WO2012090482A1 - 半導体装置の製造方法および装置 - Google Patents
半導体装置の製造方法および装置 Download PDFInfo
- Publication number
- WO2012090482A1 WO2012090482A1 PCT/JP2011/007292 JP2011007292W WO2012090482A1 WO 2012090482 A1 WO2012090482 A1 WO 2012090482A1 JP 2011007292 W JP2011007292 W JP 2011007292W WO 2012090482 A1 WO2012090482 A1 WO 2012090482A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- forming
- film
- metal
- semiconductor device
- electrode
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 71
- 239000002184 metal Substances 0.000 claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 63
- 239000000758 substrate Substances 0.000 claims abstract description 45
- 230000008569 process Effects 0.000 claims abstract description 27
- 230000007246 mechanism Effects 0.000 claims abstract description 21
- 238000004544 sputter deposition Methods 0.000 claims abstract description 17
- 238000012545 processing Methods 0.000 claims abstract description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 58
- 239000010410 layer Substances 0.000 claims description 45
- 150000004767 nitrides Chemical class 0.000 claims description 38
- 229910052710 silicon Inorganic materials 0.000 claims description 36
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 35
- 239000010703 silicon Substances 0.000 claims description 35
- 229910052757 nitrogen Inorganic materials 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 25
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 18
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 239000010936 titanium Substances 0.000 claims description 10
- 229910052786 argon Inorganic materials 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 7
- 239000011229 interlayer Substances 0.000 claims description 7
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 238000005137 deposition process Methods 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 238000005240 physical vapour deposition Methods 0.000 abstract description 6
- 230000006837 decompression Effects 0.000 abstract description 3
- 238000009413 insulation Methods 0.000 abstract 2
- 238000009825 accumulation Methods 0.000 abstract 1
- 229920001296 polysiloxane Polymers 0.000 abstract 1
- 239000000463 material Substances 0.000 description 16
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 15
- 238000005229 chemical vapour deposition Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 229910004129 HfSiO Inorganic materials 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- 239000012212 insulator Substances 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000001459 lithography Methods 0.000 description 4
- 238000005121 nitriding Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052914 metal silicate Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000002831 nitrogen free-radicals Chemical class 0.000 description 2
- -1 nitrogen ions Chemical class 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 241000009298 Trigla lyra Species 0.000 description 1
- 229910006501 ZrSiO Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/351—Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/345—Magnet arrangements in particular for cathodic sputtering apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/345—Magnet arrangements in particular for cathodic sputtering apparatus
- H01J37/3452—Magnet distribution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/345—Magnet arrangements in particular for cathodic sputtering apparatus
- H01J37/3455—Movable magnets
-
- H01L21/823842—
-
- H01L29/4966—
-
- H01L29/513—
-
- H01L29/517—
-
- H01L29/518—
-
- H01L29/66477—
-
- H01L29/66545—
-
- H01L29/6659—
-
- H01L29/7833—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/2855—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
-
- H01L21/823864—
Definitions
- the present invention relates to a method and apparatus for manufacturing a semiconductor device having a high-dielectric-constant insulating film and a metal gate electrode, and more particularly to a technique for improving the performance of a MOSFET (Metal Oxide Semiconductor Field Transistor).
- MOSFET Metal Oxide Semiconductor Field Transistor
- the threshold voltage of the transistor is determined by the impurity concentration in the channel region and the impurity concentration in the polycrystalline silicon film.
- the threshold voltage of the transistor is determined by the impurity concentration of the channel region and the work function of the gate electrode.
- a material with a work function of Si mid gap (4.6 eV) or less, preferably 4.4 eV or less is desirable for an N-type MOSFET, and work is desired for a P-type MOSFET.
- Non-Patent Document 1 a metal gate electrode is formed using a CVD method, and a high effective work function (5.1 eV) and a good leakage current (Jg) characteristic with respect to an equivalent oxide thickness (EOT) are obtained. It has been.
- Non-Patent Document 2 the transistor characteristics may be deteriorated due to impurities contained in the raw material.
- the PVD method when used, it is considered that the amount of impurities mixed is small compared to the CVD method.
- the leakage current is smaller than that of the CVD method.
- leakage current is improved by forming an electrode having a metal nitride / metal laminate structure while nitriding the surface layer portion of the insulating film (oxide) using a DC sputtering method. It has been reported. However, as the miniaturization progresses (gate length of 32 nm and later), this method has become insufficient.
- An object of the present invention is to provide a semiconductor device manufacturing method and apparatus capable of obtaining a desired effective work function using the PVD method and reducing leakage current without increasing the equivalent oxide thickness. Is to provide.
- a first aspect of the present invention is a method for manufacturing a semiconductor device, comprising: preparing a substrate on which an insulating film having a relative dielectric constant higher than that of a silicon oxide film is formed; A step of depositing a metal nitride film on the insulating film, wherein the step of depositing the metal nitride film includes a plurality of metal targets and a plurality of magnet pieces that form lattice points in a process chamber capable of reducing pressure.
- a second aspect of the present invention is a method for manufacturing a semiconductor device, the step of forming a high dielectric constant insulating film on a semiconductor substrate, and the formation of a first metal nitride layer on the high dielectric constant insulating film A step of forming a silicon layer on the first metal nitride layer, and a source on the semiconductor substrate using at least the high dielectric constant film, the first metal nitride layer, and the silicon layer as a mask.
- Forming a region and a drain region forming an interlayer insulating film on the semiconductor substrate on which the source region and the drain region are formed, and exposing the silicon layer by removing a part thereof; and Removing the silicon layer on the high dielectric constant insulating film to form a trench structure; and forming a second metal nitride layer so as to cover the inside of the trench structure.
- a metal target and magnet pieces for forming lattice points are arranged in a plurality of lattices in a process chamber capable of decompression, And a sputtering deposition process using a cusp magnetic field formed on the target surface by a structure arranged so that adjacent magnet pieces have different polarities, introducing a gas containing nitrogen gas into the processing chamber, It is a step of forming a metal nitride layer by forming the nitrogen plasma by the cusp magnetic field.
- a third aspect of the present invention is a method for manufacturing a semiconductor device, comprising: a first MOS transistor formation region on a semiconductor substrate; and a second MOS transistor formation region having a conductivity type opposite to that of the first MOS transistor.
- a step of exposing the silicon layer, a step of removing the silicon layer on the high dielectric constant insulating film to form a trench structure, and covering the inside of the trench structure A step of sequentially forming a tantalum nitride film and a titanium nitride film, a step of removing the titanium nitride film and the tantalum nitride film covering the bottom of the trench structure on the first MOS transistor formation region, Forming the alloy layer containing titanium and aluminum so as to cover the inside; and forming the aluminum film on the alloy layer so as to fill the inside of the trench structure, and the metal nitride Introducing a nitrogen-containing gas into at least one of the layer, the titanium nitride film, and the tantalum nitride film, a metal target, and magnet pieces for forming lattice points are arranged in a plurality of lattice shapes, and A cusp magnetic field formed on a target surface by a structure in which adjacent magnet pieces are arranged so as
- a device for forming a metal nitride layer a processing chamber capable of decompression, a first electrode provided in the processing chamber and configured to hold a metal target, A second electrode having a substrate holder capable of holding the substrate, a gas inlet for introducing a gas containing nitrogen, and a plurality of magnet pieces forming lattice points are arranged in a lattice pattern in the processing chamber; A magnet mechanism arranged so that adjacent magnet pieces have different polarities, and configured so as to form a cusp magnetic field on the surface of the target when the target is provided on the first electrode; , A DC power source connected to the first electrode, a first high frequency power source for applying a high frequency power to the first electrode superimposed on a direct current voltage from the DC power source, and the second High frequency on electrode Characterized in that it comprises a second high-frequency power source for applying
- a desired effective work function can be obtained, and an improvement in leakage current characteristics can be realized without increasing the equivalent oxide thickness.
- the form of the metal nitride film can be improved leakage current characteristics for oxide thickness equivalent thickness, in FIG. 1 MIS (M etal I nsulator S emiconductor structure) capacitor element Is described as an example.
- MIS Metal etal I nsulator S emiconductor structure
- capacitor element Is described as an example.
- a titanium nitride film 3 as a gate electrode is formed on a p-type silicon substrate 1 having a silicon oxide film and a HfSiO film 2 as a high dielectric constant film as a gate insulating film on the surface. Yes.
- the high dielectric constant material used for the gate insulating film is a material having a relative dielectric constant larger than that of SiO 2 (3.9), and is a metal oxide, a metal silicate, a metal oxide into which nitrogen is introduced, Examples thereof include metal silicate introduced with nitrogen.
- a high dielectric constant film into which nitrogen is introduced is preferable as the gate insulating film from the viewpoint of suppressing crystallization and improving the reliability of the element.
- the metal in the high dielectric constant material is preferably Hf or Zr from the viewpoint of heat resistance of the film and suppression of fixed charge in the film.
- a metal oxide containing Hf or Zr and Si a metal oxynitride containing nitrogen in addition to this metal oxide is preferable, and HfSiO and HfSiON are more preferable.
- a silicon oxide film and a high dielectric constant film laminated thereon are used as the gate insulating film, but the present invention is not limited to this, and the high dielectric constant insulating film alone or the silicon oxynitride film A high dielectric constant film laminated thereon can be used.
- the metal nitride film as the gate electrode preferably contains one or more metal elements selected from the group consisting of Ti, Ta, W and Al or r.
- FIG. 2 shows an outline of an apparatus used in a titanium nitride film forming process in one embodiment of the present invention.
- a semiconductor manufacturing apparatus 100 includes a chamber 201 having an upper electrode 401 and a lower electrode 301 as shown in FIG.
- the chamber 201 functions as a vacuum processing container.
- a vacuum exhaust pump 410 that exhausts the inside of the chamber 201 is connected to the exhaust port 205 and an automatic pressure control mechanism (APC) 431 is provided.
- APC automatic pressure control mechanism
- An upper electrode high-frequency power source 102 and a DC power source 103 are connected to the upper electrode 401 via a matching unit 101.
- the lower electrode 301 is connected to a lower electrode high-frequency power source 305 via a matching unit 304.
- the chamber 201 has a substantially columnar shape, and includes a substantially disc-shaped upper wall (ceiling wall) 202, a substantially cylindrical side wall 203, and a substantially disc-shaped bottom wall 204.
- a pressure gauge 430 (for example, a diaphragm gauge) for measuring pressure is provided near the side wall 203 in the chamber 201.
- the pressure gauge 430 is electrically connected to the automatic pressure control mechanism 431 and is configured to automatically control the pressure in the chamber 201.
- the upper electrode 401 includes an upper wall 202, a magnet mechanism 405, a target electrode (first electrode) 402, an insulator 404, and a shield 403.
- the magnet mechanism 405 is provided below the upper wall 202, and the target electrode 402 is provided below the magnet mechanism 405.
- the insulator 404 insulates the target electrode 402 from the side wall of the chamber 201 and holds the target electrode 402 in the chamber 201. Further, a shield 403 is provided below the insulator 404.
- the target electrode 402 is connected to the upper electrode high-frequency power source 102 and the DC power source 103 via the matching unit 101.
- the main parts of the target electrode 402 include nonmagnetic metals such as Al, SUS, and Cu.
- a material target material (not shown) necessary for forming a film on the substrate 306 can be provided on the reduced pressure side of the target electrode 402. Further, a pipe is formed in the upper electrode 401 and the target electrode 402, and the upper electrode 401 and the target electrode 402 can be cooled by flowing cooling water through the pipe.
- a target containing one or more metal elements selected from the group consisting of Ti, Ta, W, and Al may be used.
- the magnet mechanism 405 includes a magnet support plate 407, a plurality of magnet pieces 406 supported by the magnet support plate 407, and a magnetic field adjusting magnetic body 408 provided on the outermost peripheral side of the plurality of magnet pieces 406. Yes.
- the magnet mechanism 405 can be rotated about the central axis of the material target by a rotation mechanism (not shown).
- the plurality of magnet pieces 406 are arranged adjacent to each other above the target electrode 402 so as to be parallel to the surface of the target electrode 402. In the adjacent magnet piece 406, a closed point cusp magnetic field 411 is formed to confine plasma.
- the magnetic body 408 for magnetic field adjustment is extended so that the magnet piece 406 located on the outer peripheral side partially overlaps on the target electrode 402 side. With such a configuration, the magnetic field strength can be suppressed (controlled) in the gap between the target electrode 402 and the shield 403.
- the lower electrode 301 includes a stage holder 302, a cooling / heating mechanism 412, a bottom wall 204, and a second electrode insulator 303.
- the stage holder 302 is a device for placing the substrate 306, and a cooling / heating mechanism 412 is provided therein.
- the second electrode insulator 303 is a device for electrically insulating and supporting the stage holder 302 and the bottom wall 204 of the chamber 201.
- the lower electrode high-frequency power source 305 is connected to the stage holder 302 via a matching unit 304.
- the stage holder 302 is provided with an electrostatic adsorption device having a monopolar electrode, and this monopolar electrode is connected to a DC power source (not shown).
- a plurality of gas jets are supplied to the stage holder 302 to supply a gas (for example, an inert gas such as Ar) for controlling the temperature of the substrate 306 to the back surface of the substrate 306.
- a gas for example, an inert gas such as Ar
- An outlet and a substrate temperature measuring instrument for measuring the temperature of the substrate are provided.
- a plurality of gas introduction ports 409 for supplying a predetermined gas such as a process gas such as argon into the chamber 201 is provided in the chamber 201.
- the shape of the magnet mechanism 405 will be described in detail with reference to FIG.
- FIG. 2 is a plan view of the magnet mechanism 405 as viewed from the target electrode 402 side. As shown in FIG.
- an annular magnetic field adjustment magnetic body 408 and a magnet piece 406 disposed in the inner peripheral region of the magnetic field adjustment magnetic body 408 are supported by a disk-shaped magnet support 407.
- symbol 403 a indicates the inner diameter of the shield 403
- many small circles indicate the outer shape of each magnet piece 406.
- Each magnet piece 406 has the same shape and the same magnetic flux density.
- the letters N and S indicate the magnetic poles of the magnet piece 406 viewed from the target electrode 402 side.
- the magnet pieces 406 are arranged in a plurality of square lattices (X-axis direction and Y-axis direction) such that each magnet piece 406 forms each lattice point with substantially the same interval (range of 5 to 100 mm).
- the adjacent magnet pieces 406 have opposite polarities.
- the magnet pieces 406 adjacent in the diagonal direction have the same polarity. That is, a point cusp magnetic field 411 is formed by any four adjacent magnet pieces 406.
- the arrangement shape of the magnet pieces 406 may be a hexagonal lattice, and it is sufficient that at least a unit lattice is formed.
- the height of the magnet piece 406 is usually larger than 2 mm, and its cross-sectional shape is a square or a circle.
- the diameter, height, and material of the magnet piece 406 can be appropriately set depending on the process application.
- the magnetic body 408 for magnetic field adjustment is extended so that the magnet piece 406 located on the outer peripheral side partially overlaps on the target electrode 402 side. Thereby, the magnetic field strength can be suppressed (controlled) in the gap between the target electrode 402 and the shield 403.
- the magnetic body for magnetic field adjustment 408 may be any material that can control the magnetic field strength in the gap between the target electrode 402 and the shield 403, and for example, a material having high magnetic permeability such as SUS430 is preferable.
- the magnetic field can be adjusted by adjusting the area where the magnet piece 406 and the magnetic body for magnetic field adjustment 408 overlap.
- the magnetic field necessary for sputtering the target electrode 402 is supplied to the outermost periphery of the target electrode 402, and the target electrode 402 and the shield 403 In the gap, the magnetic field strength can be adjusted.
- a Ti metal target is used as the target, the substrate temperature is set to 30 ° C., the Ti target power is set to 1500 W, and the DC voltage superimposed on the high-frequency power is set to 350V.
- the frequency of the high frequency power source is preferably between 10 and 100 MHz. More preferably, in order to form a high-density plasma using a point cusp magnetic field at the above pressure, it is desirable to be between 40-60 MHz.
- the TiN film 3 is processed into a desired size by using a lithography technique and a RIE (Reactive Ion Etching) technique to form an element.
- the effective work function is generally determined from a flat band obtained by CV measurement between the gate insulating film and the gate electrode. In addition to the original work function of the gate electrode, the effective work function is formed at a fixed charge in the insulating film or at the interface. Affected by dipoles and Fermi level pinning. It is distinguished from the original “work function” of the material constituting the gate electrode. 4 and 5 show the measurement results of the electrical characteristics of the element having the TiN electrode formed according to the embodiment of the present invention. Here, the electrical characteristics were evaluated in an as-deposited state.
- the “as-deposited state” refers to a state in which a TiN electrode is formed.
- FIG. 4 shows EOT-Jg characteristics of a TiN electrode formed according to an embodiment of the present invention and a TiN electrode formed by DC magnetron sputtering (hereinafter referred to as a conventional technique). From FIG. 4, it can be confirmed that the leakage current (Jg) is reduced by about three orders of magnitude in the TiN electrode formed according to the embodiment of the present invention as compared with the TiN electrode formed by the conventional method.
- FIG. 5 shows values of effective work functions of the TiN electrode formed by the conventional method and the TiN electrode formed by one embodiment of the present invention.
- the effective work function of the element having the TiN electrode formed by the conventional method is 4.6 eV
- the effective work function of the element having the TiN electrode formed according to the embodiment of the present invention is It can be seen that a high value of 5.0 eV or higher is shown. This value is an effective work function suitable for a P-type MOSFET.
- FIG. 6 shows the relationship between the plasma density and the electron temperature with respect to the power applied to the target electrode 402 in the vicinity of the substrate of the generated magnetic field using the magnet mechanism 405 shown in FIG.
- FIG. 6 shows that when the applied power to the target electrode 402 is 1500 W, the electron temperature is about 2.5 eV while having a plasma density of 1 ⁇ 10 11 / cm 3 or more. Due to the high density plasma, the formed nitrogen ions or nitrogen radicals efficiently enter the High-k film, whereby the High-k film is modified. This phenomenon is considered to improve the leakage current without increasing the oxide equivalent film thickness.
- the point cusp magnetic field 411 is arranged at a position corresponding to each corner of a quadrangular quadrilateral in a grid pattern, and the polarity of the magnet pieces adjacent in the side direction of each quadrilateral is opposite.
- the magnetic piece is formed according to the magnet piece 406 arranged, and the magnitude of the magnetic field is fixed.
- the plasma density is reduced as shown in FIG. Can be changed.
- the inert gas argon flow rate and the reactive gas nitrogen flow rate and the sputtering rate of the Ti target in the region where the nitrogen flow rate / (nitrogen flow rate + argon flow rate) is 0.05 or more, It was confirmed that the reduction rate of the sputtering rate generated by nitriding the target surface was the maximum region.
- a desired effective work function can be obtained while improving the EOT-Jg characteristics.
- FIG. 7A to 7C are diagrams showing the steps of the semiconductor device manufacturing method according to the first embodiment of the present invention.
- an element isolation region 502 formed by STI (Shallow Trench Isolation) technology is provided on the surface of a silicon substrate 501.
- a silicon thermal oxide film having a thickness of 1.0 nm is formed on the surface of the element-isolated silicon substrate 501 by a thermal oxidation method.
- the silicon substrate 501 was put into the cluster tool 600 shown in FIG.
- the silicon substrate 501 was transferred from the load lock chamber 605 of FIG.
- the silicon substrate 501 on which Hf is formed is transferred to the chamber 602 through the transfer chamber 604 without being exposed to the atmosphere, and subjected to annealing at 900 ° C. for 1 min in an atmosphere having an oxygen partial pressure of 0.1 Pa.
- a gate insulating film 503 having a stacked structure of a silicon oxide film and an HfSiO film is formed.
- the silicon substrate 501 on which the gate insulating film 503 is formed is transferred to the chamber 603 without being exposed to the atmosphere, and in the processing apparatus shown in detail in FIG.
- FIG. 9A to 9G are views showing the steps of a semiconductor device manufacturing method according to the second embodiment of the present invention.
- an element isolation region 702 was formed on the surface of a silicon substrate 701 using the STI technique.
- a silicon thermal oxide film 703 having a film thickness of 1.0 nm is formed on the surface of the silicon substrate 701 from which the element has been separated by thermal oxidation, and then a high dielectric constant made of HfO 2 by CVD, ALD, or sputtering.
- a film 704 was formed to 2.0 nm, and a high dielectric constant gate insulating film 705 containing a high dielectric constant film was formed.
- a titanium nitride film 706 having a thickness of 2.0 nm is formed on the high dielectric constant gate insulating film 705 by the same method as in the first embodiment, and subsequently, a film having a thickness of 100 nm is formed by CVD or sputtering.
- a silicon film 707 was formed.
- the high dielectric constant gate insulating film 705, the titanium nitride film 706, and the silicon film 707 are processed using a lithography technique and an RIE technique, and then ion implantation is performed to form an extension diffusion region 708.
- the source region and the drain region were formed using at least the high dielectric constant gate insulating film 705, the titanium nitride film 706, and the silicon film 707 as a mask.
- a side wall 709 was formed by depositing a silicon nitride film or a silicon oxide film by a CVD method and then etching back.
- an interlayer insulating film 711 made of a silicon oxide film, a silicon nitride film, or the like is formed on the substrate by a CVD method, and then the upper surface of the interlayer insulating film 711 by a CMP (Chemical Mechanical Polishing) method.
- the silicon film 707 was exposed as shown in the figure.
- the silicon film 707 was removed by wet etching or dry etching to form a trench structure 712.
- the substrate having the trench structure 712 is transferred to the chamber 902 using the cluster tool shown in FIG. 10 having the sputtering method according to an embodiment of the present invention, and tantalum nitride is formed. did.
- the substrate on which tantalum nitride was formed was transferred to the chamber 901 or 903 without being exposed to the atmosphere, and a titanium nitride film was formed to form a gate electrode 713 made of metal nitride.
- the substrate on which the gate electrode 713 is formed is transported to the chamber 905 without being exposed to the atmosphere, and the trench structure 712 is filled with a metal material used for a normal wiring material such as W or Al, and etching back or CMP is performed.
- a gate electrode 714 was formed by planarization using a technique (FIG. 9G).
- the use of the method for forming a metal nitride layer in the present invention reduces the leakage current value without causing an increase in EOT, and the P-type. It was confirmed that an effective work function (4.6 eV or more) suitable for the MOSFET can be obtained. It was also confirmed that the same effect can be obtained even when an HfSiO film is used as the high dielectric constant gate insulating film.
- FIG. 11A to 11F are views showing the steps of a semiconductor device manufacturing method according to the third embodiment of the present invention.
- the “trench structure is formed in each of the region for forming the N-type MOSFET as the first region and the region for forming the P-type MOSFET as the second region.
- achieves the effective work function suitable for each is formed.
- trench structures 801 and 802 are formed in a region where the first N-type MOSFET is formed and a region where the second MOSFET is formed using the same method as in the second embodiment.
- a tantalum nitride film 803 and a titanium nitride film 804 were formed by using the sputtering method of the present invention so as to cover the inside of the trench structure.
- the tantalum nitride film and the titanium nitride film constituting the bottom of the trench structure 801 in the region where the first N-type MOSFET is to be formed are removed by using the lithography technique and the etching technique.
- the titanium nitride film was wet-etched using a mixed solution of sulfuric acid, hydrogen peroxide water, and water, and the tantalum nitride film was removed by etching with Ar plasma.
- the substrate was transferred to the chamber 904, and a metal alloy film 805 containing an alloy of titanium and aluminum was formed.
- the substrate on which the metal alloy film 805 is formed is transferred to a chamber 905 in which film formation is performed using a sputtering method so as to fill the inside of the trench structure, and the metal film 806 made of aluminum.
- planarization was performed using a CMP technique to form the structure shown in FIG.
- the aluminum contained in the metal alloy film 805 made of titanium and aluminum is set at least in the region where the N-type MOSFET is formed by setting the substrate temperature to 300 ° C. to 400 ° C.
- the effective work function suitable for the N-type MOSFET can be achieved by diffusing in the titanium nitride film 800.
- an effective work function suitable for the P-type MOSFET can be maintained.
- the leakage current value can be reduced without causing an increase in EOT. It was confirmed that an effective work function suitable for the MOSFET (4.4 eV or less for the N-type MOSFET and 4.6 eV or more for the P-type MOSFET) was obtained. It was also confirmed that the same effect can be obtained even when an HfSiO film is used as the high dielectric constant gate insulating film.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Composite Materials (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Physical Vapour Deposition (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
ここで、メタルゲート電極形成方法として、CVD法を用いた例を提示する。非特許文献1では、CVD法を用いてメタルゲート電極を形成しており、高い実効仕事関数(5.1eV)と良好な酸化膜厚換算膜厚(EOT)に対するリーク電流(Jg)特性が得られている。しかしながら、非特許文献2に示されるように、原料に含まれる不純物が原因で、トランジスタ特性の劣化が考えられる。一方で、PVD法を用いた場合、CVD法と比較して、不純物の混入量は少ないと考えられるが、非特許文献3に示されているように、CVD法と比較して、リーク電流の劣化ならびに所望の実効仕事関数が得られないといった課題がある。これに対して、特許文献1では、DCスパッタリング方式を用いて絶縁膜(酸化物) の表層部を窒化しながら金属窒化物/金属の積層構造の電極を形成することで、リーク電流が改善されることが報告されている。しかし、微細化が進んでいく(ゲート長32nm以降) につれて、この方式では、不十分となってきている。
本発明の第2の態様は、半導体装置の製造方法であって、半導体基板上に高誘電率絶縁膜を形成する工程と、前記高誘電率絶縁膜上に第1の金属窒化物層を形成する工程と、前記第1の金属窒化物層上にシリコン層を形成する工程と、少なくとも前記高誘電率膜と前記第1の金属窒化物層と前記シリコン層とをマスクとして前記半導体基板にソース領域およびドレイン領域を形成する工程と、前記ソース領域およびドレイン領域が形成された半導体基板上に層間絶縁膜を形成した後、その一部を除去することで前記シリコン層を露出させる工程と、前記高誘電率絶縁膜上の前記シリコン層を除去してトレンチ構造を形成する工程と、前記トレンチ構造の内部を被覆するように第2の金属窒化物層を形成する工程とを有し、前記第1の金属窒化物層を形成する工程および前記第2の金属窒化物層を形成する工程の少なくとも一方は、減圧可能な処理室内にて、金属ターゲットと、格子点を形成するマグネットピースが複数格子状に配置され、かつ隣接するマグネットピースが異極性となるように配置された構造物によりターゲット表面に形成されるカスプ磁場とを用いたスパッタリング堆積工程であって、前記処理室内に窒素ガスを含むガスを導入し、前記カスプ磁場により前記窒素のプラズマを形成して金属窒化物層を形成する工程であることを特徴とする。
本発明の第3の態様は、半導体装置の製造方法であって、半導体基板上の第1のMOSトランジスタ形成領域と、第1のMOSトランジスタと逆導電型の第2のMOSトランジスタ形成領域上に、高誘電率絶縁膜を形成する工程と、前記高誘電率絶縁膜上に金属窒化物層およびシリコンを順に形成する工程と、少なくとも前記高誘電率絶縁膜と前記金属窒化物層と前記シリコン層とをマスクとして前記半導体基板上にソース領域およびドレインを形成する工程と、前記ソース領域およびドレイン領域が形成された半導体基板上に層間絶縁膜を形成した後、その一部を除去することで前記シリコン層を露出させる工程と、前記高誘電率絶縁膜上のシリコン層を除去してトレンチ構造を形成する工程と、前記トレンチ構造の内部を被覆するように窒化タンタル膜と窒化チタン膜とを順に形成する工程と、前記第1のMOSトランジスタ形成領域上のトレンチ構造の底部を被覆する窒化チタン膜と窒化タンタル膜とを除去する工程と、前記トレンチ構造の内部を被覆するようにチタンとアルミニウムとを含有する合金層を形成する工程と、前記トレンチ構造の内部を埋め込むように前記合金層上にアルミニウム膜を形成する工程とを有し、前記金属窒化物層、前記窒化チタン膜および窒化タンタル膜の少なくとも一つを、減圧可能な処理室内に窒素を含むガスを導入し、金属ターゲットと、格子点を形成するマグネットピースが複数格子状に配置され、かつ隣接するマグネットピースが異極性を有するように配置された構造物によりターゲット表面に形成されるカスプ磁場とを用い、該カスプ磁場により形成された前記窒素のプラズマを用いたスパッタリング法で形成することを特徴とする。
本発明の第4の態様は、金属窒化物層を形成する装置であって、減圧可能な処理室と、前記処理室内に設けられ、金属ターゲットを保持可能に構成された第1の電極と、基板を保持可能な基板ホルダーを有する第2の電極と、前記処理室内に、窒素を含むガスを導入するためのガス導入口と、格子点を形成するマグネットピースが複数格子状に配置され、かつ隣接するマグネットピースが異極性を有するように配置された磁石機構であって、前記第1の電極にターゲットが設けられた場合に該ターゲット表面にカスプ磁場を形成するように構成された磁石機構と、前記第1の電極に接続されたDC電源と、前記第1の電極に対して、前記DC電源からの直流電圧と重畳して高周波電力を印加する第1の高周波電源と、前記第2の電極に高周波電力を印加する第2の高周波電源とを備えることを特徴とする。
図1に示すように、表面にシリコン酸化膜とゲート絶縁膜としての高誘電率膜であるHfSiO膜2とを有するp型シリコン基板1上に、ゲート電極としての窒化チタン膜3が形成されている。
ゲート絶縁膜に用いられる高誘電率材料は、SiO2の比誘電率(3.9)より大きな比誘電率をもつ材料であり、金属酸化物、金属シリケート、窒素が導入された金属酸化物、窒素が導入された金属シリケート等が挙げられる。結晶化が抑えられ、素子の信頼性が向上する点から、ゲート絶縁膜としては窒素が導入された高誘電率膜が好ましい。高誘電率材料中の金属としては、膜の耐熱性および膜中の固定電荷抑制の観点から、HfもしくはZrが好ましい。また、高誘電率材料としては、Hf又はZrとSiとを含む金属酸化物、この金属酸化物にさらに窒素を含む金属酸窒化物が好ましく、HfSiO、HfSiONがより好ましい。また、ここではゲート絶縁膜としてシリコン酸化膜とその上に積層された高誘電率膜とを用いているが、これに限定されるものではなく、高誘電率絶縁膜単独あるいはシリコン酸窒化膜とその上に積層された高誘電率膜を用いることができる。
また、ゲート電極としての金属窒化膜は、Ti、Ta、WおよびAlかrなる群から選択された1種または2種以上の金属元素を含有することが好ましい。
上部電極401は、上部壁202と、磁石機構405と、ターゲット電極(第1の電極)402と、絶縁体404と、シールド403とを有している。磁石機構405は上部壁202の下方に設けられており、磁石機構405の下方にはターゲット電極402が設けられている。また、絶縁体404は、ターゲット電極402とチャンバ201の側壁とを絶縁するとともに、ターゲット電極402をチャンバ201内に保持するためのものである。さらに、絶縁体404の下方には、シールド403が設けられている。なお、ターゲット電極402は、整合器101を介して、上部電極用高周波電源102とDC電源103に接続されている。ターゲット電極402の主要部品は、Al、SUS、Cuなどの非磁性金属を含む。ターゲット電極402の減圧側には、基板306上に成膜するのに必要な材料ターゲット材(不図示)を設置することができる。また、上部電極401やターゲット電極402の中には配管が形成されており、この配管に冷却水を流すことによって、上部電極401やターゲット電極402を冷却することができる。
上記ターゲットとしては、例えば、Ti、Ta、WおよびAlかrなる群から選択された1種または2種以上の金属元素を含有するターゲットを用いれば良い。
チャンバ201内には、アルゴン等のプロセスガスといった所定のガスをチャンバ201内に供給するための複数のガス導入口409が設けられている。
図3を参照して、磁石機構405の形状について詳細に説明する。図2は、磁石機構405をターゲット電極402側から見た平面図である。図3に示すように、円盤状のマグネット支持体407には、環状の磁場調整用磁性体408と、磁場調整用磁性体408の内周領域に配置されたマグネットピース406とが、支持されて設けられている。ここで、図3において、記号403aはシールド403の内径を示しており、多数の小さな円は各々のマグネットピース406の外形を示している。また、各マグネットピース406は、同じ形状及び同じ磁束密度を有している。さらに、N及びSの文字はターゲット電極402側から見たマグネットピース406の磁極を示している。
マグネットピース406の高さは、通常は2mmよりも大きくなっており、その断面形状は四角または円形である。マグネットピース406の直径や高さ、材質は、プロセスアプリケーションによって、適宜設定することができる。半導体製造装置100の上部電極401に高周波電力を供給したとき、プラズマは容量結合型のメカニズムによって生成される。このプラズマは、閉じたポイントカスプ磁場411によって作用を受ける。すなわち、本発明の一実施形態では、ポイントカスプ磁場411を発生させるような構成を採用しているので、通常のマグネトロンスパッタに比べて、高密度プラズマを形成することが可能となる。
次に、リソグラフィー技術とRIE(Reactive Ion Etching)技術を用いてTiN膜3を所望の大きさに加工し素子を形成する。
また、上記ポイントカスプ磁場411は、碁盤目状に複数連なる四角形の各角部に対応する位置に配置されており、各四角形の辺方向に隣接するマグネットピースの極性が反対の極性となっているように配置されたマグネットピースにより形成されるものであり、その磁界の大きさは配置されるマグネットピース406に応じて固定されたものである。しかしながら、本発明の一実施形態では、ターゲット電極402に高周波電力を印加しているので、固定されたポイントカスプ磁場411の磁界においても、高周波電界の作用により、図6に示すようにプラズマ密度を変えることができる。
また、不活性ガスであるアルゴン流量ならびに反応性ガスである窒素流量とTiターゲットのスパッタ率の関係を評価した結果、窒素流量/(窒素流量+アルゴン流量)が0.05以上である領域では、ターゲットの表面が窒化することにより生じるスパッタ率の低下率が最大となる領域であることを確認した。
以上より、本発明の一実施形態により形成したTiNを有する素子の場合、EOT-Jg特性を向上させつつ、所望の実効仕事関数が得られる。ここでは、窒素/(窒素+アルゴン)=0.3、ならびに20Paの条件で形成したTiN膜を用いているが、これに限定されるものでなく、圧力が2から100Paの間で、かつ窒素/(窒素+アルゴン)比が0.05以上であれば、十分に効果を発揮できる。圧力が2Pa以下の場合には、リーク電流の悪化が見られ、また、100Pa以上の場合には、リーク電流改善の効果はあるが、成膜速度の低下が顕著であり、量産性能が劣化する。
本発明の第1の実施例を、図面を参照しながら詳細に説明する。図7A~7Cは、本発明の第1の実施例である半導体装置の製造方法の工程を示した図である。まず図7Aに示すようにシリコン基板501の表面に、STI(Shallow Trench Isolation)技術により形成された素子分離領域502が設けられている。続いて、素子分離されたシリコン基板501の表面に熱酸化法により膜厚1.0nmのシリコン熱酸化膜を形成する。その後、図8に示すクラスターツール600に上記シリコン基板501を投入した。まず、図8のロードロックチャンバ605から上記シリコン基板501をチャンバ601搬送し、スパッタリング法によりシリコン基板501上に膜厚0.5~0.7nmのHfを堆積した。次に、Hfが形成されたシリコン基板501を大気に晒す事無くトランスファーチャンバ604を介し、チャンバ602に搬送し、酸素分圧0.1Paの雰囲気で、900℃、1minのアニール処理を施し、シリコン酸化膜中にHfを拡散させることで、シリコン酸化膜とHfSiO膜の積層構造からなるゲート絶縁膜503を形成する。次に、ゲート絶縁膜503が形成されたシリコン基板501をチャンバ603へ大気に晒すことなく搬送し、詳細を図2に示した処理装置において、Tiターゲットを用いて窒素ガスとアルゴンガス流量の混合比を窒素ガス/(窒素ガス+アルゴンガス)≧0.05に調整し、PVD法によりTiN膜504を10nm堆積した。本発明のゲート電極の形成方法を用いて絶縁膜/ゲート電極を連続成膜することによって、絶縁膜/ゲート電極界面への不純物を抑制することが出来、さらに所望のリーク電流ならびに実効仕事関数が得られる。次に、膜厚20nmのシリコン層505を形成した後、図7Bに示すようにリソグラフィー技術およびRIE技術を用いてゲート電極に加工し、引き続いてイオン注入を行い、エクステンション拡散領域506をゲート電極をマスクとして自己整合的に形成した。さらに、図7Cに示すように、シリコン窒化膜とシリコン酸化膜を順次堆積し、その後、エッチバックすることによってゲート側壁507を形成した。この状態で再度イオン注入を行い、活性化アニールを経てソース・ドレイン拡散層508を形成した。作製した素子の電気特性を評価した結果、EOTやリーク電流の悪化を伴うことなく、P型MOSFETに適した実効仕事関数(4.9eV以上)が得られることを確認した。
以下に本発明の第2の実施例を、図面を参照しながら説明する。図9A~9Gは本発明の第2の実施例である半導体装置の製造方法の工程を示した図である。まず図9Aに示すようにシリコン基板701の表面にSTI技術を用いて素子分離領域702を形成した。続いて、素子分離されたシリコン基板701の表面に熱酸化法により膜厚1.0nmのシリコン熱酸化膜703を形成し、その後、CVD法、ALD法またはスパッタリング法によりHfO2からなる高誘電率膜704を2.0nm形成し、高誘電率膜を含有する高誘電率ゲート絶縁膜705を形成した。
次に、高誘電率ゲート絶縁膜705上に、第1の実施例と同様の方法で膜厚2.0nmの窒化チタン膜706を形成し、続いて、CVD法またはスパッタリング法により膜厚100nmのシリコン膜707を形成した。
作製した素子の、実効仕事関数、EOT、リーク電流特性を測定した結果、本発明における金属窒化物層の形成方法を用いることで、EOTの増加を招くことなくリーク電流値の低減と、P型MOSFETに適した実効仕事関数(4.6eV以上)が得られることを確認した。また、高誘電率ゲート絶縁膜としてHfSiO膜を用いても同様の効果を得られることを確認した。
以下に本発明の第3の実施例を、図面を参照しながら説明する。図11A~11Fは本発明の第3の実施例である半導体装置の製造方法の工程を示した図である。本実施例では、第1の領域であるN型MOSFETを形成する領域と第2の領域であるP型MOSFETを形成する領域とのそれぞれに対して、第2の実施例における「トレンチ構造を形成する工程」を行い、それぞれに適した実効仕事関数を実現する金属ゲート電極を形成する。
図11Aに示すように、第2の実施例と同様の方法を用いて、第1のN型MOSFETを形成する領域と第2のMOSFETを形成する領域にトレンチ構造801、802を形成した。
Claims (9)
- 半導体装置の製造方法であって、
シリコン酸化膜よりも比誘電率が高い絶縁膜が形成された基板を用意する工程と、
前記絶縁膜上に金属窒化膜を堆積させる工程とを有し、
前記金属窒化膜を堆積させる工程は、減圧可能な処理室内にて、金属ターゲットと、格子点を形成するマグネットピースが複数格子状に配置され、かつ隣接するマグネットピースが異極性を有する配置である構造物により前記金属ターゲット表面に形成されるカスプ磁場とを用いたスパッタリング堆積工程であって、前記処理室内に窒素ガスを含むガスを導入し、前記カスプ磁場により前記窒素のプラズマを形成して前記金属窒化膜を形成する工程であることを特徴とする、半導体装置の製造方法。 - 前記金属窒化膜は、Ti、Ta、WおよびAlからなる群から選択された1種又は2種以上の金属元素を含有することを特徴とする請求項1に記載の半導体装置の製造方法。
- 前記金属窒化膜を堆積させる工程では、圧力が2から100Paの間に設定されることを特徴とする請求項1に記載の半導体装置の製造方法。
- 前記ガスはさらにアルゴンガスを含み、
前記金属窒化膜を堆積させる工程では、形成する際の窒素/(アルゴン+窒素)流量比が0.05以上であることを特徴とする請求項1に記載の半導体装置の製造方法。 - 金属ターゲットを載置する電極には、整合回路を介して高周波電力を印加可能な高周波電源が接続されており、
前記電極に供給する高周波電源の周波数は、10乃至100MHzであることを特徴とする請求項1に記載の半導体装置の製造方法。 - 前記電極には、直流電圧を供給するDC電源が接続されており、前記高周波電力と前記直流電圧を重畳することを特徴とする請求項5に記載の半導体装置の製造方法。
- 半導体装置の製造方法であって、
半導体基板上に高誘電率絶縁膜を形成する工程と、
前記高誘電率絶縁膜上に第1の金属窒化物層を形成する工程と、
前記第1の金属窒化物層上にシリコン層を形成する工程と、
少なくとも前記高誘電率膜と前記第1の金属窒化物層と前記シリコン層とをマスクとして前記半導体基板にソース領域およびドレイン領域を形成する工程と、
前記ソース領域およびドレイン領域が形成された半導体基板上に層間絶縁膜を形成した後、その一部を除去することで前記シリコン層を露出させる工程と、
前記高誘電率絶縁膜上の前記シリコン層を除去してトレンチ構造を形成する工程と、
前記トレンチ構造の内部を被覆するように第2の金属窒化物層を形成する工程とを有し、
前記第1の金属窒化物層を形成する工程および前記第2の金属窒化物層を形成する工程の少なくとも一方は、減圧可能な処理室内にて、金属ターゲットと、格子点を形成するマグネットピースが複数格子状に配置され、かつ隣接するマグネットピースが異極性となるように配置された構造物によりターゲット表面に形成されるカスプ磁場とを用いたスパッタリング堆積工程であって、前記処理室内に窒素ガスを含むガスを導入し、前記カスプ磁場により前記窒素のプラズマを形成して金属窒化物層を形成する工程であることを特徴とする半導体装置の製造方法。 - 半導体装置の製造方法であって、
半導体基板上の第1のMOSトランジスタ形成領域と、第1のMOSトランジスタと逆導電型の第2のMOSトランジスタ形成領域上に、高誘電率絶縁膜を形成する工程と、
前記高誘電率絶縁膜上に金属窒化物層およびシリコンを順に形成する工程と、
少なくとも前記高誘電率絶縁膜と前記金属窒化物層と前記シリコン層とをマスクとして前記半導体基板上にソース領域およびドレインを形成する工程と、
前記ソース領域およびドレイン領域が形成された半導体基板上に層間絶縁膜を形成した後、その一部を除去することで前記シリコン層を露出させる工程と、
前記高誘電率絶縁膜上のシリコン層を除去してトレンチ構造を形成する工程と、
前記トレンチ構造の内部を被覆するように窒化タンタル膜と窒化チタン膜とを順に形成する工程と、
前記第1のMOSトランジスタ形成領域上のトレンチ構造の底部を被覆する窒化チタン膜と窒化タンタル膜とを除去する工程と、
前記トレンチ構造の内部を被覆するようにチタンとアルミニウムとを含有する合金層を形成する工程と、
前記トレンチ構造の内部を埋め込むように前記合金層上にアルミニウム膜を形成する工程とを有し、
前記金属窒化物層、前記窒化チタン膜および窒化タンタル膜の少なくとも一つを、減圧可能な処理室内に窒素を含むガスを導入し、金属ターゲットと、格子点を形成するマグネットピースが複数格子状に配置され、かつ隣接するマグネットピースが異極性を有するように配置された構造物によりターゲット表面に形成されるカスプ磁場とを用い、該カスプ磁場により形成された前記窒素のプラズマを用いたスパッタリング法で形成することを特徴とする半導体装置の製造方法。 - 金属窒化物層を形成する装置であって、
減圧可能な処理室と、
前記処理室内に設けられ、金属ターゲットを保持可能に構成された第1の電極と、
基板を保持可能な基板ホルダーを有する第2の電極と、
前記処理室内に、窒素を含むガスを導入するためのガス導入口と、
格子点を形成するマグネットピースが複数格子状に配置され、かつ隣接するマグネットピースが異極性を有するように配置された磁石機構であって、前記第1の電極にターゲットが設けられた場合に該ターゲット表面にカスプ磁場を形成するように構成された磁石機構と、
前記第1の電極に接続されたDC電源と、
前記第1の電極に対して、前記DC電源からの直流電圧と重畳して高周波電力を印加する第1の高周波電源と、
前記第2の電極に高周波電力を印加する第2の高周波電源と
を備えることを特徴とする装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127032006A KR101409433B1 (ko) | 2010-12-28 | 2011-12-27 | 반도체 디바이스 제조방법 및 장치 |
JP2012526211A JP5458177B2 (ja) | 2010-12-28 | 2011-12-27 | 半導体装置の製造方法および装置 |
DE112011104624.3T DE112011104624B4 (de) | 2010-12-28 | 2011-12-27 | Verfahren zum Herstellen einer Halbleitervorrichtung |
US13/675,147 US8481382B2 (en) | 2010-12-28 | 2012-11-13 | Method and apparatus for manufacturing semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-294008 | 2010-12-28 | ||
JP2010294008 | 2010-12-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/675,147 Continuation US8481382B2 (en) | 2010-12-28 | 2012-11-13 | Method and apparatus for manufacturing semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012090482A1 true WO2012090482A1 (ja) | 2012-07-05 |
Family
ID=46382617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/007292 WO2012090482A1 (ja) | 2010-12-28 | 2011-12-27 | 半導体装置の製造方法および装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8481382B2 (ja) |
JP (1) | JP5458177B2 (ja) |
KR (1) | KR101409433B1 (ja) |
DE (1) | DE112011104624B4 (ja) |
WO (1) | WO2012090482A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112013006168B4 (de) | 2012-12-20 | 2023-12-28 | Canon Anelva Corporation | Verfahren zum Herstellen eines Magnetowiderstandelements |
US9928997B2 (en) * | 2014-12-14 | 2018-03-27 | Applied Materials, Inc. | Apparatus for PVD dielectric deposition |
CN106601606B (zh) | 2015-10-19 | 2019-09-20 | 中芯国际集成电路制造(上海)有限公司 | Nmos器件、半导体装置及其制造方法 |
US9748145B1 (en) | 2016-02-29 | 2017-08-29 | Globalfoundries Inc. | Semiconductor devices with varying threshold voltage and fabrication methods thereof |
US10431464B2 (en) | 2016-10-17 | 2019-10-01 | International Business Machines Corporation | Liner planarization-free process flow for fabricating metallic interconnect structures |
US10672653B2 (en) * | 2017-12-18 | 2020-06-02 | International Business Machines Corporation | Metallic interconnect structures with wrap around capping layers |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10195640A (ja) * | 1997-01-10 | 1998-07-28 | Nissin Electric Co Ltd | 成膜装置及びイオン源 |
JP2000003885A (ja) * | 1998-04-15 | 2000-01-07 | Lucent Technol Inc | 改良型薄膜誘電体を使用して電界効果デバイスおよびコンデンサを製造する方法および得られるデバイス |
JP2000353674A (ja) * | 1999-06-11 | 2000-12-19 | Matsushita Electronics Industry Corp | 半導体装置及びその製造方法 |
JP2001152332A (ja) * | 2000-09-11 | 2001-06-05 | Hitachi Ltd | スパッタデポジション装置 |
JP2009529789A (ja) * | 2006-03-09 | 2009-08-20 | アプライド マテリアルズ インコーポレイテッド | 低エネルギープラズマシステムを用いた高誘電率トランジスタゲートを製造するための方法及び装置 |
WO2009157186A1 (ja) * | 2008-06-24 | 2009-12-30 | キヤノンアネルバ株式会社 | 磁場発生装置及びプラズマ処理装置 |
WO2010004890A1 (ja) * | 2008-07-11 | 2010-01-14 | キヤノンアネルバ株式会社 | 薄膜の成膜方法 |
JP2010090424A (ja) * | 2008-10-07 | 2010-04-22 | Canon Anelva Corp | スパッタ成膜方法及びプラズマ処理装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5505647A (en) | 1993-02-01 | 1996-04-09 | Canon Kabushiki Kaisha | Method of manufacturing image-forming apparatus |
US6251242B1 (en) | 2000-01-21 | 2001-06-26 | Applied Materials, Inc. | Magnetron and target producing an extended plasma region in a sputter reactor |
JP4614578B2 (ja) | 2001-06-01 | 2011-01-19 | キヤノンアネルバ株式会社 | スパッタ成膜応用のためのプラズマ処理装置 |
US7678710B2 (en) | 2006-03-09 | 2010-03-16 | Applied Materials, Inc. | Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system |
US7857946B2 (en) | 2007-04-26 | 2010-12-28 | Canon Anelva Corporation | Sputtering film forming method, electronic device manufacturing method, and sputtering system |
WO2008149446A1 (ja) | 2007-06-07 | 2008-12-11 | Canon Anelva Corporation | 半導体製造装置および方法 |
US8012822B2 (en) | 2007-12-27 | 2011-09-06 | Canon Kabushiki Kaisha | Process for forming dielectric films |
JP5221121B2 (ja) | 2007-12-27 | 2013-06-26 | キヤノン株式会社 | 絶縁膜の形成方法 |
US8148275B2 (en) | 2007-12-27 | 2012-04-03 | Canon Kabushiki Kaisha | Method for forming dielectric films |
KR101216790B1 (ko) | 2008-07-31 | 2012-12-28 | 캐논 아네르바 가부시키가이샤 | 플라즈마 처리 장치 및 전자 디바이스의 제조 방법 |
KR101126650B1 (ko) | 2008-10-31 | 2012-03-26 | 캐논 아네르바 가부시키가이샤 | 유전체막의 제조 방법 |
KR101052587B1 (ko) | 2008-10-31 | 2011-07-29 | 캐논 아네르바 가부시키가이샤 | 유전체막 및 유전체막을 사용하는 반도체 디바이스 |
CN102439697B (zh) | 2009-04-03 | 2015-08-19 | 应用材料公司 | 高压rf-dc溅射及改善此工艺的膜均匀性和阶梯覆盖率的方法 |
JP5247619B2 (ja) | 2009-07-28 | 2013-07-24 | キヤノンアネルバ株式会社 | 誘電体膜、誘電体膜を用いた半導体装置の製造方法及び半導体製造装置 |
JP2011151366A (ja) | 2009-12-26 | 2011-08-04 | Canon Anelva Corp | 誘電体膜の製造方法 |
WO2011081202A1 (ja) | 2009-12-29 | 2011-07-07 | キヤノンアネルバ株式会社 | 電子部品の製造方法、電子部品、プラズマ処理装置、制御プログラム及び記録媒体 |
JP5937297B2 (ja) | 2010-03-01 | 2016-06-22 | キヤノンアネルバ株式会社 | 金属窒化膜、該金属窒化膜を用いた半導体装置、および半導体装置の製造方法 |
-
2011
- 2011-12-27 KR KR1020127032006A patent/KR101409433B1/ko active IP Right Grant
- 2011-12-27 WO PCT/JP2011/007292 patent/WO2012090482A1/ja active Application Filing
- 2011-12-27 DE DE112011104624.3T patent/DE112011104624B4/de active Active
- 2011-12-27 JP JP2012526211A patent/JP5458177B2/ja active Active
-
2012
- 2012-11-13 US US13/675,147 patent/US8481382B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10195640A (ja) * | 1997-01-10 | 1998-07-28 | Nissin Electric Co Ltd | 成膜装置及びイオン源 |
JP2000003885A (ja) * | 1998-04-15 | 2000-01-07 | Lucent Technol Inc | 改良型薄膜誘電体を使用して電界効果デバイスおよびコンデンサを製造する方法および得られるデバイス |
JP2000353674A (ja) * | 1999-06-11 | 2000-12-19 | Matsushita Electronics Industry Corp | 半導体装置及びその製造方法 |
JP2001152332A (ja) * | 2000-09-11 | 2001-06-05 | Hitachi Ltd | スパッタデポジション装置 |
JP2009529789A (ja) * | 2006-03-09 | 2009-08-20 | アプライド マテリアルズ インコーポレイテッド | 低エネルギープラズマシステムを用いた高誘電率トランジスタゲートを製造するための方法及び装置 |
WO2009157186A1 (ja) * | 2008-06-24 | 2009-12-30 | キヤノンアネルバ株式会社 | 磁場発生装置及びプラズマ処理装置 |
WO2010004890A1 (ja) * | 2008-07-11 | 2010-01-14 | キヤノンアネルバ株式会社 | 薄膜の成膜方法 |
JP2010090424A (ja) * | 2008-10-07 | 2010-04-22 | Canon Anelva Corp | スパッタ成膜方法及びプラズマ処理装置 |
Also Published As
Publication number | Publication date |
---|---|
DE112011104624B4 (de) | 2019-01-24 |
KR101409433B1 (ko) | 2014-06-24 |
US8481382B2 (en) | 2013-07-09 |
JPWO2012090482A1 (ja) | 2014-06-05 |
JP5458177B2 (ja) | 2014-04-02 |
US20130071975A1 (en) | 2013-03-21 |
DE112011104624T5 (de) | 2013-10-10 |
KR20130025407A (ko) | 2013-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4871433B2 (ja) | 半導体装置およびその製造方法 | |
US6787451B2 (en) | Semiconductor device and manufacturing method thereof | |
JP4492783B2 (ja) | 半導体装置及びその製造方法 | |
JP5458177B2 (ja) | 半導体装置の製造方法および装置 | |
KR101938441B1 (ko) | 반도체 디바이스의 형성 방법 | |
JP5937297B2 (ja) | 金属窒化膜、該金属窒化膜を用いた半導体装置、および半導体装置の製造方法 | |
JP2009059882A (ja) | 半導体装置 | |
JP2011029478A (ja) | 誘電体膜、誘電体膜を用いた半導体装置の製造方法及び半導体製造装置 | |
CN106887461A (zh) | 场效晶体管 | |
US9437702B2 (en) | Electronic component manufacturing method and electrode structure | |
JP5209791B2 (ja) | 半導体装置およびその製造方法 | |
JP5960491B2 (ja) | 半導体装置およびその製造方法 | |
JP2023516856A (ja) | ドープされたald窒化タンタルにおける不純物の除去 | |
KR101252126B1 (ko) | 금속막을 내장하는 단계를 포함하는 전자부품 제조방법 | |
CN107689393B (zh) | 一种半导体器件及其制造方法 | |
KR102729128B1 (ko) | 반도체 디바이스에 구조를 형성하는 방법 | |
JP2009038229A (ja) | 半導体装置 | |
TW202236420A (zh) | 依序電漿及熱處理 | |
JP2024073427A (ja) | 膜の有効酸化物厚さを変更するための水素化及び窒化処理 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2012526211 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11853330 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127032006 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112011104624 Country of ref document: DE Ref document number: 1120111046243 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11853330 Country of ref document: EP Kind code of ref document: A1 |