメータ、歯周病リスクを反映するパラメータ、及び口腔清潔度を反映するパラメータとして上に挙げたパラメータは単なる例示であり、上記のパラメータに限定されるものではない。各パラメータの詳細については後述する。
 また、図1には、う蝕リスク測定部11、歯周病リスク測定部12、及び口腔清潔度測定部13に区分けして、各パラメータ測定用の吸収性担体を整列させた実施形態を記載したが、各パラメータ測定用の吸収性担体の位置関係は任意である。すなわち、各パラメータ測定用の吸収性担体は、各リスク測定部に区分けして整列していなくともよい。また各パラメータ測定用の吸収性担体は直線状に整列していてもよく、それ以外の任意の配列で整列していてもよい。各パラメータ測定用の吸収性担体の位置関係は、例えば、検出を肉眼で行うのか、あるいは検出機器を用いるのか、及び用いられる検出機器の種類等に応じて適宜設定できる。例えば、検出機器としては種々の反射率測定機器を好適に使用することができるが、検出機器としてポケットケムUA PU-4010(アークレイ株式会社製)を使用する場合には、各パラメータ測定用の吸収性担体は直線状に整列しているのが好ましい。また、本発明の試験片は、各パラメータの測定用試薬を保持する吸収性担体に加えて、任意の吸収性担体、例えば測定には用いられないダミーの吸収性担体を備えていてもよい。
 なお、歯周病リスクを反映するパラメータとして少なくとも総タンパク質濃度が選択され、且つ、口腔清潔度を反映するパラメータとして少なくとも総タンパク質濃度が選択されている場合、本発明の分析用具は、少なくとも1つの総タンパク質濃度測定用の吸収性担体を備えていればよい。すなわち、総タンパク質濃度の測定用担体は、歯周病リスクを反映するパラメータの測定用担体および口腔清潔度を反映するパラメータの測定用担体として共通に利用できる。
 吸収性担体としては、各パラメータを測定するための試薬を保持でき、且つ測定を妨害しない限りにおいて、いかなる担体でも使用できる。すなわち、吸収性担体としては、例えば、紙、セルロース、多孔質セラミック、化学繊維、合成樹脂製織布及び不織布を用いることができ、濾紙またはガラス繊維濾紙であるのが好ましい。濾紙やガラス繊維濾紙としては、例えば、市販のものを好適に用いることができる。
 支持担体としては、フィルム、シート、またはプレート状担体を好ましく用いることができる。支持担体は、プラスチック製であることが好ましく、プラスチックとしては、例えばポリエチレン、ポリプロピレン、ポリエステル、及びポリ塩化ビニルなど種々のプラスチックを用いることができる。支持担体としては、特に、ポリエチレンテレフタレート(PET)製フィルムが好ましい。また、支持担体は複合材であってもよく、ポリエステルとポリエチレンの複合材やポリエチレンとアルミを積層した複合材、その他種々の複合材が利用できる。支持担体の厚さは、10~500μmであるのが好ましく、50~300μmであるのがより好ましい。
 試薬を保持する吸収性担体は、被検試料を点着する吸収性担体を兼ねていてもよい。また、試薬を保持する吸収性担体とは別に、被検試料を点着する吸収性担体が備えられていてもよい。図2には、試薬を保持する吸収性担体とは別に、被検試料を点着する吸収性担体が備えられている例として、試薬を保持する吸収性担体14Aと、被検試料を点着する吸収性担体14Bとが層状構造を構成する例を示す。試薬を保持する吸収性担体とは別に、被検試料を点着する吸収性担体が備えられる場合には、試薬を保持する吸収性担体と被検試料を点着する吸収性担体とは原則として接触しているが、例えば被検試料と試薬とを直接接触させずに測定することが要求される場合には、両吸収性担体を互いに接触させずに設置することもできる。互いに接触させずに設置する態様としては、例えば、両吸収性担体が隙間をあけて設置されている態様、あるいは両吸収性担体間に別の層を挟む態様、例えば細かい穴を設けたPET製フィルム等を挟む態様等が挙げられる。図2には、試薬を保持する吸収性担体15Aと、被検試料を点着する吸収性担体15Bとを、スペーサー15Cを挟むことにより、互いに接触させずに設置した例を示す。また、本発明の試験片は、試薬を保持する吸収性担体と支持担体との間に、任意の部材、例えばPET製のフィルム等を備えていてもよい。
 本発明の試験片を製造する方法は、特に限定されず、本発明の試験片は、各パラメータの測定用試薬を予め保持させた各吸収性担体を支持担体に担持させることにより製造することができる。各パラメータを測定するための試薬を吸収性担体に保持させる手法は特に限定されず、例えば、吸収性担体を試薬溶液に浸漬してもよく、吸収性担体に試薬溶液を点着または塗布してもよい。上記のうち、吸収性担体を試薬溶液に浸漬するのが好ましい。なお、試薬溶液とは、任意のパラメータを測定するための試薬を含む溶液である。試薬を吸収性担体に保持させる工程は、複数回の浸漬ないし点着または塗布等の工程を含んでいてもよい。各試薬を保持させた吸収性担体は、乾燥させて以降の工程に用いることができる。各試薬を保持させた吸収性担体を、必要に応じて切断し、支持担体に担持させることにより、本発明の試験片を製造できる。また、本発明の試験片は、支持担体に予め担持させた各吸収性担体に各パラメータの測定用試薬を保持させることにより製造されてもよい。この場合には、吸収性担体に試薬溶液を点着または塗布することにより、各パラメータを測定するための試薬を吸収性担体に保持させ、その後乾燥させるのが好ましい。本発明の試験片において、吸収性担体を支持担体に担持させる方法は、特に制限されず、例えば、通常用いられる接着手法を好適に用いることができる。例えば、粘着テープにより貼付してもよく、接着剤により貼付してもよい。
 本発明の試験片に備わる各吸収性担体としては、各パラメータの測定手法に応じて設計した吸収性担体を用いることができる。また、本発明の試験片に備わる各吸収性担体としては、う蝕リスク、歯周病リスク、又は口腔清潔度を反映するパラメータを定量的に測定するための既知の試験片、例えば、尿一般試験などで用いられる乾式試験片、あるいは血液生化学一般試験などで用いられる乾式試験片等を、必要に応じて適宜改良して転用してもよい。
 また、本発明の試験片の一実施形態において、各測定用試薬は吸収性担体ではなく試験片上に直接保持されていてもよい。試験片上に直接保持される態様としては、例えば、試薬が支持担体上に直接保持されている態様が挙げられる。そのような試験片は、例えば、試薬を支持担体上に直接点着または塗布することにより製造できる。なお、測定すべき複数のパラメータについて、吸収性担体に測定用試薬が保持される態様と、試験片上に直接保持される態様が混在していてもよい。
 本発明の分析用具の他の実施形態は、各パラメータ測定用の試薬を備える分析用具を含むキットである。各パラメータ測定用の試薬を備える分析用具としては、例えば、各パラメータ測定用の試験紙が挙げられる。すなわち、測定すべきパラメータのそれぞれを測定するための試験紙を含むキットを以って本発明の分析用具としてもよい。例えば、う蝕リスクを反映するパラメータ測定用の試験紙、歯周病リスクを反映するパラメータ測定用の試験紙、及び口腔清潔度を反映するパラメータ測定用の試験紙を含む測定用キットは、本発明の分析用具の範囲に含まれる。測定用キットに含まれる分析用具は、例えば、各パラメータを任意の組み合わせで測定できるように構成された分析用具であってもよい。例えば、う蝕リスクを反映するパラメータ測定用の分析用具は、う蝕リスクを反映する2またはそれ以上のパラメータ測定用の分析用具であってもよい。また、例えば、歯周病リスクを反映するパラメータ測定用の分析用具は、歯周病リスクを反映する2またはそれ以上のパラメータ測定用の分析用具であってもよい。また、例えば、口腔清潔度を反映するパラメータ測定用の分析用具は、口腔清潔度を反映する2またはそれ以上のパラメータ測定用の分析用具であってもよい。また、例えば、測定用キットには、う蝕リスクを反映する1またはそれ以上のパラメータと歯周病リスクを反映する1またはそれ以上のパラメータを測定するための分析用具が含まれていてもよく、う蝕リスクを反映する1またはそれ以上のパラメータと口腔清潔度を反映する1またはそれ以上のパラメータを測定するための分析用具が含まれていてもよく、口腔清潔度を反映する1またはそれ以上のパラメータと歯周病リスクを反映する1またはそれ以上のパラメータを測定するための分析用具が含まれていてもよい。
 また、各パラメータ測定用の試薬を備える分析用具としては、例えば、各パラメータ測定用の任意の反応系が挙げられる。すなわち、例えば、試薬との反応をチューブ等の容器内で行うのであれば、各パラメータ測定用の試薬を含む反応用チューブ等の反応用容器を含むキットを以って本発明の分析用具としてもよい。例えば、う蝕リスクを反映するパラメータ測定用の試薬を含む反応用チューブ、歯周病リスクを反映するパラメータ測定用の試薬を含む反応用チューブ、及び口腔清潔度を反映するパラメータ測定用の試薬を含む反応用チューブを含む測定用キットは、本発明の分析用具の範囲に含まれる。
 本発明において、各パラメータを測定する方法は特に制限されず、当業者が適宜設定することができる。例えば、新たに開発された方法を用いてもよく、公知の方法を用いてもよい。以下、本発明において測定されうるパラメータの測定方法について例示する。
<ミュータンス菌数>
 ミュータンス菌数の測定は、特に制限されないが、例えば、レサズリンの還元反応を利用する方法やミュータンス菌に対する抗体を用いる方法により行うことができる。ミュータンス菌数の測定は、レサズリンの還元反応を利用する方法により行うのが好ましい。なお、このレサズリンの還元反応を利用する方法をレサズリン法とする。レサズリンは酸化還元指示薬であり、通常は酸化型の青色色素であるレサズリン(極大吸収波長605nm)として存在するが、ミュータンス菌を含むグラム陽性細菌の代謝により生じるNADHにより還元され、赤紫色色素(極大吸収波長573nm)であるレゾルフィンへと変換される。すなわち、ミュータンス菌の生菌数に応じてレサズリンの還元が進行する。また、レサズリン法を利用する場合の測定試薬は、レサズリンに加えて、さらに1-メトキシ-5-メチルフェナジニウムメチルサルフェート(メトキシPMS)を含有するのが好ましい。メトキシPMSを含有する場合には、含有しない場合と比較して、室温で短時間の反応条件で測定するのに有効である。試薬の濃度は適宜設定することが可能であるが、吸収性担体を浸漬する試薬溶液におけるメトキシPMSの濃度は、好ましくは0.1~1mMであり、より好ましくは0.1~0.5mMである。
 レサズリン法によるミュータンス菌数測定用の吸収性担体としては、例えば、以下の手順で作製した試験紙を支持担体に設置して用いることができる。
(1)濾紙を、試薬溶液に浸漬する。当該試薬溶液は、30mMスクロース、0.2%ポリビニルアルコール、100mMリン酸緩衝液(pH6)、0.1mMメトキシPMS、及び0.12mMレサズリンを含有する。
(2)濾紙を、50℃で15分間乾燥させる。
(3)濾紙を5mm幅に切断する。
(4)断片をPETフィルムに貼付する。
(5)5mm幅に切断し、試験紙とする。
なお、上記手順において、試薬溶液の構成を他のパラメータ測定用の試薬構成に代えることにより、他のパラメータの測定用の吸収性担体を製造できることは言うまでもない。
 反応時間は適宜設定することが可能であるが、1-10分であるのが好ましい。また、検出機器により検出する際の検出条件は適宜設定することができる。例えば、上記手順で作製した試験紙を用い、検出機器としてポケットケムUA PU-4010(アークレイ株式会社製)を使用する場合には、5分の反応時間で、測定波長を635nm、参照波長を760nmとして測定を行うことができる。この条件では、レサズリンの還元反応の進行は、635nmの吸光度の減少として、すなわち635nmの光を照射した際の反射率の増加として検出される。測定結果を元に、レサズリンの消費量を算出でき、レサズリンの消費量からミュータンス菌数を算出することができる。なお、本発明において、レサズリンの還元反応を示すのは全てミュータンス菌であるとしてもよい。
<唾液のpH>
 唾液のpHは、特に制限されないが、例えば、pH指示薬により測定するのが好ましい。pH指示薬としては、既知の任意のpH指示薬を用いることができ、pH2~9の範囲に変色域を有するpH指示薬を用いるのが好ましく、pH3~8の範囲に変色域を有するpH指示薬を用いるのがより好ましい。また、pH指示薬としては、必要に応じて、複数のpH指示薬を混合して用いてもよく、例えば、ブロモクレゾールグリーンとブロモキシレノールブルーの複合試薬を好適に用いることができる。pH指示薬の濃度は適宜設定することが可能であるが、例えば、吸収性担体を浸漬する試薬溶液におけるブロモクレゾールグリーンの濃度は好ましくは0.1~0.6mM、より好ましくは0.1~0.4mMであり、ブロモキシレノールブルーの濃度は好ましくは0.6~2mM、より好ましくは0.8~1.8mMである。
 pH指示薬によるpH測定用の吸収性担体としては、例えば、オーションスティックス(アークレイ株式会社製)のpH測定用試験紙を用いることができる。当該試験紙は、100枚当たり、ブロモクレゾールグリーン0.07mgとブロモキシレノールブルー0.72mgを含有する。
 反応時間は適宜設定することが可能であるが、30秒~5分であるのが好ましい。また、検出機器により検出する際の検出条件は適宜設定することができる。例えば、pH測定用の吸収性担体としてオーションスティックス(アークレイ株式会社製)のpH測定用試験紙を用い、検出機器としてポケットケムUA PU-4010(アークレイ株式会社製)を使用する場合には、60秒の反応時間で、測定波長を635nm、参照波長を760nmとして測定を行うことができる。測定結果を元に、pHを算出することができる。
<唾液の酸緩衝能>
 唾液の酸緩衝能は、特に制限されないが、例えば、pH指示薬を用いて測定するのが好ましい。測定原理としては、あらかじめ酸性緩衝剤及びpH指示薬を含有させた吸収性担体に、被検試料を接触させることで、指示薬の指示pHが、酸緩衝能が高いほど唾液の本来のpHに近づき、低いほど唾液の本来のpHより酸性域に近づくことを利用する。pH指示薬としては、既知の任意のpH指示薬を用いることができ、pH2~9の範囲に変色域を有するpH指示薬を用いるのが好ましく、pH3~8の範囲に変色域を有するpH指示薬を用いるのがより好ましい。また、pH指示薬としては、必要に応じて、複数のpH指示薬を混合して用いてもよく、例えば、ブロモクレゾールグリーンとブロモキシレノールブルーの複合試薬を好適に用いることができる。酸性緩衝剤としては、例えば、不揮発性の有機酸を好ましく用いることができる。不揮発性の有機酸としては、例えばクエン酸、リンゴ酸、酒石酸、マロン酸、シュウ酸、スルホサリチル酸、スルフアニル酸、安息香酸、トリカルバリル酸が挙げられる。この中では、酒石酸がより好ましい。また、酸性緩衝剤としては、メタリン酸等の無機酸を用いることもできる。また、酸性緩衝剤としては、例えばフタル酸水素カリウムとリン酸カリウムの混合物等の緩衝剤であってもよい。試薬の濃度は適宜設定することが可能であるが、例えば、吸収性担体を浸漬する試薬溶液におけるブロモクレゾールグリーンの濃度は好ましくは0.1~0.6mM、より好ましくは0.1~0.4mMであり、ブロモキシレノールブルーの濃度は好ましくは0.6~2mM、より好ましくは0.8~1.8mMであり、酒石酸の濃度は好ましくは0.1~10mM、より好ましくは1~6mMである。
 pH指示薬による酸緩衝能測定用の吸収性担体としては、例えば、以下の手順で作製した試験紙を支持担体に設置して用いることができる。
(1)濾紙を、試薬溶液に浸漬する。当該試薬溶液は、0.2mMブロモクレゾールグリーン、1.2mMブロモキシレノールブルー、0.05%ポリオキシエチレンソルビタンモノラウラート、0.5%ヒドロキシプロピルセルロース、2mM酒石酸を含有する。
(2)濾紙を、50℃で15分間乾燥させる。
(3)濾紙を5mm幅に切断する。
(4)断片をPETフィルムに貼付する。
(5)5mm幅に切断し、試験紙とする。
なお、上記手順において、試薬溶液の構成を他のパラメータ測定用の試薬構成に代えることにより、他のパラメータの測定用の吸収性担体を製造できることは言うまでもない。
 反応時間は適宜設定することが可能であるが、30秒~5分であるのが好ましい。また、検出機器により検出する際の検出条件は適宜設定することができる。例えば、酸緩衝能測定用の吸収性担体としてオーションスティックス(アークレイ株式会社製)のpH測定用試験紙を上記の通り改良して用い、検出機器としてポケットケムUA PU-4010(アークレイ株式会社製)を使用する場合には、60秒の反応時間で、測定波長を635nm、参照波長を760nmとして測定を行うことができる。測定結果を元に、pHを算出することができ、また、酸緩衝能を算出することができる。
<カルシウム濃度>
 カルシウム濃度の測定は、特に制限されないが、例えば、キレート法により行うのが好ましい。キレート法とは、カルシウムがキレート発色剤と結合すると色調が変化することを利用したカルシウム測定法である。キレート法としては、O-CPC法を用いるのが好ましい。O-CPC法とは、キレート発色剤としてオルト・クレゾールフタレイン・コンプレクソン(O-CPC)を用いた測定法であり、O-CPCは、アルカリ条件下でカルシウムと反応し深紅色のキレート化合物を生成する。
 キレート法によるカルシウム濃度測定用の吸収性担体としては、例えば、カルシウム濃度測定用キットであるスポットケム II カルシウム(アークレイ株式会社製)に含まれる試験紙を用いることができる。当該試験紙は、100枚当たり、O-CPC2.6mgを含有する。
 反応時間は適宜設定することが可能であるが、1~5分であるのが好ましい。また、検出機器により検出する際の検出条件は適宜設定することができる。例えば、カルシウム濃度測定用の吸収性担体としてスポットケム II カルシウム(アークレイ株式会社製)に含まれる試験紙を用い、検出機器としてポケットケムUA PU-4010(アークレイ株式会社製)を使用する場合には、90秒の反応時間で、測定波長を565nm、参照波長を760nmとして測定を行うことができる。測定結果を元に、キレート化合物の量を算出することができ、また、キレート化合物の量からカルシウム濃度を算出することができる。
<潜血>
 潜血の測定は、特に制限されないが、例えば、ヘモグロビン接触活性法により行うのが好ましい。ヘモグロビン接触活性法とは、血液成分であるヘモグロビン、ミオグロビン、又はそれらの分解産物が、過酸化物(ペルオキシド)等の酸素供与体から、酸素受容体に酸素の移動を触媒する能力(ペルオキシダーゼ様活性)を有することを利用したものである。酸素受容体として、酸化により色調の変化する指示薬を用いることで、その呈色反応を測定することによりヘモグロビン等の検出を通して潜血の検出が可能となる。
 指示薬としては、血液成分であるヘモグロビン、ミオグロビン、又はそれらの分解産物により呈色反応を示す限り特に制限されず、例えば、アニリン類、フェノール類、o-トルイジン、p-トルイジン、o-フェニレンジアミン、N,N′-ジメチル-p-フェニレンジアミン、N,N′-ジエチル-p-フェニレンジアミン、p-アニシジン、ジアニシジン、o-トリジン、o-クレゾール、m-クレゾール、p-クレゾール、α-ナフトール、β-ナフトール、カテコール、グアヤコール、ピロガロール等を用いることができる。フェノール類としては、例えば、3,3’,5,5’-テトラメチルベンジジン(TMBZ)を好適に用いることができる。
 また、酸素供与体としては、ペルオキシド類が好ましく、ペルオキシド類としては、例えば、クメンハイドロペルオキシド、ジイソプロピルベンゼンペルオキシド、パラメンタンハイドロペルオキシド、2,5-ジメチルヘキサン-2,5-ジハイドロペルオキシド等が好ましく用いられる。酸素供与体としては、例えば、クメンハイドロペルオキシドを好適に用いることができる。
 ヘモグロビン接触活性法による潜血測定用の吸収性担体としては、例えば、オーションスティックス(アークレイ株式会社製)の潜血測定用試験紙を用いることができる。当該試験紙は、100枚当たり、クメンハイドロペルオキシド30.0mgとTMBZ15.0mgを含有する。
 反応時間は適宜設定することが可能であるが、30秒~5分であるのが好ましい。また、検出機器により検出する際の検出条件は適宜設定することができる。例えば、潜血測定用の吸収性担体としてオーションスティックス(アークレイ株式会社製)の潜血測定用試験紙を用い、検出機器としてポケットケムUA PU-4010(アークレイ株式会社製)を使用する場合には、60秒の反応時間で、測定波長を635nmとして測定を行うことができる。測定結果を元に、ヘモグロビン濃度を算出することができ、ヘモグロビン濃度から潜血量を算出することができる。
<白血球数>
 白血球数の測定は、特に制限されないが、例えば、白血球エステラーゼ法により行うのが好ましい。組織が炎症を起こした際には、白血球が増加するが、それに伴い白血球によるエステラーゼ産生もまた増大するためエステラーゼ活性を測定することで白血球数を算出できる。白血球エステラーゼ法とは、基質として用いたエステル化合物が白血球により産生されたエステラ-ゼ(白血球エステラーゼ)により加水分解されることで生じたアルコ-ル(フェノ-ル)成分を直接呈色させる、あるいは、ジアゾニウム塩とカップリングして呈色させることにより白血球数を測定する手法である。
 基質として用いるエステル化合物としては、直接呈色させる場合にはスルホンフタレインエステル類、またはアゾ染料エステル類等を用いることができ、他の指示薬とカップリングして呈色させる場合にはフェノキシ-アミノ酸エステル類、インドキシルエステル類、またはフェニルピロキシルエステル類等を用いることができる。インドキシルエステル類としては、例えば3-(N-トルエンスルホニル-L-アラニロキシ)インドール(TAI)を好適に用いることができる。カップリングして呈色させる場合の指示薬としては、ジアゾニウム塩を用いることができ、例えば、2-メトキシ-4-(N-モルホリノ)ベンゼンジアゾニウム塩を好適に用いることができる。エステル化合物として3-(N-トルエンスルホニル-L-アラニロキシ)インドールを用いた場合には、反応により生じるインドキシルを、例えば2-メトキシ-4-(N-モルホリノ)ベンゼンジアゾニウム塩(MMB)とカップリングさせることにより呈色させることができる。
 白血球エステラーゼ法による白血球測定用の吸収性担体としては、例えば、オーションスティックス(アークレイ株式会社製)の白血球測定用試験紙を用いることができる。当該試験紙は、100枚当たり、TAI0.49mgとMMB0.17mgを含有する。
 反応時間は適宜設定することが可能であるが、30秒~5分であるのが好ましい。また、検出機器により検出する際の検出条件は適宜設定することができる。例えば、白血球測定用の吸収性担体としてオーションスティックス(アークレイ株式会社製)の白血球測定用試験紙を用い、検出機器としてポケットケムUA PU-4010(アークレイ株式会社製)を使用する場合には、60秒の反応時間で、測定波長を565nm、参照波長を760nmとして測定を行うことができる。測定結果を元に、エステラーゼ活性を算出することができ、エステラーゼ活性から白血球数を算出することができる。
<タンパク質濃度>
 総タンパク質濃度の測定は、特に制限されないが、例えば、タンパク誤差法により行うのが好ましい。タンパク誤差法とは、pH指示薬が、タンパク質の濃度に比例して、溶液の真のpHよりも高いpHを示すことを利用するタンパク質の測定法である。
 タンパク誤差法に利用できるpH指示薬としては、テトラブロモフェノールブルー(TBPB)、テトラブロモフェノールフタレーン、5’,5’’-ジニトロ-3’,3’’-ジヨード-3,4,5,6-テトラブロモフェノールスルフォフタレーン(DIDNTB)、クマシーブリリアントブルー、ファーストグリーンFCF、ライトグリーンSF等が挙げられ(例えば、米国特許4013416号等参照)、テトラブロムフェノールブルーが好適に用いられる。また、指示薬が水に不溶な場合は、アセトン、エタノール、メチルセロソルブ等の有機溶剤を用いて、試薬溶液を調整してもよい。また、呈色はpHの変動によっても生ずるため、pH緩衝剤を共存させるのが好ましい。また、反応は酸性条件下で行うのが好ましいため、pH緩衝剤としては酸性緩衝剤を用いるのが好ましい。酸性緩衝剤としては、不揮発性の有機酸を好ましく用いることができ、不揮発性の有機酸としては、例えばクエン酸、リンゴ酸、酒石酸、マロン酸、シュウ酸、スルホサリチル酸、スルフアニル酸、安息香酸、トリカルバリル酸が挙げられる。また、酸性緩衝剤としては、メタリン酸等の無機酸を用いることもできる。また、酸性緩衝剤としては、例えばフタル酸水素カリウムとリン酸カリウムの混合物等の緩衝剤であってもよい。酸性緩衝剤の濃度は、試料と接触すると、試料中に有意量のタンパク質が存在しなくてもタンパク質誤差指示薬が変色するのを防ぐのに十分な濃度であるのが好ましく、例えば浸漬、点着、又は塗布するための試薬溶液中に50~1500mMで含まれるのが好ましく、1000~1200mMで含まれるのがより好ましい。
 タンパク誤差法によるタンパク質測定用の吸収性担体としては、例えば、オーションスティックス(アークレイ株式会社製)のタンパク質測定用試験紙を用いることができる。当該試験紙は、100枚当たり、TBPB0.35mgを含有する。
 反応時間は適宜設定することが可能であるが、30秒~5分であるのが好ましい。また、検出機器により検出する際の検出条件は適宜設定することができる。例えば、タンパク質測定用の吸収性担体としてオーションスティックス(アークレイ株式会社製)のタンパク質測定用試験紙を用い、検出機器としてポケットケムUA PU-4010(アークレイ株式会社製)を使用する場合には、60秒の反応時間で、測定波長を635nm、参照波長を760nmとして測定を行うことができる。測定結果を元に、総タンパク質濃度を算出することができる。
<アンモニア>
 アンモニアの定量は、特に制限されないが、例えば、好ましくは微量拡散法(コンウェイ法)により行われる。微量拡散法とは、アンモニア態窒素の定量に用いられる手法であり、試料から揮発する成分を吸収用溶液等にトラップし、それを比色等の手法により定量する手法である。アンモニア濃度の測定が微量拡散法により行われる場合には、本発明の試験片におけるアンモニア定量部位には、試薬を保持する吸収性担体(試薬層)とは別に、被検試料を点着する吸収性担体(試料層)が備えられ、両吸収性担体は互いに接触しないよう設置される。両吸収性担体は、例えば、細かい穴を設けたPET製フィルムを両吸収性担体間に挟むことで、互いに接触しないよう設置される。また、試料層はアルカリ緩衝剤、例えばホウ酸緩衝剤を保持する。試験片の試料層に被検試料を点着すると、試料層中のアルカリ緩衝剤が溶解して、試料はアルカリ性になる。試料中のアンモニウムイオンは、アルカリ条件下でアンモニア分子となり、アンモニアガスとして揮発し、例えばスペーサーの穴を通過して試薬層に移行する。試薬層中の指示薬がアンモニアガスと反応して発色する。
 pH指示薬としては、既知の任意のpH指示薬を用いることができる。pH指示薬としては、例えばブロムクレゾールグリーン、ブロムクレゾールパープル、クロルフェノールレッド等が用いられ、ブロムクレゾールグリーンが好適に用いられる。また、pH指示薬としては、必要に応じて、複数のpH指示薬を混合して用いてもよい。
 微量拡散法によるアンモニア測定用の吸収性担体としては、例えば、アンモニア測定用キットであるアミチェック(アークレイ株式会社製)に含まれる試験紙を用いることができる。当該試験紙は、100枚当たり、試料層にホウ酸42.6mgと水酸化ナトリウム18.7mgを含有し、試薬層にブロムクレゾールグリーン4.0mgを含有する。
 反応時間は適宜設定することが可能であるが、10秒~5分であるのが好ましい。また、検出機器により検出する際の検出条件は適宜設定することができる。例えば、アンモニア測定用の吸収性担体としてアミチェック(アークレイ株式会社製)に含まれる試験紙を用い、検出機器としてポケットケムUA PU-4010(アークレイ株式会社製)を使用する場合には、被検試料を試料層に点着して20秒後に試料層とスペーサーを試薬層から剥離し、60秒後に測定波長を635nmとして試薬層の測定を行うことができる。測定結果を元に、アンモニア濃度を算出することができる。
<乳酸脱水素酵素活性>
 乳酸脱水素酵素活性の測定は、特に制限されないが、例えば、ホルマザン法により行われる。ホルマザン法とは、乳酸脱水素酵素がNADを補酵素とし、乳酸を酸化して生成されたNADHにより、ジアホラーゼを解してテトラゾリウム塩を呈色物質であるホルマザンに還元させる手法である。テトラゾリウム塩としては例えば、テトラゾリウムバイオレットを好適に用いることができる。
<アルカリフォスファターゼ活性>
 アルカリフォスファターゼ活性の測定は、特に限定されないが、例えば、p-ニトロフェニルリン酸法により行われる。p-ニトロフェニルリン酸法とは、アルカリフォスファターゼが基質であるp-ニトロフェニルリン酸を加水分解して生成される、呈色物質であるp-ニトロフェノールを定量する手法である。
 上記各測定法は、本発明の試験片上に設けられた吸収性担体において好適に利用することができる。また、上記各測定法は、吸収性担体を備える試験片を用いる場合に限られず、例えば、吸収性担体を備えない試験片を用いる場合や、チューブ等の容器内で試料と反応させる場合にも、試薬濃度や反応時間等を適宜設定して利用することができる。よって、本発明の分析用具は、う蝕リスク、歯周病リスク、及び口腔清潔度を反映するパラメータをそれぞれ短時間かつ一度の検査で測定するために好適に用いられる。また、本発明の分析用具を利用すれば、検査技師や医師等の検査技術に依存することなく、客観的且つ再現性及び信頼性のある測定を行うことができる。
 本発明の分析用具は、上述したようなう蝕リスク、歯周病リスク、及び口腔清潔度を反映するパラメータを測定できるよう構成される。すなわち、例えば、本発明の分析用具は、う蝕リスクを反映するパラメータとしてミュータンス菌数、pH、及び酸緩衝能からなる群から選ばれる1またはそれ以上のパラメータを測定でき、歯周病リスクを反映するパラメータとしてカルシウム濃度、総タンパク質濃度、潜血量、及び白血球数からなる群から選ばれる1またはそれ以上のパラメータを測定でき、かつ、口腔清潔度を反映するパラメータとしてアンモニア濃度及び総タンパク質濃度からなる群から選ばれる1またはそれ以上のパラメータを測定できるよう構成されるのが好ましい。また、本発明の分析用具は、う蝕リスクを反映するパラメータとしてミュータンス菌数、pH、及び酸緩衝能を測定でき、歯周病リスクを反映するパラメータとしてカルシウム濃度、総タンパク質濃度、潜血量、及び白血球数を測定でき、かつ、口腔清潔度を反映するパラメータとしてアンモニア濃度及び総タンパク質濃度を測定できるよう構成されるのも好ましい。また、本発明の分析用具は、ミュータンス菌数、pH、酸緩衝能、潜血量、白血球数、アンモニア濃度及び総タンパク質濃度からなる7つのパラメータ全てを測定できるよう構成されるのが特に好ましい。
 また、本発明の分析用具の第2の態様は、口腔から得られる被検試料について、う蝕リスクを反映する2またはそれ以上のパラメータを測定するための試薬を備える分析用具である。
 また、本発明の分析用具の第3の態様は、例えば、口腔から得られる被検試料について、歯周病リスクを反映する2またはそれ以上のパラメータを測定するための試薬を備える分析用具である。
 また、本発明の分析用具の第4の態様は、例えば、口腔から得られる被検試料について、口腔清潔度を反映する2またはそれ以上のパラメータを測定するための試薬を備える分析用具である。
 先述した本発明の分析用具の第1の態様に関する記載は、変更すべきところは変更して、本発明の分析用具の第2~4の態様にも同様に適用できる。
(2)本発明の測定装置
 本発明の測定装置の第1の態様は、(A)口腔から得られる被検試料について、う蝕リスクを反映する1またはそれ以上のパラメータ、歯周病リスクを反映する1またはそれ以上のパラメータ、及び口腔清潔度を反映する1またはそれ以上のパラメータを測定する測定部、(B)測定部で測定された結果から、う蝕リスク、歯周病リスク、及び口腔清潔度のレベルを判定するリスクレベル判定部、(C)リスクレベル判定部で判定されたリスクレベルを文字、図形、記号、色彩又はこれらの結合として表示する表示部を備える測定装置である。本発明の測定装置は、さらに(D)リスクレベル判定部で判定されたリスクレベルに基づき、コメントを表示する表示部、を備える測定装置である。以下、本発明の測定装置について、図面を参照して説明する。図3は、本発明の測定装置の一実施形態である測定装置2の機能を示すブロック図である。
 測定装置2は、測定部21を備える。測定部21は、各パラメータの測定データを取得する部位である。例えば、本発明の試験片を用いて各パラメータの測定を行う場合、測定部21は、本発明の試験片に備わる各吸収性担体における呈色反応の進行を測定する。
 呈色反応の進行は、特定の波長における吸光度に基づいて測定することができる。
 例えば、本発明の試験片を用いて各パラメータの測定を行う場合、呈色反応の進行と相関する反射率データを取得すればよい。
 反射率データは、例えば、被験試料を各パラメータの測定用試薬と接触させてから一定時間経過後の、特定の波長における反射率の値であってよい。反射率の値は、具体的には、特定の波長の光を呈色部位、例えば被検試料を点着した吸収性担体部分に照射し、その反射光を測定することにより取得できる。また、反射率データは、例えば、上記のようにして得られる反射率の値を100%から除算した値であってもよい。なお、特定の波長における吸光度が高いほど当該特定の波長における反射率の値は低く、特定の波長における吸光度が低いほど当該特定の波長における反射率の値は高いと言える。一定時間とは、例えば、上述したような各パラメータ測定法における反応時間であってよく、測定するパラメータの種類や測定方法に応じて適宜設定すればよい。
 また、反射率データは、例えば、特定の波長における一定時間の経過による反射率の変化値であってもよい。反射率の変化値は、具体的には、特定の波長の光を呈色部位、例えば被検試料を点着した吸収性担体部分に照射し、その反射光の増減を測定することにより取得できる。なお、特定の波長における吸光度の増加は、当該特定の波長における反射率の減少として測定できる。特定の波長における吸光度の減少は、当該特定の波長における反射率の増加として測定できる。一定時間とは、被検試料の点着直後から任意の時間が経過するまでであってもよく、被検試料の点着後のある時点からさらに任意の時間が経過するまでであってもよい。一定時間の長さや、被検試料の点着後のある時点は、測定するパラメータの種類や測定方法に応じて適宜設定すればよい。反射率の変化値は、反射率を少なくとも2回測定し、測定値の差として算出できる。また、一定時間の経過による反射率の変化値は、複数回測定された反射率に基づき、反射率の変化速度として算出されてもよい。なお、被検試料の点着直後または被検試料の点着後のある時点での反射率を一定と仮定する場合等の、被検試料の点着直後または被検試料の点着後のある時点での反射率を測定する必要がない場合には、反射率の測定回数を減らしてもよい。
 反射率データとして、上記いずれの値を採用するかは、測定するパラメータの種類や測定方法に応じて適宜設定すればよい。例えば、レサズリン法によりミュータンス菌数を測定する場合、反射率の変化値を測定するのが好ましい。具体的には、例えば、レサズリン法によりミュータンス菌数を測定する場合、反応時間が5分であれば、反応開始後1分~5分までの4分間における反射率変化を測定してもよい。また、例えば、特定の波長において、パラメータが悪化するほど反射率が低くなるパラメータを測定する場合には反射率の値を用い、パラメータが悪化するほど反射率が高くなるパラメータを測定する場合には反射率の値を100%から除算した値を用いる等の使い分けをしてもよい。例えば、ブロモクレゾールグリーンとブロモキシレノールブルーを含有する測定試薬でpHの測定を行う場合、pHが悪化する、すなわち酸性になるほど測定波長635nmでの反射率は高くなる。反射率データを取得するために用いる光源の波長は、各パラメータの測定法や用いる検出機器に基づき適宜設定できる。また、測定用の波長と、バックグラウンドの影響を除くための参照用の波長を個別に設定し利用してもよい。また、各パラメータは順次測定されてもよく、複数の測光部位を備える装置により複数のパラメータが同時に測定されてもよい。
 測定装置2は、制御部23を備える。制御部23は、CPU及びRAMを備え、CPUがRAMに展開されたプログラムを解釈及び実行することで、後述するランク判定部231Aと2つのリスクレベル判定部231Bおよび231Cとを含むリスクレベル判定部231、及びコメント判定部232として機能する。上記プログラムは、後述する記憶部24のプログラム記憶部241に格納されている。
 リスクレベル判定部231は、制御部23に含まれ、ランク判定部231Aと、さらに2つのリスクレベル判定部231Bと231Cとを含む。
 ランク判定部231Aは、後述する記憶部24に記憶されているう蝕リスク、歯周病リスク、または口腔清潔度を反映するパラメータのランクと反射率データとの相関を設定したテーブルに基づいて、被検試料について各パラメータのランクを判定する。例えば、ミュータンス菌数のランクと反射率データとの相関を設定したテーブルに基づいて、被検試料についてミュータンス菌数のランクを判定する。判定されるランクは2段階以上であり、3~8段階であるのが好ましい。
 リスクレベル判定部231Bは、後述する記憶部24に記憶されている各パラメータのランクと当該パラメータが反映するリスクのレベルとの相関を設定したテーブルに基づいて、ランク判定部231Aで判定されたパラメータの判定ランクが、当該パラメータが反映するリスクにおいてどのリスクレベルに対応するか判定する。例えば、ミュータンス菌数のランクとう蝕リスクのレベルとの相関を示すテーブルに基づいて、ランク判定部231Aで判定されたミュータンス菌数の判定ランクが、う蝕リスクにおいてどのリスクレベルに対応するか判定する。
 リスクレベル判定部231Cは、各リスクについて、リスクレベル判定部231Bで判定された当該リスクを反映するパラメータの当該リスクにおけるリスクレベルを元に、当該リスクのレベルを算出する。例えば、リスクレベル判定部231Bで判定されたミュータンス菌数、pH、酸緩衝能のう蝕リスクにおけるリスクレベルを元に、被検者のう蝕リスクレベルを判定する。リスクレベルは2段階以上であり、3~6段階であるのが好ましい。
 なお、本実施形態では、リスクレベル判定部231が、ランク判定部231Aと、さらに2つのリスクレベル判定部231Bと231Cとを含む態様として示しているが、各リスクについて、測定部21で得られた当該リスクを反映するパラメータの測定結果を元にリスクレベルが判定される限り、いかなる態様であってもよく、例えば、ランクを判定せずに、各々の反射率データから直接リスクレベルを判定してもよい。
 また、リスクレベル判定部231は、あるリスクに対応するパラメータと、別のリスクに対応するパラメータとを組み合わせて、当該あるリスクのリスクレベルの判定を行ってもよい。例えば、リスクレベル判定部231は、う蝕リスクを反映する1またはそれ以上のパラメータと、歯周病リスクおよび/または口腔清潔度を反映する1またはそれ以上のパラメータを組み合わせてう蝕リスクレベルの判定を行ってもよい。また、リスクレベル判定部231は、各リスクに対応するパラメータと、被検者の個人データを組み合わせることにより、各リスクのリスクレベルの判定を行ってもよい。
 コメント判定部232は、制御部23に含まれ、後述する記憶部24に記憶されている各リスクにおけるリスクレベルとコメントとの相関を示すテーブルに基づき、リスクレベル判定部231Cで判定されたリスクレベルに対応するコメントを選択する。
 測定装置2は、表示部22を備える。表示部22は、本発明における出力の一態様であり、測定部21で得られた測定値、ランク判定部231Aで判定されたランク、リスクレベル判定部231Cで判定されたリスクレベル、コメント判定部232で選択されたコメント等を表示する部位である。表示部22は、文字や画像等の情報を表示できるものである限り、特に限定されず、例えばLEDバックライトを備えた液晶ディスプレイが好適に用いられる。表示部22による表示は、文字、図形、記号、色彩又はこれらの結合等の任意の形式により行われる。表示部22は必要に応じて、各パラメータの測定結果、判定ランク、各リスクレベル、それらに対応するコメント等の情報を個別に表示できるが、医師等が被検者の口腔衛生状態を総合的に診断する助けとなるよう、さらに、それらの情報をまとめて文字、図形、記号、色彩又はこれらの結合等の任意の形式により表示してもよい。本実施形態では、本発明における出力の一態様として表示部22を採用しているが、出力は、医師、歯科衛生士、又は被検者が認識できる出力態様であればよく、例えば、印刷して出力してもよく、音声によって出力してもよい。また、表示部における視覚的な表示、印刷による出力、及び音声による出力等を任意に組み合わせて情報の出力を行ってもよいことは言うまでもない。
 また、本発明の測定装置において、測定部21で得られた各パラメータの反射率データから、パラメータと反射率データとの相関を示す検量線データ(図示しない)に基づいて、パラメータの値を算出してもよい。すなわち、例えば、ミュータンス菌数と反射率データの相関を示す検量線データ(図示しない)に基づいて、被検試料中のミュータンス菌数を算出してもよい。
 また、本発明の測定装置において、各パラメータについて、各パラメータのランクとコメントとの相関を示すテーブルに基づき、ランク判定部231Aで判定された各パラメータのランクに対応するコメントを選択してもよく、さらに選択されたコメントが出力されてもよい。
 測定装置2は、記憶部24を備える。記憶部24は、プログラム記憶部241、測定データ記憶部242を有する。プログラム記憶部241は、制御部23のRAMに展開され、CPUにより実行されるプログラムを記憶する。測定データ記憶部242は、上記測定部21で得られた測定値のデータを、記憶する。記憶部24は、さらに、ランク判定部231A、リスクレベル判定部231Bおよび231Cで判定された結果を記憶するのも好ましい。また記憶部24は、被検者の氏名、連絡先等の被検者情報等の従来の測定装置に記憶されているような基礎情報を記憶してもよい。
 本発明の測定装置としては、例えば、尿試験紙用あるいは血液試験紙用の反射率測定機器を、本発明の分析用具及びその測定項目に合わせてカスタマイズして使用することができる。尿試験紙用の反射率測定機器としては、例えばポケットケムUA PU-4010(アークレイ株式会社製)を使用することができる。ポケットケムUA PU-4010を用いる場合には、二波長反射測光法による測定を行うことができる。ポケットケムUA PU-4010において、測光部では、マルチLEDより波長の異なる2種類の光、すなわち測定波長の光、及び参照波長の光を呈色部位に照射し、その反射率に基づき分析用具の発色を測定することができる。
 なお、本発明の測定装置はスタンドアローンな機器であってもよく、そうでなくてもよい。すなわち、各部は互いにデータの送受信ができる限り、物理的に独立したものであってもよい。例えば、測定データを電気通信回線等を利用して他の装置に送信し、他の装置でリスクレベルの判定を行ってもよい。また、判定されたリスクレベルを電気通信回線等を利用して他の装置に送信し、他の装置で判定されたリスクレベルやそれに基づくコメント等の情報を表示してもよい。
 なお、本実施形態では、本発明の分析用具の一実施形態である各パラメータを測定するための試薬を保持する吸収性担体を備える試験片を利用して各パラメータを測定するための反射率データを取得する態様を記載したが、各パラメータの測定法は、吸収性担体を備える試験片を用いる場合に限られず、例えば、吸収性担体を備えない試験片を用いる場合やチューブ等の容器内で試料と反応させる場合にも利用することができることは既に述べた通りである。すなわち、本発明の試験片を用いずとも、例えば、任意のパラメータ測定用の試薬を含む反応用チューブ内に被検試料を添加することで呈色反応を進行させ、反射率データを取得することも可能である。よって、本発明において、「パラメータを測定する」工程は、本発明の分析用具を用いて行うことができる。
 また、本発明の測定装置の第2の態様は、以下の(A)~(C)を備える測定装置である。
(A)口腔から得られる被検試料について、う蝕リスクを反映する2またはそれ以上のパラメータを測定する測定部、
(B)測定部で測定された結果から、う蝕リスクのレベルを判定するリスクレベル判定部、
(C)リスクレベル判定部で判定されたう蝕リスクレベルを表示する表示部。
 また、本発明の測定装置の第3の態様は、例えば、以下の(A)~(C)を備える測定装置である。
(A)口腔から得られる被検試料について、歯周病リスクを反映する2またはそれ以上のパラメータを測定する測定部、
(B)測定部で測定された結果から、歯周病リスクのレベルを判定するリスクレベル判定部、
(C)リスクレベル判定部で判定された歯周病リスクレベルを表示する表示部。
 また、本発明の測定装置の第4の態様は、例えば、以下の(A)~(C)を備える測定装置である。
(A)口腔から得られる被検試料について、口腔清潔度を反映する2またはそれ以上のパラメータを測定する測定部、
(B)測定部で測定された結果から、口腔清潔度のレベルを判定するリスクレベル判定部、
(C)リスクレベル判定部で判定された口腔清潔度のレベルを表示する表示部。
 先述した本発明の測定装置の第1の態様に関する記載は、変更すべきところは変更して、本発明の測定装置の第2~4の態様にも同様に適用できる。
(3)本発明のプログラム
 本発明のプログラムの第1の態様は、以下のステップ(A)および(B)をコンピュータに実行させるプログラムである。
(A)口腔から得られる被検試料について、う蝕リスクを反映する1またはそれ以上のパラメータ、歯周病リスクを反映する1またはそれ以上のパラメータ、及び口腔清潔度を反映する1またはそれ以上のパラメータの測定結果に基づき、う蝕リスク、歯周病リスク、及び口腔清潔度のレベルをレベル判定部に判定させるステップ、
(B)ステップ(A)で判定されたレベルを表示部に表示させるステップ。
 本発明のプログラムは、さらに、以下のステップ(C)をコンピュータに実行させてもよい。
(C)ステップ(A)で判定されたレベルに基づき、コメントを表示部に表示させるステップ。
 本発明のプログラムは、例えば、本発明の測定装置に上記ステップを実行させることができる。
 以下、図4のフローチャートを参照し、本発明のプログラムについて説明する。図4は、本発明のプログラムの一実施形態において、本発明のプログラムがコンピュータに実行させるステップを示す。
 まず、本発明の分析用具が装置2にセットされ、測定部21で各吸収性担体の反射率データが測定される。測定された反射率データは、測定データ記憶部242に記憶される。
 ステップS1では、測定部21で取得されたデータに基づき、各リスクレベルが判定される。ステップS1は、ステップS11、S12、S13を含む。
 ステップS11では、ランク判定部231Aが、記憶部24に記憶されているう蝕リスク、歯周病リスク、または口腔清潔度を反映するパラメータのランクと反射率データとの相関を設定したテーブルに基づいて、被検試料について各パラメータのランクを判定する。判定されるランクは2段階以上であり、3~8段階であることが好ましい。具体的には、測定部21で取得された任意のパラメータの反射率データ値がxであり、ランクがn段階(nは任意の整数)に分かれており、該パラメータについてm段階目(mは、n≧mである任意の整数)での反射率データ値の閾値がtmであるとすると、
m ≧ x > tm+1 ・・・(i)
を満たすmが算出され(ただし、tn ≧ x の時、x = n)、該パラメータのランクはn段階中のm段階目であると判定される。
 ステップS11が終了したらステップS12に進み、ステップ12では、リスクレベル判定部231Bが、ステップ11で判定されたパラメータのランクについて、予め設定されたテーブルに基づき、該パラメータが対応するリスクレベルを判定する。
 ステップS12が終了したらステップS13に進み、ステップS13では、リスクレベル判定部231Cが、ステップS12で判定されたパラメータのリスクレベルに基づき、該パラメータが反映するリスクのリスクレベルを判定する。リスクレベルは2段階以上であり、3~6段階であることが好ましい。具体的には、任意のリスクについて、該リスクを反映するy個のパラメータについてステップS12で判定されたリスクレベルがp1、・・・、pyである場合、該リスクのリスクレベルzは、p1、・・・、pyの内の最大値をpmaxとして、
z = pmax + 1 ・・・(ii)
で算出される(ただし、pmax = nの場合、z=nとする)。なお、任意のパラメータについて判定されたランクが、複数の段階のリスクレベルに対応している場合、対応するリスクレベルの内、最大の値をpとして用いる。例えば、リスクレベルが6段階で、ミュータンス菌数のランクが対応するリスクレベルが4、pHのランクが対応するリスクレベルが2、酸緩衝能のランクが対応するリスクレベルが3であった場合、3つの内で最大であるミュータンス菌数のランクが対応するリスクレベルを用いて、う蝕リスクのリスクレベルは4+1=5であると算出される。
 なお、本実施形態においては、任意のリスクを反映する1またはそれ以上のパラメータについて、対応するリスクレベルが最大のパラメータに基づき、当該リスクのリスクレベルを判定しているが、リスクレベルの判定方法は、任意のリスクを反映するパラメータに基づきリスクレベルが判定される限り特に制限されず、例えば、当該1またはそれ以上のパラメータのランクが対応するリスクレベルの平均値を算出し、それに基づきリスクレベルを判定してもよい。また、任意のリスクのレベルが複数のパラメータの測定結果に基づいて判定される場合に、当該複数のパラメータの測定結果は、等しい重みで扱われてもよく、重み付けがなされて扱われてもよい。重み付けは、例えば、任意のリスクに対するパラメータの重要度に基づいて設定することができる。例えば、う蝕リスクのレベルをミュータンス菌数、pH、及び酸緩衝能に基づいて判定する場合に、ミュータンス菌数の測定結果を他の2つのパラメータの測定結果よりも強く反映させてう蝕リスクのレベルを判定してもよい。また、あるリスクレベルの判定を、当該リスクに対応するパラメータと、別のリスクに対応するパラメータおよび/または被検者の個人データ等と組み合わせて行う場合も、判定ステップの内容を適宜設定すればよい。
 ステップS1が終了したらステップS2に進み、ステップS2では、表示部22が、ステップS13で判定されたリスクレベルを、任意の形式で表示する。リスクレベルが表示される形式としては、数値、図形、表等が挙げられる。図形としては、特に限定されず、棒グラフやレーダーチャート等の任意の形式の図形として表示できる。
 ステップS1が終了したらステップS3に進み、ステップS3では、コメント判定部232が、ステップS13で判定されたリスクレベルに対応するコメントを選択し、表示部22が、選択されたコメントを表示する。コメントとは、例えば、各リスクについて、臨床上どのような対応をとるべきであるかを示すものである。コメントの例としては、う蝕リスクに関して「ムシ歯菌が高いレベルで検出され、唾液の酸緩衝能も弱く、ムシ歯リスクが高いといえます。食後には必ず口腔清掃を行なってください。殺菌剤配合の洗口剤の使用も効果的です。」や歯周病リスクに関して「潜血、白血球が高いレベルで検出され、歯周病リスクが高いといえます。歯間ブラシ・デンタルフロスでプラークを除去し、歯周病(歯肉炎症の)の原因を取り除きましょう。」等が挙げられる。
 図4に示すフローチャートにおいては、ステップS1が、ステップS11、ステップS12、ステップS3を含む態様が示されているが、各リスクについて、測定部21で得られた当該リスクを反映するパラメータの測定結果を元にリスクレベル判定部231がリスクレベルを判定する限り、ステップS1はいかなる態様であってもよく、例えば、ランクを判定せずに、反射率データからリスクレベルを判定してもよい。
 ランクを判定するためのパラメータのランクと反射率データとの相関、ランクからリスクレベルを判定するためのランクとリスクレベルとの相関等の、各処理に用いる相関データは、口腔健診や歯科診療などにおいて、多数の被検者から得た口腔被検試料の各パラメータの測定値と、各リスクを歯科医師の診断と比較して統計的処理を行い、各リスクレベルの数値と被検試料中の各パラメータの測定値とを関連付けることにより作成される。各パラメータについてリスクの程度を3段階に区分する際の、各パラメータの値と、対応するリスクの程度の一例を表1に示す。なお、表1中、酸緩衝能の値は、一定量の酸を保持させた試験紙に口腔から得られる試料を点着した際の最終的なpHの値を示す。
Figure JPOXMLDOC01-appb-T000001
 また、本発明のプログラムは、各リスクを反映するそれぞれのパラメータについても、判定されたランクに基づき、数値、図、又は表として表示するステップをコンピュータに実行させてもよい。また、本発明のプログラムは、各リスクを反映するそれぞれのパラメータについても、判定されたランクに基づき、コメントを表示するステップをコンピュータに実行させてもよい。パラメータについてのコメントとは、例えば、各パラメータの測定結果を説明するものである。パラメータについてのコメントの例としては「唾液中のムシ歯菌は少なく、良好な状態です。」、「唾液の酸性度は中性付近です。日々のケアにより、この状態を保ちましょう。」、「唾液中に潜血が見られます。歯肉から出血している可能性があり、ケアが必要です。」、及び「唾液のアンモニア濃度が高く、活発に菌が繁殖している状態です。積極的なケアが必要です。」等が挙げられる。
 なお、本実施形態においては、測定部21において反射率データが測定され、測定された反射率データが測定データ記憶部242に記憶される態様を記載したが、測定部21における測定に代えて、例えば、本発明の分析用具における呈色反応の結果を肉眼で観察し、その結果を反射率データとして用いて以降の処理が行われてもよい。すなわち、本発明の分析用具における呈色反応の進行を、任意の光源下において目視し、各パラメータを測定するためのデータを取得することができる。任意の光源とは、例えば、自然光、蛍光灯、白熱電球等でよく、また特定の波長に制限された光源であってもよい。よって、本発明において、「パラメータを測定する」工程は、検出機器を用いずに行うことも可能である。
 本発明のプログラムは、各ステップを単一のコンピュータに実行させてもよく、物理的に独立した複数のコンピュータに実行させてもよい。例えば、測定データを電気通信回線等を利用して他の装置に送信し、他の装置でリスクレベルの判定を行ってもよい。また、判定されたリスクレベルを電気通信回線等を利用して他の装置に送信し、他の装置で判定されたリスクレベルやそれに基づくコメント等の情報を表示してもよい。そのような様態としては、例えば、WEB上で測定データを入力して、リスクレベル判定用のサーバーに測定データを送信し、当該判定用サーバーでリスクレベルを判定するステップを実行し、さらに判定結果をWEB上で表示する様態が例示できる。また、電気通信回線等を利用したデータの送受信に基づく課金システムを採用してもよい。そのような課金システムとしては、例えば、利用者がWEBブラウザ上でリスクレベルの判定結果を表示させた時点で、あるいは、リスクレベルの判定結果を含むファイルのダウンロードを完了した時点で課金するシステムが挙げられる。課金は、表示・ダウンロード従量制、及び日、週、または月など期間に応じて課金する定額制等の任意の方式で実施することができる。
また、本発明のプログラムは、コンピュータが読み取り可能な記録媒体に記録され、提供されてもよい。ここで、コンピュータが読み取り可能な記録媒体とは、データやプログラム等の情報が電気的、磁気的、光学的、機械的、又は化学的作用等により蓄積され、さらに蓄積された情報をコンピュータから読み取ることのできる記録媒体を言う。このような記録媒体としては、例えばフロッピー(登録商標)ディスク、光磁気ディスク、CD-ROM、CD-R/W、DVD-ROM、DVD-R/W、DVD-RAM、DAT、8mmテープ、メモリカード、ハードディスク、ROM(リードオンリーメモリ)、及びSSD等がある。また、本発明のプログラムは、コンピュータにより実行される各ステップ毎に別個のプログラムとして記録されていてもよい。
 また、本発明のプログラムの第2の態様は、以下のステップ(A)および(B)をコンピュータに実行させるプログラムである。
(A)口腔から得られる被検試料について、う蝕リスクを反映する2またはそれ以上のパラメータの測定結果に基づき、う蝕リスクのレベルをリスクレベル判定部に判定させるステップ、
(B)ステップ(A)で判定されたレベルを表示部に表示させるステップ。
 また、本発明のプログラムの第3の態様は、例えば、以下のステップ(A)および(B)をコンピュータに実行させるプログラムである。
(A)口腔から得られる被検試料について、歯周病リスクを反映する2またはそれ以上のパラメータの測定結果に基づき、歯周病リスクのレベルをリスクレベル判定部に判定させるステップ、
(B)ステップ(A)で判定されたレベルを表示部に表示させるステップ。
 また、本発明のプログラムの第4の態様は、例えば、以下のステップ(A)および(B)をコンピュータに実行させるプログラムである。
(A)口腔から得られる被検試料について、口腔清潔度を反映する2またはそれ以上のパラメータの測定結果に基づき、口腔清潔度のレベルをリスクレベル判定部に判定させるステップ、
(B)ステップ(A)で判定されたレベルを表示部に表示させるステップ。
 先述した本発明のプログラムの第1の態様に関する記載は、変更すべきところは変更して、本発明のプログラムの第2~4の態様にも同様に適用できる。
(4)本発明の方法
 本発明においては、例えば上記に示すように、被検者の口腔状態を反映するパラメータを測定し、測定結果に基づき口腔状態、すなわち口腔疾患リスクおよび/または口腔衛生状態を判定することができる。すなわち、本発明は、被検者の口腔状態を判定する方法を提供する。
 本発明の方法の第1の態様(以下、第1の態様ともいう)は、被検者の口腔状態を判定する方法であって、以下の(A)、(B)、および(C)を含む方法である。
(A)口腔から得られる被検試料について、う蝕リスクを反映する1またはそれ以上のパラメータを測定し、測定されたパラメータを指標として、う蝕リスクのレベルを判定する工程。
(B)口腔から得られる被検試料について、歯周病リスクを反映する1またはそれ以上のパラメータを測定し、測定されたパラメータを指標として、歯周病リスクのレベルを判定する工程。
(C)口腔から得られる被検試料について、口腔清潔度を反映する1またはそれ以上のパラメータを測定し、測定されたパラメータを指標として、口腔清潔度のレベルを判定する工程。
 本発明の方法において、工程(A)~(C)は、同時に実行されてもよく、個別に実行されてもよい。
 また、本発明の方法の第2の態様は、口腔から得られる被検試料について、う蝕リスクを反映する2またはそれ以上のパラメータを測定し、測定されたパラメータを指標として、う蝕リスクのレベルを判定する工程を含む、被検者のう蝕リスクを判定する方法である。
 また、本発明の方法の第3の態様は、例えば、口腔から得られる被検試料について、歯周病リスクを反映する2またはそれ以上のパラメータを測定し、測定されたパラメータを指標として、歯周病リスクのレベルを判定する工程を含む、歯周病リスクを判定する方法である。
 また、本発明の方法の第4の態様は、例えば、口腔から得られる被検試料について、口腔清潔度を反映する2またはそれ以上のパラメータを測定し、測定されたパラメータを指標として、口腔清潔度のレベルを判定する工程を含む、口腔清潔度を判定する方法である。
 本発明の方法は、特に制限されないが、例えば、先述した本発明の分析用具、分析装置、プログラム等を用いて好適に実施できる。また、先述した本発明の分析用具、分析装置、プログラム等の記載は、変更すべきところは変更して、本発明の方法にも適用できる。例えば、本発明の方法は、さらに、判定されたレベルを表示する工程を含んでいてもよく、判定されたレベルに基づきコメントを表示する工程を含んでいてもよく、パラメータの測定結果に基づきコメントを表示する工程を含んでいてもよい。
 本発明において、口腔から得られる被検試料としては、目的とするパラメータを測定できる限り特に制限されず、例えば、安静時唾液、精製水によるうがい液、又はガムで刺激して採取したガム唾液を用いることができる。中でも、精製水によるうがい液が好ましい。精製水によるうがい液は、例えば3mlの精製水を10秒間口に含み、容器に吐き出すことにより得られる。精製水の容量や、口に含む時間は、必要により適宜変更することができる。得られた被検試料は特段の前処理なく以降の操作に利用できる。
 被検試料は、試験片に備えられた各測定用試薬を保持する吸収性担体に点着することにより、または各測定用試薬を保持する吸収性担体に接触して設けられた試料を点着するための吸収性担体に点着することにより、直接各測定用試薬と反応させることができる。ただし、アンモニアの定量を微量拡散法によって行う場合には、測定用試薬を保持する吸収性担体と、被検試料を点着する吸収性担体とは、互いに接触させずに設置されており、被検試料は測定試薬とは直接は接触しない。また、試験片を用いずに各パラメータを測定する場合には、例えば、任意のパラメータ測定用の試薬を含む液体反応系に被検試料を添加することで呈色反応を進行させることができる。
 以下の手順は、本発明の試験片、本発明の測定装置、及び本発明のプログラムを利用して被検試料を測定し、医師等が診断を行う手順の一例を示す。
1.口腔から得られる被検試料として、3mlの精製水によるうがい液を採取する。
2.被検試料を、本発明の試験片の各吸収性担体に、あるいは試料を点着するための吸収性担体が備えられている場合には当該担体に点着して、所定の時間で変化した色調を本発明の測定装置で測定する。
3.測定結果に基づき、各リスクレベルを判定し、表示する。さらに、各リスクレベルに基づき、う蝕リスク、歯周病リスク、及び口腔清潔度のそれぞれについてコメントを表示する。
4.表示された情報に基づき、医師等が被検者の口腔疾患リスク、及び口腔衛生状態を診断する。
 以下、実施例によって本発明をさらに具体的に説明する。但し、本発明はこれら実施例に限定されるものではない。
〔試験例〕レサズリン法の検討
 レサズリンの還元を指標としたミュータンス菌の定量キットとしては、昭和薬品化工株式会社のRDテスト「昭和」(商品名)が知られているが、37℃、15分の培養操作が必要であった。そこで、本試験例においては、室温5分間でのミュータンス菌の測定を目指し、レサズリン法によるミュータンス菌の検出条件について検討した。
 ミュータンス菌測定用の吸収性担体として、ミュータンス菌測定用試薬溶液に浸漬して作製した吸収性担体を設置した試験片を試験群として用いた。当該試薬溶液は、30mMスクロース、0.2%ポリビニルアルコール、100mMリン酸緩衝液(pH6)、0.1mMメトキシPMS、及び0.12mMレサズリンを含有する。また、当該組成において、メトキシPMSを添加しない試薬溶液に浸漬して作製した吸収性担体を設置した試験片を対照群として用いた。
 被検者として、既存のミュータンス菌培養判定キットであるデントカルトSM(株式会社オーラルケア製)において、それぞれ、口腔内のミュータンス菌レベルが多い、中程度、又は低いと判定された被検者を採用した。被検試料としては、3mlの精製水を10秒間口に含み、容器に吐き出すことにより各被検者より得られたうがい液を用いた。
 それぞれの試験片の吸収性担体に、それぞれの被検者から得られた被検試料を10μLずつ点着させた。室温を想定した25℃で5分間試験片を放置した後、反射率測定装置を用い、試験片の反射率を測定した。
 結果を図5に示す。メトキシPMSを添加しない対照群では、室温5分間経過時点において、ミュータンス菌数レベルが低い被検者と中程度の被検者の反射率の差が2%と小さく有効に区別できないのに対し、メトキシPMSを添加した試験群では、3段階それぞれの反射率が9~13%の差を持っており、室温5分間での測定が可能であった。以上より、ミュータンス菌測定用の試薬としてメトキシPMSを添加することで、室温5分間での測定が可能となった。
〔実施例1〕試験片作製例
<試験片の作成>
 ミュータンス菌の測定用試薬を含む吸収性担体としては、試験例1で作製したメトキシPMSを含む担体を利用した。pH、潜血、白血球数、総タンパク質濃度の測定用担体としては、市販されているオーションスティックス(商品名、アークレイ株式会社製)のpH、潜血、白血球数、総タンパク質濃度を測定対象とする試験紙を転用した。酸緩衝能測定用担体としては、オーションスティックス(商品名、アークレイ株式会社製)のpH測定用試験紙1片に1mM酒石酸を7μl点着し、乾燥させたものを用いた。アンモニア測定用担体としては、市販されているアミチェック(商品名、アークレイ株式会社製)の担体を転用した。カルシウム濃度測定用担体としては、市販されているスポットケム II カルシウム(商品名、アークレイ株式会社製)の試薬パッドを転用した。上記の各担体を、PET製支持担体に貼り付け、ミュータンス菌数、pH、酸緩衝能、潜血量、白血球数、アンモニア濃度、総タンパク質濃度、およびカルシウム濃度測定用の試薬を備える試験片を製造した。なお、総タンパク質濃度の測定用担体は、歯周病リスクの判定および口腔清潔度の判定に共通に利用できる。
〔実施例2〕唾液検査システムによる口腔疾患リスクおよび口腔清潔度予測(1)
 本実施例では、本発明の判定方法に用いられるパラメータの測定結果に基づき、歯科医による口腔疾患リスクおよび口腔清清潔度の診断結果を予測できるかを検討した。
<方法>
(口腔指標評価)
 う蝕リスク、歯周病リスク、口腔清潔度に関する口腔指標として、以下の項目を用いた。
・う蝕状態リスク:DMFT
・歯周病状態リスク:CPI
・口腔清潔度:OHI-DI
 各口腔指標については常法に従って歯科医が診断した。DMFTはう蝕経験を示す指数で、永久歯における、未処置う蝕歯数、う蝕による喪失歯数、およびう蝕を処置された歯数の合計値で表される。CPIは歯周病の処置必要度を示す指数で、WHO歯周プローブを用いた歯周組織の検査結果をスコア化した基準に基づき算出される。CPIについては、上下顎を右側臼歯部、前歯部、左側臼歯部の6部位に分け、各部位の最大値の平均値を評価に用いた。OHI-DIは歯口清掃状態を示す指数であり、歯面への歯垢の沈着状態をスコア化した基準に基づき算出される。OHI-DIについては、CPIと同様に6部位に分け、各部位の最大値の平均値を評価に用いた。
(試験片を用いた唾液検査)
 蒸留水(日本薬局方注射用水)3mLを口に含み、約10秒間洗口後、吐出したものを被検試料とした。実施例1で作成した試験片に備えられた各吸収性担体に被検試料を10uLずつ点着後、唾液成分を測定した。測定は、検出機器としてポケットケムUA PU-4010(アークレイ株式会社製)を用い、室温下、表2の条件で行った。なお、ミュータンス菌数の測定は、被検試料を点着してから1分後と5分後に反射率を測定し、4分間での反射率変化を算出することにより行った。また、それ以外の測定項目は、被検試料を点着してから表2に記載の測定時間経過後に反射率を測定することにより行った。なお、アンモニア濃度の測定は、被検試料を点着して10秒後に試料層とスペーサーを試薬層から剥離させ、60秒後に試薬層の反射率を測定することにより行った。
Figure JPOXMLDOC01-appb-T000002
(統計解析)
 協力者231名のデータを用いて解析を実施した。解析は、各口腔指標を目的変数とし、唾液成分測定値(反射率データ)を説明変数として単回帰分析を実施した(表3)。さらに、説明変数として、複数の唾液成分測定値を組み合わせた場合と、年齢や性別や喫煙有無の個人データを組み合わせた場合について、重回帰分析を実施した(表4、5、6)。尚、性別や喫煙有無といった質的変数についてはダミー変数として扱った。それぞれの回帰分析を実施後、重相関係数を求め、これを予測精度として評価した。解析は、解析ソフトJMP5.0(SAS Institute, Japan)を用いて実施した。
(結果)
 各唾液成分測定値を説明変数とした単回帰分析の結果、いずれの測定値についても対応する口腔状態との相関が認められ(表3)、唾液成分測定値(反射率データ)から各口腔状態を予測することが可能であることが明らかとなった。よって、う蝕リスク、歯周病リスク、および口腔清潔度のそれぞれを反映する少なくとも1つのパラメータを測定することで、う蝕リスク、歯周病リスク、口腔清潔度をまとめて簡便に判定することが可能である。
 また、ある口腔状態に対応する複数の唾液成分測定値を組み合わせることにより、予測精度(重相関係数)が向上することが明らかとなった(表4)。また、個人データを組み合わせることにより、予測精度(重相関係数)がさらに向上することが明らかとなった(表5)。また、ある口腔状態に対応する唾液成分測定値と、別の口腔状態に対応する唾液成分測定値とを組み合わせることによっても、予測精度(重相関係数)がさらに向上することが明らかとなった(表6)。よって、唾液成分測定値等の組み合わせにより予測精度が向上し、確度の高いう蝕リスク、歯周病リスク、口腔清潔度の判定が可能である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
〔実施例3〕唾液検査システムによる口腔疾患リスクおよび口腔清潔度予測(2)
 本実施例では、本発明の判定方法に用いられるパラメータの測定結果に基づき、口腔疾患リスクである菌数を予測できるかを検討した。
<方法>
(口腔指標評価)
 う蝕、歯周病、口腔清潔度に関する口腔指標として、以下の項目を用いた。
・う蝕リスク:唾液中う蝕菌数
・歯周病リスク:唾液中歯周病菌数
・口腔清潔度:唾液中総菌数
 歯周病菌数については、DNA抽出キット(Nexttec)を用いて唾液からゲノムを抽出し、歯周病代表菌として知られる3菌種、すなわちPorphyromonas gingivalis(P.g.)、Tannerella forsythensis(T.f.)、およびTreponema denticola(T.d.)の菌数をリアルタイムPCRにて測定し、合計値を評価に用いた。リアルタイムPCRの反応組成及び反応条件は、いずれの菌種においても表7、8に示す条件で実施した。また、使用したプライマーとTaqManプローブの配列を表9、10に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 う蝕菌数については、MSB平板培地にて100~10000倍希釈した唾液を塗布して3日間、37℃、嫌気性条件下にて培養後、コロニー数を計測した。総菌数については、血液平板培地にて10000~100000倍希釈した唾液を塗布して1週間、37℃、嫌気性条件下にて培養後、コロニー数を計測した。それぞれの培地組成は表11、12に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
(本発明の試験片を用いた唾液検査)
 蒸留水(日本薬局方注射用水)3mLを口に含み、約10秒間洗口後、吐出したものを被検試料とした。試験片に備えられた各吸収性担体に被検試料を10uLずつ点着後、唾液成分を測定した。測定は、検出機器としてポケットケムUA PU-4010(アークレイ株式会社製)を用い、室温下、表2の条件で行った。なお、ミュータンス菌数の測定は、被検試料を点着してから1分後と5分後に反射率を測定し、4分間での反射率変化を算出することにより行った。また、それ以外の測定項目は、被検試料を点着してから表2に記載の測定時間経過後に反射率を測定することにより行った。なお、アンモニア濃度の測定は、被検試料を点着して10秒後に試料層とスペーサーを試薬層から剥離させ、60秒後に試薬層の反射率を測定することにより行った。
(統計解析)
 協力者231名のデータを用いて解析を実施した。解析は、各口腔指標を目的変数とし、唾液成分測定値(反射率データ)を説明変数として単回帰分析を実施した(表13)。さらに、説明変数として、複数の唾液成分測定値を組み合わせた場合と、年齢や性別や喫煙有無の個人データを組み合わせた場合について、重回帰分析を実施した(表14、15、16)。尚、性別や喫煙有無といった質的変数についてはダミー変数として扱った。それぞれの回帰分析を実施後、重相関係数を求め、これを予測精度として評価した。解析は、解析ソフトJMP5.0(SAS Institute, Japan)を用いて実施した。
(結果)
 各唾液成分測定値を説明変数とした単回帰分析の結果、いずれの測定値についても対応する口腔状態との相関が認められ(表13)、唾液成分測定値(反射率データ)から各口腔状態を予測することが可能であることが明らかとなった。よって、う蝕リスク、歯周病リスク、および口腔清潔度のそれぞれを反映する少なくとも1つのパラメータを測定することで、う蝕リスク、歯周病リスク、口腔清潔度をまとめて簡便に判定することが可能である。
 また、ある口腔状態に対応する複数の唾液成分測定値を組み合わせることにより、予測精度(重相関係数)が向上することが明らかとなった(表14)。また、個人データを組み合わせることにより、予測精度(重相関係数)がさらに向上することが明らかとなった(表15)。また、ある口腔状態に対応する唾液成分測定値と、別の口腔状態に対応する唾液成分測定値とを組み合わせることによっても、予測精度(重相関係数)がさらに向上することが明らかとなった(表16)。よって、唾液成分測定値等の組み合わせにより予測精度が向上し、確度の高いう蝕リスク、歯周病リスク、口腔清潔度の判定が可能である。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 本発明により、口腔状態、すなわち口腔疾患リスクおよび/または口腔衛生状態を反映するパラメータを測定し、測定結果に基づき被検者の口腔状態を判定できる。特に、本発明の分析用具等を用いることで、口腔疾患リスク及び口腔衛生状態を反映する複数の成分又は性質を、短時間かつ一度の検査で測定し、各リスクレベルを判定できる。医師等は、判定されたリスクレベルに基づき、被検者の口腔疾患リスク及び口腔衛生状態を客観的かつ総合的に診断することができる。したがって、本発明は、1回の来院で口腔衛生状態の診断とその後のケア指導までを行うために有用である。
1・・・試験片
10・・・支持担体
11・・・う蝕リスク測定部
11A、11B、11C・・・う蝕リスクを反映するパラメータを測定するための試薬を保持する吸収性担体
12・・・歯周病リスク測定部
12A、12B、12C・・・歯周病リスクを反映するパラメータを測定するための試薬を保持する吸収性担体
13・・・口腔清潔度測定部
13A、13B・・・口腔清潔度を反映するパラメータを測定するための試薬を保持する吸収性担体
14A、15A・・・任意のパラメータを測定するための試薬を保持する吸収性担体
14B、15B・・・被検試料を点着する吸収性担体
15C・・・スペーサー
2・・・測定装置
21・・・測定部
22・・・表示部
23・・・制御部
231・・・リスクレベル判定部
231A・・・ランク判定部
231B・・・リスクレベル判定部
231C・・・リスクレベル判定部
232・・・コメント判定部
24・・・記憶部
241・・・プログラム記憶部
242・・・データ記憶部

Claims (8)

  1.  以下の(A)、(B)、および(C)を備える分析用具。
    (A)口腔から得られる被検試料について、う蝕リスクを反映する1またはそれ以上のパラメータを測定するための試薬。
    (B)口腔から得られる被検試料について、歯周病リスクを反映する1またはそれ以上のパラメータを測定するための試薬。
    (C)口腔から得られる被検試料について、口腔清潔度を反映する1またはそれ以上のパラメータを測定するための試薬。
  2.  前記分析用具が、支持担体と、該支持担体に担持される前記試薬を保持する吸収性担体とを備える試験片である、請求項1に記載の分析用具。
  3.  前記う蝕リスクを反映するパラメータが、少なくともミュータンス菌数を含む、請求項1または2に記載の分析用具。
  4.  う蝕リスクを反映するパラメータが、ミュータンス菌数、pH、及び酸緩衝能からなる群から選ばれるパラメータであり、
     歯周病リスクを反映するパラメータが、カルシウム濃度、総タンパク質濃度、潜血量、及び白血球数からなる群から選ばれるパラメータであり、かつ
     口腔清潔度を反映するパラメータが、アンモニア濃度及び総タンパク質濃度からなる群から選ばれるパラメータである、請求項1~3のいずれか1項に記載の分析用具。
  5.  以下の(a)、(b)、及び(c)から選択される1またはそれ以上の特徴を有する、請求項1~4のいずれか1項に記載の分析用具。
    (a)前記う蝕リスクを反映するパラメータが、2またはそれ以上のパラメータからなる。
    (b)前記歯周病リスクを反映するパラメータが、2またはそれ以上のパラメータからなる。
    (c)前記口腔清潔度を反映するパラメータが、2またはそれ以上のパラメータからなる。
  6.  請求項1~5のいずれか1項に記載の分析用具を使用して被検者の口腔状態を判定する方法であって、以下の(A)、(B)、および(C)を含む方法。
    (A)口腔から得られる被検試料について、う蝕リスクを反映する1またはそれ以上のパラメータを測定し、測定されたパラメータを指標として、う蝕リスクのレベルを判定する工程。
    (B)口腔から得られる被検試料について、歯周病リスクを反映する1またはそれ以上のパラメータを測定し、測定されたパラメータを指標として、歯周病リスクのレベルを判定する工程。
    (C)口腔から得られる被検試料について、口腔清潔度を反映する1またはそれ以上のパラメータを測定し、測定されたパラメータを指標として、口腔清潔度のレベルを判定する工程。
  7.  さらに、判定されたレベルを表示する工程を含む、請求項6に記載の方法。
  8.  さらに、判定されたレベルに基づきコメントを表示する工程を含む、請求項6または7に記載の方法。
PCT/JP2011/080180 2010-12-28 2011-12-27 口腔状態の判定方法、並びにそのために用いられる分析用具、装置、及びプログラム WO2012090995A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137017847A KR101958699B1 (ko) 2010-12-28 2011-12-27 구강 상태의 판정 방법, 그리고 그것을 위해 사용되는 분석 용구, 장치, 및 프로그램
CN201180063591.1A CN103282774B (zh) 2010-12-28 2011-12-27 口腔状态的判定方法及其所使用的分析用具、装置以及程序
EP11852613.6A EP2660597B1 (en) 2010-12-28 2011-12-27 Method for determining condition of oral cavity and analytical tool, apparatus and program used for the method
JP2012550968A JP5981350B2 (ja) 2010-12-28 2011-12-27 口腔状態の判定方法、並びにそのために用いられる分析用具、装置、及びプログラム
US13/976,643 US9500649B2 (en) 2010-12-28 2011-12-27 Analytical tool and method for determining a condition of an oral cavity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-292967 2010-12-28
JP2010292967 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090995A1 true WO2012090995A1 (ja) 2012-07-05

Family

ID=46383088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080180 WO2012090995A1 (ja) 2010-12-28 2011-12-27 口腔状態の判定方法、並びにそのために用いられる分析用具、装置、及びプログラム

Country Status (6)

Country Link
US (1) US9500649B2 (ja)
EP (1) EP2660597B1 (ja)
JP (1) JP5981350B2 (ja)
KR (1) KR101958699B1 (ja)
CN (1) CN103282774B (ja)
WO (1) WO2012090995A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190415A1 (ja) * 2014-06-11 2015-12-17 ライオン株式会社 検査結果シート作成装置、検査結果シート作成方法、検査結果シート作成プログラム、検査結果シート、及び、検査装置
JP2017018012A (ja) * 2015-07-08 2017-01-26 長田産業株式会社 歯肉炎・歯周炎の簡易判定方法及びその簡易判定キット
WO2017175673A1 (ja) * 2016-04-05 2017-10-12 ライオン株式会社 歯周病ステージの判定方法
CN109182175A (zh) * 2018-09-07 2019-01-11 河北海棠花医疗器械有限公司 一种细菌培养基、其制备方法及应用

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6104165B2 (ja) * 2011-09-30 2017-03-29 ライオン株式会社 酸化還元指示薬の色調変化を測定する方法
CA2950881C (en) * 2014-06-05 2021-10-26 Colgate-Palmolive Company Assay for oral inflammation
CN108064224B (zh) 2014-10-30 2022-03-29 詹森药业有限公司 作为Rorγt的调节剂的酰胺取代的噻唑
EP3212641B1 (en) 2014-10-30 2018-12-05 Janssen Pharmaceutica NV Thiazoles as modulators of roryt
JOP20200117A1 (ar) 2014-10-30 2017-06-16 Janssen Pharmaceutica Nv كحولات ثلاثي فلوروميثيل كمُعدلات للمستقبل النووي جاما تي المرتبط بحمض الريتيونَويك ROR?t
WO2016095202A1 (en) * 2014-12-19 2016-06-23 The Procter & Gamble Company Gum condition assessment
EP3314254A1 (en) * 2015-06-26 2018-05-02 Koninklijke Philips N.V. System and method for detecting halitosis
EP3402411A1 (en) * 2016-01-13 2018-11-21 The Procter and Gamble Company Oral sampling swab and uses thereof
TW201803869A (zh) 2016-04-27 2018-02-01 健生藥品公司 作為RORγT調節劑之6-胺基吡啶-3-基噻唑
WO2018081637A1 (en) * 2016-10-28 2018-05-03 University Of Washington System and method for ranking bacterial activity leading to tooth and gum disease
RU2633313C1 (ru) * 2016-12-29 2017-10-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ экспресс-диагностики риска развития воспалительных заболеваний пародонта
DE102017211085A1 (de) * 2017-06-29 2019-01-03 Henkel Ag & Co. Kgaa "Verfahren und System zum Ermitteln einer Mundhygieneempfehlung"
CN109662688B (zh) * 2018-06-11 2021-11-19 中山大学 一种用于检测牙齿疾病的牙套
CN112292373A (zh) 2018-06-18 2021-01-29 詹森药业有限公司 作为RORγt的调节剂的吡啶基吡唑类
CN112334450A (zh) 2018-06-18 2021-02-05 詹森药业有限公司 作为RORγt的调节剂的苯基和吡啶基取代的咪唑
CA3103929A1 (en) 2018-06-18 2019-12-26 Janssen Pharmaceutica Nv Phenyl substituted pyrazoles as modulators of roryt
US10975057B2 (en) 2018-06-18 2021-04-13 Janssen Pharmaceutica Nv 6-aminopyridin-3-yl pyrazoles as modulators of RORgT
EP3611494A1 (en) * 2018-08-17 2020-02-19 Koninklijke Philips N.V. System and method for providing an indication of a person's gum health
EP3850338B1 (en) * 2018-09-11 2023-06-07 Koninklijke Philips N.V. Optical method for gingivitis detection
CN109459568A (zh) * 2019-01-15 2019-03-12 西安交通大学 纸基牙周炎检测装置和牙周炎检测方法
KR102535571B1 (ko) * 2022-03-18 2023-05-26 임우진 치주질환 위험성 검사용 치약 포장 세트

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013416A (en) 1975-03-12 1977-03-22 Boehringer Mannheim G.M.B.H. Diagnostic means for the detection of protein in body fluids
JPH02232561A (ja) 1989-03-06 1990-09-14 Wako Pure Chem Ind Ltd 新規な潜血検出用試験片。
JPH05168497A (ja) 1991-12-25 1993-07-02 Wako Pure Chem Ind Ltd エステル分解酵素又は蛋白分解酵素の測定用試薬
JPH11326339A (ja) * 1998-05-08 1999-11-26 Wako Pure Chem Ind Ltd 診断用自動分析装置用試験具
JP2002516997A (ja) * 1998-05-28 2002-06-11 ストレームベルグ,ニツクラス 虫歯の予防及び感受性の検査方法
JP2002181815A (ja) * 2000-12-13 2002-06-26 Godo Shusei Co Ltd 唾液成分の免疫学的測定法
JP2005241335A (ja) 2004-02-25 2005-09-08 Gc Corp う蝕リスク検査用具
JP2007183281A (ja) * 2007-01-15 2007-07-19 Microdent:Kk 健康計測診査装置、方法
JP2009516178A (ja) * 2005-11-10 2009-04-16 ユニバーシティー オブ ケンタッキー 肺癌診断アッセイ
JP3151124U (ja) * 2009-03-30 2009-06-11 財団法人ライオン歯科衛生研究所 口腔内清潔度検査キット

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907503A (en) * 1974-01-21 1975-09-23 Miles Lab Test system
JPS61257200A (ja) * 1985-03-01 1986-11-14 バイオテクニカ・ダイアグノスチツクス・インコ−ポレ−テツド 核酸ハイブリダイゼ−シヨンによるヒト口腔細胞の検出
US4866167A (en) * 1985-03-01 1989-09-12 Biotechnica Diagnostics, Inc. Detection of human oral cells by nucleic acid hybridization
US5051358A (en) * 1987-05-07 1991-09-24 The Procter & Gamble Company Diagnostic methods for detecting periodontal diseases
US5989840A (en) * 1997-05-29 1999-11-23 Americare International Diagnostics, Inc. Estimation of active infection by heliobacter pylori
US20020177171A1 (en) 1998-05-28 2002-11-28 Conimar Ab Method and means for caries prevention and susceptibility detection
JP4141048B2 (ja) * 1999-05-24 2008-08-27 ライオン株式会社 唾液検査用具
US6607387B2 (en) * 2000-10-30 2003-08-19 Healthetech, Inc. Sensor system for diagnosing dental conditions
DE10154290B4 (de) * 2001-11-05 2009-10-29 Hain Lifescience Gmbh Verfahren zum Nachweis Parodontitis und Karies assoziierter Bakterien
EP1659885B1 (en) * 2003-08-11 2013-01-16 Oragenics, Inc. Compositions in the maintenance of oral health
JPWO2005038456A1 (ja) * 2003-10-20 2007-01-18 アークレイ株式会社 検体分析用具
WO2006059694A1 (ja) * 2004-12-03 2006-06-08 Arkray, Inc. 検査用具
CN101374962A (zh) * 2005-11-10 2009-02-25 肯塔基大学 肺癌的诊断分析法
EP1972938B1 (de) * 2007-03-19 2014-05-14 Ivoclar Vivadent Teststreifen für die Bestimmung des Kariesrisikos
JP5407375B2 (ja) * 2009-02-02 2014-02-05 藤倉化成株式会社 口腔内細菌の検査用具、および口腔内細菌の検査方法
CN101692999A (zh) * 2009-10-22 2010-04-14 浙江大学 一种含葡萄籽原花青素提取物的漱口水及应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013416A (en) 1975-03-12 1977-03-22 Boehringer Mannheim G.M.B.H. Diagnostic means for the detection of protein in body fluids
JPH02232561A (ja) 1989-03-06 1990-09-14 Wako Pure Chem Ind Ltd 新規な潜血検出用試験片。
JPH05168497A (ja) 1991-12-25 1993-07-02 Wako Pure Chem Ind Ltd エステル分解酵素又は蛋白分解酵素の測定用試薬
JPH11326339A (ja) * 1998-05-08 1999-11-26 Wako Pure Chem Ind Ltd 診断用自動分析装置用試験具
JP2002516997A (ja) * 1998-05-28 2002-06-11 ストレームベルグ,ニツクラス 虫歯の予防及び感受性の検査方法
JP2002181815A (ja) * 2000-12-13 2002-06-26 Godo Shusei Co Ltd 唾液成分の免疫学的測定法
JP2005241335A (ja) 2004-02-25 2005-09-08 Gc Corp う蝕リスク検査用具
JP2009516178A (ja) * 2005-11-10 2009-04-16 ユニバーシティー オブ ケンタッキー 肺癌診断アッセイ
JP2007183281A (ja) * 2007-01-15 2007-07-19 Microdent:Kk 健康計測診査装置、方法
JP3151124U (ja) * 2009-03-30 2009-06-11 財団法人ライオン歯科衛生研究所 口腔内清潔度検査キット

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF DENTAL HEALTH, vol. 32, no. 4, 1982, pages 121 - 122
JOURNAL OF DENTAL RESEARCH, vol. 68, 1989, pages 468 - 471
See also references of EP2660597A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190415A1 (ja) * 2014-06-11 2015-12-17 ライオン株式会社 検査結果シート作成装置、検査結果シート作成方法、検査結果シート作成プログラム、検査結果シート、及び、検査装置
JP2016001129A (ja) * 2014-06-11 2016-01-07 ライオン株式会社 検査結果シート作成装置、検査結果シート作成方法、検査結果シート作成プログラム、検査結果シート、及び、検査装置
KR20170042506A (ko) 2014-06-11 2017-04-19 라이온 가부시키가이샤 검사 결과 시트 작성 장치, 검사 결과 시트 작성 방법, 검사 결과 시트 작성 프로그램, 검사 결과 시트, 및 검사 장치
US20170140102A1 (en) * 2014-06-11 2017-05-18 Arkray, Inc. Examination Result Sheet Creation Apparatus, Examination Result Sheet Creation Method, Non-Transitory Computer Readable Medium, Examination Result Sheet, and Examination Apparatus
KR102381553B1 (ko) * 2014-06-11 2022-04-01 라이온 가부시키가이샤 검사 결과 시트 작성 장치, 검사 결과 시트 작성 방법, 검사 결과 시트 작성 프로그램, 검사 결과 시트, 및 검사 장치
JP2017018012A (ja) * 2015-07-08 2017-01-26 長田産業株式会社 歯肉炎・歯周炎の簡易判定方法及びその簡易判定キット
WO2017175673A1 (ja) * 2016-04-05 2017-10-12 ライオン株式会社 歯周病ステージの判定方法
JPWO2017175673A1 (ja) * 2016-04-05 2019-02-14 ライオン株式会社 歯周病ステージの判定方法
CN109182175A (zh) * 2018-09-07 2019-01-11 河北海棠花医疗器械有限公司 一种细菌培养基、其制备方法及应用

Also Published As

Publication number Publication date
EP2660597A4 (en) 2014-12-03
CN103282774B (zh) 2015-08-05
CN103282774A (zh) 2013-09-04
KR101958699B1 (ko) 2019-03-15
JPWO2012090995A1 (ja) 2014-06-05
KR20140027922A (ko) 2014-03-07
US9500649B2 (en) 2016-11-22
JP5981350B2 (ja) 2016-08-31
US20150038350A1 (en) 2015-02-05
EP2660597B1 (en) 2017-09-13
EP2660597A1 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5981350B2 (ja) 口腔状態の判定方法、並びにそのために用いられる分析用具、装置、及びプログラム
Türer et al. Effect of non‐surgical periodontal treatment on gingival crevicular fluid and serum endocan, vascular endothelial growth factor‐A, and tumor necrosis factor‐alpha levels
JP2003114214A (ja) 分析物濃度決定において使用するための方法および装置
JP6104165B2 (ja) 酸化還元指示薬の色調変化を測定する方法
Bejeh-Mir et al. Diagnostic role of salivary and GCF nitrite, nitrate and nitric oxide to distinguish healthy periodontium from gingivitis and periodontitis
CN105021596A (zh) 基于浓度梯度的多层膜干化学检测试条
Chapple et al. A new ultrasensitive chemiluminescent assay for the site‐specific quantification of alkaline phosphatase in gingival crevicular fluid
CN104937106A (zh) 用于监测生物流体的系统和方法
CN105699654A (zh) 皮肤角质层的ngal的表达量的用途
Santos et al. Evaluation of Three Human‐Use Glucometers for Blood Glucose Measurement in Dogs
Larsen et al. Blood values of juvenile northern elephant seals (Mirounga angustirostris) obtained using a portable clinical analyzer
RU2702736C2 (ru) Исследования при воспалении в полости рта
WO2005098020A1 (en) Assay method for determining mucosal neutrophil counts in neutropenia patients
Ciantar et al. Development of an in vitro microassay for glucose quantification in submicrolitre volumes of biological fluid
FI93026B (fi) In vitro -diagnostinen menetelmä periodontaalisten sairauksien toteamiseksi
Iwasaki et al. Cystatin C‐based estimated glomerular filtration rate and periodontitis
Gilbert et al. Point of care technologies
JP2008224543A (ja) 唾液緩衝能の測定方法
Shrestha et al. Caries-risk assessment with a chairside optical spectroscopic sensor by monitoring bacterial-mediated acidogenic-profile of saliva in children
US20090053751A1 (en) Chemiluminescent Method and Device for Evaluating the In Vivo Functional State of Phagocytes
Baig et al. Comparision between bed side testing of blood glucose by glucometer vs centralized testing in a tertiary care hospital
Stanescu et al. Salivary diagnosis-clinical uses in assessing oral inflammation
Vucijak-Grgurevic et al. Significance of nitric oxyde saliva concentration of the patients with renal failure on hemodialysis
Front et al. Salivary biomarker analysis complementing regular clinical examination
US20220163542A1 (en) Methods of blood sample suspension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550968

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137017847

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011852613

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011852613

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13976643

Country of ref document: US