WO2012090992A1 - 放射線撮像装置及び画像処理方法 - Google Patents
放射線撮像装置及び画像処理方法 Download PDFInfo
- Publication number
- WO2012090992A1 WO2012090992A1 PCT/JP2011/080177 JP2011080177W WO2012090992A1 WO 2012090992 A1 WO2012090992 A1 WO 2012090992A1 JP 2011080177 W JP2011080177 W JP 2011080177W WO 2012090992 A1 WO2012090992 A1 WO 2012090992A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- threshold
- filter
- threshold value
- radiation
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 37
- 238000003672 processing method Methods 0.000 title claims description 8
- 238000003384 imaging method Methods 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 41
- 238000001514 detection method Methods 0.000 claims description 19
- 238000001914 filtration Methods 0.000 claims description 3
- 238000009825 accumulation Methods 0.000 abstract description 21
- 238000009499 grossing Methods 0.000 abstract description 4
- 210000005005 sentinel lymph node Anatomy 0.000 description 7
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000005251 gamma ray Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 229940121896 radiopharmaceutical Drugs 0.000 description 3
- 239000012217 radiopharmaceutical Substances 0.000 description 3
- 230000002799 radiopharmaceutical effect Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000002600 positron emission tomography Methods 0.000 description 2
- 238000002603 single-photon emission computed tomography Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- CEKJAYFBQARQNG-UHFFFAOYSA-N cadmium zinc Chemical compound [Zn].[Cd] CEKJAYFBQARQNG-UHFFFAOYSA-N 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000003702 image correction Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4258—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4241—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/58—Testing, adjusting or calibrating thereof
- A61B6/582—Calibration
- A61B6/585—Calibration of detector units
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/161—Applications in the field of nuclear medicine, e.g. in vivo counting
- G01T1/164—Scintigraphy
- G01T1/1641—Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
- G01T1/1647—Processing of scintigraphic data
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/392—Radioactive markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/482—Diagnostic techniques involving multiple energy imaging
Definitions
- the present invention relates to a radiation imaging apparatus and an image processing method for imaging radiation emitted from a radioactive substance and imaging an incident radiation distribution, and more particularly, to a radiation imaging apparatus and an image processing method for specifying an accumulation position of a radiopharmaceutical. Is.
- Radiation imaging devices such as gamma cameras, SPECT (Single Photon Emission Computed Tomography) devices, and PET (Positron Emission Tomography) devices can non-invasively know the accumulation distribution of radiopharmaceuticals administered into the body as image information.
- the RI accumulation position in the body can be easily determined using a small gamma camera (for example, Patent Document 1) like a sentinel lymph node biopsy in breast cancer surgery using the RI (radioisotope) method. Attempts have also been made to identify and identify the excision site.
- a small gamma camera it is possible to specify the position of the sentinel lymph node to be removed before the incision, and there are advantages such as shortening of the operation time.
- An image captured by a gamma camera usually contains a lot of noise.
- To reduce the noise use a Gaussian filter, a median filter, or a threshold filter as described in Patent Document 2 to reduce the noise. Is done.
- the position of the sentinel lymph node shifts when the patient's posture changes, it is preferable to perform imaging after placing the patient on the operating table, and imaging is performed immediately before or during surgery, so that sufficient time is required. It is difficult to take Since the RI intensity is low and the imaging time is short, the number of counts of the captured images becomes very small and it becomes difficult to specify the RI accumulation site.
- the imaging time for one time is about several seconds to several tens of seconds.
- the signal from the RI may only take 1 or 2 counts of gamma rays per pixel.
- gamma rays are observed as noise also in areas other than the accumulation site, and the pixels are comparable to the signal from the RI. Therefore, it is difficult to specify the accumulation site based on the number of counts per pixel.
- nonlinear filters such as a weighting filter such as a Gaussian filter and a median filter are used for the obtained image.
- the weighting filter suppresses noise by blurring the image.
- the background radiation cannot be removed when the count is low.
- the median filter when the original signal count is very small, not only the background but also the original signal is suppressed.
- Patent Document 2 there is a method of suppressing data having a count number equal to or less than the threshold value, but when applied to an image having only a count number of several counts, the original signal is suppressed and exhibits an effect. do not do.
- the present invention is an invention for solving the above-mentioned problems, and is a radiation imaging apparatus and image processing capable of facilitating discovery of a radioisotope accumulation site by appropriately processing an image with a low count number. It aims to provide a method.
- the radiation imaging apparatus of the present invention applies a low-pass filter using a weighting filter to a captured image, and then suppresses the value of a pixel having a count number equal to or less than the threshold value.
- a low-pass filter By applying a low-pass filter to the processed image again, pixels having a value equal to or higher than the threshold are emphasized, and an image in which the accumulation position can be easily specified is provided.
- the threshold of the image depends on the number of counts due to noise.
- a method of estimating the number of counts due to noise in addition to the method of assuming the value at the imaging time in advance, a method of calculating from the actual imaging time and the assumed noise count rate, an image created with a separately provided energy window It is characterized by an estimation method from
- FIG. 1 is a diagram showing an outline of a radiation imaging apparatus 100 according to an embodiment of the present invention.
- a small gamma camera 1 which is a nuclear medicine diagnostic apparatus according to an embodiment of the present invention will be described with reference to FIG.
- the radiation imaging apparatus 100 includes a gamma camera 1 and a collection / display console 2 (image processing apparatus).
- the collection / display console 2 starts / stops image collection, performs image display, filter processing, and the like based on user operations. The functions of the collection / display console 2 will be described later.
- the gamma camera 1 includes a collimator 3 and a detection panel 4.
- the collimator 3 is made of a material having excellent gamma ray blocking ability such as lead or tungsten with a large number of holes, and transmits only gamma rays from a specific direction.
- the gamma rays that have passed through the collimator 3 reach the detection panel 4.
- the detection panel 4 includes a plurality of detection pixels 5, and gamma rays are detected by the detection pixels 5.
- the detection pixel 5 for example, a semiconductor detector such as CZT (Cadmium Zinc (Telluride) or CdTe (Cadmium Telluride) is used, and a structure in which one detector corresponds to one pixel can be considered.
- the position of a signal from a large detector such as an Anger-type gamma camera (see US Pat. No. 30,11057) can be detected by signal processing, and the position signal can be digitized to be divided into pixels. is there.
- the detection pixel 5 detects gamma rays, it measures and outputs the energy of the gamma rays.
- the detection panel 4 transmits the position and energy of the detection pixel 5 that has detected the gamma ray to the collection / display console 2.
- the collection / display console 2 creates an image based on the data sent from the gamma camera 1.
- FIG. 2 is a diagram showing processing blocks of the collection / display console 2 according to the embodiment of the present invention.
- the collection / display console 2 includes an energy discriminating unit 10, a distribution image creating unit 11 (distributed image creating unit), a first low-pass filter unit 12 (first filter processing unit), and a threshold processing unit 13 (second filter processing). Means), a second low-pass filter section 14 (third filter processing means), an image display section 15, a threshold setting section 16 connected to the distribution image creating section 11, and a user input section 17.
- the energy discriminating unit 10 determines whether or not the transmitted data is derived from the accumulated RI based on the energy of the gamma rays.
- the detected energy histogram is as shown in FIG. 3, and various noises are superimposed in addition to the signal from the RI.
- the causes of noise include cosmic rays and scattered gamma rays in the body. The effects of environmental radiation such as cosmic rays exist almost uniformly as energy.
- the scattered gamma rays are generated when the gamma rays emitted from the RI are scattered in the patient's body, and since energy is lost during the scattering, the scattered gamma rays are distributed in a place lower than the original energy.
- the scattered radiation is generated by a true signal from the RI, but when scattered, the direction of the gamma rays is bent, so the information on the RI accumulation site may be lost, and the image is noise.
- the energy discriminating unit 10 reduces noise by discriminating and counting only data having energy included in the RI energy window 20 (see FIG. 3).
- the distribution image creation unit 11 creates an image showing the RI distribution. Since the position where the gamma ray is detected is recorded in the data sent from the gamma camera 1, it is possible to obtain the RI distribution image by counting the number of data for each place.
- the first low-pass filter unit 12 applies a low-pass filter to the image created by the distribution image creation unit 11.
- a low-pass filter By using the low-pass filter, it is possible to suppress the roughness of the image although the position resolution is deteriorated. This low-pass filter will be described in detail later.
- the threshold processing unit 13 applies a threshold filter to the image generated by the first low-pass filter unit 12 based on the threshold specified by the threshold setting unit 16. If the pixel value of each pixel in the image is larger than the threshold value, it is left as it is, and if it is less than the threshold value, the pixel value is suppressed.
- the second low-pass filter unit 14 applies the low-pass filter again to the image processed by the threshold processing unit 13.
- the purpose of the filter processing is to widen the area. For example, a weighting filter having 3 ⁇ 3 and all pixels being 1 is used.
- the image display unit 15 displays the image generated by the second low-pass filter unit 14.
- the threshold setting unit 16 sets a threshold based on the image created by the distribution image creating unit 11 and the parameter specified by the user input unit 17. If the threshold set by the threshold setting unit 16 is too large, a signal from the RI cannot be detected, and if it is too small, erroneous determination occurs due to counting by noise. For this reason, it is important to set an appropriate threshold value, and it is desirable to set the threshold value so that erroneous detection due to noise is sufficiently smaller than one pixel in the entire visual field so as not to erroneously determine RI accumulation.
- the threshold value it is necessary to know the number of counts due to noise.
- the intensity of RI is almost the same in each examination.
- the imaging time is also limited in the time that can be used for the determination, and falls within a certain range of several tens of seconds to several minutes. For this reason, it is possible to estimate the noise measured by the gamma camera 1 and the signal count from the RI.
- the threshold value setting unit 16 calculates the threshold value for the pixel value by multiplying the imaging time by the noise counting rate assumed according to the imaging time of the image. Can be determined based on
- the number of counts from the RI signal is sufficient compared to the number of noise counts.
- the total count number in all the detection pixels 5 (all detectors) of the gamma camera 1 can be regarded as a count number due to noise.
- the distribution image creation unit 11 distributes an image for calculating a radiation distribution threshold using an energy window different from the energy window at the time of imaging, and a threshold setting unit 16 (threshold setting unit). Can determine the threshold value for the pixel value based on the count number of the image for calculating the threshold value.
- the expected value of the count number due to noise per pixel can be easily obtained from the noise count number of the entire gamma camera 1, and if the expected value of the count number is known, the probability that a certain value is counted in each pixel Can be calculated from the Poisson distribution.
- the probability distribution for the pixel count when the first low-pass filter is applied can be calculated from the probability distribution for the pixel before the filter if the filter coefficient is determined.
- a certain threshold value is given. It is possible to determine the probability of exceeding the threshold value due to noise, and conversely, it is possible to determine the threshold value necessary for making the probability of not exceeding the threshold value due to noise less than a certain value.
- the user inputs the probability of false detection due to noise to the user input unit 17 or determines the threshold value by directly inputting the threshold value.
- the collection / display console 2 includes a processor (processing unit), a memory (storage unit), an input device corresponding to the user input unit 17, an output device corresponding to the image display unit 15, and a disk interface. Connected to an external storage device.
- the processor is configured by, for example, a CPU (Central Processing Unit), and executes processing of each unit by executing a processing program of each unit (for example, the energy discriminating unit 10) read on the memory.
- a CPU Central Processing Unit
- each unit is realized by being executed by a processor, but it can also be realized by hardware, for example, as an integrated circuit as the processing unit of each unit.
- Memory is composed of storage media such as RAM (Random Access Memory) and flash memory.
- the input device is composed of a device such as a keyboard and a mouse, and the output device is composed of a device such as a liquid crystal monitor.
- the processing data (for example, image data) of each unit described above is always stored in the external storage device, and is stored in the memory as necessary.
- FIG. 4 is a diagram showing a flow of filter processing in the radiation imaging apparatus 100.
- FIG. 5 is a diagram illustrating an example of an image in the radiation imaging apparatus 100.
- FIG. 5A is an image 201 in the process S101
- FIG. 5B is an image 202 in the process S102
- FIG. 5C is a process S103.
- the image 203 in FIG. 5D is the image 204 in the process S104.
- the distribution image creation unit 11 creates an image by counting the number of data selected for each pixel. In the image creation, the count is accumulated from the time when the user starts the collection by operating the collection / display console 2.
- an image 201 shown in FIG. 5 is obtained.
- the left side shows a count number for each pixel (each detection pixel 5), and the right side is an example of an image showing the count number in shades.
- an example of 8 ⁇ 8 pixels is shown, but a camera having a pixel pitch of about 1 mm to 2 mm and a visual field size of about 30 ⁇ 30 pixels to 100 ⁇ 100 pixels is actually used.
- the number of counts due to noise is about 0.01 per pixel on average, and the signal from the RI (gamma ray) is about 1 on average.
- the number of pixels that record 1 count or more due to noise is 100 pixels for the entire camera, or 2 counts with approximately half the probability. Since the above pixels are also generated, it cannot be determined by the threshold value based on the count number.
- the first low-pass filter unit 12 applies a low-pass filter to the obtained image.
- the low-pass filter is a 3 ⁇ 3 weighted filter, and smoothes pixels with a weight of 2 at the center and adjacent pixels and a weight of 1 in the diagonal direction.
- FIG. 6 is a diagram illustrating the principle of an N ⁇ N weighted filter.
- FIG. 6A shows a state in which a 3 ⁇ 3 filter (hatched portion) is applied to an image, and the filter center is an output pixel to be calculated.
- FIG. 6B shows an input pixel group at the time of calculation, and
- FIG. 6C shows filter weights.
- a 3 ⁇ 3 filter is used, but a 5 ⁇ 5 filter or a wider range of weighting filters may be used. It is also possible to use a filter having a Gaussian function or other mathematically defined value as the weight.
- step S102 an image 202 shown in FIG. 5 is obtained.
- the threshold processing unit 13 performs a threshold process on the image obtained as a result of the process S102, and sets the values of pixels equal to or less than the threshold to 0. Thereby, the image 203 shown in FIG. 5 can be acquired. Only when the filtering process and the threshold process are combined, it is possible to specify the accumulation site.
- the threshold value for eliminating erroneous count due to noise is determined by the average count of noise at the time of measurement. For example, assuming an average count of 0.01 due to noise, the probability of exceeding the threshold after applying the low-pass filter in step S102 can be obtained by calculation, and the probability that the pixel value exceeds 4 is about 2.5 ⁇ 10. The probability of exceeding -3 or 5 is about 2.2 ⁇ 10 ⁇ 4 , and the probability of exceeding 6 is about 1.2 ⁇ 10 ⁇ 4 . Considering a camera composed of 100 ⁇ 100 pixels, the average number of pixels exceeding the threshold due to noise is 25 pixels, 2.2 pixels, and 1.2 pixels, respectively. Detection can be suppressed to about one pixel.
- the signal from the integrated RI has a correlation with the number of counts between pixels.
- the correlation between pixels is small in the count by noise. For this reason, it is possible to extract only signals from RI having a correlation between pixels by performing threshold processing after applying the low-pass filter.
- a separate image is generated using a method that calculates the average noise count from the assumed average noise rate, or an energy window that does not contain a signal. It is also possible to calculate the average noise count and determine the threshold value. It is also conceivable to determine the threshold value based on input from the user.
- Threshold processing is to determine whether or not the pixel value exceeds the threshold, and processing is slow when processed by a computer. Since the image display needs to be performed in real time, as the simplest method for reducing the processing, the weighting filter coefficient performed in step S102 is a value including a decimal point of 1 or less, and the threshold processing is a process of rounding off the decimal point. Can be considered. In the case of rounding down the decimal point, if the count number is low, there is no linearity between the input and output count numbers, but it is sufficient for checking whether or not there is accumulation, and threshold processing can be realized at high speed.
- the second low-pass filter unit 14 applies the low-pass filter again to the image obtained as a result of process S103.
- a 3 ⁇ 3 filter having a weight of 1 is applied to all the pixels to expand the pixels and emphasize the accumulation site. Accordingly, it is possible to display a large area of the accumulation on the image, and it is easy to find the accumulation of signals from the RI.
- the filter coefficient is not limited to this.
- an image 204 shown in FIG. 5 is obtained. In this way, it is possible to specify the RI accumulation location by using a low-pass filter and an appropriate threshold value.
- the collection / display console 2 (image processing apparatus) of the radiation imaging apparatus 100 performs a smoothing process on the image obtained by counting the number of incident gamma rays using a weighted filter. It performs (process S102). Then, the image processing apparatus suppresses pixel values that are equal to or less than a threshold value for the smoothed image (processing S103). Further, the image processing apparatus again applies a weighted smoothing filter to the image on which the threshold processing has been performed, thereby expanding the pixels of the integrated portion (processing S104), thereby facilitating the discovery of the radioactive isotope accumulation site. An image can be provided.
- the present embodiment it is possible to highlight only the radiopharmaceutical accumulation position in the low count number radiographic image and to specify the drug accumulation position in a short time. As a result, the time required for surgery and diagnosis can be shortened, and the burden on the patient can be reduced.
- the description has been made mainly with respect to the medical radiation imaging apparatus, but the present invention can also be applied to the field of nuclear security or the like in which a determination is made with an image having a small number of counts.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Surgery (AREA)
- Public Health (AREA)
- High Energy & Nuclear Physics (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Theoretical Computer Science (AREA)
- Nuclear Medicine (AREA)
- Measurement Of Radiation (AREA)
Abstract
放射線撮像装置(100)の画像処理装置は、ガンマ線の入射数をカウントすることによって得られた画像に対し、重みつきフィルタを用いて平滑化処理を行う(処理S102)。そして、画像処理装置は、平滑化後の画像に対して、閾値以下の画素値を抑制する(処理S103)。さらに、画像処理装置は、閾値処理が行われた画像に対し再度、重みつき平滑化フィルタを適用することで集積部分の画素を膨張させ(処理S104)、放射性同位元素の集積部位の発見を容易にする画像を提供する。
Description
本発明は、放射性物質の放出する放射線を撮像し、入射放射線分布を画像化する放射線撮像装置及び画像処理方法に関するものであり、特に放射性薬剤の集積位置を特定する放射線撮像装置及び画像処理方法に関するものである。
ガンマカメラやSPECT(Single Photon Emission Computed Tomography)装置、PET(Positron Emission Tomography)装置などの放射線撮像装置では、体内に投与された放射性薬剤の集積分布を非侵襲で画像情報として知ることができる。この特徴を利用し、RI(放射性同位元素)法を用いた乳癌手術におけるセンチネルリンパ節生検のように、小型ガンマカメラ(例えば、特許文献1)を用いて、簡易的に体内のRI集積位置を把握し、切除部位を特定するような試みも行われている。小型ガンマカメラを用いることで切開前に摘出すべきセンチネルリンパ節の位置を特定することが可能になり、手術時間の短縮などのメリットが得られる。
ガンマカメラで撮像された画像には通常多くのノイズが乗っており、ノイズを低減するためにガウスフィルタやメディアンフィルタ、もしくは特許文献2に記載するような閾値フィルタを使用し、ノイズを低減することが行われる。
センチネルリンパ節の特定などにRIを使用する場合、RIの注射直後であれば十分なRI強度があり画素当りのカウントレートが高いため、短時間でも鮮明な画像を取得することが可能である。しかしながら、センチネルリンパ節の特定などでは誤検出を避けるため、RIの投与後、時間をおいてから撮像する手法が使われるため、RIの濃度は減衰してしまい撮像装置で検出できるカウントレートが低くなる。このため、長時間の撮像を行わなければRIの分布を鮮明に捉えることができない。
一方で、センチネルリンパ節の位置は患者の体勢が変わるとずれるため、患者を手術台に乗せた後で撮像を行う方が望ましく、手術の直前、もしくは術中においての撮像になるため、十分な時間をとることが困難である。RI強度が低く、撮像時間が短いため、撮像された画像のカウント数は非常に少なくなりRI集積部位の特定が困難になる。
実際のセンチネルリンパ節の特定では、ガンマカメラの位置を変えながらセンチネルリンパ節を探すため一回の撮像時間は数秒から数十秒程度である。このため、RIからの信号は画素当り、ガンマ線の1、2カウントしか取れない場合がある。一方で、宇宙線や、患者体内のセンチネルリンパ節以外の部位に分布するRIからのバックグランド放射線の影響により、集積部位以外でもガンマ線がノイズとして観測され、RIからの信号と同程度となる画素が多数存在するため、画素当りのカウント数の大小で蓄積部位を特定することは困難である。
ノイズを低減する手法として、得られた画像に対しガウスフィルタを代表とする重み付けフィルタやメディアンフィルタなどの非線形フィルタが用いられているが、重み付けフィルタは画像をぼかすことによってノイズを抑制するものであり、低カウントの際のバックグランド放射線の除去はできない。また、メディアンフィルタに関しては本来の信号のカウント数が非常に少ない場合、バックグランドだけでなく、本来の信号までも抑制してしまう。
他にも特許文献2に示すように、前記閾値以下のカウント数のデータを抑止する手法もあるが、数カウントのカウント数しかない画像に対し適用すると、本来の信号まで抑制され、効果を発揮しない。
本発明は、前記の課題を解決するための発明であって、低カウント数の画像を適切に処理することで放射性同位元素の集積部位の発見を容易にすることができる放射線撮像装置及び画像処理方法を提供することを目的とする。
前記目的を達成するため、本発明の放射線撮像装置は、撮像された画像に対し、重み付けフィルタを用いた低域通過フィルタを適用したのち、閾値以下のカウント数の画素の値を抑制し、閾値処理後の画像に対し再度低域通過フィルタを適用することで閾値以上の値を持つ画素を強調し、集積位置を特定しやすい画像を提供することを特徴とする。
画像の閾値についてはノイズによるカウント数に依存する。ノイズによるカウント数を推定する方法として、撮像時間における値をあらかじめ想定しておく手法の他、実際の撮像時間と想定されるノイズのカウントレートから計算する方法、別途設けたエネルギー窓で作成した画像から推定する方法を特徴とする。
本発明によれば、低カウント数の画像を適切に処理することで放射性同位元素の集積部位の発見を容易にすることができる。
以下、本発明の実施形態について図面を参照して詳細に説明する。
図1は、本発明の実施形態に係る放射線撮像装置100の概要を示す図である。図1を参照して本発明の実施形態に係る核医学診断装置である小型のガンマカメラ1について説明する。
図1は、本発明の実施形態に係る放射線撮像装置100の概要を示す図である。図1を参照して本発明の実施形態に係る核医学診断装置である小型のガンマカメラ1について説明する。
放射線撮像装置100は、ガンマカメラ1と収集・表示コンソール2(画像処理装置)から構成される。収集・表示コンソール2では、ユーザの操作に基づき画像収集の開始や停止、また画像表示やフィルタ処理などを行う。収集・表示コンソール2の機能は後記する。
ガンマカメラ1は、コリメータ3と検出パネル4を含む。コリメータ3は、鉛やタングステンなどガンマ線阻止能力に優れた材料に多数の穴をあけたものであり、特定方向からのガンマ線のみを透過させる。コリメータ3を透過したガンマ線は検出パネル4に到達する。検出パネル4は複数の検出画素5を含んでおり、ガンマ線は検出画素5で検出される。
検出画素5として、例えば半導体検出器であるCZT(Cadmium Zinc Telluride)やCdTe(Cadmium Telluride)などを用い、画素1つに対し、1つの検出器を対応させる構造が考えられる。他にも、Anger型ガンマカメラ(米国特許第3011057号参照)の様な大型の検出器からの信号を信号処理により位置検出し、位置信号をデジタル化することで画素に分割することも可能である。検出画素5ではガンマ線を検出するとそのガンマ線のエネルギーを測定し出力する。検出パネル4は、ガンマ線を検出した検出画素5の位置とエネルギーを収集・表示コンソール2へ送信する。収集・表示コンソール2ではガンマカメラ1から送られてきたデータを元に画像の作成を行う。
図2は、本発明の実施形態に係る収集・表示コンソール2の処理ブロックを示す図である。収集・表示コンソール2は、エネルギー弁別部10、分布画像作成部11(分布画像作成手段)、第1低域フィルタ部12(第1のフィルタ処理手段)、閾値処理部13(第2のフィルタ処理手段)、第2低域フィルタ部14(第3のフィルタ処理手段)、画像表示部15、分布画像作成部11に接続された閾値設定部16、ユーザ入力部17からなる。
収集・表示コンソール2では、初めに、エネルギー弁別部10において、ガンマ線のエネルギーに基づき、送られてきたデータが集積したRI由来であるか否かの判断を行う。検出されたエネルギーのヒストグラムは図3の様になっており、RIからの信号の他に様々なノイズが重畳している。ノイズの要因としては宇宙線などや体内での散乱ガンマ線などがあり、宇宙線などの環境放射線の影響は、エネルギーとしては、ほぼ一様に存在する。
また、散乱ガンマ線はRIから放出されたガンマ線が患者の体内で散乱することで生じるが、散乱時にエネルギーを失っているため、本来のエネルギーよりも低い場所に分布する。散乱線に関しては、RIからの真の信号によって発生するものであるが、散乱した際に、ガンマ線の方向が曲げられるため、RIの集積部位の情報を失っている場合があり、画像としてはノイズとして扱われる。このため、エネルギー弁別部10ではRI用のエネルギー窓20(図3参照)に含まれるエネルギーをもったデータのみを弁別したカウントすることで、ノイズを減少させる。
また、散乱線用のエネルギー窓21や宇宙線用のエネルギー窓22のデータのみを使用すると、ノイズによって生じる画像が取得でき、画像の補正に使用することが可能である。
次に、分布画像作成部11は、RIの分布を示す画像を作成する。ガンマカメラ1から送られてきたデータにはガンマ線が検出された位置が記録されているため、場所ごとにデータの数を数えることにより、RIの分布画像を取得することが可能である。
第1低域フィルタ部12は、分布画像作成部11において作成された画像に対し、低域通過フィルタを適用する。低域通過フィルタを用いることで、位置分解能は劣化するものの、画像のざらつきを抑えることが可能である。この低域通過フィルタについては後で詳細に説明する。
閾値処理部13は、閾値設定部16から指示された閾値を元に、第1低域フィルタ部12で生成された画像に対し閾値フィルタをほどこす。画像中の個々の画素の画素値が、閾値より大きければそのままにし、閾値以下であれば画素値を抑制する。
第2低域フィルタ部14は、閾値処理部13で処理された画像に対し、再度低域フィルタを適用する。フィルタ処理は領域の拡幅を行うことを目的とし、例えば3×3で全画素が1であるような重み付けフィルタを用いる。
画像表示部15は、第2低域フィルタ部14で生成された画像を表示する。
閾値設定部16は、分布画像作成部11において作成された画像及びユーザ入力部17から指示されたパラメータに基づき閾値を設定する。閾値設定部16で設定される閾値は大きすぎるとRIからの信号を検出することができず、また小さすぎるとノイズによるカウントにより誤判定が生じる。このため、適切な閾値を設定することが重要であり、誤ってRIの集積を判定しないよう、ノイズによる誤検出を視野全体で1画素より十分に小さくするよう閾値を設定することが望ましい。
閾値を決定するためにはノイズによるカウント数を知る必要がある。小型のガンマカメラ1を用いたRIの集積判定では、RIの投与量は検査によりほぼ決まった量を投与するため、RIの強度は各検査において、ほぼ同一である。また、撮像時間も判定に使用できる時間は限られており、数十秒から数分程度とある範囲に収まる。このため、ガンマカメラ1で計測されるノイズ及びRIからの信号のカウント数は推定可能である。
具体的には、閾値設定部16(閾値設定手段)は、画素値に対する閾値を、画像の撮像時間に応じて想定されるノイズのカウントレートと該撮像時間との乗算により求めたノイズのカウント数に基づいて決定することができる。
直接的にノイズのカウント数を測定する方法として、ガンマカメラ1の視野サイズが十分に大きく、RIの集積部位が小さい場合はRIからの信号(ガンマ線)によるカウント数はノイズによるカウント数にくらべ十分小さいとみなすことができ、ガンマカメラ1の全検出画素5(全検出器)での総カウント数をノイズによるカウント数とみなすことが可能である。
他にも、エネルギー弁別の際、散乱線用のエネルギー窓21(図3参照)や宇宙線用のエネルギー窓22(図3参照)を用いて、RIからの信号による画像とは別の画像を作成し、そこからノイズによるカウント数を求めることもできる。すなわち、分布画像作成部11(分布画像作成手段)は、撮影時におけるエネルギー窓とは異なるエネルギー窓を用いて放射線の分布の閾値算出用の画像を作成し、閾値設定部16(閾値設定手段)は、画素値に対する閾値を、該閾値算出用の画像のカウント数に基づいて決定することができる。
ガンマカメラ1全体のノイズのカウント数から画素当りのノイズによるカウント数の期待値は容易に求めることが可能であり、カウント数の期待値が分かれば個々の画素で、ある値がカウントされる確率はポアソン分布から計算することが可能である。第1低域フィルタをかけた際の画素のカウント数に対する確率分布は、フィルタの係数が決まればフィルタ前の画素に対する確率分布から計算することが可能であり、閾値処理において、ある閾値が与えられたときにノイズによって閾値を超える確率を求めることが可能であり、逆にノイズによって閾値を超えない確率をある値以下にするために必要な閾値を決めることができる。
このように、第1低域フィルタ後におけるノイズのカウント数の確率分布を求め、閾値を超える確率が十分に低くなるように閾値を決めることで、ノイズによる誤検出を避けることが可能である。
ユーザは、ユーザ入力部17にノイズによる誤検出の確率を入力するか、閾値を直接入力することで閾値を決定する。
次に、収集・表示コンソール2のハードウェア構成について説明する。
収集・表示コンソール2は、図示していないが、プロセッサ(処理部)、メモリ(記憶部)、ユーザ入力部17に相当する入力装置、画像表示部15に相当する出力装置を有し、ディスクインタフェースを介して外部記憶装置と接続される。プロセッサは、例えば、CPU(Central Processing Unit)で構成され、メモリ上に読み込まれた各部(例えば、エネルギー弁別部10)の処理プログラムを実行することで、各手段の処理を実行する。
収集・表示コンソール2は、図示していないが、プロセッサ(処理部)、メモリ(記憶部)、ユーザ入力部17に相当する入力装置、画像表示部15に相当する出力装置を有し、ディスクインタフェースを介して外部記憶装置と接続される。プロセッサは、例えば、CPU(Central Processing Unit)で構成され、メモリ上に読み込まれた各部(例えば、エネルギー弁別部10)の処理プログラムを実行することで、各手段の処理を実行する。
各部の処理プログラムはプロセッサで実行することにより実現するが、各部の処理部として集積回路化するなどしてハードウェアで実現することもできる。
メモリは、例えばRAM(Random Access Memory)、フラッシュメモリなどの記憶媒体で構成される。入力装置は、例えばキーボードやマウスなどの装置で構成され、出力装置は例えば液晶モニタなどの装置で構成される。前記で説明した各部の処理データ(例えば、画像データ)は、常時は、外部記憶装置に記憶されており、必要に応じてメモリに記憶される。
次に、画像の例を示しながら各部の処理について具体的に説明する。
図4は、放射線撮像装置100におけるフィルタ処理の流れを示す図である。図5は、放射線撮像装置100における画像の例を示す図であり、図5(a)は処理S101における画像201、図5(b)は処理S102における画像202、図5(c)は処理S103における画像203、図5(d)は処理S104における画像204である。処理S101において、分布画像作成部11は、個々の画素ごとに選別されたデータの数をカウントし画像を作成する。画像作成は、ユーザが収集・表示コンソール2を操作することで収集を開始した時点からカウント数を積算する。
図4は、放射線撮像装置100におけるフィルタ処理の流れを示す図である。図5は、放射線撮像装置100における画像の例を示す図であり、図5(a)は処理S101における画像201、図5(b)は処理S102における画像202、図5(c)は処理S103における画像203、図5(d)は処理S104における画像204である。処理S101において、分布画像作成部11は、個々の画素ごとに選別されたデータの数をカウントし画像を作成する。画像作成は、ユーザが収集・表示コンソール2を操作することで収集を開始した時点からカウント数を積算する。
処理S101において図5に示す画像201を得る。左側はピクセル毎(検出画素5毎)にカウント数を示したもので、右側はカウント数を濃淡で示した画像の例である。本実施形態では8×8画素の例を示しているが、実際には画素ピッチ1mmから2mm程度で視野サイズは30×30画素から100×100画素程度のカメラを用いる。収集時間にもよるが、ノイズによるカウント数は画素当り平均0.01カウント程度であり、RIからの信号(ガンマ線)は平均1カウント程度である。RIの集積を1カウント以上で判断しようとしても、例えば100×100の画素数をもつカメラの場合、ノイズにより1カウント以上を記録する画素はカメラ全体で100画素、また約半分の確率で2カウント以上の画素も発生するため、カウント数による閾値によって判断することができない。
処理S102において、第1低域フィルタ部12は、得られた画像に対し低域通過フィルタを適用する。低域通過フィルタは3×3の重み付きフィルタであり、中心と隣接ピクセルが重み2、斜め方向が重み1で画素の平滑化を行う。
図6は、N×Nの重み付きフィルタの原理を示す図である。ここでは、N=3として3×3の重み付きフィルタについて説明する。図6(a)は、画像に対し、3×3フィルタ(ハッチング部分)を適用した様子を示し、フィルタ中心が計算対象の出力ピクセルである。図6(b)は、計算の際の入力ピクセル群であり、図6(c)は、フィルタの重みを示す。図6(b)に示すフィルタ中心に対応する出力ピクセル(Z5)は、次式に従ってZ値が算出される。
Z=(Z1×F1)+(Z2×F2)+(Z3×F3)+…+(Z9×F9)
Z=(Z1×F1)+(Z2×F2)+(Z3×F3)+…+(Z9×F9)
例えば、図6(b)の中心のピクセルであるZ5が1で他のピクセルが0の場合、図6(c)において、中心と隣接ピクセルが重み2、斜め方向が重み1の3×3フィルタを適用すると、F1=F3=F7=F9=1、F2=F4=F5=F6=F8=2であり、Z=2と算出される。
本実施形態では3×3フィルタを用いたが5×5フィルタやさらに広い範囲の重み付けフィルタを用いることも可能である。また、重みとしてガウス関数や、その他数学的に規定された値をもつフィルタを用いることも可能である。
処理S102により図5に示す画像202が得られる。低域通過フィルタを用いるだけでは画像がぼけているだけであり、RI集積による信号とノイズを分離することができない。
処理S103において、閾値処理部13は、処理S102の結果得られた画像に対し閾値処理を行い、閾値以下の画素の値を0にする。これにより図5に示す画像203が取得できる。フィルタ処理と閾値処理を組み合わせることで初めて、集積部位を特定することが可能になる。
ノイズによる誤カウントを排除するための閾値は、測定時のノイズの平均カウントによって決定される。例えばノイズによる平均カウント数0.01を仮定すると、処理S102における低域フィルタをかけた後で閾値を超える確率は計算によって求めることができ、画素値が4を超える確率は約2.5×10-3、5を超える確率は約2.2×10-4、6を超える確率は約1.2×10-4となる。100×100画素で構成されるカメラを考えると、ノイズにより閾値を超える画素の数はそれぞれ平均25画素、2.2画素、1.2画素であり、閾値を5以下とすれば、ノイズによる誤検出は1画素程度に抑えることができる。
RIの集積は通常数mmの大きさを持っているため、集積したRIからの信号では画素間のカウント数に相関関係がある。一方でノイズによるカウントでは画素間の相関が小さい。このため、低域フィルタを適用した後で閾値処理を行うことで、画素間に相関があるRIからの信号のみを取り出すことが可能である。
また、収集時間は容易に測定可能であるので、想定されるノイズの平均レートからノイズの平均カウントを算出する手法や、信号が含まれないエネルギー窓で画像を別途生成し、そのカウント数を元にノイズの平均カウントを算出し、閾値を決定することも可能である。また、ユーザからの入力により閾値を決定することも考えられる。
閾値処理は画素の値が閾値を超えるか否かを判断するものであり、計算機で処理する場合、処理が遅くなる。画像表示はリアルタイムで行う必要があるため、処理を軽くするもっとも簡単な手法として、処理S102で行われる重みづけフィルタの係数を1以下の小数点を含んだ値とし、閾値処理では小数点以下を切り捨てる処理を行うことが考えられる。小数点切り捨ての場合、カウント数が低いと入力と出力のカウント数の直線性が無いが集積の有無の確認には十分であり、閾値処理を高速に実現することができる。
処理S104において、第2低域フィルタ部14は、処理S103の結果得られた画像に対し、再度、低域通過フィルタを適用する。本実施形態では全画素とも重み1の3×3のフィルタを適用することで画素を膨張させ、集積部位を強調する。これにより画像上で集積部位を大きく表示することが可能であり、RIからの信号の集積を発見することが容易になる。なお、フィルタの係数はこれに限定されるものではない。処理の結果、図5に示す画像204が得られる。このように低域フィルタと適切な閾値を用いることでRIの集積箇所を特定することが可能になる。
本実施形態によれば、放射線撮像装置100の収集・表示コンソール2(画像処理装置)は、ガンマ線の入射数をカウントすることによって得られた画像に対し、重みつきフィルタを用いて平滑化処理を行う(処理S102)。そして、画像処理装置は、平滑化後の画像に対して、閾値以下の画素値を抑制する(処理S103)。さらに、画像処理装置は、閾値処理が行われた画像に対し再度、重みつき平滑化フィルタを適用することで集積部分の画素を膨張させ(処理S104)、放射性同位元素の集積部位の発見を容易にする画像を提供することができる。
本実施形態によれば、低カウント数の放射線画像の放射性薬剤の集積位置のみを強調して表示し、短時間で薬剤の集積位置を特定可能とすることができる。これにより手術や診断に要する時間を短縮することができ、患者の負担を軽減することが可能である。
本実施形態では主に医療用の放射線撮像装置に関して説明したが、カウント数が少ない画像で判断を行う核セキュリティなどの分野にも応用可能である。
1 ガンマカメラ
2 収集・表示コンソール(画像処理装置)
3 コリメータ
4 検出パネル
5 検出画素
10 エネルギー弁別部
11 分布画像作成部(分布画像作成手段)
12 第1低域フィルタ部(第1のフィルタ処理手段)
13 閾値処理部(第2のフィルタ処理手段)
14 第2低域フィルタ部(第3のフィルタ処理手段)
15 画像表示部
16 閾値設定部
17 ユーザ入力部
20 RI用のエネルギー窓
21 散乱線用のエネルギー窓
22 宇宙線用のエネルギー窓
100 放射線撮像装置
2 収集・表示コンソール(画像処理装置)
3 コリメータ
4 検出パネル
5 検出画素
10 エネルギー弁別部
11 分布画像作成部(分布画像作成手段)
12 第1低域フィルタ部(第1のフィルタ処理手段)
13 閾値処理部(第2のフィルタ処理手段)
14 第2低域フィルタ部(第3のフィルタ処理手段)
15 画像表示部
16 閾値設定部
17 ユーザ入力部
20 RI用のエネルギー窓
21 散乱線用のエネルギー窓
22 宇宙線用のエネルギー窓
100 放射線撮像装置
Claims (8)
- 検出した放射線の分布の画像を作成する分布画像作成手段と、
前記作成された画像に対して低域通過フィルタ処理を行う第1のフィルタ処理手段と、
前記第1のフィルタ処理手段による処理の結果得られた画像の個々の画素の画素値が閾値以下であれば画素値を抑制する第2のフィルタ処理手段とを有する
ことを特徴とする放射線撮像装置。 - 前記放射線撮像装置は、さらに、
前記第2のフィルタ処理手段による処理によって得られた画像に対し、再度低域通過フィルタ処理を行う第3のフィルタ処理手段を有する
ことを特徴とする請求の範囲第1項に記載の放射線撮像装置。 - 前記放射線撮像装置は、さらに、閾値設定手段を有し、
前記閾値設定手段は、前記画素値に対する閾値を、前記画像の撮像時間に応じて想定されるノイズのカウントレートと該撮像時間との乗算により求めたノイズのカウント数に基づいて決定する
ことを特徴とする請求の範囲第1項または第2項に記載の放射線撮像装置。 - 前記放射線撮像装置は、さらに、閾値設定手段を有し、
前記分布画像作成手段は、撮影時におけるエネルギー窓とは異なるエネルギー窓を用いて放射線の分布の閾値算出用の画像を作成し、
前記閾値設定手段は、前記画素値に対する閾値を、該閾値算出用の画像のカウント数に基づいて決定する
ことを特徴とする請求の範囲第1項または第2項に記載の放射線撮像装置。 - 検出パネルで検出された放射線の分布の画像を処理する画像処理装置の画像処理方法であって、
前記画像処理装置は、
検出した放射線の分布の画像を作成し、
前記作成された画像に対して低域通過フィルタ処理を行う第1のフィルタ処理をし、
前記第1の通過フィルタ処理の結果得られた画像の個々の画素の画素値が閾値以下であれば画素値を抑制する第2のフィルタ処理をする
ことを特徴とする画像処理方法。 - 前記画像処理装置は、さらに、
前記第2のフィルタ処理によって得られた画像に対し、再度低域通過フィルタ処理を行う第3のフィルタ処理をする
ことを特徴とする請求の範囲第5項に記載の画像処理方法。 - 前記画像処理装置は、
前記画素値に対する閾値を、前記画像の撮像時間に応じて想定されるノイズのカウントレートと該撮像時間との乗算により求めたノイズのカウント数に基づいて決定する
ことを特徴とする請求の範囲第5項または第6項に記載の画像処理方法。 - 前記画像処理装置は、
撮影時におけるエネルギー窓とは異なるエネルギー窓を用いて放射線の分布の閾値算出用の画像を作成し、
前記画素値に対する閾値を、該閾値算出用の画像のカウント数に基づいて決定する
ことを特徴とする請求の範囲第5項または第6項に記載の画像処理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/976,563 US20130270448A1 (en) | 2010-12-28 | 2011-12-27 | Radiation image acquisition device, and image processing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-291596 | 2010-12-28 | ||
JP2010291596A JP2012137460A (ja) | 2010-12-28 | 2010-12-28 | 放射線撮像装置及び画像処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012090992A1 true WO2012090992A1 (ja) | 2012-07-05 |
Family
ID=46383085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/080177 WO2012090992A1 (ja) | 2010-12-28 | 2011-12-27 | 放射線撮像装置及び画像処理方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20130270448A1 (ja) |
JP (1) | JP2012137460A (ja) |
WO (1) | WO2012090992A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105246410A (zh) * | 2013-05-30 | 2016-01-13 | 株式会社东芝 | 光子计数x射线计算机断层摄影装置、以及光子计数x射线计算机断层摄影方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014102133A (ja) * | 2012-11-20 | 2014-06-05 | Hitachi Consumer Electronics Co Ltd | 放射線測定装置及び放射線測定方法 |
JP6747659B2 (ja) * | 2015-07-07 | 2020-08-26 | クロスレイテクノロジー株式会社 | 放射能検出装置、放射能測定装置および放射能測定方法 |
JP6595847B2 (ja) * | 2015-08-27 | 2019-10-23 | 株式会社堀場製作所 | 放射線分析装置及び放射線分析装置用プログラム |
WO2023074360A1 (ja) * | 2021-10-27 | 2023-05-04 | 国立研究開発法人理化学研究所 | 放射線画像信号処理方法、放射線画像信号処理装置、放射線撮像システム及びプログラム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06348819A (ja) * | 1993-06-07 | 1994-12-22 | Yokogawa Medical Syst Ltd | Mip処理装置 |
JPH11505462A (ja) * | 1996-03-13 | 1999-05-21 | アナロジック コーポレーション | コンピュータ断層撮影システムで使用するための運動アーティファクト抑制フィルタ |
JP2006158791A (ja) * | 2004-12-09 | 2006-06-22 | Daiichi Radioisotope Labs Ltd | 頭蓋内容積および局所脳構造物解析プログラム、記録媒体および頭蓋内容積および局所脳構造物解析方法 |
JP2008125835A (ja) * | 2006-11-21 | 2008-06-05 | Hamamatsu Photonics Kk | X線撮像方法及びx線撮像システム |
JP2008309683A (ja) * | 2007-06-15 | 2008-12-25 | Hitachi Ltd | 核医学診断装置 |
JP2009085654A (ja) * | 2007-09-28 | 2009-04-23 | Hitachi Ltd | 放射線撮像装置 |
JP2009178517A (ja) * | 2008-02-01 | 2009-08-13 | Ge Medical Systems Global Technology Co Llc | 画像処理装置及びx線ct装置 |
-
2010
- 2010-12-28 JP JP2010291596A patent/JP2012137460A/ja active Pending
-
2011
- 2011-12-27 WO PCT/JP2011/080177 patent/WO2012090992A1/ja active Application Filing
- 2011-12-27 US US13/976,563 patent/US20130270448A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06348819A (ja) * | 1993-06-07 | 1994-12-22 | Yokogawa Medical Syst Ltd | Mip処理装置 |
JPH11505462A (ja) * | 1996-03-13 | 1999-05-21 | アナロジック コーポレーション | コンピュータ断層撮影システムで使用するための運動アーティファクト抑制フィルタ |
JP2006158791A (ja) * | 2004-12-09 | 2006-06-22 | Daiichi Radioisotope Labs Ltd | 頭蓋内容積および局所脳構造物解析プログラム、記録媒体および頭蓋内容積および局所脳構造物解析方法 |
JP2008125835A (ja) * | 2006-11-21 | 2008-06-05 | Hamamatsu Photonics Kk | X線撮像方法及びx線撮像システム |
JP2008309683A (ja) * | 2007-06-15 | 2008-12-25 | Hitachi Ltd | 核医学診断装置 |
JP2009085654A (ja) * | 2007-09-28 | 2009-04-23 | Hitachi Ltd | 放射線撮像装置 |
JP2009178517A (ja) * | 2008-02-01 | 2009-08-13 | Ge Medical Systems Global Technology Co Llc | 画像処理装置及びx線ct装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105246410A (zh) * | 2013-05-30 | 2016-01-13 | 株式会社东芝 | 光子计数x射线计算机断层摄影装置、以及光子计数x射线计算机断层摄影方法 |
Also Published As
Publication number | Publication date |
---|---|
US20130270448A1 (en) | 2013-10-17 |
JP2012137460A (ja) | 2012-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7840052B2 (en) | Restoration of the nuclear medicine 2D planar image by iterative constrained deconvolution | |
EP2041606B1 (en) | Energy spectrum reconstruction | |
JP4208284B2 (ja) | 核像形成方法及び装置 | |
JP5920930B2 (ja) | ガンマカメラ、spect装置、pet装置およびガンマ線計測画像生成方法 | |
JP4836094B2 (ja) | 核医学撮像装置およびその初期散乱位置判定方法 | |
CN108474862B (zh) | 具有lu谱减除的能量校准 | |
WO2012090992A1 (ja) | 放射線撮像装置及び画像処理方法 | |
Piccinelli et al. | Advances in single-photon emission computed tomography hardware and software | |
JPWO2018163362A1 (ja) | 散乱推定方法、散乱推定プログラム並びにそれを搭載したポジトロンct装置 | |
JP2009175140A (ja) | 核医学診断装置、形態断層撮影診断装置、核医学用データ演算処理方法および形態断層画像演算処理方法 | |
CN111568453A (zh) | 能量校正状态检测方法、装置、计算机设备和存储介质 | |
JP6670643B2 (ja) | Pet装置 | |
JP2535762B2 (ja) | 陽電子断層撮影装置におけるγ線吸収体による散乱同時計数測定法及び陽電子断層撮影装置 | |
JP2005106553A (ja) | γ線の同時計数方法、及び核医学診断装置 | |
EP3588145A1 (en) | Photon scatter imaging | |
Nuyts | Nuclear medicine technology and techniques | |
JP2010243395A (ja) | X線・ガンマ線撮像装置 | |
JP5423433B2 (ja) | 核医学診断装置 | |
JP2007218769A (ja) | 核医学イメージング装置 | |
JP2008267913A (ja) | 核医学診断装置およびそれに用いられる診断システム | |
KR102449932B1 (ko) | 컴프턴 효과를 활용한 방사선 민감도 증진 방법 및 방사선 민감도 증진 시스템 | |
JP5011250B2 (ja) | 放射線撮像装置及び画像情報作成方法 | |
JP4585085B2 (ja) | 核医学診断装置及び減弱補正方法 | |
Ljungberg | Instrumentation, Calibration, Quantitative Imaging, and Quality Control | |
Lawson | Gamma Camera SPECT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11854106 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13976563 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11854106 Country of ref document: EP Kind code of ref document: A1 |