WO2012090814A1 - 表示装置、その駆動方法、および表示用駆動回路 - Google Patents
表示装置、その駆動方法、および表示用駆動回路 Download PDFInfo
- Publication number
- WO2012090814A1 WO2012090814A1 PCT/JP2011/079616 JP2011079616W WO2012090814A1 WO 2012090814 A1 WO2012090814 A1 WO 2012090814A1 JP 2011079616 W JP2011079616 W JP 2011079616W WO 2012090814 A1 WO2012090814 A1 WO 2012090814A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- display
- pixel
- image
- frame
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0421—Structural details of the set of electrodes
- G09G2300/0426—Layout of electrodes and connections
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0224—Details of interlacing
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/024—Scrolling of light from the illumination source over the display in combination with the scanning of the display screen
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/06—Details of flat display driving waveforms
- G09G2310/061—Details of flat display driving waveforms for resetting or blanking
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/08—Details of timing specific for flat panels, other than clock recovery
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0247—Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0252—Improving the response speed
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0261—Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/16—Determination of a pixel data signal depending on the signal applied in the previous frame
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3406—Control of illumination source
- G09G3/342—Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3614—Control of polarity reversal in general
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
- G09G3/3655—Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
Definitions
- the present invention relates to an active matrix display device such as a liquid crystal display device using a switching element such as a thin film transistor and a driving method thereof.
- IP conversion a progressive image
- IP conversion + one line driving method has been used conventionally.
- the charge time that can be secured for writing the image signal to the display panel is shortened, so the charge in the pixel capacity of the display panel is insufficient Is a problem.
- a technique for preventing this shortage of charging a technique called preliminary charging is known. This is because an active signal is given to the gate signal line (scanning signal line) corresponding to the line, for example, two horizontal periods (2H period) before the time point at which the image signal should be written to each line in the liquid crystal panel.
- This is a method in which each pixel capacity in the line is preliminarily charged with an image signal having the same polarity as the image signal to be written in the line (an image signal to be written in the pixel capacity in the previous two lines).
- Patent Document 1 in order to make a progressive scanning video signal with a high data rate a display device that is not good at high speed scanning such as a liquid crystal display device, the video signal polarity is taken into consideration from video signals of a plurality of frame periods.
- a configuration in which two video screens are displayed is disclosed.
- Japanese Patent Application Laid-Open No. 2005-228867 also includes a liquid crystal panel that includes a data-side driver and a scanning-side driver independently for each of the odd-numbered pixel group and the even-numbered line pixel group of the liquid crystal panel.
- a TV drive circuit is disclosed.
- a configuration for simultaneously driving the odd line pixel group and the even line pixel group as described above is also disclosed in Non-Patent Document 1.
- the present invention has an object to provide a display device capable of obtaining high display performance for both moving images and still images and a driving method of such a display device even when display images have a higher definition or a larger display panel.
- a first aspect of the present invention is an active matrix display device that displays an image using a progressive image signal that is an image signal based on progressive scanning,
- a display unit including a pixel array including a plurality of pixel formation units arranged in a matrix;
- a display driving circuit for driving the display unit based on the progressive image signal includes: In a frame period in which image display is performed based on a first signal that is a signal of one of the adjacent two frames included in the progressive image signal, an image of an odd-numbered scan line in the image represented by the first signal Is formed by a pixel forming portion group of odd-numbered scanning lines in the pixel array, and a black display line is formed by a pixel forming portion group of even-numbered scanning lines in the pixel array.
- the image of the even-numbered scan line in the image represented by the second signal is the even number in the pixel array.
- the display unit is driven so that a black display line is formed by a pixel formation unit group of odd-numbered scan lines in the pixel array, as well as formed by a pixel formation unit group of the scan line.
- the black display line formed by the pixel forming unit group of the even-numbered scan line and the black display line formed by the pixel forming unit group of the odd-numbered scan line are more than 10% of the maximum luminance. It is characterized by being displayed with low luminance.
- the black display line formed by the pixel forming portion group of the even-numbered scanning line and the black display line formed by the pixel forming portion group of the odd-numbered scanning line are more than 1% of the maximum luminance. It is characterized by being displayed with a brightness higher than 10%.
- the display driving circuit further includes a frame frequency converter that receives an input image signal based on progressive scanning and generates the progressive image signal by changing a frame frequency of the input image signal to 2 times. To do.
- the display driving circuit receives an input image signal based on interlaced scanning, changes the scanning method of the input image signal to a progressive scanning method, and changes the frame frequency of the input image signal to two times to thereby change the progressive image.
- a signal format converter for generating a signal is further provided.
- the display driving circuit replaces the pixel value corresponding to the even-numbered scan line in one frame out of the two adjacent frames in the progressive image signal with the black pixel value, and the odd-numbered scan line in the other frame.
- An interlaced image signal is generated by replacing a corresponding pixel value with a black pixel value, and the display unit is driven based on the interlaced image signal.
- the display unit A plurality of scanning signal lines extending in the first direction; A plurality of data signal lines extending in a second direction and intersecting the plurality of scanning signal lines; The plurality of pixel forming portions are arranged in a matrix along the plurality of data signal lines and the plurality of scanning signal lines, Each scanning signal line includes a plurality of pixel forming portion columns obtained by grouping the plurality of pixel forming portions with a pair of two pixel forming portion columns that are adjacent to each other and extend in the first direction in the pixel array.
- Each pixel formation column extending in the second direction in the pixel array is one of a plurality of data signal lines obtained by grouping the plurality of data signal lines with two adjacent data signal lines as one set.
- One of the two data signal lines constituting each set corresponds to one of the two pixel formation portions connected to the same scanning signal line among the pixel formation portions included in the pixel formation portion column corresponding to the set.
- the other of the two data signal lines is connected to the other of the two pixel formation portions,
- the display driving circuit includes: A scanning signal line driving circuit for selectively activating the plurality of scanning signal lines; And a data signal line driving circuit for generating a plurality of data signals representing an image to be displayed on the display unit based on the progressive image signal and applying the data signals to the plurality of data signal lines.
- Two pixel formation portions connected to different scanning signal lines and adjacent in the second direction are connected to the same data signal line.
- the data signal line driving circuit outputs the plurality of data signals so that data signals having different polarities are applied to two data signal lines corresponding to each pixel formation portion column extending in the second direction in the pixel array. It is characterized by generating.
- the data signal line driving circuit is configured to apply data signals having different polarities to two data signal lines respectively connected to two pixel forming portions adjacent in the first direction in the pixel array. A data signal is generated.
- An eleventh aspect of the present invention is the seventh or eighth aspect of the present invention.
- the data signal line driving circuit generates the plurality of data signals so that the polarity of the data signal applied to the plurality of pixel formation portions via the plurality of data signal lines is inverted every even frame period.
- the display driving circuit obtains an image signal that emphasizes a temporal change of the progressive image signal as an enhanced image signal by comparing a signal value of the current frame in the progressive image signal with a signal value of two frames before, The display unit is driven based on the enhanced image signal.
- a thirteenth aspect of the present invention is the twelfth aspect of the present invention
- the display driving circuit includes: First and second frame memories for delaying the progressive image signal by two frame periods; An enhancement conversion unit that obtains the enhanced image signal by comparing the signal value of the current frame in the progressive image signal with the signal value of two frames before obtained by the first and second frame memories;
- the display drive circuit writes a signal value into the first frame memory by excluding a signal value corresponding to a pixel constituting the black display line from a signal value indicated by the progressive image signal, and the first frame memory.
- the progressive image signal is read by sequentially reading from the frame memory, writing the signal value read from the first frame memory to the second frame memory, and reading from the second frame memory. The signal value two frames before in is obtained.
- a planar illumination device for irradiating light on the back of the display unit;
- a BL driving circuit for turning on and off the planar illumination device in units of a predetermined area corresponding to a predetermined number of scanning lines in conjunction with scanning for displaying the image on the display unit based on the progressive image signal;
- the display unit is a liquid crystal panel that displays the image by controlling the transmittance of light from the planar illumination device according to a driving voltage applied to each pixel forming unit based on the progressive image signal
- the BL driving circuit includes the planar illumination so that light is not irradiated from the planar illumination device to the pixel formation unit for a predetermined period in each frame period for forming the pixels of the image by each pixel formation unit.
- the device is turned on and off in units of the predetermined area.
- a fifteenth aspect of the present invention is the fourteenth aspect of the present invention.
- the BL driving circuit is characterized in that the planar illumination device is turned on and off in units of the predetermined area so that the predetermined period is 1 ⁇ 2 or more of one frame period.
- a sixteenth aspect of the present invention is the fourteenth aspect of the present invention.
- the BL drive circuit includes a plurality of low-pass filters corresponding to the number of the predetermined areas in the planar illumination device, and outputs a plurality of drive signals for turning on and off the predetermined areas in the planar illumination device, respectively.
- the planar illumination device is provided with a plurality of low-pass filters, respectively.
- a seventeenth aspect of the present invention is the fourteenth aspect of the present invention.
- the BL driving circuit emits light from the planar illumination device to the pixel forming unit for a predetermined period including before and after the start time of each frame for forming each pixel forming the black display line.
- the planar illumination device is turned on and off in units of the predetermined area so as to be irradiated.
- the planar illumination device includes a plurality of light emitting diodes as light sources.
- the display unit is a VA liquid crystal panel.
- each pixel forming unit a display frame period that is a frame period for forming pixels of an image to be displayed and a black frame that is a frame period for forming black pixels Since the periods appear alternately (because interlaced black insertion is performed), video crosstalk from the preceding frame is suppressed even when the optical response of each pixel forming unit is slow. Further, since black display lines are formed every other scanning line in the pixel array by interlaced black insertion, it is possible to prevent the occurrence of flicker without increasing the frame frequency. In addition, black insertion is performed for odd-numbered scan lines in one of two adjacent frames, and black insertion is performed for even-numbered scan lines in the other frame.
- the high-resolution image is composed of the adjacent two-frame images, and the resolution is not lowered by the interlaced black insertion described above. Therefore, high display performance can be obtained for both moving images and still images even if the display image is highly refined or the liquid crystal panel is enlarged.
- the display device according to the first aspect of the present invention is a liquid crystal display device, insufficient charging of the pixel capacitance in each pixel formation portion is prevented by the above-described interlaced black insertion, and this point is also high. Contributes to good display of fine video.
- the black display line in the interlaced black insertion is displayed with a luminance lower than 10% of the maximum luminance, so that a sufficient average of the frame period in the display image is obtained. A ratio is obtained.
- the black display line in the interlaced black insertion described above is displayed with a luminance higher than 1% and lower than 10% of the maximum luminance, so that the frame period average in the display image A sufficient contrast ratio can be obtained.
- the display device according to the third aspect of the present invention is a liquid crystal display device
- the black display line is displayed at a luminance higher than 1% of the maximum luminance, whereby the black display line is displayed. Since the voltage is applied to the liquid crystal so that the liquid crystal molecules have a predetermined tilt angle with respect to the substrate surface of the liquid crystal panel even during the formation of the liquid crystal, the deterioration of the optical response of the liquid crystal in interlaced display due to black insertion is suppressed. Can do.
- an image is displayed on the display unit based on the progressive image signal obtained by changing the input image signal based on the interlace scanning to the progressive scanning method and changing the frame frequency to twice. Therefore, even when an input image signal based on interlace scanning is given from the outside, high moving image display performance can be obtained.
- an interlaced image signal is generated from the progressive image signal, and an image is displayed on the display unit based on the interlaced image signal, so that the same effect as in the first aspect of the present invention is achieved. Is obtained.
- two pixel formation portion rows (two horizontal pixel formation portion rows) extending in the first direction are simultaneously driven by one scanning signal line, and one vertical pixel formation portion row is provided. Since a data signal is given to each pixel formation portion via two data signal lines, the time for writing the data signal as a pixel value to the pixel formation portion is doubled. Therefore, in the case where the display device according to the seventh aspect of the present invention is a liquid crystal display device, it is possible to secure twice the charging time, so that even if the display image becomes higher in definition or the liquid crystal panel is enlarged, Even if the driving speed of the liquid crystal panel is improved to improve the moving image performance, it is possible to prevent insufficient charging of the pixel capacity in each pixel forming portion.
- two pixel forming portions connected to different scanning signal lines and adjacent in the second direction (vertical direction) are connected to the same data signal line. Similar to the seventh aspect, so-called 2H inversion driving can be performed while securing a sufficient time for writing a data signal as a pixel value in the pixel formation portion. Therefore, when the display device according to the eighth aspect of the present invention is a liquid crystal display device, the polarity of the pixel voltage is one pixel in the vertical direction even if the black display line is excluded from the display image with interlaced black insertion. Since the inversion is performed for each forming portion, it is possible to more reliably prevent the occurrence of flicker due to the alternating current driving of the liquid crystal.
- data signals having different polarities are applied to the two data signal lines corresponding to each pixel formation portion column (each vertical pixel formation portion row) extending in the second direction in the pixel array. Therefore, the pixel forming portion to which the positive polarity data signal is supplied and the pixel forming portion to which the negative polarity data signal is supplied are alternately arranged in the second direction (vertical direction).
- the display device according to the ninth aspect of the present invention is a liquid crystal display device, it is possible to prevent the occurrence of flicker due to the AC driving of the liquid crystal.
- data signals having different polarities are applied to two data signal lines respectively connected to two pixel forming portions adjacent to each other in the first direction (horizontal direction) in the pixel array. Therefore, the pixel forming portion to which the positive polarity data signal is supplied and the pixel forming portion to which the negative polarity data signal is supplied are alternately arranged in the first direction (horizontal direction).
- the display device according to the tenth aspect of the present invention is a liquid crystal display device, it is possible to prevent the occurrence of flicker due to the AC driving of the liquid crystal.
- the polarity of the data signal applied to each pixel formation unit via the data signal line is inverted every even frame period, so that AC driving is performed while interlaced black insertion is performed. It can be carried out.
- the display device according to the eleventh aspect of the present invention is a liquid crystal display device, the deterioration of the liquid crystal can be prevented.
- the display unit is based on the enhanced image signal obtained by comparing the signal value of the current frame in the progressive image signal with the signal value of two frames before. Driven (OS drive is performed). Accordingly, the optical response of the display unit can be improved and the moving image display performance can be improved without requiring a complicated circuit.
- the progressive image signal since the signal values corresponding to the pixels constituting the black display line among the signal values indicated by the progressive image signal are not stored in the first and second frame memories, the progressive image signal The amount of memory required to obtain an enhanced image signal is reduced by comparing the signal value of the current frame with the signal value of two frames before.
- light is not applied to the pixel formation unit from the planar illumination device for a predetermined period in each frame period for forming pixels of an image to be displayed by each pixel formation unit.
- lighting and extinguishing of the planar lighting device are controlled in units of a predetermined area. This stabilizes the impulse by black insertion without increasing the frame frequency and further improves the moving image display performance.
- the predetermined period during which no light is irradiated from the planar illumination device to the pixel forming unit is 1 Since it becomes 1/2 or more of the frame period, a sufficient impulse effect can be obtained.
- the display unit since the plurality of drive signals for turning on and off the predetermined areas in the planar illumination device are respectively supplied to the planar illumination device via the plurality of low-pass filters, the display unit The amount of light applied to the liquid crystal panel does not fluctuate extremely between the predetermined areas. As a result, deterioration of display quality due to block separation or the like is suppressed.
- the pixel forming unit is connected to the pixel forming unit from the planar illumination device for a predetermined period including before and after the start time of each frame for forming the pixels constituting the black display line.
- the planar lighting device is controlled to be turned on and off in units of a predetermined area so that light is irradiated on the surface.
- the light emitting diode is used as the light source of the planar illumination device, lighting and extinguishing of the planar illumination device can be accurately controlled in units of predetermined areas.
- the optical response of the liquid crystal in the frame for displaying black pixels is relatively fast. More stable driving can be performed, and the contrast ratio is basically high, so that the gradation can be easily adjusted.
- FIG. 1 is a block diagram illustrating a configuration of a liquid crystal display device according to a first embodiment of the present invention. It is a block diagram which shows the structure of the display control circuit in the said 1st Embodiment. It is a circuit diagram which shows the equivalent circuit of the pixel formation part (equivalent to 4 pixels) in the said 1st Embodiment.
- FIG. 6 is a signal waveform diagram (A to H) for explaining the operation of the liquid crystal display device according to the first embodiment.
- FIG. 5 is a schematic diagram (AD) showing a pixel voltage polarity pattern and an interlace black insertion pattern in screen display according to the first embodiment. It is a wave form diagram for demonstrating the flicker reduction effect in the said 1st Embodiment.
- FIG. 6 is a schematic diagram (A to D) showing a pixel voltage polarity pattern and an interlace black insertion pattern in screen display according to a modification of the first embodiment. It is a block diagram which shows the structure of the liquid crystal display device which concerns on the 2nd Embodiment of this invention. It is a block diagram which shows the structure of the display control circuit in the said 2nd Embodiment. It is a schematic diagram which shows the electrical connection structure in the display part in the said 2nd Embodiment. It is a circuit diagram which shows the equivalent circuit of the pixel formation part (equivalent to 4 pixels) in the said 2nd Embodiment. It is a timing chart of the signal applied to the display part in the said 2nd Embodiment.
- FIG. 6 is a signal waveform diagram (A to H) for explaining the operation of the liquid crystal display device according to the second embodiment. It is a schematic diagram which shows the other example of the electrical connection structure in the display part in the said 2nd Embodiment. It is a schematic diagram which shows the further another example of the electrical connection structure in the display part in the said 2nd Embodiment. It is a schematic diagram which shows the electrical connection structure in the display part in the modification of the said 2nd Embodiment. It is a block diagram which shows the structure of the display control circuit in the liquid crystal display device which concerns on the 3rd Embodiment of this invention.
- FIG. 10 is a signal waveform diagram (A to C) for explaining the operation of the backlight in the fourth embodiment.
- 6 is a timing chart (AD) for explaining another embodiment of the present invention. It is a block diagram which shows the structure of the display control circuit in other embodiment of this invention.
- FIG. 1 is a block diagram showing the configuration of an active matrix type liquid crystal display device according to the first embodiment of the present invention.
- This liquid crystal display device irradiates light onto a display unit 500 which is a normally black liquid crystal panel, a display driving circuit 100 for driving the display unit 500, and a back surface of the display unit 500 (liquid crystal panel).
- a backlight 600 and a BL drive circuit 650 for driving the backlight 600 are provided.
- the display driving circuit 100 includes a source driver 300 as a data signal line driving circuit, a gate driver 400 as a scanning signal line driving circuit, and a display control circuit 200.
- the driver 300, the gate driver 400, and the BL driving circuit 650 are controlled.
- the display control circuit 200 receives an image signal DAT and a timing control signal TS for displaying an image from the outside of the apparatus.
- the display unit 500 includes a plurality of data signal lines SL1 to SLM connected to the source driver 300 and a plurality of scanning signal lines GL1 to GLN connected to the gate driver 400, and the plurality of data signal lines.
- SL1 to SLM and the plurality of scanning signal lines GL1 to GLN are arranged so as to cross each other.
- the source driver 300 and the gate driver 400 are realized as an IC (Integrated Circuit) that is a separate component from the liquid crystal panel as the display unit 500.
- the liquid crystal panel may be a so-called driver monolithic panel. That is, the display unit 500 and at least one of the gate driver 400 and the source driver 300 may be integrally formed on the liquid crystal panel using a thin film transistor or the like.
- FIG. 3 is a circuit diagram showing an equivalent circuit of the pixel formation portion (i, j) in the display portion 500.
- Each pixel formation portion P (i, j) includes a pixel electrode Ep and a thin film transistor (hereinafter abbreviated as “TFT”) 10 as a switching element.
- TFT thin film transistor
- the reference symbol “P (i, j)” is the i-th row and j-th column in the pixel array composed of the pixel formation units arranged in a matrix in the display unit 500.
- Pixel forming portions that is, a second direction that is a direction in which the i-th pixel forming portion row and the data signal line SLj are aligned in a first direction (hereinafter referred to as “horizontal direction”) that is a direction in which the scanning signal line GLi extends.
- the pixel formation portions included in both of the jth pixel formation portion rows arranged in a row (hereinafter referred to as “vertical direction”) are shown.
- the i-th scanning signal line GLi and the j-th data signal line SLj are connected to the gate terminal and the source terminal of the TFT 10 in each sub-pixel formation portion P (i, j), respectively. Is connected to the pixel electrode Ep.
- This pixel capacitance Cp is for holding a voltage corresponding to the value of the pixel to be formed by the pixel formation portion P (i, j).
- a predetermined voltage is applied to the common electrode Ec as a common voltage Vcom by a common electrode drive circuit (not shown).
- FIG. 2 is a block diagram showing the configuration of the display control circuit 200. As shown in FIG.
- the display control circuit 200 includes an input image processing circuit 210, an interlace circuit 220, and a drive timing control circuit 230.
- the display control circuit 200 has an interlace scanning image signal (hereinafter, referred to as this image) corresponding to a high definition television (HDTV) having 1080 scanning lines, 1920 ⁇ 1080 pixels, and a field frequency of 60 Hz.
- the signal format is expressed as “1920 ⁇ 1080 @ 60I”) DAT is received from the outside together with the timing signal TS.
- These signals DAT and TS are given to the input image processing circuit 210.
- an image signal corresponding to HDTV is input from the outside to the display control circuit 200 as the image signal DAT as described above, but the present invention is not limited to this.
- the input image processing circuit 210 functions as a signal format converter, and includes an IP conversion unit 212, an image adjustment unit 214, and a double speed processing unit 216, and an interlace scanning type image signal DAT input from the outside is converted into an IP signal. Input to the unit 212.
- the IP converter 212 converts the interlace scanning image signal DAT into a progressive scanning image signal (such conversion is referred to as “IP conversion”).
- IP conversion a progressive scanning type image signal having the number of pixels of 1920 ⁇ 1080 and a frame frequency of 60 Hz (hereinafter, this image signal format is referred to as “1920 ⁇ 1080 @ 60P”) is obtained.
- the scanning type image signal is input to the image adjustment unit 214.
- the image adjustment unit 214 performs processing (image adjustment) for adjusting the display image in accordance with the characteristics of the liquid crystal display device, the purpose of use, and the like, as necessary, on the progressive scanning image signal.
- the image signal subjected to image adjustment as necessary is input to a double speed processing unit 216 that functions as a frame frequency converter (hereinafter abbreviated as “FRC”), and the double speed processing unit 216 receives the frame of the image signal. Change the frequency to double.
- FRC frame frequency converter
- double speed processing unit 216 receives the frame of the image signal. Change the frequency to double.
- a progressive scanning type image signal having 1920 ⁇ 1080 pixels and a frame frequency of 120 Hz, that is, an image signal of 1920 ⁇ 1080 @ 120P (hereinafter referred to as “double-speed progressive image signal”) SP is obtained.
- the double-speed progressive image signal SP is output from the input image processing circuit 210 and input to the interlace circuit 220.
- the interlace circuit 220 includes a field determination unit 222 and a black insertion unit 224, and the double-speed progressive image signal SP from the input image processing circuit 210 is input to the field determination unit 222.
- the field determination unit 222 determines a field type for double-speed interlace display described later. That is, it is determined whether the current frame of the double-speed progressive image signal SP corresponds to a previous frame or a subsequent frame in double-speed interlace display described later. In the double-speed interlaced display described later, two adjacent frames are grouped as one set, and an image for one screen is displayed by interlace scanning for each set (see FIGS. 5 and 7).
- the field determination unit 222 identifies whether the current frame is an odd-numbered frame or an even-numbered frame, and if it is an odd-numbered frame, it is the previous frame (frame corresponding to the odd-numbered field), and if it is an even-numbered frame. Although it is determined that the frame is a subsequent frame (a frame corresponding to the even field), the even frame may be determined as the previous frame and the odd frame may be determined as the subsequent frame.
- the vertical synchronization signal of the double-speed progressive image signal SP is counted, or information for the identification is stored in the input image processing circuit 210. It may be received from the FRC. When counting the vertical synchronization signal, it is only necessary to invert the 1-bit flag for each vertical synchronization signal as long as it is possible to determine whether the frame is even or odd.
- the double-speed progressive image signal SP is input to the black insertion unit 224.
- the black insertion unit 224 In the image signal SP, the pixel value corresponding to the odd-numbered scan line in the current frame is left as it is, and the pixel value corresponding to the even-numbered scan line in the current frame is changed to the black pixel value (the gradation for black display). Value).
- the black insertion unit 224 keeps the pixel values constituting the even-numbered scan line of the current frame in the double-speed progressive image signal SP, and keeps the current frame.
- the pixel value corresponding to the odd-numbered scanning line is replaced with a black pixel value (hereinafter, black insertion by such replacement with a black pixel value is referred to as “interlaced black insertion”).
- the scanning line refers to a display line formed by a pixel formation portion row arranged in the horizontal direction.
- an image signal hereinafter referred to as “double-speed interlaced image signal” SI corresponding to a double-speed interlace display (see FIGS. 5 and 7) described later is obtained.
- This double speed interlaced image signal SI is input to the drive timing control circuit 230.
- the black pixel value for interlaced black insertion is not necessarily limited to the gradation value 0 corresponding to the minimum luminance. It is preferable to use a fixed gradation value corresponding to the luminance within the range of 1% to 10% of the maximum luminance as the black pixel value for the interlace black insertion. This point will be described below.
- the voltage applied to the liquid crystal (the holding voltage at the pixel capacitance Cp) is a voltage corresponding to true black (gradation value 0).
- the response of the liquid crystal when changing from 1 to 2 is very slow, and this response is not improved even by using a driving method that emphasizes temporal change in gradation (a driving method called “overshoot driving or OS driving”).
- a driving method that emphasizes temporal change in gradation
- OS driving a driving method called “overshoot driving or OS driving”.
- a method for improving this response a method is known in which a voltage is applied in advance to the liquid crystal so that the liquid crystal molecules have a predetermined tilt angle with respect to the substrate surface of the liquid crystal panel even in the black display state.
- the inventor of the present application examined the contrast ratio by holding a voltage corresponding to 1% of the maximum brightness in the pixel capacitance Cp of the pixel forming portion to be displayed in black so as to ensure a predetermined tilt angle.
- the drive timing control circuit 230 includes an LCD timing generation unit 234 and a BL timing generation unit 236, and generates a control signal indicating timing for causing the display unit 500 to display an image represented by the interlaced image signal SI. That is, the LCD timing generation unit 234 generates a data start pulse signal SSP, a data clock signal SCK, a latch signal LS, and the like as timing signals to be supplied to the source driver 300, and outputs these timing signals and the image signal SI to these signals.
- a source driver control signal Cts including an image signal DV which is a signal synchronized with the timing signal is output.
- the LCD timing generation unit 234 generates a gate start pulse signal GSP, a gate clock signal GCK, and the like as timing signals to be given to the gate driver 400, and outputs them as a gate driver control signal Ctg.
- the BL timing generation unit 236 generates a control signal to be given to the BL drive circuit 650 and outputs it as a BL drive control signal Ctbl.
- the BL drive circuit 650 generates a BL drive signal Dbl based on the BL drive control signal Ctbl, and drives the backlight 600 by the BL drive signal Dbl. Accordingly, the backlight 600 operates as a planar illumination device, and irradiates light on the back surface of the display unit 500 that is a liquid crystal panel.
- the gate driver 400 generates the scanning signals G (1) to G (N) based on the gate driver control signal Ctg (GSP, GCK) and applies them to the scanning signal lines GL1 to GLN of the display unit 500, respectively.
- the scanning signal lines GL1 to GLN are sequentially activated with one frame period as a period (an H level signal is sequentially applied).
- the source driver 300 generates data signals S (1) to S (M) based on the source driver control signals Cts (SSP, SCK, LS, DV) and supplies them to the data signal lines SL1 to SLM of the display unit 500. Apply each.
- the scanning signals G (1) to G (N) are applied to the scanning signal lines GL1 to GLN, and the data signals S (1) to S ( M) is applied.
- a voltage corresponding to the image represented by the image signal DV is applied to the liquid crystal in each pixel forming portion P (i, j), whereby the transmittance of light from the backlight 600 is controlled, and the image signal DV is An image to be displayed is displayed on the display unit 500.
- FIG. 4 is a timing chart showing the operation of the liquid crystal display device according to the present embodiment shown in FIG.
- FIG. 5 is a schematic diagram showing a pixel voltage polarity pattern and an interlace black insertion pattern in the screen display according to the present embodiment.
- the normally black method is adopted, and therefore when the voltage applied to the liquid crystal (the holding voltage at the pixel capacitance Cp) is a value close to 0, that is, the pixel electrode Ep.
- the voltage (pixel voltage) Vp (i, j) applied to is substantially equal to the common voltage, black is displayed.
- H level signals are sequentially applied to the scanning signal lines GL1 to GLN in the display unit 500 as the scanning signals G (1) to G (N).
- the scanning signal lines GL1 to GLN are sequentially activated.
- the TFT 10 is turned on.
- data signals S (1) to S (M) as shown in FIGS. 4C and 4D are applied to the data signal lines SL1 to SLM in the display section 500.
- These data signals S (1) to S (M) are configured such that the liquid crystal is AC driven in order to prevent deterioration of the liquid crystal in the display unit 500.
- a so-called dot inversion driving method is adopted as the AC driving method, and the polarity of these data signals S (1) to S (M) is set for each data signal line with reference to the common voltage Vcom. And invert every horizontal period.
- the signal (black signal) corresponding to the black pixel value is inserted every other horizontal period (1H period) by the above-described processing in the black insertion unit 224 of the interlace circuit 220, the same frame period.
- FIG. 4 it can be considered that the polarities of the data signals S (1) to S (M) are not substantially inverted (FIGS. 4C and 4D).
- the display unit 500 is driven, and an image (including a black display line) is formed in the pixel array of the display unit 500 as follows. That is, the odd-numbered frame period Tfk () in which an image is to be displayed based on the first signal that is the signal portion of the odd-numbered frame in the double-speed progressive image signal SP generated by the input image processing circuit 210 in the display control circuit 200.
- an odd-numbered scan line image in the image represented by the first signal corresponds to an odd-numbered scan line pixel formation unit group P (iod, 1) in the pixel array of the display unit 500.
- the scanning signals G (1) to G (N) are applied to the scanning signal lines GL1 to GLN and the data signals S (1) to S (M) are applied to the data signal lines SL1 to SLM.
- Vp (i, j) changes in the order of positive voltage ⁇ black voltage ⁇ negative voltage ⁇ black voltage at intervals of one frame period (1/120 seconds) as shown in FIGS.
- the pixel voltage Vp (1, 1) shown in FIG. 4E is based on the common voltage Vcom as a positive voltage ⁇ black voltage ⁇
- the pixel voltage Vp (2, 1) shown in FIG. 4F changes from black voltage ⁇ negative voltage ⁇ black voltage ⁇ positive voltage with reference to the common voltage Vcom, as shown in FIG.
- the pixel voltage Vp (1,2) shown in (G) changes from negative voltage ⁇ black voltage ⁇ positive voltage ⁇ black voltage with the common voltage Vcom as a reference
- the pixel voltage Vp (2,2) shown in FIG. 2) changes from black voltage ⁇ positive voltage ⁇ black voltage ⁇ negative voltage with reference to the common voltage Vcom.
- the polarity of the voltage applied to each pixel liquid crystal (the polarity of the pixel voltage) is inverted every two frame periods as described above, but may be inverted every even frame period equal to or more than four frame periods. Good.
- each pixel voltage Vp (i, j) changes as described above, the pixel voltage polarity and interlaced black insertion on the display screen have a pattern as shown in FIG.
- FIGS. 5A to 5D show the pixel voltage polarity pattern and the interlace black insertion pattern in the screen display at the end of the first to fourth frame periods Tf1 to Tf4, respectively. . Changes in these patterns shown in FIGS. 5A to 5D are repeated with one period of four frame periods (see FIGS. 4E to 4H).
- the polarity of the pixel voltage Vp (i, j) that is, the polarity of the voltage applied to the pixel liquid crystal is set for each pixel in the horizontal direction and the vertical direction.
- the odd-numbered frame is the previous frame and the even-numbered frame is the subsequent frame, but the even-numbered frame may be the previous frame and the odd-numbered frame may be the subsequent frame. .
- the pixel capacitor is charged with a voltage having a polarity opposite to the voltage to be applied.
- the voltage applied to each pixel capacitor Cp that is, the pixel voltage Vp (i, j) based on the common voltage Vcom is positive voltage ⁇ black voltage ⁇ negative voltage ⁇ black at one frame period interval.
- the black voltage is applied to the pixel capacitor Cp in the frame period immediately before the frame period in which a positive voltage or a negative voltage corresponding to the pixel value of the image to be displayed is applied to the pixel capacitor Cp.
- an interlace scanning image signal DAT having a field frequency of 60 Hz is converted into a double-speed progressive image signal SP, which is a progressive scanning image signal having a frame frequency of 120 Hz, and an image is generated based on the double-speed progressive image signal SP.
- a double-speed progressive image signal SP which is a progressive scanning image signal having a frame frequency of 120 Hz
- an image is generated based on the double-speed progressive image signal SP.
- the above-mentioned configuration that is, the configuration for double-speed interlaced display prevents the pixel capacity from being insufficiently charged. It can be displayed well.
- the image of the preceding frame affects the image display in the current frame due to the slow response of the liquid crystal (hereinafter referred to as “video crosstalk from the preceding frame”), data
- the voltage change of the signal line (source line) SLj may affect the holding voltage of the pixel capacitor Cp or the pixel voltage Vp (i, j) through the parasitic capacitance (hereinafter referred to as “crosstalk due to source capacitance coupling”).
- these crosstalks can be suppressed or reduced. That is, in this embodiment, each pixel voltage Vp (i, j) changes in the order of positive voltage ⁇ black voltage ⁇ negative voltage ⁇ black voltage at intervals of one frame period as described above (FIGS.
- Video crosstalk from the preceding frame can be suppressed.
- the data signal lines SL1 to SLM are driven so that black display lines are formed every other scanning line in the pixel array by interlaced black insertion (FIG. 5). More generally, even in the case of driving in which the polarity of the pixel voltage Vp (i, j) is inverted for each pixel in the vertical direction), the voltage polarity of the data signal line SLj, that is, the data signal S (j) Is substantially unchanged within each frame period (FIGS. 4C and 4D), the crosstalk due to the source capacitive coupling can be reduced.
- the crosstalk due to the source capacitive coupling to the interlaced black insertion line is not different from the conventional liquid crystal display device at the voltage level, but is 10% or less of the maximum luminance at the luminance level, thus suppressing the influence of the crosstalk on the display image. can do.
- FIG. 6 shows the luminance response of the pixel liquid crystal inserted black for each frame.
- black insertion into odd-numbered display lines hereinafter referred to as “odd lines”
- black insertion into even-numbered display lines hereinafter referred to as “even lines” are 1 It is performed alternately in units of frames. Assuming that one frame period is 1/120 seconds, when black insertion is performed in a conventional liquid crystal display device, for example, as indicated by a dotted line in FIG. 6, 60 Hz flicker (flicker with a period of two frame periods) occurs. To do.
- flicker flicker with a period of two frame periods
- the luminance of both lines changes so that the flicker of the odd line cancels out the flicker of the even line adjacent thereto. Further, even if the flickers of both lines are not completely canceled because the response speed is different between the change in brightness of the pixel liquid crystal from light to dark and change from dark to light, the average of the screen is a solid line in FIG. As shown in FIG. 2, the flicker frequency is 120 Hz, that is, a frequency twice the frequency of blinking of the odd lines and the even lines, and the flicker level is also very small.
- black insertion is performed on odd-numbered scan lines in one of two adjacent frames, and black insertion is performed on even-numbered scan lines in the other frame (FIG. 5).
- a high-resolution image (1920 ⁇ 1080 image) is composed of two adjacent frames, and the resolution is not lowered by the interlaced black insertion.
- high display performance can be obtained for both moving images and still images by the double-speed interlaced display even if the display image is increased in definition or the liquid crystal panel is enlarged.
- so-called 2H dot inversion drive is performed so that the polarity of the pixel voltage Vp (i, j) is inverted every pixel in the horizontal direction and inverted every two pixels in the vertical direction.
- the configuration of the first embodiment may be modified. According to such a modification, the pattern of pixel voltage polarity and the pattern of interlaced black insertion in the screen display are as shown in FIG. 7, and the occurrence of flicker due to the AC drive of the liquid crystal is more reliably suppressed. be able to. Further, in order to make the flicker at the display end inconspicuous, the pattern of the pixel voltage polarity is changed to a pattern of (++-++-++-) from the upper end of FIG.
- 2H dot inversion driving in which only the first line has 1H inversion as a pattern of (+ ⁇ ++ ⁇ ++ ⁇ +) is also suitable, and a configuration for performing such 2H dot inversion driving is also included in this modification. .
- interlaced black insertion is realized by replacing the value of the pixel constituting the scanning line to be black-inserted in the double-speed progressive image signal SP from the input image processing circuit 210 with the black pixel value.
- the pixel value (image to be displayed) indicated by the double-speed progressive image signal SP is the voltage output as the data signal S (j) from the source driver 300.
- a circuit for switching between a voltage corresponding to (a pixel value of) and a voltage corresponding to a black pixel value may be incorporated in the source driver 300 (this is the same in other embodiments).
- the interlace circuit 220 outputs, as an image signal SI, an image signal obtained by removing the values of the pixels constituting the scanning line to be inserted from the double-speed progressive image signal SP, and this image signal SI is output as the image signal DV.
- the driver 300 By providing the driver 300, the circuit amount and the data transfer amount to the source driver 300 can be reduced.
- the interlace scanning type image signal DAT received from the outside is converted into the progressive scanning type image signal by the IP conversion unit 212 and the frame frequency is doubled by the FRC as the double speed processing unit 216.
- the double-speed progressive image signal SP is obtained.
- IP conversion is not necessary.
- frame frequency conversion FRC is also unnecessary.
- FIG. 8 The overall configuration of the liquid crystal display device according to the present embodiment is as shown in FIG. 8 and is basically the same as the overall configuration of the first embodiment (FIG. 1), but the configuration of the display unit 500 Is different from the first embodiment. Therefore, in the following, this difference will be mainly described, and with regard to the configuration other than this difference, the same or corresponding parts are denoted by the same reference numerals, and detailed description thereof will be omitted.
- FIG. 10 is a partial enlarged view schematically showing an electrical connection configuration in the display unit 500 in the present embodiment shown in FIG. 8, and “+” or “ ⁇ ” attached to each pixel electrode in FIG. Indicates the polarity of the voltage (pixel voltage) applied to the pixel electrode in a certain frame period (the same applies to FIGS. 14 to 16 described later).
- the liquid crystal panel as the display unit 500 in this embodiment includes a plurality (2M) of data signal lines SLa1, SLb1, SLa2, SLb2,... Connected to the source driver 300. , SLaM, SLbM and a plurality (N) of scanning signal lines GL1, GL2,...
- the display unit 500 includes pixels including a plurality (2N ⁇ M) of pixel forming units arranged in a matrix along the plurality of data signal lines SLa1 to SLbM and the plurality of scanning signal lines GL1 to GLN. An array is included.
- a pixel formation unit column composed of M pixel formation units arranged in the first direction (horizontal direction) that is the direction in which the scanning signal line GLi extends is referred to as a “horizontal pixel formation unit column”.
- a pixel formation unit column composed of 2N pixel formation units arranged in the second direction (vertical direction) in which the lines SLaj and SLbj extend is referred to as a “vertical pixel formation unit column” (other embodiments to be described later). The same applies to).
- the pixel formation unit included in the pixel array is included in the pixel formation unit in the kth row and the jth column, that is, both the kth horizontal pixel formation unit column and the jth vertical pixel formation unit column.
- N sets of horizontal pixel forming unit columns obtained by grouping and forming a corresponding group It is connected to the.
- the electrical connection configuration in the display unit 500 is not limited to that shown in FIG. 8 or FIG. 10, and for example, as shown in FIG.
- Each vertical pixel formation portion column in the pixel array groups the plurality of data signal lines SLa1, SLb1, SLa2, SLb2,..., SLaM, SLbM with two adjacent data signal lines SLaj, SLbj as one set.
- One data signal line SLaj of the two data signal lines corresponding to any one of the plurality of data signal lines obtained in this way is included in the vertical pixel formation column corresponding to the set.
- the two data signal lines SLaj and SLbj constituting each set are respectively arranged on one side and the other side of the vertical pixel formation column corresponding to the set, and the one side (
- the data signal line SLaj arranged on the left side in the figure is connected to one of the two pixel formation portions P (2i-1, j) and P (2i, j) connected to the sub-scanning signal lines GLai and GLbj.
- the data signal line SLbj disposed on the other side (right side in the figure) is connected to the other of the two pixel formation portions P (2i-1, j) and P (2i, j).
- a liquid crystal panel in which two data signal lines are arranged for one vertical pixel formation unit row as the display unit 500 in the present embodiment is called a “double source panel”.
- Each pixel forming portion P (k, j) includes a pixel electrode Ep and a thin film transistor (TFT) 10 as a switching element.
- TFT thin film transistor
- One sub-scanning signal line GLai constituting the i-th scanning signal line GLi is connected to the gate terminal of the TFT 10 in each pixel formation part P (2i-1, j) included in the 2i-1th horizontal pixel formation part column.
- the other sub-scanning signal line GLbi constituting the i-th scanning signal line GLi is connected to the gate terminal of the TFT 10 in each pixel forming part P (2i, j) included in the 2i-th horizontal pixel forming part column.
- FIG. 9 is a block diagram showing a configuration of the display control circuit 200 in the present embodiment.
- the display control circuit 200 includes an input image processing circuit 210, an interlace circuit 220, and a drive timing control circuit 230.
- the drive timing control circuit 230 includes a double source conversion processing unit 232, which is different from the display control circuit 200 (FIG. 2) in the first embodiment. Since the other configuration of the display control circuit 200 in the present embodiment is the same as that of the first embodiment, detailed description thereof is omitted.
- the interlaced scanning-type image signal DAT input from the outside is converted into the double-speed progressive image signal SP by the input image processing circuit 210, and the double-speed progressive image signal SP is
- the interlace circuit 220 converts the signal to a double speed interlaced image signal SI
- the double speed interlaced image signal SI is input to the drive timing control circuit 230.
- the double source conversion processing unit 232 changes the order of the pixel values included in the double-speed interlaced image signal SI so as to correspond to the display unit 500 having the connection configuration shown in FIG. By changing, the double source compatible double speed interlaced image signal SI2 is generated.
- this process will be described in detail.
- FIG. 12 is a timing chart of signals applied to the display unit 500 in this embodiment.
- reference sign “Dkj” indicates a value (gradation value) of a pixel to be formed by the pixel formation unit P (k, j) in the k-th row and the j-th column in the pixel array of the display unit 500. Hatching indicates a black pixel value (tone value for black display).
- the scanning signal G (i) applied to the i-th scanning signal line GLi is active (H level)
- the sub-scanning signal lines GLai and GLbi constituting the scanning signal line GLi are both activated. It has become.
- j an odd number
- one of the two data signal lines SLaj and SLbj corresponding to the jth vertical pixel formation unit is the data signal line SLaj.
- the scanning signal G active at H level
- the scanning signal G active at H level
- the scanning signal line GL (i) (i 1, 2,..., N)
- D11 (B), D21, D22, D12 (B), D13 (B), D23, D24, D14 (B),. Is supplied to the source driver 300 as an image signal DV having pixel values arranged in the order of D31 (B), D41, D42, D32 (B), D33 (B), D43, D44, D34 (B),.
- Dkj (B) indicates that the pixel value to be formed by the pixel formation portion P (k, j) in the k-th row and the j-th column is a black pixel value.
- the double source conversion processing unit 232 performs the image display with the interlace black insertion pattern as shown in FIG. 5 on the display unit 500 having the connection configuration shown in FIG.
- the order of the pixel values included in the double-speed interlaced image signal SI is changed so that the pixel value Dkj or Dkj (B) appears (see FIG. 12).
- a double-source compatible double-speed interlaced image signal SI2 is generated as an interlaced image signal corresponding to the connection configuration shown in FIG.
- the LCD timing generation unit 234 generates a data start pulse signal SSP, a data clock signal SCK, a latch signal LS, and the like as timing signals to be supplied to the source driver 300, and these timing signals and the double-source-compatible double-speed interlaced image signal SI2 A source driver control signal Cts composed of an image signal DV which is a signal synchronized with these timing signals is output.
- the LCD timing generation unit 234 generates a gate start pulse signal GSP, a gate clock signal GCK, and the like as timing signals to be supplied to the gate driver 400, and outputs them as a gate driver control signal Ctg. .
- the BL timing generation unit 236 also generates a control signal to be given to the BL drive circuit 650 and outputs it as a BL drive control signal Ctbl, as in the first embodiment.
- the source driver 300 Based on the source driver control signal Cts (SSP, SCK, LS, DV), the source driver 300 has data signals Sa (1), Sb (1), Sa (2), Sb ( 2), ..., Sa (M), Sb (M) are generated and applied to the data signal lines SLa1, SLb1, SLa2, SLb2, ..., SLaM, SLbM of the display unit 500, respectively.
- the gate driver 400, the BL drive circuit 650, and the backlight 600 operate in the same manner as in the first embodiment.
- a voltage corresponding to the image represented by the image signal DV is applied to the liquid crystal in each pixel formation portion P (k, j).
- the transmittance of light from the backlight 600 is controlled, and the image signal DAT from the outside is generated at a double speed (double frame frequency) in the interlace black insertion pattern as shown in FIG.
- An image to be displayed is displayed on the display unit 500.
- FIG. 13 is a timing chart showing the operation of the liquid crystal display device according to the present embodiment shown in FIG.
- the pattern of pixel voltage polarity and the pattern of interlaced black insertion in the screen display according to the present embodiment are as shown in FIG. 5 as in the first embodiment.
- the operation of the liquid crystal display device according to the present embodiment will be described with reference to FIGS. 13 and 5.
- the normally black method is adopted, and when the voltage applied to the liquid crystal (the holding voltage at the pixel capacitance Cp) is a value near 0, that is, the pixel electrode Ep.
- the applied voltage (pixel voltage) Vp (k, j) is substantially equal to the common voltage Vcom, black display is performed.
- H level signals are sequentially applied to the scanning signal lines GL1 to GLN in the display unit 500 as the scanning signals G (1) to G (N).
- the scanning signal lines GL1 to GLN are sequentially activated.
- Pixel forming portions P (2 ⁇ ia ⁇ 1, j), P (2 ⁇ ia, j) (j 1 to M) connected to the activated scanning signal lines GLia (sub-scanning signal lines GLaia and GLbia) That is, in the 2 ⁇ ia ⁇ 1 and 2 ⁇ ia th horizontal pixel formation unit rows, the TFT 10 is turned on.
- a dot inversion driving method is employed as an AC driving method.
- the display section 500 has a connection configuration as shown in FIG. 10, and the odd-numbered pixel formation section P (2i ⁇ 1, j) or even-numbered pixels in each vertical pixel formation section row.
- One of the formation portions P (2i, j) is connected to the data signal line SLaj, and the other is connected to the data signal line SLbj.
- each data signal Sa (j) or Sb (j) (voltage polarity with reference to the common voltage Vcom) does not change within each frame period, and interlace black insertion is as shown in FIG. Therefore, the data signals Sa (j) and Sb (j) have waveforms as shown in FIGS. 13 (C) and 13 (D).
- each pixel is also applied by applying the scanning signal G (i) to the scanning signal line GLi and applying the data signals Sa (j) and Sb (j) to the data signal lines SLaj and SLbj.
- each pixel voltage Vp (k, j) is expressed as positive voltage ⁇ black voltage ⁇ negative voltage ⁇ black voltage at intervals of one frame period (1/120 seconds). It changes in order, and macroscopically changes periodically with 4 frame periods as one cycle. Therefore, the polarity of the voltage applied to each pixel liquid crystal is inverted every two frame periods.
- double-speed interlaced display in which a display image for one screen is formed in two adjacent frames in the display unit 500, as in the first embodiment.
- the pixel voltage polarity pattern and the interlace black insertion pattern as shown in FIGS. 5A to 5D are repeated with a 4-frame period as one cycle (FIGS. 13E to 13H). reference).
- the odd-numbered frame is the previous frame and the even-numbered frame is the subsequent frame, but the even-numbered frame may be the previous frame and the odd-numbered frame may be the subsequent frame. .
- two data signal lines SLaj and SLbj are arranged in each vertical pixel forming section column, and two horizontal pixel forming section columns are formed by one scanning signal line GLi. Since it is driven at the same time (ON / OFF of the TFT 10 in the two horizontal pixel formation unit rows is controlled simultaneously), the charging time of the pixel capacitor can be ensured twice as long as that of the first embodiment, Even if the display image is further refined or the liquid crystal panel is further enlarged, and the liquid crystal panel driving speed is further increased for improving the moving image performance, insufficient charge of the pixel capacity can be prevented.
- the display unit 500 since the display unit 500 has a connection configuration as shown in FIG. 10, even when the dot inversion driving method is employed to suppress flicker, FIGS. ), The polarities of the data signals Sa (j) and Sb (j) do not change within each frame period, and the change in the values of the data signals Sa (j) and Sb (j) is small. This also contributes to preventing insufficient charging of the pixel capacity, and the power consumption of the source driver 300 is thereby greatly reduced.
- the pixel voltage polarity pattern and the interlaced black insertion pattern in the image display are as shown in FIG. 5, but instead of the pattern of the first embodiment.
- a pattern as shown in FIG. 7 may be adopted by adopting the 2H dot inversion driving method as in the modification.
- the connection configuration of the display unit 500 is configured as shown in FIG. 16, and data signals Sa (j) and Sb (j) indicating pixel values are output from the source driver 300 in the order corresponding to the connection configuration. What is necessary is just to comprise.
- each scanning signal line GLi forms the plurality of pixels with a pair of two horizontal pixel formation columns adjacent to each other in the pixel array of the display unit 500.
- Each vertical pixel formation column in the pixel array includes a plurality of sets of data signals obtained by grouping the plurality of data signal lines SLa1 to SLbM with two adjacent data signal lines SLaj and SLbj as one set.
- One data signal line SLaj of the two data signal lines constituting each set corresponding to any one of the lines is the same scanning signal line among the pixel forming portions included in the vertical pixel forming portion column corresponding to the set.
- ⁇ , J 1 ⁇ M).
- connection configuration as shown in FIG. 16 in the j-th vertical pixel formation portion column, the pixel formation portion connected to one of the data signal lines SLaj and SLbj respectively arranged on both sides thereof. And two pixel formation portions connected to the other data signal line SLb are alternately arranged in the vertical direction.
- the 2H inversion drive is performed without changing the polarities of the data signals Sa (j) and Sb (j) within each frame period.
- Double-speed interlace display can be performed. That is, an image can be displayed with a pixel voltage polarity pattern and an interlace black insertion pattern as shown in FIG. Accordingly, it is possible to more reliably suppress the occurrence of flicker due to the AC driving of the liquid crystal while ensuring the same effect as that of the second embodiment.
- a frame for forming pixels of an image to be displayed (hereinafter referred to as “display frame”) and a black pixel are formed. Since double-speed interlaced display in which frames (hereinafter referred to as “black frames”) appear alternately (FIGS. 4E to 4H and FIGS. 13E to 13H), at the start of each display frame In order to compensate for the optical response of the liquid crystal, the liquid crystal is driven with a driving voltage that emphasizes the temporal change of the gradation value (“overshoot driving” or “OS driving”). Called) is considered unnecessary.
- the tone value time is obtained by comparing the tone value (signal value) in the current frame in the image signal representing the image to be displayed with the tone value (signal value) of the immediately preceding frame.
- An enhanced image signal in which the change is emphasized is required.
- the immediately preceding frame when the pixels of the image to be displayed are formed by each pixel forming unit is always a black frame. The significance of comparing the gradation value in the current frame with the gradation value in the immediately preceding frame is low.
- the temporal change in the gradation value is emphasized by comparing the gradation value in the current frame with the gradation value in the frame two frames before that. What is necessary is just to obtain an enhanced image signal. Therefore, in the liquid crystal display device according to the third embodiment of the present invention, OS driving for compensating the optical response of the liquid crystal is performed with the following configuration.
- the liquid crystal display device according to the third embodiment will be described below.
- the overall configuration of the liquid crystal display device according to the present embodiment is the same as that of the second embodiment (FIG. 8).
- the display control circuit 200 according to the present embodiment is different from the second embodiment. Have. Therefore, in the following description, the display control circuit 200 will be mainly described, and with regard to other configurations, the same or corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 17 is a block diagram showing the configuration of the display control circuit 200 in the present embodiment.
- the display control circuit 200 includes an input image processing circuit 210, an interlace circuit 220, and a drive timing control circuit 230.
- the interlace circuit 220 includes a response correction unit 226, which is different from the display control circuit 200 (FIG. 9) in the second embodiment. Since the other configuration of the display control circuit 200 in the present embodiment is the same as that of the second embodiment, detailed description thereof is omitted.
- the input image processing circuit 210 and the field determination unit 222 and the black insertion unit 224 of the interlace circuit 220 are input from the interlace scanning-type image signal DAT input from the outside.
- a double speed interlaced image signal SI is generated.
- the double-speed interlaced image signal SI is input to the response correction unit 226.
- the response correction unit 226 compensates the optical response characteristic of the liquid crystal panel as the display unit 500 as an enhanced double-speed interlaced image signal SIm. Ask.
- the response correction unit 226 includes first and second frame memories 21 and 22, an enhancement conversion unit 24, and a lookup table (hereinafter abbreviated as "LUT") 26, as shown in FIG. Yes.
- the double-speed interlaced image signal SI input to the response correction unit 226 is first input to the first frame memory 21 and the enhancement conversion unit 24.
- the double-speed interlaced image signal SI is temporarily stored and then read out as an image signal SI 1 delayed by one frame period and input to the second frame memory 22.
- the image signal SI1 delayed by one frame period is temporarily stored in the memory 21, and then read out as an image signal SI2 delayed by one frame period, and input to the enhancement conversion unit 24.
- the enhancement conversion unit 24 receives the double-speed interlaced image signal SI from the black insertion unit 224 and an image signal SI2 obtained by delaying the double-speed interlaced image signal SI (hereinafter referred to as “2-frame delayed image signal”) SI2. .
- the enhancement conversion unit 24 compares the gradation values indicated by the double-speed interlaced image signal SI and the 2-frame delayed image signal SI2, respectively, so that the liquid crystal state (transmittance) is changed to a desired state (transmittance) in a short time.
- An enhanced double-speed interlaced image signal SIm is generated in which the temporal change of the gradation value is emphasized so as to arrive.
- the enhanced double-speed interlaced image signal SIm is generated using the LUT 26 as described below, but the enhanced double-speed interlaced image signal SIm is generated from the double-speed interlaced image signal SI and the 2-frame delayed image signal SI2 by a predetermined calculation. You may do it.
- the LUT 26 corresponds to the gradation value in the current frame of the enhanced image signal with respect to two gradation values consisting of the gradation value in the current frame of the double-speed interlaced image signal SI and the gradation value in the frame two frames before.
- the enhancement conversion unit 24 sets the signal value indicated by the double-speed interlaced image signal SI to the gradation value Lc in the current frame, and sets the signal value indicated by the 2-frame delayed image signal SI2 to the gradation value Lp2 in the frame two frames before.
- the tone value Lm associated with these tone values Lc and Lp2 is obtained, and a signal composed of the tone value Lm thus obtained is output as the enhanced double-speed interlaced image signal SIm.
- the enhanced double speed interlaced image signal SIm is output from the interlace circuit 220 and input to the drive timing control circuit 230.
- the drive timing control circuit 230 uses the enhanced double-speed interlaced image signal SIm in the same manner as in the second embodiment to control the source driver control signal Cts (SSP, SCK, LS, DV) and the gate driver control signal Ctg ( GSP, GCK) and BL drive control signal Ctbl are generated.
- the source driver 300 in this embodiment generates data signals Sa (1) to Sb (M) based on the source driver control signal Cts (SSP, SCK, LS, DV), and the data signal line SLa1 of the display unit 500.
- OS driving is realized. Since the optical response of the liquid crystal is improved by this OS driving, the moving image display performance is further improved as compared with the first and second embodiments.
- the driving condition can be set without being aware of the arrival state of the liquid crystal in the black frame.
- the response correction unit 226 for driving the OS can be realized easily and at a low cost without requiring a complicated circuit for predicting the reached luminance.
- the capacity required for the frame memories 21 and 22 can be halved by excluding black pixel values when the response correction unit 226 stores the double-speed interlaced image signal SI in the frame memories 21 and 22.
- a moving image is displayed on a hold-type display device such as a liquid crystal display device
- an afterimage of a moving object is generated in human vision, and the outline of the moving object is visually recognized in a blurred state (such as this This phenomenon is called “motion blur”).
- the interlacing black insertion as shown in FIG. 5 is performed to obtain an impulse effect, and this motion blur is improved.
- black insertion is not instantaneously performed. Therefore, the liquid crystal display device according to the fourth embodiment of the present invention can obtain a more stable impulse effect by using a backlight that can be turned on / off for each region corresponding to a predetermined number of display lines. Configured to be.
- the liquid crystal display device according to the fourth embodiment will be described below.
- FIG. 19 is a block diagram showing a configuration of an active matrix type liquid crystal display device according to the present embodiment.
- the liquid crystal display device includes a display unit 500 that is a normally black liquid crystal panel, a display driving circuit 100 for driving the display unit 500, a display unit (
- the liquid crystal panel 500 includes a backlight 600 as a planar illumination device that irradiates light on the back surface, and a BL driving circuit 650 for driving the backlight 600.
- the display driving circuit 100 includes a source driver 300 as a data signal line driving circuit, a gate driver 400 as a scanning signal line driving circuit, and a display control circuit 200.
- the driver 300, the gate driver 400, and the BL driving circuit 650 are controlled.
- unit region a predetermined number of display lines
- n 1, 2,..., P.
- a plurality of light emitting diodes LEDs
- cold cathode tubes may be used instead of these LEDs.
- the BL drive circuit 650 in the present embodiment is configured to drive such a backlight 600, and the BL drive circuit 650 causes the lighting unit regions BL1 to BLp in the backlight 600 to sequentially scan signal lines GLi.
- the backlight is operated so as to be turned on and off in conjunction with general driving (a backlight operating in this way is called a “scan backlight”).
- a control signal to be given to the BL drive circuit 650 in order to operate the backlight 600 in this way is generated as the BL drive control signal Ctbl. Since other configurations are the same as those of the third embodiment, the same portions are denoted by the same reference numerals, and detailed description thereof is omitted. Hereinafter, the present embodiment will be described focusing on the different portions.
- FIG. 20 is a block diagram showing a configuration of the display control circuit 200 in the present embodiment.
- the display control circuit 200 includes an input image processing circuit 210, an interlace circuit 220, and a drive timing control circuit 230.
- the BL timing generation unit 236 in the drive timing control circuit 230 is different from the third embodiment (FIG. 17). Since the other configuration of the display control circuit 200 in the present embodiment is the same as that of the third embodiment, detailed description thereof is omitted.
- an input image processing circuit 210, an interlace circuit 220, and a double source conversion processing unit of a drive timing control circuit are input from an interlace scanning type image signal DAT input from the outside.
- the source driver control signal Cts (SSP, SCK, LS, DV) and the gate driver control signal Ctg (GSP, GCK) are generated by the H.232 and LCD timing generation unit 234.
- the BL timing generation unit 236 included in the drive timing control circuit 230 in this embodiment is synchronized with the gate driver control signal Ctg based on the gate driver control signal Ctg (GSP, GCK).
- a BL drive control signal Ctbl is generated.
- the BL drive control signal Ctbl is output from the display control circuit 200 and input to the BL drive circuit 650.
- the BL drive circuit 650 generates p BL drive signals Dbl1 to Dblp based on the BL drive control signal. As shown in FIG. 21, the BL drive circuit 650 is provided with p low-pass filters LPF1 to LPFp, and the BL drive signals Dbl1 to Dblp are output via these low-pass filters LPF1 to LPFp, respectively.
- the signal is supplied to the backlight 600 as a signal for controlling turning on / off of the lighting unit regions BL1 to BLp. In this way, the lighting unit regions BL1 to BLp in the backlight 600 are controlled to be turned on / off by the BL drive signals Dbl1 to Dblp that have passed through the low-pass filters LPF1 to LPFp.
- the characteristics of these low-pass filters LPF1 to LPFp are set so that the amount of light applied from the backlight 600 to the liquid crystal panel as the display unit 500 does not vary extremely between the lighting unit regions BL1 to BLp.
- By using such low-pass filters LPF1 to LPFp it is possible to suppress deterioration in display quality due to block separation or the like.
- FIG. 22 is a signal waveform diagram for explaining the operation of the backlight 600 in the present embodiment.
- the gate driver 400 applies the scanning signals G (1) to G (N) to the scanning signal lines GL1 to GLN of the display unit 500 based on the gate driver control signal Ctg (GSP, GCK).
- the source driver 300 applies the data signals Sa (1) to Sb (M) to the data signal lines SLa1 to SLbM of the display unit 500 based on the source driver control signal Cts (SSP, SCK, LS, DV).
- a voltage indicating a pixel value represented by the image signal DV is applied to each pixel electrode Ep.
- the voltage (pixel voltage) Vp (k, j) of the pixel electrode Ep is changed from positive voltage to black at intervals of one frame period (1/120 seconds) as shown by solid lines in FIGS.
- the voltage changes in the order of negative voltage ⁇ negative voltage ⁇ black voltage, and macroscopically changes periodically with four frame periods as one cycle.
- the luminance of the pixels formed by each pixel formation portion P (k, j) of the display portion 500 changes as shown by the one-dot chain line in FIGS. 22A and 22B (the one-dot chain line is a solid line).
- the optical response of the pixel liquid crystal when a voltage corresponding to the pixel voltage Vp (k, j) as shown in FIG.
- each lighting unit region BLn in the backlight 600 is a black frame (the pixel forming portion P (k, j) corresponding to each corresponding pixel forming portion P (k, j).
- the pixel electrode Ec is turned on in a predetermined period including before and after the start of the frame period in which a black voltage is applied to the pixel electrode Ec, and should be formed by the other pixel forming portions P (k, j) during other periods.
- the ON / OFF of the lighting unit areas BL1 to BLp in the backlight 600 is controlled by such BL drive signals Dbl1 to Dblp, so that the impulse effect can be stabilized and the moving image performance can be further improved.
- the pixel voltages Vp (1, j) and Vp (2, j) are depicted as changing at the same time, but actually they are adjacent in the vertical direction.
- the time at which the voltage of the pixel electrode Ep to be changed (pixel voltage Vp (k, j) and Vp (k + 1, j)) changes is shifted by one horizontal period. For this reason, when one lighting unit region BLn corresponds to, for example, q (plural) display lines, the lighting unit region BLn is turned on / off in consideration of (q-1) horizontal period deviation. Must be set.
- the pixel voltage Vp (k, j) based on the voltage applied to the pixel liquid crystal of each pixel forming portion P (k, j), that is, the common voltage Vcom.
- the voltage changes in the order of positive voltage ⁇ black voltage ⁇ negative voltage ⁇ black voltage at intervals of one frame period (1/120 seconds).
- four frame periods are defined as one cycle. Change periodically. From the viewpoint of whether the pixel formed by the pixel forming unit P (k, j) is an image pixel to be displayed or a black pixel, a display frame and a black frame appear alternately.
- the present invention when the present invention is applied to a voltage control type active matrix display device that does not require AC driving in a liquid crystal display device, the pixel voltage Vp (k, j) is macroscopically shown in FIG. As shown in (B), the period changes periodically with two frame periods as one period. This means that the display frame and the black frame appear alternately as in the case of FIG.
- the present invention can be applied not only to the above-described voltage control type active matrix display device but also to a current control type active matrix display device (for example, an organic EL (Electroluminescenece) display device).
- the black insertion unit 224 in the interlace circuit 220 inserts a black signal into the progressive image signal SP every other horizontal period (FIGS. 4 and 13), and every other scanning line on the display screen.
- a black display line appears in FIG. 5 (FIG. 5), but the interlace black insertion in the present invention is not limited to such a mode.
- a black signal may be inserted into the progressive image signal SP every two horizontal periods so that a black display line appears every two scanning lines on the display screen.
- the pixel voltage Vp (k, j) is, as shown in FIG. 23C, positive voltage ⁇ positive voltage ⁇ black voltage ⁇ negative voltage ⁇ one frame period interval.
- the IP conversion for obtaining the double-speed interlaced image signal SI, the frame frequency conversion, and the interlaced black insertion are realized in hardware as the input image processing circuit 210 and the interlace circuit 220.
- the input image processing circuit 210 and the interlace circuit 220 FIG. 2, FIG. 9, FIG. 17, FIG. 20
- some or all of these functions may be realized in software by a CPU or the like executing a predetermined program.
- the display control circuit 200 is provided with the drive timing control circuit 230 described above, a CPU 252 as a central processing unit, a RAM (Random Access Memory) 254, and a ROM (Read-Only Memory).
- a data processing unit 250 including a memory 256 including 255 and an I / O interface unit 258 may be provided.
- the program is typically stored in the ROM 255 before the manufacturer ships the liquid crystal display device.
- the ROM 255 is preferably a writable PROM (Programmable ROM), in particular, a rewritable EEPROM (Electrically-Erasable Programmable ROM).
- the liquid crystal display device is connected to, for example, a personal computer, the user purchases a CD-ROM or DVD-ROM as a recording medium for the program, and the CD-ROM drive device of the personal computer.
- the program is read from the CD-ROM or the like, transferred to the data processing unit 250 of the liquid crystal display device, and stored in the ROM 255.
- the personal computer may receive the program sent via a predetermined communication line, transfer it to the data processing unit 250 of the liquid crystal display device, and store it in the ROM 255.
- large-scale FPGAs Field-Programmable Gate Arrays
- programmable ICs Integrated Circuits
- Cell trademark
- a program for realizing the driving of the present invention with such an IC more generally, a programmable device
- a program for causing the display driving circuit to generate a signal for driving the display unit in a programmable device, and a recording medium such as an EEPROM storing the program so as to be supplied to the programmable device are also included in the present invention. Belongs.
- a liquid crystal panel of any type such as a VA (Vertical Alignment) type liquid crystal panel or an IPS (In Plane Switching) type liquid crystal panel is used as a display unit.
- VA Vertical Alignment
- IPS In Plane Switching
- the VA liquid crystal panel is used, the optical response of the liquid crystal in the black frame is relatively fast and can be driven more stably than other liquid crystal panels.
- the VA liquid crystal panel has an advantage that the contrast ratio is basically high and gradation adjustment is easy.
- various liquid crystal panels can be used, such as those using a polymer alignment support (PSA) technology or a photo alignment technology called UV2A.
- PSA polymer alignment support
- UV2A photo alignment technology
- the present invention is applied to an active matrix type display device and a driving method thereof, and can be applied to an active matrix type liquid crystal display device using a switching element such as a thin film transistor.
- TFT Thin film transistor
- SYMBOLS 100 ...
- Display drive circuit 200 ...
- Display control circuit 210 Input image processing circuit (signal format converter) 212 ... IP converter 216 ... Double speed processor (frame frequency converter) 220 ... Interlace circuit 230 ...
- Drive timing control circuit 300 ...
- Source driver (data signal line drive circuit) 400: Gate driver (scanning signal line driving circuit) 500 ... Display (liquid crystal panel) 600 ... Backlight (planar illumination device) 650... BL drive circuit Cp... Pixel capacitance Ep... Pixel electrode Ec .. common electrode GLi .. scanning signal line (i 1 to N) GLai, GLbi ...
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
本発明は、表示画像の高精細化または表示パネルの大型化が進んでも動画および静止画の双方につき高い表示性能が得られる表示装置を提供することを目的とする。このために、液晶表示装置の表示制御回路は、インターレース走査に基づく入力画像信号(DAT)をプログレッシブ走査方式に変更すると共にフレーム周波数を2倍にすることにより、倍速プログレッシブ画像信号(SP)を生成する。次に、この倍速プログレッシブ画像信号(SP)において、奇数番目のフレームでは奇数番目の走査ラインに相当する画素値をそのままにして偶数番目の走査ラインに相当する画素値を黒の画素値に置き換え、偶数番目のフレームでは偶数番目の走査ラインに相当する画素値をそのままにして奇数番目の走査ラインに相当する画素値を黒の画素値に置き換えることにより、倍速インターレース画像信号(SI)を生成する。この倍速インターレース画像信号(SI)の表す画像が液晶パネルで表示される。
Description
本発明は、薄膜トランジスタ等のスイッチング素子を用いた液晶表示装置等のようなアクティブマトリクス型の表示装置およびその駆動方法に関する。
テレビジョン信号のようなインターレース方式の画像信号を用いて大容量の液晶パネル等の表示パネルに画像を表示するために、各フィールド期間において1ラインの信号で表示パネルの2ラインを同時に駆動するという方式(「ラインダブラ方式」と呼ばれる)が知られている。このラインダブラ方式を使用すれば、インタレース方式の信号をそのまま使用して大容量表示パネルに画像を表示することができるが、その画像信号が表す画像を良好に表示できないことがある。すなわち、当該インターレース方式の画像信号のうち同時に駆動する2ラインにそれぞれ相当する信号が互いに異なる場合には、静止画表示の実質的な解像度が低下するだけでなく、表示画像においてエッジ部分がちらついたりぼやけたりする。このような不具合を回避するための手法として、インターレース方式の画像信号をプログレッシブ方式の画像に変換し(この変換は「IP変換」と呼ばれる)表示パネルを1ラインずつ駆動するという手法(以下「IP変換+1ライン駆動の手法」という)が、従来より使用されている。
一方、表示画像の高精細化や表示パネルの大型化に伴って、画像信号の表示パネルへの書き込みのために確保可能な充電時間が短くなっていることから、表示パネルの画素容量における充電不足が問題となっている。この充電不足を防止するための手法として、予備充電と呼ばれる手法が知られている。これは、液晶パネルにおいて各ラインに画像信号を書き込むべき時点よりも例えば2水平期間(2H期間)前にも、当該ラインに対応するゲート信号線(走査信号線)にアクティブ信号を与えることで、当該ラインに書き込むべき画像信号と同極性の画像信号(2ライン前のラインにおける画素容量に書き込むべき画像信号)で当該ラインにおける各画素容量を予備的に充電するという手法である。
なお、下記の特許文献1、2には本発明に関連する技術が開示されている。すなわち特許文献1には、高速データレートのプログレッシブ走査映像信号を液晶表示装置等の高速走査の苦手な表示装置にさせるために、映像信号の極性を考慮して、複数フレーム期間の映像信号から1つの映像画面を表示するようにした構成が開示されている。また特許文献2には、液晶パネルの奇数ライン画素群と偶数ライン画素群のそれぞれについて独立にデータ側ドライバと走査側ドライバを備え、奇数ライン画素群と偶数ライン画素群を独立に同時に駆動できる液晶TV用駆動回路が開示されている。なお、このように奇数ライン画素群と偶数ライン画素群を同時に駆動する構成は、非特許文献1にも開示されている。
Sang Soo Kim et al., " 82" Ultra Definition LCD Using New Driving Scheme and Advanced Super PVA Technology", SID Symposium Digest, pp.196-199, 2008
しかし、上記のIP変換+1ライン駆動の手法を例えば液晶パネルにおいて単純に使用した場合には、ホールド型の表示および液晶の応答速度が遅いことに起因して高い動画表示性能を得ることができない。また、予備充電の手法を使用した場合には、画素容量に対する予備充電によって実際に到達する充電率は、前フレームにおける画素容量の充電状態および予備充電電圧に依存し、これに起因してクロストークが発生する。その結果、動画だけでなく静止画についても表示品質が低下するという問題がある。なお、ラインダブラ方式を使用した場合には、画素容量に対する充電時間を長くすることができるが、既述のように、静止画表示の実質的な解像度が低下する等の問題がある。
そこで本発明は、表示画像の高精細化または表示パネルの大型化が進んでも動画および静止画の双方につき高い表示性能が得られる表示装置およびそのような表示装置の駆動方法を提供することを目的とする。
本発明の第1の局面は、プログレッシブ走査に基づく画像信号であるプログレッシブ画像信号を用いて画像を表示するアクティブマトリクス型の表示装置であって、
マトリクス状に配置された複数の画素形成部からなる画素アレイを含む表示部と、
前記プログレッシブ画像信号に基づき前記表示部を駆動するための表示用駆動回路とを備え、
前記表示用駆動回路は、
前記プログレッシブ画像信号に含まれる隣接2フレームの信号のうち一方のフレームの信号である第1信号に基づき画像表示が行われるフレーム期間では、当該第1信号が表す画像における奇数番目の走査ラインの画像が前記画素アレイにおける奇数番目の走査ラインの画素形成部群によって形成されると共に、前記画素アレイにおける偶数番目の走査ラインの画素形成部群によって黒の表示ラインが形成されるように、前記表示部を駆動し、
前記隣接2フレームの信号のうち他方のフレームの信号である第2信号に基づき画像表示が行われるフレーム期間では、当該第2信号が表す画像における偶数番目の走査ラインの画像が前記画素アレイにおける偶数番目の走査ラインの画素形成部群によって形成されると共に、前記画素アレイにおける奇数番目の走査ラインの画素形成部群によって黒の表示ラインが形成されるように、前記表示部を駆動することを特徴とする。
マトリクス状に配置された複数の画素形成部からなる画素アレイを含む表示部と、
前記プログレッシブ画像信号に基づき前記表示部を駆動するための表示用駆動回路とを備え、
前記表示用駆動回路は、
前記プログレッシブ画像信号に含まれる隣接2フレームの信号のうち一方のフレームの信号である第1信号に基づき画像表示が行われるフレーム期間では、当該第1信号が表す画像における奇数番目の走査ラインの画像が前記画素アレイにおける奇数番目の走査ラインの画素形成部群によって形成されると共に、前記画素アレイにおける偶数番目の走査ラインの画素形成部群によって黒の表示ラインが形成されるように、前記表示部を駆動し、
前記隣接2フレームの信号のうち他方のフレームの信号である第2信号に基づき画像表示が行われるフレーム期間では、当該第2信号が表す画像における偶数番目の走査ラインの画像が前記画素アレイにおける偶数番目の走査ラインの画素形成部群によって形成されると共に、前記画素アレイにおける奇数番目の走査ラインの画素形成部群によって黒の表示ラインが形成されるように、前記表示部を駆動することを特徴とする。
本発明の第2の局面は、本発明の第1の局面において、
前記偶数番目の走査ラインの画素形成部群によって形成される前記黒の表示ラインおよび前記奇数番目の走査ラインの画素形成部群によって形成される前記黒の表示ラインは、最大輝度の10%よりも低い輝度で表示されることを特徴とする。
前記偶数番目の走査ラインの画素形成部群によって形成される前記黒の表示ラインおよび前記奇数番目の走査ラインの画素形成部群によって形成される前記黒の表示ラインは、最大輝度の10%よりも低い輝度で表示されることを特徴とする。
本発明の第3の局面は、本発明の第1の局面において、
前記偶数番目の走査ラインの画素形成部群によって形成される前記黒の表示ラインおよび前記奇数番目の走査ラインの画素形成部群によって形成される前記黒の表示ラインは、最大輝度の1%よりも高く10%よりも低い輝度で表示されることを特徴とする。
前記偶数番目の走査ラインの画素形成部群によって形成される前記黒の表示ラインおよび前記奇数番目の走査ラインの画素形成部群によって形成される前記黒の表示ラインは、最大輝度の1%よりも高く10%よりも低い輝度で表示されることを特徴とする。
本発明の第4の局面は、本発明の第1の局面において、
前記表示用駆動回路は、プログレッシブ走査に基づく入力画像信号を受け取り、当該入力画像信号のフレーム周波数を2倍に変更することにより前記プログレッシブ画像信号を生成するフレーム周波数変換器を更に備えることを特徴とする。
前記表示用駆動回路は、プログレッシブ走査に基づく入力画像信号を受け取り、当該入力画像信号のフレーム周波数を2倍に変更することにより前記プログレッシブ画像信号を生成するフレーム周波数変換器を更に備えることを特徴とする。
本発明の第5の局面は、本発明の第1の局面において、
前記表示用駆動回路は、インターレース走査に基づく入力画像信号を受け取り、当該入力画像信号の走査方式をプログレッシブ走査方式に変更すると共に当該入力画像信号のフレーム周波数を2倍に変更することにより前記プログレッシブ画像信号を生成する信号形式変換器を更に備えることを特徴とする。
前記表示用駆動回路は、インターレース走査に基づく入力画像信号を受け取り、当該入力画像信号の走査方式をプログレッシブ走査方式に変更すると共に当該入力画像信号のフレーム周波数を2倍に変更することにより前記プログレッシブ画像信号を生成する信号形式変換器を更に備えることを特徴とする。
本発明の第6の局面は、本発明の第1の局面において、
前記表示用駆動回路は、前記プログレッシブ画像信号における隣接2フレームのうち、一方のフレームでは偶数番目の走査ラインに相当する画素値を黒の画素値に置き換え、他方のフレームでは奇数番目の走査ラインに相当する画素値を黒の画素値に置き換えることにより、インターレース画像信号を生成し、当該インターレース画像信号に基づき前記表示部を駆動することを特徴とする。
前記表示用駆動回路は、前記プログレッシブ画像信号における隣接2フレームのうち、一方のフレームでは偶数番目の走査ラインに相当する画素値を黒の画素値に置き換え、他方のフレームでは奇数番目の走査ラインに相当する画素値を黒の画素値に置き換えることにより、インターレース画像信号を生成し、当該インターレース画像信号に基づき前記表示部を駆動することを特徴とする。
本発明の第7の局面は、本発明の第1の局面において、
前記表示部は、
第1方向に延びる複数の走査信号線と、
第2方向に延び前記複数の走査信号線と交差する複数のデータ信号線とを更に含み、
前記複数の画素形成部は、前記複数のデータ信号線および前記複数の走査信号線に沿ってマトリクス状に配置されており、
各走査信号線は、前記画素アレイにおいて互いに隣接し前記第1方向に延びる2つの画素形成部列を1組として前記複数の画素形成部を組分けすることにより得られる複数組の画素形成部列のいずれか1つと対応し、かつ、対応する組を構成する2つの画素形成部列に含まれる各画素形成部に接続されており、
前記画素アレイにおいて前記第2方向に延びる各画素形成部列は、隣り合う2つのデータ信号線を1組として前記複数のデータ信号線を組分けすることにより得られる複数組のデータ信号線のいずれか1つと対応し、各組を構成する2つのデータ信号線の一方は、当該組に対応する画素形成部列に含まれる画素形成部のうち同一走査信号線に接続される2つの画素形成部の一方に接続され、当該2つのデータ信号線の他方は、当該2つの画素形成部の他方に接続されており、
前記表示用駆動回路は、
前記複数の走査信号線を選択的に活性化する走査信号線駆動回路と、
前記表示部において表示すべき画像を表す複数のデータ信号を前記プログレッシブ画像信号に基づいて生成し前記複数のデータ信号線に印加するデータ信号線駆動回路とを含むことを特徴とする。
前記表示部は、
第1方向に延びる複数の走査信号線と、
第2方向に延び前記複数の走査信号線と交差する複数のデータ信号線とを更に含み、
前記複数の画素形成部は、前記複数のデータ信号線および前記複数の走査信号線に沿ってマトリクス状に配置されており、
各走査信号線は、前記画素アレイにおいて互いに隣接し前記第1方向に延びる2つの画素形成部列を1組として前記複数の画素形成部を組分けすることにより得られる複数組の画素形成部列のいずれか1つと対応し、かつ、対応する組を構成する2つの画素形成部列に含まれる各画素形成部に接続されており、
前記画素アレイにおいて前記第2方向に延びる各画素形成部列は、隣り合う2つのデータ信号線を1組として前記複数のデータ信号線を組分けすることにより得られる複数組のデータ信号線のいずれか1つと対応し、各組を構成する2つのデータ信号線の一方は、当該組に対応する画素形成部列に含まれる画素形成部のうち同一走査信号線に接続される2つの画素形成部の一方に接続され、当該2つのデータ信号線の他方は、当該2つの画素形成部の他方に接続されており、
前記表示用駆動回路は、
前記複数の走査信号線を選択的に活性化する走査信号線駆動回路と、
前記表示部において表示すべき画像を表す複数のデータ信号を前記プログレッシブ画像信号に基づいて生成し前記複数のデータ信号線に印加するデータ信号線駆動回路とを含むことを特徴とする。
本発明の第8の局面は、本発明の第7の局面において、
互いに異なる走査信号線に接続され前記第2方向に隣接する2つの画素形成部は同一のデータ信号線に接続されていることを特徴とする。
互いに異なる走査信号線に接続され前記第2方向に隣接する2つの画素形成部は同一のデータ信号線に接続されていることを特徴とする。
本発明の第9の局面は、本発明の第7または第8の局面において、
前記データ信号線駆動回路は、前記画素アレイにおいて前記第2方向に延びる各画素形成部列に対応する2つのデータ信号線に互いに極性の異なるデータ信号が印加されるように前記複数のデータ信号を生成することを特徴とする。
前記データ信号線駆動回路は、前記画素アレイにおいて前記第2方向に延びる各画素形成部列に対応する2つのデータ信号線に互いに極性の異なるデータ信号が印加されるように前記複数のデータ信号を生成することを特徴とする。
本発明の第10の局面は、本発明の第7または第8の局面において、
前記データ信号線駆動回路は、前記画素アレイにおいて前記第1方向に隣接する2つの画素形成部にそれぞれ接続された2つのデータ信号線に互いに極性の異なるデータ信号が印加されるように前記複数のデータ信号を生成することを特徴とする。
前記データ信号線駆動回路は、前記画素アレイにおいて前記第1方向に隣接する2つの画素形成部にそれぞれ接続された2つのデータ信号線に互いに極性の異なるデータ信号が印加されるように前記複数のデータ信号を生成することを特徴とする。
本発明の第11の局面は、本発明の第7または第8の局面において、
前記データ信号線駆動回路は、前記複数のデータ信号線を介して前記複数の画素形成部に与えられるデータ信号の極性が偶数フレーム期間毎に反転するように前記複数のデータ信号を生成することを特徴とする。
前記データ信号線駆動回路は、前記複数のデータ信号線を介して前記複数の画素形成部に与えられるデータ信号の極性が偶数フレーム期間毎に反転するように前記複数のデータ信号を生成することを特徴とする。
本発明の第12の局面は、本発明の第1の局面において、
前記表示用駆動回路は、前記プログレッシブ画像信号における現フレームの信号値を2フレーム前の信号値と比較することにより前記プログレッシブ画像信号の時間的変化を強調した画像信号を強調画像信号として求め、当該強調画像信号に基づき前記表示部を駆動することを特徴とする。
前記表示用駆動回路は、前記プログレッシブ画像信号における現フレームの信号値を2フレーム前の信号値と比較することにより前記プログレッシブ画像信号の時間的変化を強調した画像信号を強調画像信号として求め、当該強調画像信号に基づき前記表示部を駆動することを特徴とする。
本発明の第13の局面は、本発明の第12の局面において、
前記表示用駆動回路は、
前記プログレッシブ画像信号を2フレーム期間遅延させるための第1および第2のフレームメモリと、
前記プログレッシブ画像信号における現フレームの信号値を前記第1および第2のフレームメモリによって得られる2フレーム前の信号値と比較することにより前記強調画像信号を求める強調変換部と
を含み、
前記表示用駆動回路は、前記プログレッシブ画像信号が示す信号値から前記黒の表示ラインを構成する画素に対応する信号値を除外した信号値の前記第1のフレームメモリへの書き込みおよび前記第1のフレームメモリからの読み出し、前記第1のフレームメモリから読み出された前記信号値の前記第2のフレームメモリへの書き込みおよび前記第2のフレームメモリからの読み出しを順次行うことにより、前記プログレッシブ画像信号における前記2フレーム前の信号値を得ることを特徴とする。
前記表示用駆動回路は、
前記プログレッシブ画像信号を2フレーム期間遅延させるための第1および第2のフレームメモリと、
前記プログレッシブ画像信号における現フレームの信号値を前記第1および第2のフレームメモリによって得られる2フレーム前の信号値と比較することにより前記強調画像信号を求める強調変換部と
を含み、
前記表示用駆動回路は、前記プログレッシブ画像信号が示す信号値から前記黒の表示ラインを構成する画素に対応する信号値を除外した信号値の前記第1のフレームメモリへの書き込みおよび前記第1のフレームメモリからの読み出し、前記第1のフレームメモリから読み出された前記信号値の前記第2のフレームメモリへの書き込みおよび前記第2のフレームメモリからの読み出しを順次行うことにより、前記プログレッシブ画像信号における前記2フレーム前の信号値を得ることを特徴とする。
本発明の第14の局面は、本発明の第1の局面において、
前記表示部の背面に光を照射するための面状照明装置と、
前記プログレッシブ画像信号に基づき前記画像を前記表示部により表示するための走査に連動して、所定数の走査ラインに対応する所定領域単位で前記面状照明装置を点灯および消灯させるBL駆動回路とを更に備え、
前記表示部は、前記面状照明装置からの光の透過率を前記プログレッシブ画像信号に基づき各画素形成部に与えられる駆動電圧に応じて制御することにより、前記画像を表示する液晶パネルであり、
前記BL駆動回路は、各画素形成部により前記画像の画素を形成するための各フレーム期間のうち所定期間だけ前記面状照明装置から当該画素形成部に光が照射されないように、前記面状照明装置を前記所定領域単位で点灯および消灯させることを特徴とする。
前記表示部の背面に光を照射するための面状照明装置と、
前記プログレッシブ画像信号に基づき前記画像を前記表示部により表示するための走査に連動して、所定数の走査ラインに対応する所定領域単位で前記面状照明装置を点灯および消灯させるBL駆動回路とを更に備え、
前記表示部は、前記面状照明装置からの光の透過率を前記プログレッシブ画像信号に基づき各画素形成部に与えられる駆動電圧に応じて制御することにより、前記画像を表示する液晶パネルであり、
前記BL駆動回路は、各画素形成部により前記画像の画素を形成するための各フレーム期間のうち所定期間だけ前記面状照明装置から当該画素形成部に光が照射されないように、前記面状照明装置を前記所定領域単位で点灯および消灯させることを特徴とする。
本発明の第15の局面は、本発明の第14の局面において、
前記BL駆動回路は、前記所定期間が1フレーム期間の1/2以上となるように、前記面状照明装置を前記所定領域単位で点灯および消灯させることを特徴とする。
前記BL駆動回路は、前記所定期間が1フレーム期間の1/2以上となるように、前記面状照明装置を前記所定領域単位で点灯および消灯させることを特徴とする。
本発明の第16の局面は、本発明の第14の局面において、
前記BL駆動回路は、前記面状照明装置における前記所定領域の数に対応した複数のローパスフィルタを含み、前記面状照明装置における前記所定領域をそれぞれ点灯および消灯させるための複数の駆動信号を前記複数のローパスフィルタをそれぞれ介して前記面状照明装置に与えることを特徴とする。
前記BL駆動回路は、前記面状照明装置における前記所定領域の数に対応した複数のローパスフィルタを含み、前記面状照明装置における前記所定領域をそれぞれ点灯および消灯させるための複数の駆動信号を前記複数のローパスフィルタをそれぞれ介して前記面状照明装置に与えることを特徴とする。
本発明の第17の局面は、本発明の第14の局面において、
前記BL駆動回路は、前記黒の表示ラインを構成する画素を各画素形成部が形成するための各フレームの開始時点の前後を含む所定期間だけ前記面状照明装置から当該画素形成部に光が照射されるように、前記面状照明装置を前記所定領域単位で点灯および消灯させることを特徴とする。
前記BL駆動回路は、前記黒の表示ラインを構成する画素を各画素形成部が形成するための各フレームの開始時点の前後を含む所定期間だけ前記面状照明装置から当該画素形成部に光が照射されるように、前記面状照明装置を前記所定領域単位で点灯および消灯させることを特徴とする。
本発明の第18の局面は、本発明の第14の局面において、
前記面状照明装置は、複数の発光ダイオードを光源として含むことを特徴とする。
前記面状照明装置は、複数の発光ダイオードを光源として含むことを特徴とする。
本発明の第19の局面は、本発明の第1の局面において、
前記表示部は、VA方式の液晶パネルであることを特徴とする。
前記表示部は、VA方式の液晶パネルであることを特徴とする。
本願に係る他の局面は、本発明の第1~第19の局面および後述の実施形態に関する説明から明らかであるので、その説明を省略する。
本発明の第1の局面によれば、各画素形成部において、表示すべき画像の画素を形成するためのフレーム期間である表示フレーム期間と黒の画素を形成するためのフレーム期間である黒フレーム期間とが交互に現れるので(インターレース用黒挿入が行われるので)、各画素形成部の光学的応答が遅い場合であっても、先行フレームからの映像クロストークが抑制される。また、インターレース用黒挿入により画素アレイにおいて1走査ラインおきに黒の表示ラインが形成されるように構成されているので、フレーム周波数を上げることなくフリッカーの発生を防止することができる。また、隣接する2フレームのうち一方のフレームでは奇数番目の走査ラインに対し黒挿入が行われ他方のフレームでは偶数番目の走査ラインに対し黒挿入が行われるので、静止画を表示する場合には、隣接する2フレームの画像により高解像度の画像が構成され、上記のインターレース用黒挿入により解像度が低下することはない。よって、表示画像の高精細化または液晶パネルの大型化が進んでも、動画および静止画の双方につき高い表示性能を得ることができる。なお、本発明の第1の局面に係る表示装置が液晶表示装置である場合には、上記のインターレース用黒挿入により各画素形成部における画素容量の充電不足が防止されるので、この点も高精細な動画の良好な表示に寄与する。
本発明の第2の局面によれば、上記のインターレース用黒挿入における黒の表示ラインは最大輝度の10%よりも低い輝度で表示されることで、表示画像においてフレーム期間平均で十分なコントランス比が得られる。
本発明の第3の局面によれば、上記のインターレース用黒挿入における黒の表示ラインは最大輝度の1%よりも高く10%よりも低い輝度で表示されることで、表示画像においてフレーム期間平均で十分なコントランス比が得られる。また、本発明の第3の局面に係る表示装置が液晶表示装置である場合には、上記黒の表示ラインが最大輝度の1%よりも高い輝度で表示されることにより、その黒の表示ラインの形成時においても液晶分子が液晶パネルの基板表面に対し所定のチルト角を有するように液晶に電圧が印加されるので、黒挿入によるインターレース表示における液晶の光学的応答性の低下を抑制することができる。
本発明の第4の局面によれば、入力画像のフレーム周波数の2倍のフレーム周波数を有するプログレッシブ画像信号に基づき表示部に画像が表示されるので、高い動画表示性能が得られる。
本発明の第5の局面によれば、インターレース走査に基づく入力画像信号をプログレッシブ走査方式に変更すると共にフレーム周波数を2倍に変更することにより得られるプログレッシブ画像信号に基づき表示部に画像が表示されるので、インターレース走査に基づく入力画像信号が外部から与えられる場合であっても、高い動画表示性能が得られる。
本発明の第6の局面によれば、プログレッシブ画像信号からインターレース画像信号が生成され、当該インターレース画像信号に基づき表示部に画像が表示されることで、本発明の第1の局面と同様の効果が得られる。
本発明の第7の局面によれば、第1方向に延びる2つの画素形成部列(2つの水平画素形成部列)が1つの走査信号線により同時に駆動され、1つの垂直画素形成部列につき2つのデータ信号線を介して各画素形成部にデータ信号が与えられるので、データ信号を画素値として画素形成部に書き込むための時間が2倍となる。したがって、本発明の第7の局面に係る表示装置が液晶表示装置である場合には、2倍の充電時間を確保できるので、表示画像の高精細化または液晶パネルの大型化が進んでも、また動画性能向上のための液晶パネル駆動の高速化が進んでも、各画素形成部における画素容量の充電不足を防止することができる。
本発明の第8の局面によれば、互いに異なる走査信号線に接続され第2方向(垂直方向)に隣接する2つの画素形成部が同一のデータ信号線に接続されているので、本発明の第7の局面と同様に、データ信号を画素値として画素形成部に書き込むための十分な時間を確保しつつ、所謂2H反転駆動を行うことができる。したがって、本発明の第8の局面に係る表示装置が液晶表示装置である場合には、インターレース用黒挿入の表示画像における黒の表示ラインを除外しても画素電圧の極性が垂直方向に1画素形成部毎に反転するので、液晶の交流駆動に起因するフリッカーの発生をより確実に防止することができる。
本発明の第9の局面によれば、画素アレイにおいて第2方向に延びる各画素形成部列(各垂直画素形成部列)に対応する2つのデータ信号線に互いに極性の異なるデータ信号が印加されるので、正極性のデータ信号が与えられる画素形成部と負極性のデータ信号が与えられる画素形成部とが第2方向(垂直方向)に交互に並ぶことになる。これにより、本発明の第9の局面に係る表示装置が液晶表示装置である場合には、液晶の交流駆動に起因するフリッカーの発生を防止することができる。
本発明の第10の局面によれば、画素アレイにおいて第1方向(水平方向)に隣接する2つの画素形成部にそれぞれ接続された2つのデータ信号線に互いに極性の異なるデータ信号が印加されるので、正極性のデータ信号が与えられる画素形成部と負極性のデータ信号が与えられる画素形成部とが第1方向(水平方向)に交互に並ぶことになる。これにより、本発明の第10の局面に係る表示装置が液晶表示装置である場合には、液晶の交流駆動に起因するフリッカーの発生を防止することができる。
本発明の第11の局面によれば、データ信号線を介して各画素形成部に与えられるデータ信号の極性が偶数フレーム期間毎に反転することで、インターレース用黒挿入を行いつつ、交流駆動を行うことができる。これにより、本発明の第11発明に係る表示装置が液晶表示装置である場合に液晶の劣化を防止することができる。
本発明の第12の局面によれば、黒挿入によるインターレース表示を前提としてプログレッシブ画像信号における現フレームの信号値を2フレーム前の信号値と比較することにより得られる強調画像信号に基づき表示部が駆動される(OS駆動が行われる)。これにより、複雑な回路を必要とすることなく、表示部の光学的応答性を改善し、動画表示性能を向上させることができる。
本発明の第13の局面によれば、プログレッシブ画像信号が示す信号値のうち黒の表示ラインを構成する画素に対応する信号値は第1および第2のフレームメモリに記憶されないので、プログレッシブ画像信号における現フレームの信号値を2フレーム前の信号値と比較することにより強調画像信号を得るために必要なメモリ量が低減される。
本発明の第14の局面によれば、表示すべき画像の画素を各画素形成部により形成するための各フレーム期間のうち所定期間だけ面状照明装置から当該画素形成部に光が照射されないように面状照明装置の点灯および消灯が所定領域単位で制御される。これにより、フレーム周波数を上げることなく、黒挿入によるインパルス化が安定し、動画表示性能が更に向上する。
本発明の第15の局面によれば、表示すべき画像の画素を各画素形成部により形成するための各フレーム期間のうち面状照明装置から当該画素形成部に光が照射されない所定期間が1フレーム期間の1/2以上となるので、十分なインパルス化効果が得られる。
本発明の第16の局面によれば、面状照明装置における所定領域をそれぞれ点灯および消灯させるための複数の駆動信号が複数のローパスフィルタをそれぞれ介して面状照明装置に与えられるので、表示部としての液晶パネルへの照射光量が当該所定領域間で極端に変動しない。これにより、ブロック別れ等による表示品位の低下が抑制される。
本発明の第17の局面によれば、黒の表示ラインを構成する画素を各画素形成部が形成するための各フレームの開始時点の前後を含む所定期間だけ面状照明装置から当該画素形成部に光が照射されるように面状照明装置の点灯および消灯が所定領域単位で制御される。これにより、所望の輝度(形成すべき画素の値)に対応した電圧が画素形成部に印加されてから当該画素形成部により形成される画素の輝度が当該所望の輝度に達するまでの過渡的な状態の期間では当該画素形成部に光が照射されない。このため、インパルス化効果がより安定し、フレーム間のクロストークがより確実に解消され、動画表示性能が更に向上する。
本発明の第18の局面によれば、面状照明装置の光源として発光ダイオードが使用されるので、面状照明装置の点灯および消灯を所定領域単位で精度良く制御することができる。
本発明の第19の局面によれば、VA方式の液晶パネルが表示部として使用されるので、黒の画素を表示するためのフレーム(黒フレーム)での液晶の光学的応答が比較的早く、より安定な駆動を行うことができ、また、基本的にコントラスト比が高く階調の調整が容易となる。
以下、添付図面を参照しながら、本発明の実施形態について説明する。
<1.第1の実施形態>
<1.1 全体の構成>
図1は、本発明の第1の実施形態に係るアクティブマトリクス型の液晶表示装置の構成を示すブロック図である。この液晶表示装置は、ノーマリブラック方式の液晶パネルである表示部500と、その表示部500を駆動するための表示用駆動回路100と、表示部500(液晶パネル)の背面に光を照射する面状照明装置としてバックライト600と、そのバックライト600を駆動するためのBL駆動回路650とを備えている。上記表示用駆動回路100は、データ信号線駆動回路としてのソースドライバ300と、走査信号線駆動回路としてのゲートドライバ400と、表示制御回路200とを含んでおり、この表示制御回路200は、ソースドライバ300、ゲートドライバ400、およびBL駆動回路650を制御する。表示制御回路200には、画像を表示するための画像信号DATおよびタイミング制御信号TSが装置外部から入力される。表示部500には、ソースドライバ300に接続された複数のデータ信号線SL1~SLMとゲートドライバ400に接続された複数の走査信号線GL1~GLNとが含まれており、当該複数のデータ信号線SL1~SLMと当該複数の走査信号線GL1~GLNとは互いに交差するように配置されている。また、表示部500には、複数のデータ信号線SL1~SLMと複数の走査信号線GL1~GLNとに沿ってマトリクス状に配置された複数の画素形成部P(i,j)からなる画素アレイが含まれている(i=1~N、j=1~M)。
<1.第1の実施形態>
<1.1 全体の構成>
図1は、本発明の第1の実施形態に係るアクティブマトリクス型の液晶表示装置の構成を示すブロック図である。この液晶表示装置は、ノーマリブラック方式の液晶パネルである表示部500と、その表示部500を駆動するための表示用駆動回路100と、表示部500(液晶パネル)の背面に光を照射する面状照明装置としてバックライト600と、そのバックライト600を駆動するためのBL駆動回路650とを備えている。上記表示用駆動回路100は、データ信号線駆動回路としてのソースドライバ300と、走査信号線駆動回路としてのゲートドライバ400と、表示制御回路200とを含んでおり、この表示制御回路200は、ソースドライバ300、ゲートドライバ400、およびBL駆動回路650を制御する。表示制御回路200には、画像を表示するための画像信号DATおよびタイミング制御信号TSが装置外部から入力される。表示部500には、ソースドライバ300に接続された複数のデータ信号線SL1~SLMとゲートドライバ400に接続された複数の走査信号線GL1~GLNとが含まれており、当該複数のデータ信号線SL1~SLMと当該複数の走査信号線GL1~GLNとは互いに交差するように配置されている。また、表示部500には、複数のデータ信号線SL1~SLMと複数の走査信号線GL1~GLNとに沿ってマトリクス状に配置された複数の画素形成部P(i,j)からなる画素アレイが含まれている(i=1~N、j=1~M)。
なお本実施形態では、ソースドライバ300およびゲートドライバ400は、表示部500としての液晶パネルとは別部品であるIC(Integrated Circuit)として実現されている。しかし、これに代えて、液晶パネルを所謂ドライバモノリシック型のパネルとしてもよい。すなわち、表示部500とゲートドライバ400およびソースドライバ300の少なくとも一方とを薄膜トランジスタ等を用いて液晶パネル上に一体的に形成してもよい。
図3は、表示部500における画素形成部(i,j)の等価回路を示す回路図である。各画素形成部P(i,j)は、画素電極Epとスイッチング素子としての薄膜トランジスタ(以下「TFT」と略記する)10とを含んでいる。ここでは、図1、図3に示すように、参照符号“P(i,j)”は、表示部500においてマトリクス状に配置された画素形成部からなる画素アレイのうち第i行第j列の画素形成部、すなわち、走査信号線GLiの延びる方向である第1方向(以下「水平方向」という)に並んだi番目の画素形成部列およびデータ信号線SLjの延びる方向である第2方向(以下「垂直方向」という)に並んだj番目の画素形成部列の双方に含まれる画素形成部を示すものとする。各副画素形成部P(i,j)におけるTFT10のゲート端子およびソース端子には、i番目の走査信号線GLiおよびj番目のデータ信号線SLjがそれぞれ接続されており、当該TFT10のドレイン端子には画素電極Epが接続されている。以下では、TFT10は、そのゲート端子に与えられる走査信号G(i)がハイレベル(Hレベル)のときにオン状態となり、ローレベル(Lレベル)のときにオフ状態になるものとする。また、表示部500では、全ての画素形成部P(i,j)(i=1~N、j=1~M)に共通に共通電極Ecが設けられており、各画素形成部(i,j)における画素電極Epは液晶層を介して共通電極Ecと対向し、画素電極Epと共通電極Ecとにより画素容量Cpが形成されている。この画素容量Cpは、当該画素形成部P(i,j)によって形成されるべき画素の値に相当する電圧を保持するためのものである。なお、共通電極Ecには、共通電極駆動回路(図示せず)により所定電圧が共通電圧Vcomとして与えられる。
図2は、表示制御回路200の構成を示すブロック図である。表示制御回路200は、入力画像処理回路210、インターレース回路220、および、駆動タイミング制御回路230を備えている。
表示制御回路200は、走査ライン数が1080本、画素数が1920×1080、フィールド周波数が60Hzの高精細テレビジョン(HDTV:High Definition Television)に対応したインターレース走査方式の画像信号(以下、この画像信号の形式を「1920×1080@60I」と表記するものとする)DATをタイミング信号TSと共に外部から受け取る。これらの信号DAT、TSは入力画像処理回路210に与えられる。なお本実施形態では、このように画像信号DATとして、HDTVに対応する画像信号が外部から表示制御回路200に入力されるものとするが、本発明はこれに限定されない。
入力画像処理回路210は、信号形式変換器として機能し、IP変換部212と画像調整部214と倍速処理部216とを含んでおり、外部から入力されたインターレース走査方式の画像信号DATはIP変換部212に入力される。IP変換部212は、このインターレース走査方式の画像信号DATをプログレッシブ走査方式の画像信号に変換する(このような変換は「IP変換」と呼ばれる)。これにより、画素数が1920×1080でフレーム周波数が60Hzのプログレッシブ走査方式の画像信号(以下、この画像信号の形式を「1920×1080@60P」と表記するものとする)が得られ、このプログレッシブ走査方式の画像信号は画像調整部214に入力される。画像調整部214は、このプログレッシブ走査方式の画像信号に対し、本液晶表示装置の特性および使用目的等に合わせて表示画像を調整するための処理(画像調整)を必要に応じて施す。必要に応じて画像調整が施された当該画像信号は、フレーム周波数変換器(以下「FRC」と略記する)として機能する倍速処理部216に入力され、倍速処理部216は、当該画像信号のフレーム周波数を2倍に変更する。これにより、画素数が1920×1080でフレーム周波数が120Hzのプログレッシブ走査方式の画像信号すなわち1920×1080@120Pの画像信号(以下「倍速プログレッシブ画像信号」という)SPが得られる。この倍速プログレッシブ画像信号SPは、入力画像処理回路210から出力されインターレース回路220に入力される。
インターレース回路220は、フィールド判定部222と黒挿入部224とを含んでおり、入力画像処理回路210からの倍速プログレッシブ画像信号SPはフィールド判定部222に入力される。フィールド判定部222は、後述の倍速インターレース表示のためのフィールド種別を判定する。すなわち、上記の倍速プログレッシブ画像信号SPの現フレームが後述の倍速インターレース表示における前フレームに該当するか後フレームに該当するかを判定する。後述の倍速インターレース表示では、隣接する2フレームを1組としてグループ化され、各組につき1画面分の画像がインターレース走査により表示される(図5、図7参照)。そこで、フィールド判定部222では、現フレームが奇数番目のフレームか偶数番目のフレームかを識別し、奇数番目のフレームであれば前フレーム(奇数フィールドに対応するフレーム)、偶数番目のフレームであれば後フレーム(偶数フィールドに対応するフレーム)と判定するが、これに代えて、偶数番目のフレームを前フレーム、奇数番目のフレームを後フレームと判定するようにしてもよい。現フレームが奇数番目のフレームか偶数番目のフレームかを識別するには、上記の倍速プログレッシブ画像信号SPの垂直同期信号を数えるか、または、その識別のための情報を入力画像処理回路210内のFRCから受け取るようにすればよい。垂直同期信号を数える際には,フレームの偶奇を判定できればよいので1bitのフラグを垂直同期信号毎に反転させるだけでよい。
フィールド判定部222において上記判定が行われた後、上記の倍速プログレッシブ画像信号SPは黒挿入部224に入力され、現フレームが奇数番目のフレームの場合には、黒挿入部224は、その倍速プログレッシブ画像信号SPのうち、現フレームの奇数番目の走査ラインに相当する画素値をそのままにして、現フレームの偶数番目の走査ラインに相当する画素値を黒の画素値(黒表示のための階調値)に置き換える。一方、現フレームが偶数番目のフレームの場合には、黒挿入部224は、その倍速プログレッシブ画像信号SPのうち、現フレームの偶数番目の走査ラインを構成する画素値をそのままにして、現フレームの奇数番目の走査ラインに相当する画素値を黒の画素値に置き換える(以下、このような黒の画素値への置き換えによる黒挿入を「インターレース用黒挿入」という)。なお、ここでの走査ラインとは、水平方向に並ぶ画素形成部列によって形成される表示ラインをいう。このような黒挿入部224での処理により、後述の倍速インターレース表示(図5、図7参照)に対応した画像信号(以下「倍速インターレース画像信号」という)SIが得られる。この倍速インターレース画像信号SIは、駆動タイミング制御回路230に入力される。
なお、上記のインターレース用黒挿入のための黒の画素値は、最低輝度に相当する階調値0には必ずしも限定されない。上記のインターレース用黒挿入のための黒の画素値として、最大輝度の1%~10%の範囲内の輝度に相当する固定階調値を使用するのが好ましい。以下、この点につき説明する。
本願発明者が液晶表示装置において黒表示の階調値を順次変えて得られるコントラスト比を調べたところ、室温下では、最大輝度の10%の輝度に相当する電圧を黒表示すべき画素形成部の画素容量Cpに保持させると、フレーム平均で300以上のコントラスト比が得られることが判明した。これは、実際の画像表示では、各画素の階調は表示すべき画像の階調と黒表示の階調との間で繰り返し変化することから、フレーム期間平均でのコントラスト比は、このような変化に対する液晶の応答に基づき、上記「10%の輝度」に対応するコントラスト比(1/0.1=10)よりも大きくなるためと考えられる。一方、最も普及している垂直配向/斜め電界を利用した方式の液晶表示装置では、液晶への印加電圧(画素容量Cpでの保持電圧)を真の黒(階調値0)に相当する電圧から変化させたときの液晶の応答が非常に遅く、この応答は、階調の時間的変化を強調する駆動方法(「オーバシュート駆動またはOS駆動」と呼ばれる駆動方法)を利用しても改善されない。この応答を改善する方法として、黒表示状態においても液晶分子が液晶パネルの基板表面に対し所定のチルト角を有するように液晶に予め電圧を印加するという方法が知られている。しかし、この方法を使用すると液晶パネルの黒表示領域での光の漏れによりコントラストが低下するという欠点が指摘されている。これに対し、本願発明者が、所定のチルト角を確保すべく最大輝度の1%の輝度に相当する電圧を黒表示すべき画素形成部の画素容量Cpに保持させてコントラスト比を調べたところ、実際の画像表示では、各画素の階調は表示すべき画像の階調と黒表示の階調との間で繰り返し変化することから、フレーム期間平均で(1/0.01=100)を越える500以上のコントラスト比が得られることが判明した。したがって、最大輝度の1%~10%の範囲内の輝度を示す固定階調値に相当する電圧を黒表示すべき画素形成部の液晶に印加すれば、上記応答およびコントラストにつき実用上十分な性能を得ることができる。
駆動タイミング制御回路230は、LCDタイミング生成部234とBLタイミング生成部236を含んでおり、上記のインターレース画像信号SIが表す画像を表示部500に表示させるためのタイミングを示す制御信号を生成する。すなわち、LCDタイミング生成部234は、ソースドライバ300に与えるべきタイミング信号としてデータスタートパルス信号SSP、データクロック信号SCK、およびラッチ信号LS等を生成し、これらのタイミング信号と上記画像信号SIをこれらのタイミング信号に同期させた信号である画像信号DVとからなるソースドライバ用制御信号Ctsを出力する。またLCDタイミング生成部234は、ゲートドライバ400に与えるべきタイミング信号としてゲートスタートパルス信号GSPおよびゲートクロック信号GCK等を生成し、ゲートドライバ用制御信号Ctgとして出力する。一方、BLタイミング生成部236は、BL駆動回路650に与えるべき制御信号を生成し、BL駆動制御信号Ctblとして出力する。
BL駆動回路650は、上記BL駆動制御信号Ctblに基づいてBL駆動信号Dblを生成し、このBL駆動信号Dblによりバックライト600を駆動する。これによりバックライト600は、面状照明装置として動作し、液晶パネルである表示部500の背面に光を照射する。
ゲートドライバ400は、上記のゲートドライバ用制御信号Ctg(GSP,GCK)に基づき走査信号G(1)~G(N)を生成し、表示部500の走査信号線GL1~GLNにそれぞれ印加する。これにより、走査信号線GL1~GLNは、1フレーム期間を周期として順次活性化される(Hレベルの信号が順次印加される)。
ソースドライバ300は、上記のソースドライバ用制御信号Cts(SSP,SCK,LS,DV)に基づきデータ信号S(1)~S(M)を生成し、表示部500のデータ信号線SL1~SLMにそれぞれ印加する。
このようにして、表示部500では、走査信号線GL1~GLNに走査信号G(1)~G(N)が印加されると共に、データ信号線SL1~SLMにデータ信号S(1)~S(M)が印加される。これにより、画像信号DVが表す画像に応じた電圧が各画素形成部P(i,j)において液晶に印加されることで、バックライト600からの光の透過率が制御され、画像信号DVが表す画像が表示部500に表示される。
<1.2 動作>
次に、本実施形態に係る液晶表示装置の動作について説明する。
図4は、図1に示す本実施形態に係る液晶表示装置の動作を示すタイミングチャートである。図5は、本実施形態による画面表示における画素電圧極性のパターンおよびインターレース用黒挿入のパターンを示す模式図である。以下、図4および図5を参照して、本実施形態に係る液晶表示装置の動作を説明する。なお、図4および図5では、図示の便宜上、水平方向の画素数(=データ信号線数M)および垂直方向の画素数(=走査信号線数N)を共に10としている。また、本実施形態に係る液晶表示装置では、ノーマリブラック方式が採用されていることから、液晶への印加電圧(画素容量Cpでの保持電圧)が0近傍の値のとき、すなわち画素電極Epに与えられる電圧(画素電圧)Vp(i,j)が共通電圧に略等しいときに、黒表示となる。
次に、本実施形態に係る液晶表示装置の動作について説明する。
図4は、図1に示す本実施形態に係る液晶表示装置の動作を示すタイミングチャートである。図5は、本実施形態による画面表示における画素電圧極性のパターンおよびインターレース用黒挿入のパターンを示す模式図である。以下、図4および図5を参照して、本実施形態に係る液晶表示装置の動作を説明する。なお、図4および図5では、図示の便宜上、水平方向の画素数(=データ信号線数M)および垂直方向の画素数(=走査信号線数N)を共に10としている。また、本実施形態に係る液晶表示装置では、ノーマリブラック方式が採用されていることから、液晶への印加電圧(画素容量Cpでの保持電圧)が0近傍の値のとき、すなわち画素電極Epに与えられる電圧(画素電圧)Vp(i,j)が共通電圧に略等しいときに、黒表示となる。
表示部500における走査信号線GL1~GLNには、図4(A)(B)に示すように、Hレベルの信号が走査信号G(1)~G(N)として順次印加され、これにより、走査信号線GL1~GLNは順次活性化状態となる。活性化状態の走査信号線GLiaに接続された画素形成部P(ia,j)(j=1~M)すなわちia番目の走査ラインの画素形成部列では、TFT10はオン状態となる。一方、表示部500におけるデータ信号線SL1~SLMには、図4(C)(D)に示すようなデータ信号S(1)~S(M)が印加される。これらのデータ信号S(1)~S(M)は、表示部500における液晶の劣化を防止するために当該液晶が交流駆動されるように構成されている。本実施形態では、この交流駆動の方式として所謂ドット反転駆動方式が採用されており、これらのデータ信号S(1)~S(M)の極性は、共通電圧Vcomを基準として1データ信号線毎に反転すると共に1水平期間毎に反転する。ただし、インターレース回路220の黒挿入部224での既述の処理により、1水平期間(1H期間)おきに黒の画素値に相当する信号(黒信号)が挿入されていることから、同一フレーム期間内ではデータ信号S(1)~S(M)の極性は実質的に反転しないとみなすことができる(図4(C)(D))。
上記のような走査信号G(1)~G(N)の走査信号線GL1~GLNへの印加およびデータ信号S(1)~S(M)のデータ信号線SL1~SLMへの印加により表示部500が駆動され、表示部500の画素アレイにおいて(黒の表示ラインを含む)画像が以下のように形成される。すなわち、表示制御回路200内の入力画像処理回路210で生成された倍速プログレッシブ画像信号SPのうち奇数番目のフレームの信号部分である第1信号に基づき画像を表示すべき奇数番目のフレーム期間Tfk(k=1,3,5,…)では、当該第1信号が表す画像における奇数番目の走査ラインの画像が表示部500の画素アレイにおける奇数番目の走査ラインの画素形成部群P(iod,1)~P(iod,M)(iod=1,3,5,…)によって形成されると共に、当該画素アレイにおける偶数番目の走査ラインの画素形成部群P(iev,1)~P(iev,M)(iev=2,4,6,…)によって黒の表示ラインが形成される(図5(A)(C))。また、倍速プログレッシブ画像信号SPのうち偶数番目のフレームの信号部分である第2信号に基づき画像を表示すべき偶数番目のフレーム期間Tfk(k=2,4,6,…)では、当該第2信号が表す画像における偶数番目の走査ラインの画像が表示部500の画素アレイにおける偶数番目の走査ラインの画素形成部群P(iev,1)~P(iev,M)(iev=2,4,6,…)によって形成されると共に、当該画素アレイにおける奇数番目の走査ラインの画素形成部群P(iod,1)~P(iod,M)(iod=1,3,5,…)によって黒の表示ラインが形成される(図5(B)(D))。
具体的には、上記のような走査信号G(1)~G(N)の走査信号線GL1~GLNへの印加およびデータ信号S(1)~S(M)のデータ信号線SL1~SLMへの印加により、各画素形成部P(i,j)の画素液晶への印加電圧すなわち共通電圧Vcomを基準とする各画素形成部P(i,j)の画素電極Epの電圧(以下「画素電圧Vp(i,j)」という)は、図4(E)~(H)に示すように、1フレーム期間(1/120秒)間隔で正電圧→黒電圧→負電圧→黒電圧という順に変化し、巨視的には4フレーム期間を1周期として周期的に変化する(ここで、「黒電圧」とは黒表示のための階調値に相当する印加電圧をいう。以下においても同様。)。したがって、各画素液晶への印加電圧の極性は2フレーム期間毎に反転することになる。例えば図4に示す第1フレーム期間Tf1~第4フレーム期間Tf4に着目すると、図4(E)に示す画素電圧Vp(1,1)は、共通電圧Vcomを基準として、正電圧→黒電圧→負電圧→黒電圧と変化し、図4(F)に示す画素電圧Vp(2,1)は、共通電圧Vcomを基準として、黒電圧→負電圧→黒電圧→正電圧と変化し、図4(G)に示す画素電圧Vp(1,2)は、共通電圧Vcomを基準として、負電圧→黒電圧→正電圧→黒電圧と変化し、図4(H)に示す画素電圧Vp(2,2)は、共通電圧Vcomを基準として、黒電圧→正電圧→黒電圧→負電圧と変化する。なお本実施形態では、各画素液晶への印加電圧の極性(画素電圧の極性)はこのように2フレーム期間毎に反転するが、4フレーム期間以上の偶数フレーム期間毎に反転するようにしてもよい。
各画素電圧Vp(i,j)が上記のように変化することにより、表示画面における画素電圧極性およびインターレース用黒挿入は図5に示すようなパターンとなる。これは、隣接2フレームで1画面分の表示画像が構成される倍速のインターレース走査による表示(「倍速インターレース表示」という)を示している。すなわち本実施形態では、プログレッシブ走査方式の画像信号のフレーム周波数を2倍にした上で黒挿入によりインターレース化して得られたインターレース画像信号SIを用いて(図2)、隣接2フレームで1画面の画像が構成されるように表示される。ここで、図5(A)~(D)は、それぞれ、第1~第4フレーム期間Tf1~Tf4の終了時点での画面表示における画素電圧極性のパターンおよびインターレース用黒挿入のパターンを示している。図5(A)~(D)に示すこれらのパターンの変化は、4フレーム期間を1周期として繰り返される(図4(E)~(H)参照)。図5(A)~(D)からわかるように、本実施形態では、画素電圧Vp(i,j)の極性すなわち画素液晶への印加電圧の極性は、水平方向および垂直方向に1画素毎に反転し(これは所謂ドット反転駆動を意味する)、インターレース用黒挿入は、奇数番目のフレーム期間では偶数番目の走査ラインに対して行われ、偶数番目のフレーム期間では奇数番目の走査ラインに対して行われる。なお、本実施形態における倍速インターレース表示では、奇数番目のフレームが前フレーム、偶数番目のフレームが後フレームとなっているが、偶数番目のフレームを前フレーム、奇数番目のフレームを後フレームとしてもよい。
<1.3 効果>
通常の液晶表示装置では、表示画像の画素値に対応する電圧を画素容量(画素液晶)に印加する直前には、その画素容量は、印加しようとする電圧とは逆極性の電圧で充電されている。これに対し本実施形態では、各画素容量Cpに印加される電圧すなわち共通電圧Vcomを基準とする画素電圧Vp(i,j)は、1フレーム期間間隔で正電圧→黒電圧→負電圧→黒電圧という順に変化し、表示すべき画像の画素値に対応する正電圧または負電圧が画素容量Cpに印加されるフレーム期間の直前のフレーム期間では、黒電圧が画素容量Cpに印加されている(図4(E)~(H))。このため、表示すべき画像の画素値を液晶パネルである表示部500に書き込むときの画素容量Cpの充電または放電のための移動電荷量が、従来よりも大幅に低減される(ほぼ半分に低減される)。したがって、表示画像の高精細化または液晶パネルの大型化が進んでも、また動画性能向上のための液晶パネル駆動の高速化が進んでも、画素容量の充電不足を防止することができる。
通常の液晶表示装置では、表示画像の画素値に対応する電圧を画素容量(画素液晶)に印加する直前には、その画素容量は、印加しようとする電圧とは逆極性の電圧で充電されている。これに対し本実施形態では、各画素容量Cpに印加される電圧すなわち共通電圧Vcomを基準とする画素電圧Vp(i,j)は、1フレーム期間間隔で正電圧→黒電圧→負電圧→黒電圧という順に変化し、表示すべき画像の画素値に対応する正電圧または負電圧が画素容量Cpに印加されるフレーム期間の直前のフレーム期間では、黒電圧が画素容量Cpに印加されている(図4(E)~(H))。このため、表示すべき画像の画素値を液晶パネルである表示部500に書き込むときの画素容量Cpの充電または放電のための移動電荷量が、従来よりも大幅に低減される(ほぼ半分に低減される)。したがって、表示画像の高精細化または液晶パネルの大型化が進んでも、また動画性能向上のための液晶パネル駆動の高速化が進んでも、画素容量の充電不足を防止することができる。
本実施形態では、フィールド周波数が60Hzのインターレース走査方式の画像信号DATが、フレーム周波数が120Hzのプログレッシブ走査方式の画像信号である倍速プログレッシブ画像信号SPに変換され、その倍速プログレッシブ画像信号SPに基づき画像が表示される(図2)。このようにフレーム周波数を2倍に変更した画像信号に基づいて画像を表示しても、上記構成すなわち倍速インターレース表示のための構成により画素容量の充電不足が防止されるので、高精細な動画を良好に表示することができる。
また、液晶表示装置では、液晶の応答が遅いことに起因して、先行フレームの画像が現フレームでの画像表示に影響を与えること(以下「先行フレームからの映像クロストーク」という)や、データ信号線(ソースライン)SLjの電圧変化が寄生容量を介して画素容量Cpの保持電圧または画素電圧Vp(i,j)に影響を与えること(以下「ソース容量結合によるクロストーク」という)があるが、本実施形態によれば、これらのクロストークを抑制または低減することができる。すなわち本実施形態では、上記のように各画素電圧Vp(i,j)が1フレーム期間間隔で正電圧→黒電圧→負電圧→黒電圧という順に変化することから(図4(E)(F))、先行フレームからの映像クロストークを抑制することができる。また本実施形態では、インターレース用黒挿入により画素アレイにおいて1走査ラインおきに黒の表示ラインが形成されるようにデータ信号線SL1~SLMが駆動されることから(図5)、ドット反転駆動(より一般的には垂直方向に1画素毎に画素電圧Vp(i,j)の極性を反転させる駆動)が行われる場合であっても、データ信号線SLjの電圧極性すなわちデータ信号S(j)の極性は各フレーム期間内で実質的に変化しないので(図4(C)(D))、上記のソース容量結合によるクロストークを低減することができる。また、インターレース用黒挿入ラインに対するソース容量結合によるクロストークは、電圧レベルでは従来の液晶表示装置と変わらないが、輝度レベルでは最大輝度の10%以下であり、表示画像におけるクロストークの影響を抑制することができる。
また、液晶表示装置においてインパルス化のために黒挿入を行った場合には、フリッカーの発生を防止するために更にフレーム周波数を上げること(例えばフレーム周波数を240Hzにすること)が必要になるが、本実施形態では、インターレース用黒挿入により画素アレイにおいて1走査ラインおきに黒の表示ラインが形成されるように構成されているので(図5)、フリッカーの発生防止のためにフレーム周波数を上げる必要はない(フレーム周波数は120Hzのままでよい)。この点につき図6を参照してより詳しく説明する。
図6は、フレーム毎に黒挿入される画素液晶の輝度応答を示している。この図6に示すように本実施形態では、奇数番目の表示ライン(以下「奇数ライン」という)への黒挿入と偶数番目の表示ライン(以下「偶数ライン」という)への黒挿入とが1フレーム単位で交互に行われる。1フレーム期間を1/120秒とすると、従来の液晶表示装置で黒挿入を行った場合には、例えば図6において点線で示すように60Hzのフリッカー(2フレーム期間を周期とするフリッカー)が発生する。これに対し本実施形態では、図6に示すように、奇数ラインのフリッカーがそれに隣接する偶数ラインのフリッカーを相殺するように両ラインの輝度が変化する。また、画素液晶の輝度応答において明→暗の変化と暗→明の変化とで応答速度が異なるために両ラインのフリッカーが完全に相殺されない場合であっても、画面平均では、図6において実線で示すように、フリッカーの周波数は120Hz、すなわち奇数ラインと偶数ラインのそれぞれの点滅の周波数の倍の周波数となり、そのフリッカーレベルも非常に小さくなる。
また、本実施形態では、隣接する2フレームのうち一方のフレームでは奇数番目の走査ラインに対し黒挿入が行われ他方のフレームでは偶数番目の走査ラインに対し黒挿入が行われるので(図5)、静止画を表示する場合には、隣接する2フレームの画像により高解像度の画像(1920×1080の画像)が構成され、上記のインターレース用黒挿入により解像度が低下することはない。
以上のように、本実施形態によれば、表示画像の高精細化または液晶パネルの大型化が進んでも、倍速インターレース表示により、動画および静止画の双方につき高い表示性能を得ることができる。
<1.4 第1の実施形態の変形例>
上記実施形態では、図5に示すように、画素電圧Vp(i,j)の極性は水平方向のみならず垂直方向においても1画素毎に反転するが、1走査ラインおきに黒挿入が行われる。このため、画素アレイにおいて黒表示の画素形成部を除外すると、垂直方向には、同一極性の画素電圧Vp(i,j)の印加された画素形成部のみが並ぶことになり、ドット反転駆動の効果が十分に得られない可能性も考えられる。そこで、この点を考慮して、画素電圧Vp(i,j)の極性が水平方向に1画素毎に反転し垂直方向には2画素毎に反転するように、すなわち所謂2Hドット反転駆動を行うように、上記第1の実施形態の構成を変形してもよい。このような変形例によれば、画面表示における画素電圧極性のパターンおよびインターレース用黒挿入のパターンは図7に示すようなパターンとなり、液晶の交流駆動に起因するフリッカーの発生をより確実に抑制することができる。また、表示端部のフリッカーを目立たなくするために、画素電圧極性のパターンを、図7(A)の上端から下方に向かって(++--++--++--)というパターンにする代わりに、最初のラインのみ1H反転として(+--++--++--+)というパターンにする2Hドット反転駆動も好適であり、このような2Hドット反転駆動を行う構成も本変形例に含まれる。
上記実施形態では、図5に示すように、画素電圧Vp(i,j)の極性は水平方向のみならず垂直方向においても1画素毎に反転するが、1走査ラインおきに黒挿入が行われる。このため、画素アレイにおいて黒表示の画素形成部を除外すると、垂直方向には、同一極性の画素電圧Vp(i,j)の印加された画素形成部のみが並ぶことになり、ドット反転駆動の効果が十分に得られない可能性も考えられる。そこで、この点を考慮して、画素電圧Vp(i,j)の極性が水平方向に1画素毎に反転し垂直方向には2画素毎に反転するように、すなわち所謂2Hドット反転駆動を行うように、上記第1の実施形態の構成を変形してもよい。このような変形例によれば、画面表示における画素電圧極性のパターンおよびインターレース用黒挿入のパターンは図7に示すようなパターンとなり、液晶の交流駆動に起因するフリッカーの発生をより確実に抑制することができる。また、表示端部のフリッカーを目立たなくするために、画素電圧極性のパターンを、図7(A)の上端から下方に向かって(++--++--++--)というパターンにする代わりに、最初のラインのみ1H反転として(+--++--++--+)というパターンにする2Hドット反転駆動も好適であり、このような2Hドット反転駆動を行う構成も本変形例に含まれる。
上記実施形態では、入力画像処理回路210からの倍速プログレッシブ画像信号SPのうち、黒挿入すべき走査ラインを構成する画素の値を黒の画素値に置き換えることによりインターレース用黒挿入が実現されるが(図2、図4(C)(D))、これに代えて、ソースドライバ300からデータ信号S(j)として出力される電圧を、倍速プログレッシブ画像信号SPが示す画素値(表示すべき画像の画素値)に相当する電圧と黒の画素値に相当する電圧との間で切り替えるための回路をソースドライバ300に内蔵するようにしてもよい(このことは他の実施形態においても同様)。この場合、インターレース回路220からは、黒挿入すべき走査ラインを構成する画素の値を倍速プログレッシブ画像信号SPから取り除いた画像信号を画像信号SIとして出力し、この画像信号SIを画像信号DVとしてソースドライバ300に与えることにより、回路量およびソースドライバ300へのデータ転送量を削減することができる。
なお上記実施形態では、外部から受け取ったインターレース走査方式の画像信号DATをIP変換部212でプログレッシブ走査方式の画像信号に変換するとともに、そのフレーム周波数を倍速処理部216としてのFRCで2倍にすることにより、倍速プログレッシブ画像信号SPを得ているが、外部から受け取る画像信号DATがプログレッシブ走査方式によるものであればIP変換は不要である。また、本液晶表示装置の用途との関係で十分に高いフレーム周波数の画像信号DATが外部から入力される場合にはフレーム周波数の変換(FRC)も不要である。
<2.第2の実施形態>
次に、本発明の第2の実施形態に係る液晶表示装置について説明する。本実施形態に係る液晶表示装置の全体構成は、図8に示す通りであり、基本的には、上記第1の実施形態の全体構成と同様であるが(図1)、表示部500の構成が上記第1の実施形態と相違している。そこで以下では、この相違点を中心に説明し、この相違点以外の構成に関しては、同一または対応する部分に同一の参照符号を付して詳しい説明を省略する。
次に、本発明の第2の実施形態に係る液晶表示装置について説明する。本実施形態に係る液晶表示装置の全体構成は、図8に示す通りであり、基本的には、上記第1の実施形態の全体構成と同様であるが(図1)、表示部500の構成が上記第1の実施形態と相違している。そこで以下では、この相違点を中心に説明し、この相違点以外の構成に関しては、同一または対応する部分に同一の参照符号を付して詳しい説明を省略する。
図10は、図8に示す本実施形態における表示部500内の電気的な接続構成を模式的に示す部分拡大図であり、図10において各画素電極に付された“+”または“-”は、或るフレーム期間において当該画素電極に印加される電圧(画素電圧)の極性を示している(後述の図14~図16においても同様)。図8および図10に示すように、本実施形態における表示部500としての液晶パネルには、ソースドライバ300に接続された複数(2M本)のデータ信号線SLa1,SLb1,SLa2,SLb2,……,SLaM,SLbMとゲートドライバ400に接続された複数(N本)の走査信号線GL1,GL2,……,GLNとが含まれており、当該複数のデータ信号線SLa1~SLbMと当該複数の走査信号線GL1~GLNとは互いに交差するように配置されている。また、表示部500には、当該複数のデータ信号線SLa1~SLbMと複数の走査信号線GL1~GLNとに沿ってマトリクス状に配置された複数(2N×M個)の画素形成部からなる画素アレイが含まれている。
ここで、上記画素アレイにおいて走査信号線GLiの延びる方向である第1方向(水平方向)に並ぶM個の画素形成部からなる画素形成部列を「水平画素形成部列」と呼び、データ信号線SLaj,SLbjの延びる方向である第2方向(垂直方向)に並ぶ2N個の画素形成部からなる画素形成部列を「垂直画素形成部列」と呼ぶものとする(後述する他の実施形態においても同様)。また以下では、上記画素アレイに含まれる画素形成部のうち第k行第j列の画素形成部、すなわち、k番目の水平画素形成部列およびj番目の垂直画素形成部列の双方に含まれる画素形成部を、参照符号“P(k,j)”で示すものとする(k=1~2N、j=1~M)。
各走査信号線GLiは、上記画素アレイにおいて互いに隣接する2つの水平画素形成部列を1組として上記複数の画素形成部P(k,j)(k=1~2N、j=1~M)を組分けすることにより得られる複数組(N組)の水平画素形成部列のいずれか1つと対応し、かつ、対応する組を構成する2つの水平画素形成部列に含まれる各画素形成部に接続されている。本実施形態では、図8および図10に示すように、各走査信号線GLiは、互いに電気的に接続された2つの副走査信号線GLai,GLbiからなり、そのうち一方の副走査信号線GLaiは、当該走査信号線GLiに対応する2つの水平画素形成部列の一方の各画素形成部P(2i-1,j)(j=1~M)に接続され、他方の副走査信号線GLbiは当該2つの水平画素形成部列の他方の各画素形成部P(2i,j)(j=1~M)に接続されている。しかし、表示部500内の電気的な接続構成は図8または図10に示すものに限定されるものではなく、例えば図14に示すように、各垂直画素形成部列に対応する2つのデータ信号線SLaj,SLbjのうち、図において左側に配設されたデータ信号線SLajは当該垂直画素形成部列における偶数番目の画素形成部列に接続され、右側に配設されたデータ信号線SLbjは当該垂直画素形成部列における奇数番目の画素形成部列に接続されるように構成されていてもよい。また、例えば図15に示すように、各走査信号線GLiが2つの副走査信号線GLai,GLbiに分かれずに、当該走査信号線GLiに対応する2つの水平画素形成部列の間に配置され、当該2つの水平画素形成部列における各画素形成部P(2i-1,j),P(2i,j)(j=1~M)に接続されるように構成されていてもよい。
上記画素アレイにおける各垂直画素形成部列は、隣り合う2つのデータ信号線SLaj,SLbjを1組として上記複数のデータ信号線SLa1,SLb1,SLa2,SLb2,……,SLaM,SLbMを組分けすることにより得られる複数組のデータ信号線のいずれか1つと対応し、各組を構成する2つのデータ信号線の一方のデータ信号線SLajは、当該組に対応する垂直画素形成部列に含まれる画素形成部のうち同一走査信号線GLiに接続される(同一走査信号線GLiを構成する副走査信号線GLai、GLbiにそれぞれ接続される)2つの画素形成部P(2i-1,j),P(2i,j)の一方に接続され、当該2つのデータ信号線の他方のデータ信号線SLbjは、当該2つの画素形成部P(2i-1,j),P(2i,j)の他方に接続されている(i=1~N、j=1~M)。すなわち、図10に示すように、各組を構成する2つのデータ信号線SLaj,SLbjは、当該組に対応する垂直画素形成部列の一側、他側にそれぞれ配設され、当該一側(図では左側)に配設されたデータ信号線SLajは副走査信号線GLai,GLbjに接続された2つの画素形成部P(2i-1,j),P(2i,j)の一方に接続され、当該他側(図では右側)に配設されたデータ信号線SLbjは当該2つの画素形成部P(2i-1,j),P(2i,j)の他方に接続されている。なお、本実施形態における上記表示部500のように、1つの垂直画素形成部列につき2本のデータ信号線が配設された液晶パネルは「ダブルソースパネル」と呼ばれる。
図11は、表示部500における画素形成部P(k,j)の等価回路を示す回路図である(k=1~2N、j=1~M)。各画素形成部P(k,j)は、画素電極Epとスイッチング素子としての薄膜トランジスタ(TFT)10とを含んでいる。2i-1番目の水平画素形成部列に含まれる各画素形成部P(2i-1,j)におけるTFT10のゲート端子には、i番目の走査信号線GLiを構成する一方の副走査信号線GLaiが接続され、当該TFT10のソース端子には、j番目の組のデータ信号線SLaj,SLbjの一方が接続され、当該TFT10のドレイン端子には画素電極Epが接続されている(i=1~N)。一方、2i番目の水平画素形成部列に含まれる各画素形成部P(2i,j)におけるTFT10のゲート端子には、i番目の走査信号線GLiを構成する他方の副走査信号線GLbiが接続され、当該TFT10のソース端子には、j番目の組のデータ信号線SLaj,SLbjの他方が接続され、当該TFT10のドレイン端子には画素電極Epが接続されている(i=1~N)。表示部500および各画素形成部P(k,j)の他の構成については上記第1の実施形態と同様であるので(図1、図3参照)説明を省略する。
図9は、本実施形態における表示制御回路200の構成を示すブロック図である。この表示制御回路200は、上記第1の実施形態と同様、入力画像処理回路210、インターレース回路220、および、駆動タイミング制御回路230を備えている。これらの構成要素のうち、駆動タイミング制御回路230はダブルソース変換処理部232を備えており、この点で、上記第1の実施形態における表示制御回路200(図2)と相違する。本実施形態における表示制御回路200の他の構成は上記第1の実施形態と同様であるので、詳しい説明を省略する。
本実施形態においても、上記第1の実施形態と同様、外部から入力されるインターレース走査方式の画像信号DATが入力画像処理回路210により倍速プログレッシブ画像信号SPに変換され、この倍速プログレッシブ画像信号SPはインターレース回路220により倍速インターレース画像信号SIに変換され、この倍速インターレース画像信号SIは駆動タイミング制御回路230に入力される。駆動タイミング制御回路230では、まず、ダブルソース変換処理部232が、図10に示したような接続構成の表示部500に対応するように、その倍速インターレース画像信号SIに含まれる画素値の順序を変更することにより、ダブルソース対応倍速インターレース画像信号SI2を生成する。以下、この処理につき詳しく説明する。
図12は、本実施形態における表示部500に印加される信号のタイミングチャートである。図12において、符号“Dkj”は表示部500の画素アレイにおける第k行第j列の画素形成部P(k,j)により形成されるべき画素の値(階調値)を示しており、ハッチングは黒の画素値(黒表示のための階調値)を示している。いま、i番目の走査信号線GLiに印加される走査信号G(i)がアクティブ(Hレベル)であるとすると、走査信号線GLiを構成する副走査信号線GLai,GLbiが共に活性化状態となっている。このとき、走査信号線GLi(副走査信号線GLai,GLbi)に接続されている2i-1番目および2i番目の水平画素形成部列における各画素形成部P(2i-1,j)、P(2i,j)(j=1~M)のTFT10はオン状態となる(i=1~N)。一方、図10に示すように、本実施形態における表示部500では、jを奇数とすると、j番目の垂直画素形成部に対応する2つのデータ信号線SLaj,SLbjのうち一方のデータ信号線SLajは画素形成部P(2i-1,j)に、他方のデータ信号線SLbjは画素形成部P(2i,j)にそれぞれ接続されている。また、jを偶数とすると、当該2つのデータ信号線SLaj,SLbjのうち一方のデータ信号線SLajは画素形成部P(2i,j)に、他方のデータ信号線SLbjは画素形成部P(2i-1,j)にそれぞれ接続されている。
このような接続構成の表示部500において、図5に示すようなインターレース用黒挿入のパターンで画像表示を行うには、図12に示すようなタイミングでアクティブ(Hレベル)となる走査信号G(i)を走査信号線GL(i)に印加すると共に(i=1,2,…,N)、図12に示すように画素値としての信号値が変化するデータ信号Sa(j),Sb(j)をデータ信号線SLaj,SLbjにそれぞれ印加すればよい(j=1,2,…,M)。したがって、例えば、或るフレーム期間では、1番目の水平期間においてD11,D21(B),D22(B),D12,D13,D23(B),D24(B),D14,……という順に並び、2番目の水平期間においてD31,D41(B),D42(B),D32,D33,D43(B),D44(B),D34,……という順に並ぶ画素値からなる画像信号DVをソースドライバ300に供給する必要がある。そして、次のフレーム期間では、1番目の水平期間においてD11(B),D21,D22,D12(B),D13(B),D23,D24,D14(B),……という順に並び、2番目の水平期間においてD31(B),D41,D42,D32(B),D33(B),D43,D44,D34(B),……という順に並ぶ画素値からなる画像信号DVをソースドライバ300に供給する必要がある。なお、ここで“Dkj(B)”は第k行第j列の画素形成部P(k,j)により形成されるべき画素の値が黒の画素値であることを示している。
ダブルソース変換処理部232は、上記のように、図10に示す接続構成の表示部500において図5に示すようなインターレース用黒挿入のパターンで画像表示を行うために、上記のような順で画素値DkjまたはDkj(B)が現れるように(図12参照)、倍速インターレース画像信号SIに含まれる画素値の順序を変更する。これにより、図10に示す接続構成に対応したインターレース画像信号として、ダブルソース対応倍速インターレース画像信号SI2が生成される。
LCDタイミング生成部234は、ソースドライバ300に与えるべきタイミング信号としてデータスタートパルス信号SSP、データクロック信号SCK、およびラッチ信号LS等を生成し、これらのタイミング信号と上記ダブルソース対応倍速インターレース画像信号SI2をこれらのタイミング信号に同期させた信号である画像信号DVとからなるソースドライバ用制御信号Ctsを出力する。またLCDタイミング生成部234は、上記第1の実施形態と同様、ゲートドライバ400に与えるべきタイミング信号としてゲートスタートパルス信号GSPおよびゲートクロック信号GCK等を生成し、ゲートドライバ用制御信号Ctgとして出力する。また、BLタイミング生成部236も、上記第1の実施形態と同様、BL駆動回路650に与えるべき制御信号を生成し、BL駆動制御信号Ctblとして出力する。
ソースドライバ300は、上記のソースドライバ用制御信号Cts(SSP,SCK,LS,DV)に基づき、図12に示すようなデータ信号Sa(1),Sb(1),Sa(2),Sb(2),……,Sa(M),Sb(M)を生成し、表示部500のデータ信号線SLa1,SLb1,SLa2,SLb2,……,SLaM,SLbMにそれぞれ印加する。ゲートドライバ400、BL駆動回路650、およびバックライト600は、上記第1の実施形態と同様に動作する。このようにソースドライバ300、ゲートドライバ400、BL駆動回路650、およびバックライト600が動作することにより、画像信号DVが表す画像に応じた電圧が各画素形成部P(k,j)において液晶に印加されることで、バックライト600からの光の透過率が制御され、図5に示すようなインターレース用黒挿入のパターンでかつ倍速(2倍のフレーム周波数)で、外部からの画像信号DATが表す画像が表示部500に表示される。
<2.2 動作>
次に、本実施形態に係る液晶表示装置の動作について説明する。
図13は、図8に示す本実施形態に係る液晶表示装置の動作を示すタイミングチャートである。本実施形態による画面表示における画素電圧極性のパターンおよびインターレース用黒挿入のパターンは、上記第1の実施形態と同様、図5に示す通りである。以下、図13および図5を参照して、本実施形態に係る液晶表示装置の動作を説明する。なお、図13および図5では、図示の便宜上、水平方向の画素数(=データ信号線数2Mの1/2)および垂直方向の画素数(=走査信号線数N×2)を共に10としている。また、本実施形態に係る液晶表示装置においても、ノーマリブラック方式が採用されており、液晶への印加電圧(画素容量Cpでの保持電圧)が0近傍の値のとき、すなわち画素電極Epに与えられる電圧(画素電圧)Vp(k,j)が共通電圧Vcomに略等しいときに、黒表示となる。
次に、本実施形態に係る液晶表示装置の動作について説明する。
図13は、図8に示す本実施形態に係る液晶表示装置の動作を示すタイミングチャートである。本実施形態による画面表示における画素電圧極性のパターンおよびインターレース用黒挿入のパターンは、上記第1の実施形態と同様、図5に示す通りである。以下、図13および図5を参照して、本実施形態に係る液晶表示装置の動作を説明する。なお、図13および図5では、図示の便宜上、水平方向の画素数(=データ信号線数2Mの1/2)および垂直方向の画素数(=走査信号線数N×2)を共に10としている。また、本実施形態に係る液晶表示装置においても、ノーマリブラック方式が採用されており、液晶への印加電圧(画素容量Cpでの保持電圧)が0近傍の値のとき、すなわち画素電極Epに与えられる電圧(画素電圧)Vp(k,j)が共通電圧Vcomに略等しいときに、黒表示となる。
表示部500における走査信号線GL1~GLNには、図13(A)(B)に示すように、Hレベルの信号が走査信号G(1)~G(N)として順次印加され、これにより、走査信号線GL1~GLNは順次活性化状態となる。活性化状態の走査信号線GLia(副走査信号線GLaia,GLbia)に接続された画素形成部P(2・ia-1,j),P(2・ia,j)(j=1~M)すなわち2・ia-1番目および2・ia番目の水平画素形成部列では、TFT10はオン状態となる。一方、表示部500におけるデータ信号線SLaj,SLbj(j=1~M)には、図13(C)(D)に示すようなデータ信号Sa(j),Sb(j)(j=1~M)がそれぞれ印加される。本実施形態においても上記第1の実施形態と同様、交流駆動の方式としてドット反転駆動方式が採用されている。しかし本実施形態では、表示部500は図10に示すような接続構成を有しており、各垂直画素形成部列における奇数番目の画素形成部P(2i-1,j)または偶数番目の画素形成部P(2i,j)の一方がデータ信号線SLajに接続され他方がデータ信号線SLbjに接続されている。このため、各データ信号Sa(j)またはSb(j)の極性(共通電圧Vcomを基準とする電圧極性)は各フレーム期間内では変化せず、また、インターレース用黒挿入を図5に示すようなパターンとすることから、データ信号Sa(j),Sb(j)は図13(C)(D)に示すような波形となる。
上記のような走査信号G(i)の走査信号線GLiへの印加およびデータ信号Sa(j),Sb(j)のデータ信号線SLaj,SLbjへの印加により、本実施形態においても、各画素形成部P(k,j)の画素液晶への印加電圧すなわち共通電圧Vcomを基準とする各画素形成部P(k,j)の画素電圧Vp(k,j)は、上記第1の実施形態と同様に変化する(i=1~N,k=1~2N,j=1~M)。すなわち、図13(E)~(H)に示すように、各画素電圧Vp(k,j)は、1フレーム期間(1/120秒)間隔で正電圧→黒電圧→負電圧→黒電圧という順に変化し、巨視的には4フレーム期間を1周期として周期的に変化する。したがって、各画素液晶への印加電圧の極性は2フレーム期間毎に反転することになる。
各画素電圧Vp(k,j)が上記のように変化することにより、上記第1の実施形態と同様、表示部500において、隣接2フレームで1画面分の表示画像が構成される倍速インターレース表示が行われ、図5(A)~(D)に示すような画素電圧極性のパターンおよびインターレース用黒挿入のパターンが、4フレーム期間を1周期として繰り返される(図13(E)~(H)参照)。なお、本実施形態における倍速インターレース表示では、奇数番目のフレームが前フレーム、偶数番目のフレームが後フレームとなっているが、偶数番目のフレームを前フレーム、奇数番目のフレームを後フレームとしてもよい。
<2.3 効果>
上記ように本実施形態によれば、図5(A)~(D)に示すような画素電圧極性のパターンおよびインターレース用黒挿入のパターンで倍速インターレース表示が行われるので、上記第1の実施形態と同様の効果を奏し、これに加えて下記のような特有の効果を奏する。
上記ように本実施形態によれば、図5(A)~(D)に示すような画素電圧極性のパターンおよびインターレース用黒挿入のパターンで倍速インターレース表示が行われるので、上記第1の実施形態と同様の効果を奏し、これに加えて下記のような特有の効果を奏する。
すなわち本実施形態によれば、図10に示すように、各垂直画素形成部列に2つのデータ信号線SLaj,SLbjが配設され、1つの走査信号線GLiにより2つの水平画素形成部列が同時に駆動される(当該2つの水平画素形成部列におけるTFT10のオン/オフが同時に制御される)ので、画素容量の充電時間として上記第1の実施形態に比べ2倍の充電時間を確保でき、表示画像の高精細化または液晶パネルの大型化が更に進んでも、また動画性能向上のための液晶パネル駆動の高速化が更に進んでも、画素容量の充電不足を防止することができる。
また本実施形態によれば、表示部500が図10に示すような接続構成を有することから、フリッカーを抑制すべくドット反転駆動方式を採用した場合であっても、図13(C)(D)に示すように、データ信号Sa(j),Sb(j)の極性は、各フレーム期間内では変化せず、しかも、データ信号Sa(j),Sb(j)の値の変化も小さい。このことも、画素容量の充電不足を防止するのに寄与し、また、これによりソースドライバ300の消費電力が大幅に低減される。
<2.4 第2の実施形態の変形例>
既述のように本実施形態では、画像表示における画素電圧極性のパターンおよびインターレース用黒挿入のパターンは、図5に示すようなパターンとなるが、これに代えて、上記第1の実施形態の変形例のように2Hドット反転駆動方式を採用して図7に示すようなパターンとしてもよい。このようにすれば、画素アレイにおいて黒表示の画素形成部を除外した場合に、垂直方向においても1画素形成部毎に画素電圧Vp(k,j)の極性が異なることになる。この場合、表示部500の接続構成を図16に示すような構成とし、この接続構成に対応した順序で画素値を示すデータ信号Sa(j),Sb(j)がソースドライバ300から出力されるように構成すればよい。
既述のように本実施形態では、画像表示における画素電圧極性のパターンおよびインターレース用黒挿入のパターンは、図5に示すようなパターンとなるが、これに代えて、上記第1の実施形態の変形例のように2Hドット反転駆動方式を採用して図7に示すようなパターンとしてもよい。このようにすれば、画素アレイにおいて黒表示の画素形成部を除外した場合に、垂直方向においても1画素形成部毎に画素電圧Vp(k,j)の極性が異なることになる。この場合、表示部500の接続構成を図16に示すような構成とし、この接続構成に対応した順序で画素値を示すデータ信号Sa(j),Sb(j)がソースドライバ300から出力されるように構成すればよい。
図16に示す接続構成では、上記第2の実施形態と同様、各走査信号線GLiは、表示部500の画素アレイにおいて互いに隣接する2つの水平画素形成部列を1組として上記複数の画素形成部P(k,j)(k=1~2N、j=1~M)を組分けすることにより得られる複数組(N組)の水平画素形成部列のいずれか1つと対応し、かつ、対応する組を構成する2つの水平画素形成部列に含まれる各画素形成部に接続されている。また、上記画素アレイにおける各垂直画素形成部列は、隣り合う2つのデータ信号線SLaj,SLbjを1組として上記複数のデータ信号線SLa1~SLbMを組分けすることにより得られる複数組のデータ信号線のいずれか1つと対応し、各組を構成する2つのデータ信号線の一方のデータ信号線SLajは、当該組に対応する垂直画素形成部列に含まれる画素形成部のうち同一走査信号線GLiに接続される(同一走査信号線GLiを構成する副走査信号線GLai、GLbiにそれぞれ接続される)2つの画素形成部P(2i-1,j),P(2i,j)の一方に接続され、当該2つのデータ信号線の他方のデータ信号線SLbjは、当該2つの画素形成部P(2i-1,j),P(2i,j)の他方に接続されている(i=1~N、j=1~M)。これに加えて本変形例では、互いに異なる走査信号線GLi,GLi+1に接続され垂直方向に隣接する2つの画素形成部P(2i,j),P(2i+1,j)は、同一のデータ信号線SLajまたはSLbjに接続されている(i=1~N-1,j=1~M)。
図16に示す上記のような接続構成では、j番目の垂直画素形成部列において、その両側にそれぞれ配置されたデータ信号線SLaj、SLbjのうち一方のデータ信号線SLajに接続される画素形成部と他方のデータ信号線SLbに接続される画素形成部とが垂直方向に2個ずつ交互に並ぶことになる。このため、図16に示す上記のような接続構成を採用した場合には、データ信号Sa(j),Sb(j)の極性を各フレーム期間内で変更することなく、2H反転駆動を行いつつ倍速インターレース表示を行うことができる。すなわち、図7に示すような画素電圧極性のパターンおよびインターレース用黒挿入のパターンで画像を表示することができる。これにより、上記第2の実施形態と同様の効果を確保しつつ、液晶の交流駆動に起因するフリッカーの発生をより確実に抑制することができる。
<3.第3の実施形態>
上記第1および第2の実施形態では、各画素形成部P(i,j)に着目すると、表示すべき画像の画素を形成するフレーム(以下「表示フレーム」という)と黒の画素を形成するフレーム(以下「黒フレーム」という)とが交互に現れる倍速インターレース表示が行われるので(図4(E)~(H)、図13(E)~(H))、各表示フレームの開始時点での液晶の状態が安定しており、液晶の光学応答性を補償するために階調値の時間的変化を強調した駆動電圧で液晶を駆動すること(「オーバシュート駆動」または「OS駆動」と呼ばれる)は特に必要ないと考えられる。しかし、本願発明者がこの点につき検討を行った結果、液晶の光学的応答が遅いことから黒フレームにおける液晶の最終到達状態(透過率)が直前フレームでの状態に依存することが判明した。したがって、上記のように倍速インターレース表示が行われる場合であっても、OS駆動を行うのが好ましい。
上記第1および第2の実施形態では、各画素形成部P(i,j)に着目すると、表示すべき画像の画素を形成するフレーム(以下「表示フレーム」という)と黒の画素を形成するフレーム(以下「黒フレーム」という)とが交互に現れる倍速インターレース表示が行われるので(図4(E)~(H)、図13(E)~(H))、各表示フレームの開始時点での液晶の状態が安定しており、液晶の光学応答性を補償するために階調値の時間的変化を強調した駆動電圧で液晶を駆動すること(「オーバシュート駆動」または「OS駆動」と呼ばれる)は特に必要ないと考えられる。しかし、本願発明者がこの点につき検討を行った結果、液晶の光学的応答が遅いことから黒フレームにおける液晶の最終到達状態(透過率)が直前フレームでの状態に依存することが判明した。したがって、上記のように倍速インターレース表示が行われる場合であっても、OS駆動を行うのが好ましい。
ところで、通常のOS駆動では、表示すべき画像を表す画像信号における現フレームでの階調値(信号値)を直前フレームの階調値(信号値)と比較することにより、階調値の時間的変化を強調した強調画像信号を求められる。しかし、上記第1および第2の実施形態のように倍速インターレース表示が行われる場合には、表示すべき画像の画素を各画素形成部により形成するときの直前フレームは常に黒フレームであるので、現フレームでの階調値を直前フレームでの階調値と比較する意義は低い。そこで、上記のような倍速インターレース表示を行う場合には、現フレームでの階調値をその2フレーム前のフレームでの階調値と比較することにより、階調値の時間的変化を強調した強調画像信号を求めるようにすればよい。そこで、本発明の第3の実施形態に係る液晶表示装置では、下記のような構成により液晶の光学的応答性補償のためのOS駆動が行われる。以下、この第3の実施形態に係る液晶表示装置について説明する。
本実施形態に係る液晶表示装置の全体構成は、上記第2の実施形態と同様であるが(図8)、本実施形態における表示制御回路200は、上記第2の実施形態と相違する部分を有している。そこで以下では、表示制御回路200を中心に説明し、他の構成については、同一または対応する部分に同一の参照符号を付して詳しい説明を省略する。
図17は、本実施形態における表示制御回路200の構成を示すブロック図である。この表示制御回路200は、上記第2の実施形態と同様、入力画像処理回路210、インターレース回路220、および、駆動タイミング制御回路230を備えている。これらの構成要素のうち、インターレース回路220は応答補正部226を備えており、この点で、上記第2の実施形態における表示制御回路200(図9)と相違する。本実施形態における表示制御回路200の他の構成は上記第2の実施形態と同様であるので、詳しい説明を省略する。
本実施形態においても、上記第2の実施形態と同様、外部から入力されるインターレース走査方式の画像信号DATから、入力画像処理回路210ならびにインターレース回路220のフィールド判定部222および黒挿入部224により、倍速インターレース画像信号SIが生成される。この倍速インターレース画像信号SIは応答補正部226に入力される。
応答補正部226は、表示部500としての液晶パネルの光学応答特性を補償すべく、この倍速インターレース画像信号SIよりも階調値の時間的変化を強調した画像信号を強調倍速インターレース画像信号SImとして求める。このために応答補正部226は、図18に示すように、第1および第2のフレームメモリ21,22と強調変換部24とルックアップテーブル(以下「LUT」と略記する)26とを備えている。
応答補正部226に入力された倍速インターレース画像信号SIは、まず、第1のフレームメモリ21および強調変換部24に入力される。第1のフレームメモリ21ではその倍速インターレース画像信号SIが一旦記憶された後に1フレーム期間遅延させた画像信号SI1として読み出され、第2のフレームメモリ22に入力される。第2のフレームはメモリ21では、その1フレーム期間遅延させた画像信号SI1が一旦記憶された後に更に1フレーム期間遅延させた画像信号SI2として読み出され、強調変換部24に入力される。
このようにして強調変換部24には、黒挿入部224からの倍速インターレース画像信号SIとそれを2フレーム期間遅延させた画像信号(以下「2フレーム遅延画像信号」という)SI2とが入力される。強調変換部24は、これら倍速インターレース画像信号SIおよび2フレーム遅延画像信号SI2がそれぞれ示す階調値を比較することにより、液晶の状態(透過率)が短時間で所望の状態(透過率)に到達するように階調値の時間的変化を強調した強調倍速インターレース画像信号SImを生成する。本実施形態では、下記のようにLUT26を用いて強調倍速インターレース画像信号SImを生成するが、倍速インターレース画像信号SIおよび2フレーム遅延画像信号SI2から所定の演算により強調倍速インターレース画像信号SImを生成するようにしてもよい。
LUT26は、倍速インターレース画像信号SIの現フレームでの階調値と2フレーム前のフレームでの階調値からなる2つの階調値に対して強調画像信号の現フレームでの階調値を対応づけるように構成されており、例えばROM(Read Only Memory)によって実現される。強調変換部24は、上記の倍速インターレース画像信号SIの示す信号値を現フレームでの階調値Lcとし、2フレーム遅延画像信号SI2の示す信号値を2フレーム前のフレームでの階調値Lp2とし、これらの階調値Lc,Lp2に対応付けられる階調値Lmを求め、このようにして求められた階調値Lmからなる信号を強調倍速インターレース画像信号SImとして出力する。この強調倍速インターレース画像信号SImは、インターレース回路220から出力されて駆動タイミング制御回路230に入力される。
駆動タイミング制御回路230は、この強調倍速インターレース画像信号SImから、上記第2の実施形態と同様にして、ソースドライバ用制御信号Cts(SSP,SCK,LS,DV)、ゲートドライバ用制御信号Ctg(GSP,GCK)、およびBL駆動制御信号Ctblを生成する。
本実施形態におけるソースドライバ300が上記のソースドライバ用制御信号Cts(SSP,SCK,LS,DV)に基づきデータ信号Sa(1)~Sb(M)を生成し、表示部500のデータ信号線SLa1~SLbMにそれぞれ印加することにより、OS駆動が実現される。このOS駆動により、液晶の光学的応答性が改善されるので、上記の第1および第2の実施形態に比べ動画表示性能が更に向上する。また、黒フレームにおける液晶の最終到達状態が直前フレームでの状態に依存するのが抑制されるので、黒フレームでの液晶の到達状態を意識することなく駆動条件を設定することができる。その結果、到達輝度予測のような複雑な回路を必要とすることなく、簡単かつ低コストでOS駆動のための応答補正部226を実現することができる。なお、応答補正部226においてフレームメモリ21,22に倍速インターレース画像信号SIを記憶させる際に黒の画素値を除外することにより、フレームメモリ21,22に必要な容量を半減することができる。
<4.第4の実施形態>
液晶表示装置のようなホールド型の表示装置において動画が表示されると、人間の視覚には動いている物体の残像が生じ、動いている物体の輪郭がぼやけた状態で視認される(このような現象は「動きボケ」と呼ばれている)。上記第1~第3の実施形態では、図5に示すようなインターレース用黒挿入が行われることによりインパルス効果が得られ、この動きボケが改善される。しかし、液晶の光学的応答が遅いことから、瞬時に黒挿入が行われるわけではない。そこで、本発明の第4の実施形態に係る液晶表示装置は、所定数の表示ラインに対応する領域毎に点灯/消灯を制御可能に構成されたバックライトを用いてより安定したインパルス効果が得られるように構成される。以下、この第4の実施形態に係る液晶表示装置について説明する。
液晶表示装置のようなホールド型の表示装置において動画が表示されると、人間の視覚には動いている物体の残像が生じ、動いている物体の輪郭がぼやけた状態で視認される(このような現象は「動きボケ」と呼ばれている)。上記第1~第3の実施形態では、図5に示すようなインターレース用黒挿入が行われることによりインパルス効果が得られ、この動きボケが改善される。しかし、液晶の光学的応答が遅いことから、瞬時に黒挿入が行われるわけではない。そこで、本発明の第4の実施形態に係る液晶表示装置は、所定数の表示ラインに対応する領域毎に点灯/消灯を制御可能に構成されたバックライトを用いてより安定したインパルス効果が得られるように構成される。以下、この第4の実施形態に係る液晶表示装置について説明する。
図19は、本実施形態に係るアクティブマトリクス型の液晶表示装置の構成を示すブロック図である。この液晶表示装置は、第1~第3の実施形態と同様、ノーマリブラック方式の液晶パネルである表示部500と、その表示部500を駆動するための表示用駆動回路100と、表示部(液晶パネル)500の背面に光を照射する面状照明装置としてのバックライト600と、そのバックライト600を駆動するためのBL駆動回路650とを備えている。上記表示用駆動回路100は、データ信号線駆動回路としてのソースドライバ300と、走査信号線駆動回路としてのゲートドライバ400と、表示制御回路200とを含んでおり、この表示制御回路200は、ソースドライバ300、ゲートドライバ400、およびBL駆動回路650を制御する。
しかし、本実施形態におけるバックライト600は、第1~第3の実施形態におけるバックライト600とは異なり、所定数の表示ラインに対応する水平方向に延びる領域すなわち垂直方向に短い領域(以下「点灯単位領域」という)BLn毎に点灯/消灯を制御可能に構成されている(n=1,2,…,p)。本実施形態では各点灯単位領域BL1~BLpにおける光源として複数個の発光ダイオード(LED)が使用されているが、これらのLEDに代えて冷陰極管を使用してもよい。
本実施形態におけるBL駆動回路650は、このようなバックライト600を駆動可能な構成となっており、このBL駆動回路650により、バックライト600における点灯単位領域BL1~BLpが走査信号線GLiの順次的な駆動に連動して点灯および消灯するように制御される(このように動作するバックライトは「スキャンバックライト」と呼ばれる)。本実施形態における表示制御回路200で、このようにバックライト600を動作させるためにBL駆動回路650に与えるべき制御信号がBL駆動制御信号Ctblとして生成される。その他の構成については第3の実施形態と同様であるので同一部分には同一符号を付して詳しい説明を省略し、以下では相違部分を中心に本実施形態について説明する。
図20は、本実施形態における表示制御回路200の構成を示すブロック図である。この表示制御回路200は、上記第3の実施形態と同様、入力画像処理回路210、インターレース回路220、および、駆動タイミング制御回路230を備えている。これらの構成要素のうち駆動タイミング制御回路230におけるBLタイミング生成部236は、上記第3の実施形態(図17)と相違する。本実施形態における表示制御回路200の他の構成は上記第3の実施形態と同様であるので、詳しい説明を省略する。
本実施形態においても、上記第3の実施形態と同様、外部から入力されるインターレース走査方式の画像信号DATから、入力画像処理回路210、インターレース回路220、ならびに駆動タイミング制御回路のダブルソース変換処理部232およびLCDタイミング生成部234により、ソースドライバ用制御信号Cts(SSP,SCK,LS,DV)、および、ゲートドライバ用制御信号Ctg(GSP,GCK)が生成される。
本実施形態における駆動タイミング制御回路230に含まれるBLタイミング生成部236は、図21に示すように、ゲートドライバ用制御信号Ctg(GSP,GCK)に基づき、当該ゲートドライバ用制御信号Ctgに同期したBL駆動制御信号Ctblを生成する。このBL駆動制御信号Ctblは、表示制御回路200から出力されてBL駆動回路650に入力される。
BL駆動回路650は、このBL駆動制御信号に基づきp個のBL駆動信号Dbl1~Dblpを生成する。図21に示すように、BL駆動回路650には、p個のローパスフィルタLPF1~LPFpが設けられており、上記BL駆動信号Dbl1~Dblpは、これらのローパスフィルタLPF1~LPFpをそれぞれ介して出力され、上記の点灯単位領域BL1~BLpの点灯/消灯を制御する信号としてバックライト600に与えられる。このようにローパスフィルタLPF1~LPFpを通過したBL駆動信号Dbl1~Dblpによってバックライト600における各点灯単位領域BL1~BLpの点灯/消灯が制御される。これらのローパスフィルタLPF1~LPFpの特性は、バックライト600から表示部500としての液晶パネルへの照射光量が上記点灯単位領域BL1~BLp間で極端に変動しないように設定されている。このようなローパスフィルタLPF1~LPFpを使用することにより、ブロック別れ等による表示品位の低下を抑制することができる。
図22は、本実施形態におけるバックライト600の動作を説明するための信号波形図である。本実施形態においても、ゲートドライバ400が上記ゲートドライバ用制御信号Ctg(GSP,GCK)に基づき表示部500の走査信号線GL1~GLNに走査信号G(1)~G(N)を印加すると共に、ソースドライバ300が上記ソースドライバ用制御信号Cts(SSP,SCK,LS,DV)に基づき表示部500のデータ信号線SLa1~SLbMにデータ信号Sa(1)~Sb(M)を印加することにより、画像信号DVの表す画素値を示す電圧が各画素電極Epに印加される。これにより、画素電極Epの電圧(画素電圧)Vp(k,j)は、図22(A)(B)において実線で示すように、1フレーム期間(1/120秒)間隔で正電圧→黒電圧→負電圧→黒電圧という順に変化し、巨視的には4フレーム期間を1周期として周期的に変化する。これにより、表示部500の各画素形成部P(k,j)によって形成される画素の輝度は、図22(A)(B)において一点鎖線で示すように変化する(この一点鎖線は、実線で示すような画素電圧Vp(k,j)に対応する電圧が画素液晶に印加されたときの当該画素液晶の光学的応答を示している)。
図22(A)(B)において一点鎖線で示すように、画素液晶の光学的応答特性により画素が所望の輝度に達するまでに相当程度の時間を要する。このため、所望の輝度に達するまでの過渡的な状態の期間ではバックライト600から表示部500(液晶パネル)への光の照射を抑止するのが好ましい。そこで、図22(C)に示すように、バックライト600における各点灯単位領域BLnが、対応する各画素形成部P(k,j)についての黒フレーム(当該画素形成部P(k,j)の画素電極Ecに黒電圧が与えられているフレーム期間)の開始時点の前後を含む所定期間で点灯状態となり、それ以外の期間すなわち対応する各画素形成部P(k,j)により形成すべき画素が所望の輝度に達するまでの過渡的な状態の期間で消灯するように、各BL駆動信号Dbln(n=1~p)がBL駆動回路650により生成される。
このようなBL駆動信号Dbl1~Dblpによりバックライト600における点灯単位領域BL1~BLpの点灯/消灯が制御されることにより、インパルス効果を安定化させ、動画性能を更に向上させることができる。ここで、バックライト600における各点灯単位領域BLn(n=1~p)が消灯している期間の各フレーム期間における割合は、1/2以上とするのが好ましい。これにより、消灯期間での光量積分を考慮することなく、より限られた期間での液晶の光学的応答を制御することで、フレーム間のクロストークをより完全に解消し、動きボケをより低減することができる。
このようなバックライト600における各点灯単位領域BLnの点灯/消灯の制御によるインパルス化に代えて、表示部500としての液晶パネルへの黒電圧の印加による黒挿入でインパルス化を行う場合には、黒の画素の表示期間の割合を3/4程度にするとインパルス化の効果が最大になるとされている。しかし、その場合には、黒の画素の表示期間の割合を3/4程度に設定しても、液晶の光学的応答性から、本実施形態のような十分なインパルス化の効果は得られない。また、この場合、黒挿入に起因するフリッカーを防止するために駆動周波数を(例えば240Hzまで)上げる必要があり、更に、液晶の光学的応答性に起因してフレーム間のクロストークが発生するという問題もある。
なお、図22(A)(B)では、画素電圧Vp(1,j)とVp(2,j)とは同時に変化しているように描かれているが、実際には、垂直方向に隣接する画素電極Epの電圧(画素電圧Vp(k,j)とVp(k+1,j))が変化する時点は1水平期間ずれている。このため、1つの点灯単位領域BLnが例えばq個(複数個)の表示ラインに対応する場合、その点灯単位領域BLnの点灯/消灯のタイミングは(q-1)水平期間のずれを考慮して設定する必要がある。しかし、比q/N(Nは走査信号線数)が十分に小さい値となるようにqが設定されるので、通常、点灯単位領域BLnの点灯/消灯のタイミングの設定に際し(q-1)水平期間のずれは問題にはならない。
<5.その他の実施形態>
既述のように上記の各実施形態に係る液晶表示装置では、各画素形成部P(k,j)の画素液晶への印加電圧すなわち共通電圧Vcomを基準とする画素電圧Vp(k,j)は、図23(A)に示すように、1フレーム期間(1/120秒)間隔で正電圧→黒電圧→負電圧→黒電圧という順に変化し、巨視的には4フレーム期間を1周期として周期的に変化する。これを画素形成部P(k,j)により形成される画素が表示すべき画像の画素か黒の画素かという観点から見ると、表示フレームと黒フレームが交互に現れることになる。したがって、液晶表示装置におけるような交流駆動を必要としない電圧制御方式のアクティブマトリクス型表示装置に本発明を適用した場合には、画素電圧Vp(k,j)は、巨視的には、図23(B)に示すように2フレーム期間を1周期として周期的に変化する。これは、図23(A)の場合と同様、表示フレームと黒フレームとが交互に現れることを意味する。なお、本発明は、上記のような電圧制御方式のアクティブマトリクス型表示装置だけでなく、電流制御方式のアクティブマトリクス型表示装置(例えば有機EL(Electroluminescenece)表示装置)にも適用可能である。
既述のように上記の各実施形態に係る液晶表示装置では、各画素形成部P(k,j)の画素液晶への印加電圧すなわち共通電圧Vcomを基準とする画素電圧Vp(k,j)は、図23(A)に示すように、1フレーム期間(1/120秒)間隔で正電圧→黒電圧→負電圧→黒電圧という順に変化し、巨視的には4フレーム期間を1周期として周期的に変化する。これを画素形成部P(k,j)により形成される画素が表示すべき画像の画素か黒の画素かという観点から見ると、表示フレームと黒フレームが交互に現れることになる。したがって、液晶表示装置におけるような交流駆動を必要としない電圧制御方式のアクティブマトリクス型表示装置に本発明を適用した場合には、画素電圧Vp(k,j)は、巨視的には、図23(B)に示すように2フレーム期間を1周期として周期的に変化する。これは、図23(A)の場合と同様、表示フレームと黒フレームとが交互に現れることを意味する。なお、本発明は、上記のような電圧制御方式のアクティブマトリクス型表示装置だけでなく、電流制御方式のアクティブマトリクス型表示装置(例えば有機EL(Electroluminescenece)表示装置)にも適用可能である。
上記の各実施形態では、インターレース回路220内の黒挿入部224において、プログレッシブ画像信号SPに対し1水平期間おきに黒信号が挿入され(図4、図13)、表示画面には1走査ラインおきに黒の表示ラインが現れるが(図5)、本発明におけるインターレース用黒挿入は、このような態様に限定されない。例えば、プログレッシブ画像信号SPに対し2水平期間おきに黒信号を挿入し、表示画面において2走査ラインおきに黒の表示ラインが現れるようにしてもよい。このような構成を液晶表示装置で採用した場合、画素電圧Vp(k,j)は、図23(C)に示すように、1フレーム期間間隔で正電圧→正電圧→黒電圧→負電圧→負電圧→黒電圧という順に変化し、巨視的には6フレーム期間を1周期として周期的に変化する。また、このような構成を交流駆動を必要としない電圧制御方式のアクティブマトリクス型表示装置で採用した場合には、画素電圧Vp(k,j)は、巨視的には、図23(D)に示すように3フレーム期間を1周期とする周期的に変化する。図23(C)および図23(D)のいずれの場合においても、画素形成部P(k,j)により形成される画素が表示すべき画像の画素か黒の画素かという観点から見ると、2つの表示フレームが現れる毎に1つの黒フレームが現れることになる。図23(C)または図23(D)に示すような画素電圧Vp(k,j)によるインターレース用黒挿入によれば、上記第1~第4の実施形態に比べ(図23(A))表示画面の平均輝度が増大するので、明るい表示画像を得ることができる。
上記の各実施形態では、倍速インターレース画像信号SI等を得るためのIP変換や、フレーム周波数変換、インターレース用黒挿入は、入力画像処理回路210およびインターレース回路220としてハードウェア的に実現されているが(図2、図9、図17、図20)、これに代えて、これらの機能の一部または全部を、CPU等が所定のプログラムを実行することによりソフトウェア的に実現するようにしてもよい。この場合、表示制御回路200を例えば図24に示すように、既述の駆動タイミング制御回路230を備えると共に、中央処理装置としてのCPU252とRAM(Random Access Memory)254およびROM(Read-Only Memory)255からなるメモリ256とI/Oインターフェース部258からなるデータ処理部250を備える構成とすることができる。この構成を有する液晶表示装置の場合、上記プログラムは、典型的にはメーカが当該液晶表示装置を出荷する前にROM255に格納される。このROM255は、書き込み可能なPROM(Programmable ROM)、特に書き換え可能なEEPROM(Electrically Erasable Programmable ROM)であることが好ましい。また、当該液晶表示装置が例えばパーソナルコンピュータに接続されている場合には、使用者が上記プログラムの記録媒体としてのCD-ROMまたはDVD-ROMを購入し、そのパーソナルコンピュータのCD-ROM駆動装置等に装着し、そのCD-ROM等からそのプログラムを読み出して、当該液晶表示装置のデータ処理部250に転送し、ROM255に格納する。また、これに代えて、そのパーソナルコンピュータが所定の通信回線を介して送られてくる上記プログラムを受信して、当該液晶表示装置のデータ処理部250に転送し、ROM255に格納するようにしてもよい。また、パーソナルコンピュータによらずにプログラム可能なデバイスとして、近年では大規模なFPGA(Field-Programmable Gate Array)が発達し、さらにCell(商標)等のようなプログラム可能なIC(Integrated Circuit)が発達し、その結果、特定のハードウェアを設計せずに本発明の駆動や本発明に必要な画像処理を行うことができるようになってきている。本発明の駆動方式はICの実装形態によらないので、このようなIC(より一般的にはプログラム可能なデバイス)で本発明の駆動を実現するためのプログラム、より詳しくは本発明の表示装置において表示用駆動回路に表示部を駆動させるための信号をプログラム可能なデバイスに生成させるためのプログラムや、そのプログラムを当該プログラム可能なデバイスに供給可能に格納したEEPROM等の記録媒体も本発明に属する。
上記の各実施形態のように本発明を液晶表示装置に適用した場合、VA(Vertical Alignment)方式の液晶パネルまたはIPS(In Plane Switching)方式の液晶パネル等、いずれの方式の液晶パネルを表示部500として使用してもよいが、VA方式の液晶パネルを使用するのが好ましい。VA方式の液晶パネルを使用すれば、他の方式の液晶パネルに比べ、黒フレームでの液晶の光学的応答が比較的早くより安定な駆動を行うことができる。また、VA方式の液晶パネルには、基本的にコントラスト比が高く階調の調整が容易であるという利点もある。なお、このVA方式の液晶パネルとして、ポリマー配向支持(PSA:Polymer Sustained Alignment)技術を利用したものや、UV2Aと呼ばれる光配向技術を利用したもの等、各種の液晶パネルを使用することができる。
本発明は、アクティブマトリクス型の表示装置およびその駆動方法に適用されるものであり、例えば薄膜トランジスタ等のスイッチング素子を用いたアクティブマトリクス型の液晶表示装置に適用することができる。
10 …薄膜トランジスタ(TFT)(スイッチング素子)
100 …表示用駆動回路
200 …表示制御回路
210 …入力画像処理回路(信号形式変換器)
212 …IP変換部
216 …倍速処理部(フレーム周波数変換器)
220 …インターレース回路
230 …駆動タイミング制御回路
300 …ソースドライバ(データ信号線駆動回路)
400 …ゲートドライバ(走査信号線駆動回路)
500 …表示部(液晶パネル)
600 …バックライト(面状照明装置)
650 …BL駆動回路
Cp …画素容量
Ep …画素電極
Ec …共通電極
GLi …走査信号線(i=1~N)
GLai、GLbi …走査信号線(i=1~N)
SLj …データ信号線(j=1~M)
SLaj、SLbj …データ信号線(j=1~M)
G(i) …走査信号(i=1~N)
S(j) …データ信号(j=1~M)
Sa(j)、Sb(j) …データ信号(j=1~M)
P(i,j) …画素形成部(i=1~N,j=1~M)
P(k,j) …画素形成部(k=1~2N,j=1~M)
100 …表示用駆動回路
200 …表示制御回路
210 …入力画像処理回路(信号形式変換器)
212 …IP変換部
216 …倍速処理部(フレーム周波数変換器)
220 …インターレース回路
230 …駆動タイミング制御回路
300 …ソースドライバ(データ信号線駆動回路)
400 …ゲートドライバ(走査信号線駆動回路)
500 …表示部(液晶パネル)
600 …バックライト(面状照明装置)
650 …BL駆動回路
Cp …画素容量
Ep …画素電極
Ec …共通電極
GLi …走査信号線(i=1~N)
GLai、GLbi …走査信号線(i=1~N)
SLj …データ信号線(j=1~M)
SLaj、SLbj …データ信号線(j=1~M)
G(i) …走査信号(i=1~N)
S(j) …データ信号(j=1~M)
Sa(j)、Sb(j) …データ信号(j=1~M)
P(i,j) …画素形成部(i=1~N,j=1~M)
P(k,j) …画素形成部(k=1~2N,j=1~M)
Claims (23)
- プログレッシブ走査に基づく画像信号であるプログレッシブ画像信号を用いて画像を表示するアクティブマトリクス型の表示装置であって、
マトリクス状に配置された複数の画素形成部からなる画素アレイを含む表示部と、
前記プログレッシブ画像信号に基づき前記表示部を駆動するための表示用駆動回路とを備え、
前記表示用駆動回路は、
前記プログレッシブ画像信号に含まれる隣接2フレームの信号のうち一方のフレームの信号である第1信号に基づき画像表示が行われるフレーム期間では、当該第1信号が表す画像における奇数番目の走査ラインの画像が前記画素アレイにおける奇数番目の走査ラインの画素形成部群によって形成されると共に、前記画素アレイにおける偶数番目の走査ラインの画素形成部群によって黒の表示ラインが形成されるように、前記表示部を駆動し、
前記隣接2フレームの信号のうち他方のフレームの信号である第2信号に基づき画像表示が行われるフレーム期間では、当該第2信号が表す画像における偶数番目の走査ラインの画像が前記画素アレイにおける偶数番目の走査ラインの画素形成部群によって形成されると共に、前記画素アレイにおける奇数番目の走査ラインの画素形成部群によって黒の表示ラインが形成されるように、前記表示部を駆動することを特徴とする、表示装置。 - 前記偶数番目の走査ラインの画素形成部群によって形成される前記黒の表示ラインおよび前記奇数番目の走査ラインの画素形成部群によって形成される前記黒の表示ラインは 、最大輝度の10%よりも低い輝度で表示されることを特徴とする、請求項1に記載の表示装置。
- 前記偶数番目の走査ラインの画素形成部群によって形成される前記黒の表示ラインおよび前記奇数番目の走査ラインの画素形成部群によって形成される前記黒の表示ラインは 、最大輝度の1%よりも高く10%よりも低い輝度で表示されることを特徴とする、請求項1に記載の表示装置。
- 前記表示用駆動回路は、プログレッシブ走査に基づく入力画像信号を受け取り、当該入力画像信号のフレーム周波数を2倍に変更することにより前記プログレッシブ画像信号を生成するフレーム周波数変換器を含むことを特徴とする、請求項1に記載の表示装置。
- 前記表示用駆動回路は、インターレース走査に基づく入力画像信号を受け取り、当該入力画像信号の走査方式をプログレッシブ走査方式に変更すると共に当該入力画像信号のフレーム周波数を2倍に変更することにより前記プログレッシブ画像信号を生成する信号形式変換器を含むことを特徴とする、請求項1に記載の表示装置。
- 前記表示用駆動回路は、前記プログレッシブ画像信号における隣接2フレームのうち、一方のフレームでは偶数番目の走査ラインに相当する画素値を黒の画素値に置き換え、他方のフレームでは奇数番目の走査ラインに相当する画素値を黒の画素値に置き換えることにより、インターレース画像信号を生成し、当該インターレース画像信号に基づき前記表示部を駆動することを特徴とする、請求項1に記載の表示装置。
- 前記表示部は、
第1方向に延びる複数の走査信号線と、
第2方向に延び前記複数の走査信号線と交差する複数のデータ信号線とを更に含み、
前記複数の画素形成部は、前記複数のデータ信号線および前記複数の走査信号線に沿ってマトリクス状に配置されており、
各走査信号線は、前記画素アレイにおいて互いに隣接し前記第1方向に延びる2つの画素形成部列を1組として前記複数の画素形成部を組分けすることにより得られる複数組の画素形成部列のいずれか1つと対応し、かつ、対応する組を構成する2つの画素形成部列に含まれる各画素形成部に接続されており、
前記画素アレイにおいて前記第2方向に延びる各画素形成部列は、隣り合う2つのデータ信号線を1組として前記複数のデータ信号線を組分けすることにより得られる複数組のデータ信号線のいずれか1つと対応し、各組を構成する2つのデータ信号線の一方は、当該組に対応する画素形成部列に含まれる画素形成部のうち同一走査信号線に接続される2つの画素形成部の一方に接続され、当該2つのデータ信号線の他方は、当該2つの画素形成部の他方に接続されており、
前記表示用駆動回路は、
前記複数の走査信号線を選択的に活性化する走査信号線駆動回路と、
前記表示部において表示すべき画像を表す複数のデータ信号を前記プログレッシブ画像信号に基づいて生成し前記複数のデータ信号線に印加するデータ信号線駆動回路と
を含むことを特徴とする、請求項1に記載の表示装置。 - 互いに異なる走査信号線に接続され前記第2方向に隣接する2つの画素形成部は同一のデータ信号線に接続されていることを特徴とする、請求項7に記載の表示装置。
- 前記データ信号線駆動回路は、前記画素アレイにおいて前記第2方向に延びる各画素形成部列に対応する2つのデータ信号線に互いに極性の異なるデータ信号が印加されるように前記複数のデータ信号を生成することを特徴とする、請求項7または8に記載の表示装置。
- 前記データ信号線駆動回路は、前記画素アレイにおいて前記第1方向に隣接する2つの画素形成部にそれぞれ接続された2つのデータ信号線に互いに極性の異なるデータ信号が印加されるように前記複数のデータ信号を生成することを特徴とする、請求項7または8に記載の表示装置。
- 前記データ信号線駆動回路は、前記複数のデータ信号線を介して前記複数の画素形成部に与えられるデータ信号の極性が偶数フレーム期間毎に反転するように前記複数のデータ信号を生成することを特徴とする、請求項7または8に記載の表示装置。
- 前記表示用駆動回路は、前記プログレッシブ画像信号における現フレームの信号値を2フレーム前の信号値と比較することにより前記プログレッシブ画像信号の時間的変化を強調した画像信号を強調画像信号として求め、当該強調画像信号に基づき前記表示部を駆動することを特徴とする、請求項1に記載の表示装置。
- 前記表示用駆動回路は、
前記プログレッシブ画像信号を2フレーム期間遅延させるための第1および第2のフレームメモリと、
前記プログレッシブ画像信号における現フレームの信号値を前記第1および第2のフレームメモリによって得られる2フレーム前の信号値と比較することにより前記強調画像信号を求める強調変換部と
を含み、
前記表示用駆動回路は、前記プログレッシブ画像信号が示す信号値から前記黒の表示ラインを構成する画素に対応する信号値を除外した信号値の前記第1のフレームメモリへの書き込みおよび前記第1のフレームメモリからの読み出し、前記第1のフレームメモリから読み出された前記信号値の前記第2のフレームメモリへの書き込みおよび前記第2のフレームメモリからの読み出しを順次行うことにより、前記プログレッシブ画像信号における前記2フレーム前の信号値を得ることを特徴とする、請求項12に記載の表示装置。 - 前記表示部の背面に光を照射するための面状照明装置と、
前記プログレッシブ画像信号に基づき前記画像を前記表示部により表示するための走査に連動して、所定数の走査ラインに対応する所定領域単位で前記面状照明装置を点灯および消灯させるBL駆動回路とを更に備え、
前記表示部は、前記面状照明装置からの光の透過率を前記プログレッシブ画像信号に基づき各画素形成部に与えられる駆動電圧に応じて制御することにより前記画像を表示する液晶パネルであり、
前記BL駆動回路は、各画素形成部により前記画像の画素を形成するための各フレーム期間のうち所定期間だけ前記面状照明装置から当該画素形成部に光が照射されないように、前記面状照明装置を前記所定領域単位で点灯および消灯させることを特徴とする、請求項1に記載の表示装置。 - 前記BL駆動回路は、前記所定期間が1フレーム期間の1/2以上となるように、前記面状照明装置を前記所定領域単位で点灯および消灯させることを特徴とする、請求項14に記載の表示装置。
- 前記BL駆動回路は、前記面状照明装置における前記所定領域の数に対応した複数のローパスフィルタを含み、前記面状照明装置における前記所定領域をそれぞれ点灯および消灯させるための複数の駆動信号を前記複数のローパスフィルタをそれぞれ介して前記面状照明装置に与えることを特徴とする、請求項14に記載の表示装置。
- 前記BL駆動回路は、前記黒の表示ラインを構成する画素を各画素形成部が形成するための各フレームの開始時点の前後を含む所定期間だけ前記面状照明装置から当該画素形成部に光が照射されるように、前記面状照明装置を前記所定領域単位で点灯および消灯させることを特徴とする、請求項14に記載の表示装置。
- 前記面状照明装置は、複数の発光ダイオードを光源として含むことを特徴とする、請求項14に記載の表示装置。
- 前記表示部は、VA方式の液晶パネルであることを特徴とする、請求項1に記載の表示装置。
- 請求項1から19のいずれか1項に記載の表示装置において前記表示用駆動回路に前記表示部を駆動させるための信号をプログラム可能なデバイスに生成させるためのプログラム。
- 請求項1から19のいずれか1項に記載の表示装置において前記表示用駆動回路に前記表示部を駆動させるための信号をプログラム可能なデバイスに生成させるためのプログラムを、当該プログラム可能なデバイスに供給可能に格納した記録媒体。
- マトリクス状に配置された複数の画素形成部からなる画素アレイを含む表示部を有し、プログレッシブ走査に基づく画像信号であるプログレッシブ画像信号を用いて画像を当該表示部に表示するアクティブマトリクス型の表示装置のための表示用駆動回路であって、
前記プログレッシブ画像信号に含まれる隣接2フレームの信号のうち一方のフレームの信号である第1信号に基づき画像表示が行われるフレーム期間では、当該第1信号が表す画像における奇数番目の走査ラインの画像が前記画素アレイにおける奇数番目の走査ラインの画素形成部群によって形成されると共に、前記画素アレイにおける偶数番目の走査ラインの画素形成部群によって黒の表示ラインが形成されるように、前記表示部を駆動し、
前記隣接2フレームの信号のうち他方のフレームの信号である第2信号に基づき画像表示が行われるフレーム期間では、当該第2信号が表す画像における偶数番目の走査ラインの画像が前記画素アレイにおける偶数番目の走査ラインの画素形成部群によって形成されると共に、前記画素アレイにおける奇数番目の走査ラインの画素形成部群によって黒の表示ラインが形成されるように、前記表示部を駆動することを特徴とする、表示用駆動回路。 - マトリクス状に配置された複数の画素形成部からなる画素アレイを含む表示部を有し、プログレッシブ走査に基づく画像信号であるプログレッシブ画像信号を用いて画像を当該表示部に表示するアクティブマトリクス型の表示装置のための駆動方法であって、
前記プログレッシブ画像信号に含まれる隣接2フレームの信号のうち一方のフレームの信号である第1信号に基づき画像表示が行われるフレーム期間では、当該第1信号が表す画像における奇数番目の走査ラインの画像が前記画素アレイにおける奇数番目の走査ラインの画素形成部群によって形成されると共に、前記画素アレイにおける偶数番目の走査ラインの画素形成部群によって黒の表示ラインが形成されるように、前記表示部を駆動するステップと、
前記隣接2フレームの信号のうち他方のフレームの信号である第2信号に基づき画像表示が行われるフレーム期間では、当該第2信号が表す画像における偶数番目の走査ラインの画像が前記画素アレイにおける偶数番目の走査ラインの画素形成部群によって形成されると共に、前記画素アレイにおける奇数番目の走査ラインの画素形成部群によって黒の表示ラインが形成されるように、前記表示部を駆動するステップと
を備えることを特徴とする、駆動方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/976,130 US9478177B2 (en) | 2010-12-28 | 2011-12-21 | Display device configured to perform pseudo interlace scanning image display based on progressive image signal, driving method thereof, and display driving circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-294189 | 2010-12-28 | ||
JP2010294189 | 2010-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012090814A1 true WO2012090814A1 (ja) | 2012-07-05 |
Family
ID=46382923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/079616 WO2012090814A1 (ja) | 2010-12-28 | 2011-12-21 | 表示装置、その駆動方法、および表示用駆動回路 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9478177B2 (ja) |
WO (1) | WO2012090814A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103618888A (zh) * | 2013-12-12 | 2014-03-05 | 深圳市创维群欣安防科技有限公司 | 一种基于fpga的视频图像增强方法和装置 |
JPWO2013015177A1 (ja) * | 2011-07-22 | 2015-02-23 | シャープ株式会社 | 映像信号制御装置、映像信号制御方法、および表示装置 |
US12067940B2 (en) | 2020-03-02 | 2024-08-20 | Sharp Kabushiki Kaisha | Display device and method for driving same |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6198599B2 (ja) * | 2013-12-16 | 2017-09-20 | キヤノン株式会社 | 撮像装置及びその制御方法 |
TWI572963B (zh) * | 2014-02-12 | 2017-03-01 | 友達光電股份有限公司 | 顯示面板 |
TWI557716B (zh) * | 2015-07-22 | 2016-11-11 | 友達光電股份有限公司 | 顯示器及其驅動方法 |
TWI598864B (zh) * | 2016-10-21 | 2017-09-11 | 友達光電股份有限公司 | 顯示裝置 |
WO2018116939A1 (ja) * | 2016-12-21 | 2018-06-28 | シャープ株式会社 | 表示装置 |
CN108418607B (zh) * | 2017-02-09 | 2021-06-01 | 台达电子企业管理(上海)有限公司 | 电力线载波通讯串扰抑制方法、装置和系统 |
JP2019078799A (ja) * | 2017-10-20 | 2019-05-23 | 三菱電機株式会社 | 液晶表示装置 |
TWI685698B (zh) * | 2019-01-03 | 2020-02-21 | 友達光電股份有限公司 | 畫素陣列基板及其驅動方法 |
CN110189718A (zh) * | 2019-05-29 | 2019-08-30 | 深圳市华星光电技术有限公司 | 像素驱动电路及像素驱动方法 |
KR102662562B1 (ko) * | 2019-12-20 | 2024-04-30 | 엘지디스플레이 주식회사 | 표시장치, 구동회로, 및 구동방법 |
CN112017610A (zh) * | 2020-09-04 | 2020-12-01 | Tcl华星光电技术有限公司 | 显示面板及其驱动方法 |
CN112750399A (zh) * | 2020-12-31 | 2021-05-04 | 上海天马有机发光显示技术有限公司 | 显示面板的驱动方法、装置、显示装置、设备及存储介质 |
CN112885278B (zh) * | 2021-01-20 | 2022-05-31 | 云谷(固安)科技有限公司 | 显示驱动装置和方法 |
TWI852034B (zh) * | 2021-06-30 | 2024-08-11 | 聯詠科技股份有限公司 | 背光驅動裝置及其操作方法 |
KR20230013949A (ko) * | 2021-07-20 | 2023-01-27 | 엘지디스플레이 주식회사 | 표시 패널 및 이를 포함하는 표시 장치 및 이의 구동 방법 |
KR20230033772A (ko) * | 2021-09-01 | 2023-03-09 | 엘지디스플레이 주식회사 | 표시 패널 및 이를 포함하는 표시 장치 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02214818A (ja) * | 1989-02-16 | 1990-08-27 | Hitachi Ltd | 液晶表示装置及びその駆動方法 |
JP2004062134A (ja) * | 2002-06-03 | 2004-02-26 | Sharp Corp | 液晶表示装置 |
JP2006106062A (ja) * | 2004-09-30 | 2006-04-20 | Sharp Corp | アクティブマトリクス型液晶表示装置およびそれに用いる液晶表示パネル |
WO2007077830A1 (ja) * | 2005-12-27 | 2007-07-12 | Sharp Kabushiki Kaisha | データ処理装置、データ処理方法、表示パネル駆動装置、液晶表示装置、データ処理プログラム、記録媒体 |
JP2010048958A (ja) * | 2008-08-20 | 2010-03-04 | Epson Imaging Devices Corp | 画像処理装置、その処理方法および画像表示システム |
JP2010249899A (ja) * | 2009-04-13 | 2010-11-04 | Seiko Epson Corp | 表示装置及び表示装置の駆動方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0564108A (ja) | 1991-08-30 | 1993-03-12 | Mitsubishi Electric Corp | 液晶tvの駆動回路 |
US6545653B1 (en) * | 1994-07-14 | 2003-04-08 | Matsushita Electric Industrial Co., Ltd. | Method and device for displaying image signals and viewfinder |
JP3688601B2 (ja) | 1994-12-27 | 2005-08-31 | 松下電器産業株式会社 | 液晶表示装置およびそれを用いた投射型表示装置 |
JP3715249B2 (ja) * | 2001-04-27 | 2005-11-09 | シャープ株式会社 | 画像処理回路、画像表示装置、並びに画像処理方法 |
AU2003289238A1 (en) * | 2002-12-06 | 2004-06-30 | Sharp Kabushiki Kaisha | Liquid crystal display device |
JP3579046B1 (ja) * | 2003-11-20 | 2004-10-20 | シャープ株式会社 | 液晶表示装置、液晶表示制御方法、並びに、そのプログラムおよび記録媒体 |
JP3717917B2 (ja) * | 2004-01-16 | 2005-11-16 | シャープ株式会社 | 液晶表示装置、液晶表示装置の信号処理装置、そのプログラムおよび記録媒体、並びに、液晶表示制御方法 |
JP2007093660A (ja) * | 2005-09-27 | 2007-04-12 | Hitachi Displays Ltd | 表示装置 |
TW200737082A (en) * | 2006-03-23 | 2007-10-01 | Novatek Microelectronics Corp | LCD device capale of driving in an interlaced scan mode or in a progressive scan mode and related driving method thereof |
US8488060B2 (en) * | 2006-03-29 | 2013-07-16 | Semiconductor Components Industries, Llc | Image signal processing apparatus for converting an interlace signal to a progressive signal |
JP4883524B2 (ja) * | 2006-03-31 | 2012-02-22 | Nltテクノロジー株式会社 | 液晶表示装置、該液晶表示装置に用いられる駆動制御回路及び駆動方法 |
JP4525946B2 (ja) * | 2007-10-19 | 2010-08-18 | ソニー株式会社 | 画像処理装置、画像表示装置および画像処理方法 |
JP4548518B2 (ja) * | 2008-06-11 | 2010-09-22 | ソニー株式会社 | 映像信号表示システム、映像信号再生装置及び映像信号表示方法 |
JP5335653B2 (ja) * | 2009-12-04 | 2013-11-06 | ミツミ電機株式会社 | 液晶表示装置及び液晶表示方法 |
-
2011
- 2011-12-21 US US13/976,130 patent/US9478177B2/en not_active Expired - Fee Related
- 2011-12-21 WO PCT/JP2011/079616 patent/WO2012090814A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02214818A (ja) * | 1989-02-16 | 1990-08-27 | Hitachi Ltd | 液晶表示装置及びその駆動方法 |
JP2004062134A (ja) * | 2002-06-03 | 2004-02-26 | Sharp Corp | 液晶表示装置 |
JP2006106062A (ja) * | 2004-09-30 | 2006-04-20 | Sharp Corp | アクティブマトリクス型液晶表示装置およびそれに用いる液晶表示パネル |
WO2007077830A1 (ja) * | 2005-12-27 | 2007-07-12 | Sharp Kabushiki Kaisha | データ処理装置、データ処理方法、表示パネル駆動装置、液晶表示装置、データ処理プログラム、記録媒体 |
JP2010048958A (ja) * | 2008-08-20 | 2010-03-04 | Epson Imaging Devices Corp | 画像処理装置、その処理方法および画像表示システム |
JP2010249899A (ja) * | 2009-04-13 | 2010-11-04 | Seiko Epson Corp | 表示装置及び表示装置の駆動方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013015177A1 (ja) * | 2011-07-22 | 2015-02-23 | シャープ株式会社 | 映像信号制御装置、映像信号制御方法、および表示装置 |
CN103618888A (zh) * | 2013-12-12 | 2014-03-05 | 深圳市创维群欣安防科技有限公司 | 一种基于fpga的视频图像增强方法和装置 |
CN103618888B (zh) * | 2013-12-12 | 2015-10-14 | 深圳市创维群欣安防科技有限公司 | 一种基于fpga的视频图像增强方法和装置 |
US12067940B2 (en) | 2020-03-02 | 2024-08-20 | Sharp Kabushiki Kaisha | Display device and method for driving same |
Also Published As
Publication number | Publication date |
---|---|
US9478177B2 (en) | 2016-10-25 |
US20130271436A1 (en) | 2013-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012090814A1 (ja) | 表示装置、その駆動方法、および表示用駆動回路 | |
JP4800381B2 (ja) | 液晶表示装置およびその駆動方法、テレビ受像機、液晶表示プログラム、液晶表示プログラムを記録したコンピュータ読み取り可能な記録媒体、並びに駆動回路 | |
US7884890B2 (en) | Liquid crystal display device | |
US8279150B2 (en) | Method and apparatus for processing data of liquid crystal display | |
TWI397734B (zh) | 液晶顯示器及其驅動方法 | |
JP5629439B2 (ja) | 液晶表示装置 | |
KR101393627B1 (ko) | 디스플레이장치 및 그 제어방법 | |
US20070285349A1 (en) | Liquid crystal display device and integrated circuit chip therefor | |
US7737935B2 (en) | Method of driving liquid crystal display device | |
JP2002182621A (ja) | アクティブマトリクス型液晶表示装置およびその駆動方法 | |
JP2004093717A (ja) | 液晶表示装置 | |
JP2009301001A (ja) | 液晶表示装置及びその駆動方法 | |
JP2002055325A (ja) | スイング共通電極を利用した液晶表示装置及びその駆動方法 | |
KR101730552B1 (ko) | 횡전계 방식 액정표시장치 및 그 구동방법 | |
WO2008029536A1 (fr) | Dispositif d'affichage à cristaux liquides et son procédé de commande | |
JP2007058217A (ja) | 表示装置及びその駆動方法 | |
JP2007025691A (ja) | 液晶表示装置及びその駆動方法 | |
US8872742B2 (en) | LCD and drive method thereof | |
JP5662960B2 (ja) | 液晶表示装置及びその駆動方法 | |
US7561138B2 (en) | Liquid crystal display device and method of driving the same | |
JP4497067B2 (ja) | 電気光学装置、電気光学装置用駆動回路および電気光学装置用駆動方法 | |
JP4245550B2 (ja) | 動画質の向上した液晶ディスプレイ及びその駆動方法 | |
US20100315408A1 (en) | Liquid crystal display and method of driving the same | |
JP2004354742A (ja) | 液晶表示装置、液晶表示装置の駆動方法および製造方法 | |
US9082356B2 (en) | Liquid crystal display apparatus and method of driving the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11853697 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13976130 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11853697 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |