CN102439697B - 高压rf-dc溅射及改善此工艺的膜均匀性和阶梯覆盖率的方法 - Google Patents

高压rf-dc溅射及改善此工艺的膜均匀性和阶梯覆盖率的方法 Download PDF

Info

Publication number
CN102439697B
CN102439697B CN201080022533.XA CN201080022533A CN102439697B CN 102439697 B CN102439697 B CN 102439697B CN 201080022533 A CN201080022533 A CN 201080022533A CN 102439697 B CN102439697 B CN 102439697B
Authority
CN
China
Prior art keywords
target
substrate
magnetron
plasma
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080022533.XA
Other languages
English (en)
Other versions
CN102439697A (zh
Inventor
阿道夫·米勒·艾伦
拉拉·哈夫雷查克
谢志刚
穆罕默德·M·拉希德
汪荣军
唐先民
刘振东
龚则敬
斯里尼瓦斯·甘迪科塔
张梅
迈克尔·S·考克斯
唐尼·扬
基兰库马·文德亚
葛振宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN102439697A publication Critical patent/CN102439697A/zh
Application granted granted Critical
Publication of CN102439697B publication Critical patent/CN102439697B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3441Dark space shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets

Abstract

本发明的实施例大体上提出用来进行物理气相沉积(PVD)工艺的处理腔室和沉积多组分薄膜的方法。处理腔室可包括:改良式RF进料构造,以减少任何驻波效应;改良式磁控管设计,用以加强RF等离子体均匀性、沉积膜组分和厚度均匀性;改良式基板偏压构造,用以改善工艺控制;以及改良式工艺套件设计,以改善基板临界表面附近的RF场均匀性。所述方法包括利用耦接多组分靶材的RF供应器,在腔室的处理区中形成等离子体、相对多组分靶材平移电磁管磁控管,其中当磁控管平移且形成等离子体时,磁控管相对多组分靶材的中心点位于第一位置,以及在腔室中的基板上沉积多组分薄膜。

Description

高压RF-DC溅射及改善此工艺的膜均匀性和阶梯覆盖率的方法
发明背景
本发明的实施例大体上涉及形成金属和介电层的方法和设备。更特别地,本发明的实施例涉及形成金属栅极和相关介电层的方法和设备。
相关技术的描述
集成电路可包括超过一百万个的微电子器件,所述微电子器件诸如晶体管、电容器和电阻器。集成电路的一个类型为场效应晶体管(例如互补金属氧化物半导体(CMOS)场效应晶体管),所述场效应晶体管形成在基板(例如半导体基板)上并协作执行电路中的各种功能。CMOS晶体管包括设置于在基板中形成的源极区与漏极区之间的栅极结构。栅极结构通常包括栅极电极和栅极介电层。栅极电极设置在栅极介电层的上方,以控制电荷载流子在栅极介电层下方的漏极区与源极区之间形成的沟道区的流动。为提高晶体管的速度,栅极介电层可由具有大于4.0的介电常数的材料形成。在此这样的介电材料称为高k材料。
栅极介电层可由介电材料形成,所述介电材料诸如二氧化硅(SiO2)、或具有大于4.0的介电常数的高k介电材料,所述高k介电材料诸如SiON、SiN、氧化铪(HfO2)、硅酸铪(HfSiO2)、氮氧化硅铪(HfSiON)、氧化锆(ZrO2)、硅酸锆(ZrSiO2)、钛酸锶钡(BaSrTiO3或BST)、钛锆酸铅(Pb(ZrTi)O3或PZT)等。然而,应该注意的是薄膜层叠可包括其它材料形成的层。
栅极层叠还可包括形成在高k电介质上而不是传统的多晶硅上的金属层。金属层可包括TiN、TiAl、WN、HfC、HfN、FUSI的硅化物或完全硅化的金属栅极。
另外,高迁移率界面层可沉积在基板与高k介电层之间的栅极结构中。可使用各种方法来形成CMOS高k/金属栅极层叠结构,所述方法诸如替代栅极方式、先栅极方式(gate first approach)和后栅极方式(gate last approach)。
具有高k栅极电介质/后栅极方式的场效应晶体管的栅极结构的制造包括一系列的处理步骤(例如沉积多层)。在栅极层叠结构形成工艺中,不仅需要共形薄膜,还需要在每一层之间的界面层的良好质量。
在传统的CMOS制造方案中,基板需在具有各种反应器与之耦接的工具之间穿过。在工具之间穿过基板的工艺需要将基板从一个工具的真空环境移出,在常压下传送到第二工具的真空环境。在大气环境中,基板暴露给机械和化学污染物,所述机械和化学污染物诸如微粒、湿气等,这样会破坏将要被制造的栅极结构,且当传送时可能在每层间形成不期望的界面层,所述界面层例如自然氧化物(native oxide)。随着栅极结构变得越来越小及/或越来越薄以提高器件速度,形成界面层或污染物的不利影响变得越来越受关注。此外,在丛集工具之间传送基板花费的时间会降低制造场效应晶体管的生产率。
此外,栅极层叠结构的制造工艺可包括化学气相沉积(CVD)工艺以形成金属层。然而,当形成栅极层叠结构的金属部分时,来自有机金属前驱体的残余微粒可污染下方的介电层,以致不利影响栅极介电层的介电性质。另外,当晶体管尺寸减小成45纳米以下且具有更高深宽比时,实现充分的膜均匀性和阶梯覆盖率变得越来越困难。
因此,在本领域中需要形成改善特性的栅极层叠结构的方法和设备。
发明概述
在本发明的一个实施例中,公开了高压RF DC PVD腔室,所述高压RF DCPVD腔室具有包含不对称磁环、低轮廓盖环和沉积环的双环磁控管、以及基座电容调整器。
在本发明的另一个实施例中,公开了用于沉积金属薄膜的方法。所述方法包括使高压气体流入腔室、利用电连接溅射靶材的RF与DC功率源,将来自气体的等离子体点火、通过利用磁控管,形成密集等离子体、调整基座以匹配RF功率源、以及在腔室中的基板上沉积金属薄膜。
附图简要说明
因此,可详细理解实现本发明的上述特征的方式,可参考本发明的实施例获得上文要概述的本发明的更具体描述,这些实施例图示于附图中。然而,应注意的是,附图仅描绘本发明的典型实施例,因此不应视为对本发明的范围的限制,因为本发明可允许其他同等有效的实施例。
图1A为根据本发明一个实施例的腔室的截面图。
图1B描绘根据本发明一个实施例的腔室的等距视图。
图2为根据本发明一个实施例的图1A示出的腔室的一部分的特写截面图。
图3A为根据本发明一个实施例的图1A示出的腔室的一部分的特写截面图。
图3B为根据本发明一个实施例的图1A示出的腔室的一部分的上视图。
图3C为根据本发明一个实施例的图1A示出的腔室的一部分的上视图。
图4A为根据本发明一个实施例,从靶材侧观察的磁控管的等距视图。
图4B为根据本发明一个实施例的磁控管的一部分的底视图。
图4C为根据本发明一个实施例的磁控管的一部分的底视图。
图4D为根据本发明一个实施例的磁控管的一部分的底视图。
图4E为根据本发明一个实施例的磁控管的一部分的上视图。
图5A为根据本发明一个实施例的工艺套件(kit)的一部分的截面图。
图5B为传统的工艺套件的一部分的截面图。
图6为根据本发明一个实施例的阻抗控制器的示意图。
图7A-图7H描绘用于形成CMOS型集成电路的工艺的例子的示意截面图。
图8示出在溅射工艺期间的粒子的弹性碰撞。
图9示出在溅射腔室中的多部件靶材的溅射分布。
图10A-图10C示出在处理期间形成在溅射靶材中的侵蚀轨迹。
图11示出根据本发明一个实施例的沉积薄膜的方法的流程图。
为便于理解,在可能情况下使用相同标号来表示附图所共有的相同元件。预期一个实施例的元件和特征可有利地并入其他实施例中而无需进一步叙述。
具体描述
本发明的实施例大体上提供处理腔室,所述处理腔室用来进行物理气相沉积(PVD)工艺。在一个实施例中,处理腔室设计适于利用RF物理气相沉积(PVD)工艺来沉积预定材料。此处公开的处理腔室对于沉积多组分薄膜特别有用。处理腔室的设计特征包括:改良式RF进料构造,以减少任何驻波效应;改良式磁控管设计,以加强RF等离子体均匀性、沉积膜组分和厚度均匀性;改良式基板偏压构造,以改善工艺控制;以及改良式工艺套件设计,以改善在基板临界表面附近的RF场均匀性,进而提高工艺均匀性和可重复性。
图1A示出示例性半导体处理腔室100,所述半导体处理腔室100具有上工艺组件108、工艺套件150和基座组件120,他们全被配置以处理设置在处理区110的基板105。工艺套件150包括单件(one-piece)接地屏蔽160、下工艺套件165和隔离环组件180。如所示,处理腔室100包括能将来自靶材132的单一或多组分材料沉积在基板105上的溅射腔室,所述溅射腔室也称为物理气相沉积即PVD腔室。处理腔室100还可用来沉积铝、铜、镍、铂、铪、银、铬、金、钼、硅、钌、钽、氮化钽、碳化钽、氮化钛、钨、氮化钨、镧、氧化铝、氧化镧、镍铂合金、钛及/或他们的组合。这样的处理腔室可从位于美国加州圣克拉拉的应用材料公司购得。包括那些来自其它制造商提供的其它处理腔室可得益于本发明所述的一个或多个实施例是可预期的。
处理腔室100包括具有侧壁104、底壁106和上工艺组件108的腔室主体101,所述侧壁104、底壁106和上工艺组件108包围处理区110即等离子体区。腔室主体101通常由焊接不锈钢板或单一铝块制造。在一个实施例中,侧壁包括铝,底壁包括不锈钢板。侧壁104通常包括狭缝阀(未示出)以供基板105进出处理腔室100。处理腔室100的上工艺组件108的部件连同接地屏蔽160、基座组件120和盖环170把在处理区110中形成的等离子体限定在基板105的上方的区域。
基座组件120由腔室100的底壁106支撑。在处理期间,基座组件120支撑沉积环502和基板105。基座组件120通过提升机构122与腔室100的底壁106耦接,升降机构122配置为在上处理位置与下传送位置之间移动基座组件120。此外,在下传送位置中,提升销123移动穿过基座组件120,以将基板定位在距离基座组件120的一段距离,以有助于基板和设置于处理腔室100外部的基板传送机构间的交换,所述基板传送机构诸如单刃机器人(未示出)。波纹管124通常设置在基座组件120与腔室底壁106之间,以将处理区110和基座组件120的内部以及腔室的外部隔开。
基座组件120通常包括密接平台外壳128的支撑件126。平台外壳128通常由诸如不锈钢或铝的金属材料制造。冷却板(未示出)通常设置在平台外壳128内,以热调节支撑件126。可得益于本文描述的实施例的一个基座组件120描述于在1996年4月16日授予Davenport等人的美国专利第5,507,499号,援引该专利申请和专利的全部内容作为参考。
支撑件126可由铝或陶瓷形成。支撑件126具有基板接收表面127,所述基板接收表面127在处理期间接收并支撑基板105,基板接收表面127大体上平行于靶材132的溅射表面133。支撑件126还具有周围边缘129,所述周围边缘129在基板105的悬伸边缘105A之前终止。支撑件126可为静电夹头、陶瓷主体、加热器或他们的组合。在一个实施例中,支撑件126为静电夹头,所述静电夹头包括具有埋置其中的导电层或电极126A的介电主体。介电主体通常由高导热性介电材料制造,所述高导热性介电材料诸如热解氮化硼、氮化铝、氮化硅、氧化铝或等效(equivalent)材料。基座组件120和支撑件126的其它方面将进一步说明在下面。在一个实施例中,导电层126A配置为使静电夹头电源供应器143施加DC电压至导电层126A时,则设置在基板接收表面127上的基板105得以静电夹持至导电层126A,以改善在基板105与支撑件126之间的传热。在另一个实施例中,阻抗控制器141也与导电层126A耦接,使得在处理期间可在基板上保持电压,以使等离子体与基板105的表面互相作用。
腔室100被系统控制器190控制,所述系统控制器190通常设计来便于控制及自动化处理腔室100,且通常包括中央处理单元(CPU)(未示出)、存储器未示出)和支持电路(即I/O)(未示出)。CPU可为任何型式的计算机处理器的一个,所述计算机处理器用于工业设定(setting),所述工业设定用于控制各种系统功能、基板移动、腔室工艺和支持硬件(例如传感器、机械人、电机等),及监测工艺(例如基板支撑件温度、电源供应器变量、腔室工艺时间、I/O信号等)。存储器连接CPU,且存储器可为易于获得的一个或多个存储器,所述存储器诸如随机存取存储器(RAM)、只读存储器(ROM)、软盘、硬盘、或任何其它形式的数字储存器、本地或远程储存器。软件指令和数据可被编码并被存储在存储器中,用于命令CPU。支持电路还连接到CPU,用于以常规方式支持处理器。所述支持电路可包括高速缓存、电源供应器、时钟电路、输入/输出电路、子系统等。系统控制器190可读的程序(或计算机指令)确定对基板实施哪些任务的。优选地,程序为系统控制器190可读取的软件,所述程序包括进行与执行在处理腔室100中的移动、各种工艺配方(recipe)任务和配方步骤的监测、执行和控制有关的任务的编码。例如,控制器190可包含程序编码,所述程序编码包括基板定位指令集,用以操作基座组件120;气流控制指令集,用以操作气流控制阀,以设定溅射气体向腔室100的流动;气压控制指令集,用以操作节流阀或闸阀,以维持在腔室100中的压强;温度控制指令集,用以控制在基座组件120或侧壁104中的温度控制系统(未示出),以分别设定基板或侧壁104的温度;以及工艺监测指令集,用以监测腔室100中的工艺。
腔室100还包括工艺套件150,所述工艺套件150包括可容易从腔室100拆除的各种部件,以(例如)擦去部件表面的溅射沉积物、更换或修理受侵蚀的部件、或以改建腔室100用于其它工艺。在一个实施例中,工艺套件150包括放置在支撑件126的周围边缘129周围的隔离环组件180、接地屏蔽160和环组件168,所述周围边缘129在基板105的悬伸边缘之前终止。
图1B为处理腔室100的等距视图,所述处理腔室100与丛集工具103的处理位置耦接。丛集工具103还可包括其它处理腔室(未示出),所述处理腔室适于在处理腔室100中进行沉积工艺之前或之后,对基板进行一个或多个处理步骤。示例性丛集工具103可包括从美国加州圣克拉拉的应用材料公司的CenturaTM或EnduraTM系统购得。丛集工具103可包括一个或多个负载锁定(load-lock)腔室(未示出)、一个或多个处理腔室、和冷却腔室(未示出),所有这些腔室都附接于中部传送腔室103A。在一个实例中,丛集工具103可具有处理腔室,所述处理腔室配置为进行一些基板处理操作,所述基板处理操作诸如循环层沉积、化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)、蚀刻、预清洗、除气、退火、定向和其它基板工艺。设置在传送腔室103A中的的传送工具(例如机器人(未示出))用来传送基板进出附接于丛集工具103的一个或多个腔室。
在一个实施例中,参照图1A及图2,处理腔室100包括隔离环组件180,所述隔离环组件180包括邻近靶材132、接地屏蔽160的边缘216与靶材隔离器136设置的隔离环250和支撑环267。隔离环250在靶材132的溅射表面133的外缘附近延伸及围绕。隔离环组件180的隔离环250包括顶壁252、底壁254和支撑边256,他们从隔离环250的顶壁252径向往外延伸。示例性隔离环设计的一个例子进一步描述于共同受让的美国专利申请第12/433,315号,以全文并入作为参考。
顶壁252包括内围258、邻近靶材132放置的顶表面132和邻近靶材隔离器136设置的外围262。支撑边256包括底部接触面264和上表面266。支撑边256的底部接触面264由弹簧构件267A(例如压缩金属弹簧元件)支撑,所述弹簧构件267A与支撑环267耦接,以将隔离环偏离朝向且抵着靶材隔离器136的表面。使用弹簧配件267A可有助于减少隔离环250和隔离环250的支撑部件与溅射表面133之间的公差叠加(tolerance stack-up),使得隔离环250的顶表面260与溅射表面133之间可确实保持期望的间隙。形成在顶表面260与溅射表面133之间的间隙对于防止形成在处理区110的等离子体延伸进入间隙,并引起产生密封及/或微粒问题很重要。底壁254包括内围268、外围270和底表面272。底壁254的内围268和顶壁252的内围258形成单一表面。
垂直沟槽276形成在底壁254的外围270与支撑边256的底部接触表面264之间的转折点278处。屏蔽160的阶梯221与垂直沟槽276结合提供曲折间隙(labyrinth gap),所述曲折间隙防止导电材料在隔离环组件180与屏蔽160之间产生表面桥接,从而维持电性的不连续性,同时仍保护腔室壁104、106。在一个实施例中,隔离环组件180提供在靶材132与工艺套件150的接地部件之间的间隙,同时仍提供腔室壁屏蔽。隔离环组件180的阶梯设计使得屏蔽160相对适配器(adapter)220置于中心,所述适配器220也为用于配合屏蔽的装设点和用于靶材132的对准特征。阶梯设计也可消除从靶材132至支撑环267的连线(line-of-site)沉积、消除此区域的电弧作用影响。
在一个实施例中,隔离环组件180具有沉积在自身上面的喷砂表面纹理或电弧喷涂铝膜,以达到至少180±20微英寸0.0041-0.0051mm)的表面粗糙度(Ra值),以增加薄膜附着性。支撑边256使得隔离环组件180相对适配器220置于中心,同时消除从靶材132至接地屏蔽160的连线沉积,因此消除杂散等离子体影响。在一个实施例中,支撑环267包括一系列的对准销(未示出),所述对准销定位/对准屏蔽160中的一系列的狭缝(未示出)。
屏蔽160的内表面214通常环绕溅射靶材132的溅射表面133,所述溅射表面133面对支撑件126和支撑件126的周围边缘126。屏蔽160覆盖及遮蔽腔室100的侧壁104,以减少源自溅射靶材132的溅射表面133的溅射沉积物沉积于屏蔽160后面的部件和表面。例如,屏蔽160可保护支撑件126的表面、基板105的悬伸边缘、腔室100的侧壁104和底壁106。
盖组件区域
上工艺组件108还可包括RF源181、直流(DC)源182、适配器102、电机193和盖组件130。盖组件130通常包括靶材132、磁控管系统189和盖包壳(enclosure)191。如图1A及图1B所示,当处于关闭位置时,上工艺组件108由侧壁104支撑。陶瓷靶材隔离器136设置在隔离环组件180、盖组件130的靶材132与适配器102之间,以防止他们之间的真空泄漏。适配器102密接侧壁104,适配器102配置为帮助上工艺组件108和隔离环组件180的拆除。
当处于处理位置时,靶材132邻近适配器102设置,并暴露于处理腔室100的处理区110。靶材132含有在PVD工艺或溅射工艺期间沉积在基板105上的材料。隔离环组件180设置在靶材132与屏蔽160和腔室主体101之间,以电隔离靶材132与屏蔽160和腔室主体101。
在处理期间,通过设置在RF源181及/或直流(DC)源182的功率源相对于处理腔室的接地区(例如腔室主体101和适配器102)偏压靶材132。当与溅射多组分薄膜一起使用时,所述多组分薄膜诸如溅射钛和铝、或钛和钨,仅举几例,据信在高压PVD工艺期间通过输送RF能量和DC功率至靶材132,可实现比传统低压DC等离子体处理技术显著的工艺优势。此外,在一个实施例中,相较于仅有RF源,RF和DC功率源的结合使得在处理期间使用较低的整体RF功率,这样有助于减小等离子体对基板的破坏以及提高器件产量。在一个实施例中,RF源181包括RF功率源181A和RF匹配181B,所述RF功率源181A和RF匹配181B被配置为有效输送RF能量至靶材132。在一个实例中,RF功率源181A能够以约13.56MHz至约128MHz之间的频率、约0kW至约5kW之间的功率下产生RF电流。在一个实例中,在DC源182中的DC电源供应器182A能够输送约0kW至约10kW的DC功率。在另一个实例中,RF功率源181A能够于靶材处产生约0kW/m2至约33kW/m2之间的RF功率密度,DC源182能输送约0kW/m2至约66kW/m2之间的的功率密度。
在处理期间,气体、诸如氩气经由导管144从气源142提供至处理区110。气源142可包含不反应气体、诸如氩气、氪气、氦气或氙气,所述不反应气体能够高能冲击及从靶材132溅射材料。气源142还可包含反应气体、诸如一种或多种含氧气体或含氮气体,所述反应气体能够与溅射材料反应以在基板上形成层。用过的工艺气体和副产物通过排气口146排出腔室100,所述排气口146接收用过的工艺气体并将用过的工艺气体导向至具有可调整位置闸阀147的排气导管148,以控制腔室100的处理区110中的压强。排气导管148连接一个或多个排气泵149,诸如低温泵。在处理期间腔室100中的溅射气体的压强通常设置成亚大气压(sub-atmospheric)水平,所述亚大气压水平诸如真空环境、例如如约0.6毫托至约400毫托的压强。在一个实施例中,处理压强设置为约20毫托至约100毫托。等离子体从气体形成在基板105与靶材132之间。等离子体中的离子加速朝向靶材132,使得材料自靶材132移出。移出的靶材材料沉积在基板上。
参照图3A,盖包壳191通常包括导电壁185、中央进料器(feed)184和屏蔽186(图1A及图1B)。在此构造中,导电壁185、中央进料器184、靶材132和电机193的一部分围住并形成背区134。背区134是设置在靶材132的背侧的封闭区,且背区134在处理期间通常充满流动液体来去除靶材132在处理时产生的热。在一个实施例中,导电壁185和中央进料器184配置为支撑电机193和磁控管系统189,使得电机193在处理期间可转动磁控管系统189。在一个实施例中,电机193利用介电层193B、诸如Delrin、G10或Ardel,电隔离从电源供应器输送的RF或DC功率。
屏蔽186可包括一种或多种介电材料,所述介电材料经设置以围住及防止输送到靶材132的RF能量干扰及影响设置于丛集工具103(图1B)中的其它处理腔室。在一个构造中,屏蔽186包括Delrin、G10、Ardel或其它类似材料、及/或接地薄片金属RF屏蔽。
功率输送
如图1A所示,在一个实施例中,在处理期间,电容耦合靶材132在等离子体处理期间利用RF或VHF能量来提供功率,以离子化及解离靶材132的溅射表面133附近的处理气体,使得离子化气体从偏压靶材溅射材料。然而,随着处理腔室尺寸扩大至处理300mm和更大的基板,由于有限的反应器容积和电极上的边界条件,产生的RF场本质上会以典型的RF和VHF频率在处理区110形成驻波。如果电极的尺寸变得可与激发波长相当,则由形成的驻波引起的电磁效应可造成等离子体和基板上的沉积膜不均匀。驻波和等离子体不均匀通常会严重影响由PVD反应器沉积的薄膜的厚度和特性、或严重影响等离子体处理腔室的工艺均匀性。不均匀薄膜会导致中心至边缘、边缘至边缘不均匀,在某些情况下,这样会导致无功能的器件。
在某些情况下,通过成形电极(例如PVD靶材)、降低RF频率及调整处理参数(如腔室压强)及/或他们的组合,可改善驻波效应和相关等离子体不均匀性到一定程度。然而,当处理腔室尺寸增大以反映对更大的基板需求时,单单扩大上述对驻波效应和等离子体不均匀性的对策可能不够充分及/或导致不理想的等离子体处理条件。
据信提随着高处理压强以及通过RF功率的不对称输送至电极将进一步诱发及恶化不均匀性。RF功率的不对称输送会造成输送至电极的RF功率的不均一散布,这样产生等离子体的不均匀。图3B为靶材132的示意性上视图,所述图3B示意性地示出从不对称设置的功率输送点“F”输送的RF功率横越靶材表面的流动。如图所示,RF功率输送点“F”偏离靶材132的中心“M”一段距离“O”。在此构造中,从功率输送点“F”发出的电流是不均匀的,因为所述电流传越靶材的表面流过不同的距离,例如通过沿相反方向C12、C11的电流的示意性所示,所述沿相反方向C12、C11的电流为了抵达靶材132的边缘具有不同路径长度。据信不均一流动会在处理区110引起不对称驻波,这样会导致等离子体和沉积不均匀。
如图3A及图3C所示,在一个实施例中,RF功率输送至中央进料器184,所述中央进料器184设置在靶材132的中心“M”或中心轴。在此构造中,在处理期间,设置在RF源181的RF功率源181A输送的RF能量被配置为流过中央进料器184和导电壁185以到达靶材132。如图3A及图3C所示,在一个实施例中,中央进料器184在靶材132的中心“M”周围轴向对称。在一个实施例中,配置中央进料器184的深宽比,使得在中央进料器184的上表面184A的一个边缘(如图3A所示)输送的RF能量将允许RF能量均匀输送至导电壁185及/或中央进料器184的下表面184B的靶材132。RF电流通常沿着图3A箭头“C”所指的路径流动。在此情况下,从中央进料器184发出的RF电流(例如图3C中的标号C21)将会是均匀的,等离子体是均匀的,将会减少及/或去掉RF驻波效应。
在某些实施例中,中央进料器184具有的长度“A”对内径比(例如直径“D2”)或直径深宽比为至少约1∶1。据信提供直径深宽比至少1∶1或以上可提供从中央进料器184输送更均匀的RF。在一个实施例中,中央进料器184的内径或直径“D2”可尽可能小,例如直径约1英寸至约6英寸、或约4英寸。提供小内径以便于维持期望的直径深宽比,而不会很大的增加中央进料器184的长度。在某些构造中,中央进料器184可具有在约1英寸(25.4mm)至约12英寸(304.8mm)、或约4英寸(101.6mm)的长度“A”。
RF或VHF电流穿透导电对象(article)的量为电流的频率和材料的物理性质的函数。因此组成中央进料器184的材料及/或设置在中央进料器184的表面上方的涂层的导电率会影响中央进料器184分配输送的RF或VHF电流的能力。在一个例子中,中央进料器184及/或导电壁185由铝(例如6061T6铝)或奥氏体不锈钢材料组成。因此在某些实施例中,可期望定义表面积深宽比,所述表面积深宽比可被用来设计具有期望RF功率输送均匀性的中央进料器184。表面积深宽比定义为中央进料器184的长度“A”与配置为使RF功率沿着表面积传播的表面积的比例。在一个例子中,采用图3A及图3C所示的构造,深宽比为长度“A”相对于直径D1与D2构成的表面面积(例如πD1A+πD2A),RF电流可沿D1与D2流动。在一个例子中,置于中心的中央进料器184的深宽比为在约0.001/mm至约0.025/mm之间,诸如约0.016/mm。在另一个例子中,置于中心的中央进料器184由6061 T6铝形成,具有约0.006/mm的表面积比,这里长度“A”为约101.6mm,直径“D2”为约25.4mm,直径”D1”为约33mm。
应该注意的是虽然图3C示出中央进料器在截面上是环状,但本发明的范围不限于此构造。在某些实施例中,中央进料器184在上表面184A与下表面184B之间延伸的截面可具有方形、六角形或其它形状截面,这样使得能实质均一分配RF功率至导电壁185及/或靶材132。应该注意的是上表面184A和下表面184B不需互相平行,故长度“A”可定义为在上表面184A与下表面184B之间的最小距离。
磁控管组件
为提供有效溅射,磁控管系统189设置在上工艺组件108中的靶材132的背面,以在邻近靶材132的溅射表面133的处理区110中产生磁场。磁场产生是为捕获电子和离子,从而提高等离子体密度还从而提高溅射速率。根据本发明的一个实施例,磁控管系统189包括源磁控管组件420,所述磁控管组件420包括旋转板413、外磁极421和内磁极422。旋转板413通常使得在源磁控管组件420中的磁场产生部件的位置可相对于腔室100的中心轴194移动。
图4A、图4B及图4D示出源磁控管组件420,从靶材132的溅射表面133侧观看,所述源磁控管组件420相对于中心轴194设置在在第一径向位置。图4C示出相对于中心轴194设置在第二径向位置的源磁控管组件420,所述第二径向位置不同于第一径向位置且是如下所述通过调整旋转方向和速度而得。旋转板413通常适于沿垂直方向支撑及磁性耦接第一磁极性的外磁极421和具有第二磁极性的内磁极422,所述第二磁极性与第一磁极性相反。通过间隙426隔开内磁极422和外磁极421,每个磁极通常包括一个或多个磁铁和极片429。在两个磁极421、422之间延伸的磁场在邻近靶材132的溅射表面的第一部分形成等离子体区“P”(图3A、图4D)。等离子体区“P”形成高密度等离子体区,所述等离子体区通常依循间隙426的形状。
如图4A-图4D所示,在一个实施例中,磁控管系统189为非闭合回路设计(例如开回路设计),以降低在等离子体区“P”中形成的等离子体强度,以补偿通过RF能量从RF源181输送到靶材132所产生的较高电离电势的使用。注意RF驱动等离子体比DC驱动等离子体更能有效增加等离子体中的原子(例如气体原子和溅射原子)的离子化,这是因为施加能量更有效地耦合等离子体中的电子,且其它电子-等离子体相互作用现象会提高电子的能量及提高等离子体中的离子化水平。
通常,“闭合回路”磁控管构造是经形成使磁控管的外磁极围绕磁控管的内磁极,在磁极之间构成间隙,所述间隙为连续回路。在闭合回路构造中,出现及重返穿过靶材的表面的磁场形成“闭合回路”图案,所述图案可用来将在靶材的表面附近的电子限制呈闭合图案,所述闭合图案常被称为“轨道(racetrack)”型图案。与开回路相反,闭合回路磁控管构造能限制电子及在靶材132的溅射表面133附近产生高密度等离子体,以提高溅射率。
在开回路磁控管构造中,内磁极与外磁极之间捕获的电子将迁移、泄露及逸出磁控管开放端产生的B场,因此由于电子的限制减少,所以在溅射工艺期间只持有电子一小段时间。然而,惊奇地发现,如本文所述开回路磁控管构造配合本文所述的多组分靶材的RF和DC溅射使用可显著的提高阶梯覆盖率并改善基板表面各处的材料组分均匀性。
在磁控管系统189的一个实施例中,由电机193驱动的旋转轴杆193A沿着中心轴194延伸并支撑径向移位机构410,所述移位机构410包括旋转板413、平衡锤415和源磁控管组件420。从而,当电机193沿不同方向R1、R2转动时(图4B、图4C),径向移位机构410沿互补径向方向移动源磁控管组件420,所述互补径向方向诸如径向朝向或远离中心轴194(例如图4A的标号“S”)。
在处理期间,溅射有效加热靶材132。因此,背区134密封于靶材132的背面且充满冷却水液体,所述冷却水液体由未示出的冷却器和再循环冷却水的水管冷却。旋转轴杆193A通过旋转密封件(未示出)穿透背腔室100。包括径向移位机构410的磁控管系统189浸没于背区134的液体中。
图4A为磁控管系统189的一个实施例的等距视图,磁控管系统189通常包括横臂414,钳夹414A将横臂414的中心固定于旋转轴杆193A。横臂的一端支撑平衡锤415。横臂414的另一端(从平衡锤415横越转轴194)支撑枢轴412或旋转轴承,用以旋转支撑源磁控管组件420而围绕偏移垂直枢轴419旋转。在一个构造中,枢轴419实质平行于转轴194。在此构造中,横臂414上的磁控管420使得磁控管420相对旋转中心轴194沿不同且互补径向摆动。互补移动是因为源磁控管组件420的质心相距枢轴419一段距离所致。因此,通过电机193转动横臂414和源磁控管组件420时,作用于源磁控管组件420的向心加速度促使磁控管420围绕枢轴419沿一个方向或其它方向(根据电机193旋转方向而定)转动。源磁控管组件420的质心可定义为源磁控管组件420的重心,就图4A-图4D示出的构造而言,所述质心可位于内磁极422的内侧(in-board)或靠近转轴194。
通过反转旋转轴杆139A围绕转轴194的旋转的方向及因此整个磁控管系统189围绕转轴194的旋转的方向可影响两个位置之间的转换。如图4D的顶部平面图所示,当旋转轴杆193A沿顺时针方向R1围绕转轴194转动横臂414时,惯性和阻力将导致源磁控管组件420沿顺时针方向围绕枢轴419旋转,直到固定于源磁控管组件420的缓冲器(bumper)416啮合横臂414的一侧。在此处理构造或磁控管处理位置中,源磁控管组件420置于源磁控管组件420靠近靶材132的边缘的径向朝外位置,使得源磁控管组件420可支撑等离子体用于溅射沉积或溅射蚀刻基板105。此位置可被称为磁控管“向外”位置或第一位置。
或者,如图4C的顶部平面图所示,当旋转轴杆139A沿逆时针方向R2围绕转轴194转动横臂414时,惯性和阻力将导致源磁控管组件420沿顺时针方向围绕枢轴419旋转,直到固定于源磁控管组件420的缓冲器417啮合横臂414的另一侧。在此构造中,源磁控管组件420置于源磁控管组件420远离靶材132的边缘的朝内位置且靠近转轴194,使得源磁控管组件420可在靠近靶材中心处支撑等离子体,以清洁此区域。此位置可被称为磁控管“向内”位置或第二位置。
在某些实施例中,源磁控管组件420为不平衡磁控管。在一个实施例中,相对不平衡很小且近乎1比1。通常,不平衡定义为遍及外磁极412的总磁场强度或磁通量除以遍及内磁极422的总磁场强度或磁通量的比。已经发现将外场与内场强度不平衡保持成在约0.5至约1.5之间,可改善多组分薄膜的RF沉积工艺。在一个实施例中,外场对内场强度不平衡比在约18∶17至约20∶16之间。磁场不平衡导致从外磁极421发出的部分磁场投向基板105并将离子化溅射粒子导向基板105。由于源磁控管组件420扩及宽广的靶材区域,所以可扩大等离子体区“P”及降低由RF和DC功率输送到靶材132所产生的总体等离子体强度。然而,相较于靶材132未直接邻近源磁控管组件420的部分,源磁控管组件420会在等离子体区“P”产生较高密度等离子体。结果,是以靶材132主要在源磁控管组件420扫掠(sweep)的区域溅射,形成的等离子体则引起相当分率(fraction)的溅射粒子离子化。离子化粒子通过不平衡磁场至少部分地导向基板105。
在一个实施例中,如上所述述及图4A和图4D所示,源磁控管组件420依非闭合回路设计形成,以降低在等离子体区“P”形成的等离子体强度。在此构造中,非闭合回路设计以弧形形成,所述弧形的半径D(图4B及图4D)从弧形中心延伸到间隙426的中心。当弧形设在处于第一位置的磁控管时,弧形可调整大小及定位使得弧形的半径D的中心与转轴194的中心共同延伸。在一个实施例中,形成的弧形具有在约7.3英寸(185mm)至8.3英寸(210mm)的半径,靶材132具有约17.8英寸(454mm)的直径。在一个实施例中,弧形为圆形且对向在约70度至约180度、诸如约130度的角441(图4D)。在一个实施例中,从转轴194到枢轴419的距离约等于弧形的半径D。
在一个实施例中,外磁极421和内磁极422的每一个包括多个磁铁423,所述磁铁423设置成阵列图案在间隙426的各侧且被极片429盖住(图4A)。在一个构造中,在外磁极421中的磁铁423的北极(N)设置远离旋转板413,在内磁极422中的磁铁423的南极(S)设置远离旋转板413。在某些构造中,磁轭(未示出)设置在内磁极和外磁极的磁铁与旋转板413之间。在一个例子中,源磁控管组件420包括含有18个磁铁的外磁极421和含有17个磁铁的内磁极422,其中磁铁423由铝镍钴合金、稀土材料或其它类似材料形成。在一个实施例中,磁铁423分别配置以产生磁场,所述磁场在他们的尖端(tip)或尖端的附近具有约1.1千高斯至约2.3千高斯的强度。在一个实施例中,间隙426和外磁极421及/或内磁极422越过形成的弧形的宽度是一致的。在一个实施例中,弧形具有约1英寸至约1.5英寸(38.1mm)的宽度。
已经发现如果源磁控管组件420设置在靶材132的径向朝外部分,可改善溅射沉积的均匀性。然而,如果主要溅射发生在靶材132的外环带,则一些溅射靶材原子可能再沉积于靶材132的内部。据信因为发生远离源磁控管组件420的相对溅射速率很小,所以再沉积材料很可能朝着转轴194堆积。若再沉积薄膜明显增厚,则再沉积薄膜可能剥落及形成显著微粒,以致恶化沉积在基板105上的薄膜质量和从靶材132的中间落下的微粒附近形成的任何器件的质量。因此,如图4C所示,在一个构造中,轴杆193A的旋转方向由控制器190送出的指令改变,使源磁控管组件420围绕枢轴412旋转到增强溅射靶材132的中心附近的材料的位置。在一个构造中,置于中心的源磁控管组件420使得产生的等离子体在附近及/或越过靶材132的中心延伸,以去除沉积在上面的再沉积材料。如以下的进一步所述,相对靶材表面133形成磁控管“轨道”或侵蚀沟槽916(图10B)外的区域上的另一元素,将优先再沉积一种溅射元素,以致暴露的靶材表面133的区域的材料组成将随时间不同,故靶材表面上的再沉积材料会影响基板上的溅射沉积层的组成。“轨道”外的区域通常包括侵蚀沟槽916外的区域,诸如中心区918和靶材的外缘区920。相较于单纯DC产生等离子体,溅射磁控管产生侵蚀沟槽916外的区域将对RF产生等离子体造成更多问题,因输送RF能量至靶材更易均匀产生遍及靶材表面的等离子体。
图4E示出磁控管系统189的替代实施例,其中外磁极424和内磁极425形成闭合回路环磁控管,所述闭合回路环磁控管围绕靶材132的中心“M”集中。在一个实施例中,采用径向对称形状的磁控管设计,所述径向对称形状的磁控管设计为不平衡与非磁性对称闭合回路磁控管设计,可利用RF与DC等离子体来沉积薄膜。
在一个实施例中,设置在外磁极424和内磁极425的磁铁423对称分布地围绕第一轴491并且不对称分布地围绕第二轴492。在一个实施例中,在外磁极424与内磁极425之间沿着第一轴491处,外磁极424和内磁极425具有在约0.5至约1.5的外场与内场强度不平衡。在不平衡闭合回路设计的另一个实施例中,在外磁极424与内磁极425之间沿着第一轴491之处,在外磁极424和内磁极425之间的外场对内场强度不平衡比在约18∶17与约20∶16之间。注意在内磁极与外磁极之间的磁场不平衡不同于磁铁423相对第二轴492的不对称性,因为不平衡是与磁极之间产生的场有关,不对称性是与遍及靶材的表面的各个区域存在或平均磁场强度变化有关。在此构造中,不平衡闭合回路磁控管用来产生环状等离子体区“PR”,所述环状等离子体区“PR”位于间隙427的中心附近。
在邻近第二轴492上方的磁控管系统189的区域(图4E)或邻近具有最大磁铁431的密度的区域的处理区的等离子体密度通常比第二轴492下方的磁控管系统189的区域或具由最小磁铁密度或无磁铁的区域的等离子体密度高。虽然分别耦接外磁极424和内磁极425的极片板424A、425A呈圆形且具导磁性,但在磁极之间沿着第一轴491在第二轴492下方的区域产生的磁场将明显比在磁极之间沿着第一轴491在第二轴492上方的区域产生的磁场小。
在一个例子中,在外磁极424与内磁极425之间沿着第一轴491在第二轴492下方处的磁场强度比在外磁极424与内磁极425之间沿着第一轴491在第二轴492上方处的磁场强度小几个数量级、或甚至具有几乎为零的数量级。在此构造中,据信邻近较少磁化区、诸如图4E的第二轴492下方的半截面的电子更易逸出在内磁极与外磁极之间形成的闭合回路而径向朝靶材中心“M”移动。逸出电子可因此有助于增加靶材的中心区附近的气体离子化,以提高靶材利用率。在一个实施例中,磁控管的内径为6.5英寸,外径为8.3英寸。磁控管在靶材和腔室上方的大致中心轴上自旋;在一个实施例中,在处理期间,所述磁控管被配置为利用电机193围绕磁控管中心“M”旋转。
基板沉积工艺控制
在处理腔室100的一个实施例中,阻抗控制器141(图1A)耦接电极且RF接地,以在处理期间调整基板上的偏置电压,进而控制对基板表面的轰击程度。在一个实施例中,电极邻近支撑件126的基板接收表面127设置,所述电极包括电极126A。在PVD反应器中,通过控制电极的接地阻抗来调整基板表面的轰击将影响阶梯覆盖率、悬伸几何形状和沉积膜的性质,所述性质诸如晶粒尺寸、薄膜应力、晶体取向、薄膜密度、粗糙度和薄膜组分。因此,阻抗控制器141可用来改变沉积速率、蚀刻速率、甚至是基板表面的多组分薄膜的组分。在一个实施例中,通过适当调整电极/基板的接地阻抗,阻抗控制器141运用于使能够或防止沉积或蚀刻。
图6示出阻抗控制器141的一个实施例,所述阻抗控制器141包括具有反馈电路的可变电容器调整电路,用以控制基板上的沉积金属或非金属层的性质。如以下所述,在PVD沉积配方步骤的一个或多个部分,可变电容器调整电路可就一个给定设定点来自动化。实际的阻抗设定点可依据测量电流或电压来调整、或由一些使用者定义设定点、诸如可变电容器的电容的全标度(scale)的百分比。设定点可取决于期望的将要对基板实现的处理结果。
参照图6,阻抗控制器141可包括可变电容器610、输入616、选择性输出电路618、选择性电感器620、选择性电阻器621、接口622、处理器624、电机控制器626和电机628。电机628优选地为步进电机,所述步进电机以能改变可变电容器610的电容的方式附接可变电容器610。电感器620可选择性的增设,且电感器620大致上可有效减缓或补偿由不同腔室配备的在阻抗控制器141和电极126A之间的具有不同电缆长度所产生的电感差异。增设电感器620可有利于不需对丛集工具103的每个不同腔室位置和构造重新计算阻抗控制设定点。
此外,输出电路618是选择性的,且可包括传感器来确定在处理期间的基板偏置电压。传感器可为电压传感器或电流传感器。传感器可用来提供反馈,以控制电机及控制可变电容器610的操作设定点。如果包括输出电路618,则输出电路618可提供反馈信号至接口622。接口622提供反馈信号至处理器624和控制器190。处理器624可为专用电子电路、也或为微处理器或微控制器基电路。
可变电容器610设定是用来调整接地阻抗,于是调整在处理期间等离子体和离子与基板间的相互作用。可变电容器610连接输入616,所述输入616耦接电极126A。在一个实施例中,输入616通过一个或多个附加部件、诸如选择性电感器620而耦接电极126A。根据本发明的各个方面,预期其它部件也可设置在图6的电路中。在一个例子中,可变电容器610具有在约50微微法拉(pF)至约1000微微法拉(pF)之间变化的电容,选择性电感器620具有约0.26微亨(μH)的电感。
接口622还可接收来自电机控制器626的信号。处理器624控制电机控制器626,所述电机控制器626依据信号和从传感器的输出接收的信息来控制电机628。电机控制器626促使电机628、优选地为步进电机来步进通过其位置,以依模型控制信号和传感器的输出的函数来改变可变电容器610的电容。
根据本发明的一个方面,阻抗控制器141包括在安装在处理腔室100中的外壳605内。通过将阻抗控制器141安装在处理腔室100可更容易及有效地控制基板上的偏置电压。
处理器624也可为专用接口电路。接口电路或处理器624的主要用途为依据接收从传感器的输入来控制电机控制器626,所述传感器如附接至前面描述的在阻抗控制器141中形成的部分电路的电压传感器662或电流传感器663。如果处理器624具体指定了期望的偏置电压设定点,则电机控制器626控制产生电容以达此设定点。例如,如果处理器624依据阻抗控制器141测量的电压来控制基板偏置电压,则电机控制器626依据电压传感器662的输出来控制电机628,以保持电路中的恒定电压。在另一个例子中,如果处理器624依据阻抗控制器141中测量的电流控制基板偏置电压,则电机控制器626控制电机628,以维持恒定电流通过电路。根据本发明的各个方面可采用任何已知类型的电压传感器,并可连接在可变电容器610的处理腔室侧与地之间。同样地,根据本发明的各个方面可采用任何已知类型的电流传感器未示出)。电压传感器和电流传感器都为本领域所熟知。
下工艺套件和基板支撑组件
参照图1A及图5A,下工艺套件165包括沉积环502和盖环170。沉积环502通常呈环形或环带围绕支撑件126。盖环170至少部分覆盖部分沉积环502。在处理期间,沉积环502和盖环170彼此合作以减少溅射沉积物形成在支撑件126的周围边缘129和基板105的悬伸边缘105A。
盖环170环绕及至少部分覆盖沉积环502,以接收并因而遮蔽沉积环502免于溅射沉积块。盖环170由耐溅射等离子体侵蚀的材料制造,所述材料例如金属材料、诸如不锈钢、钛或铝,或陶瓷材料、诸如氧化铝。在一个实施例中,盖环170由不锈钢材料组成。在一个实施例中,盖环170的表面经双丝铝电弧喷涂、诸如CLEANCOATTM来处理,以减少微粒从盖环170的表面脱落。在一个实施例中,沉积环502由耐溅射等离子体侵蚀的介电材料制造,所述材料例如陶瓷材料诸如如氧化铝。
盖环170包括环形圈510,所述环形圈510包括顶表面573,所述顶表面573径向往内倾斜且环绕支撑件126。环形圈510的顶表面573具有内围571和外围516。内围571包括突沿572,所述突沿位于包括沉积环502的内部明渠(open inner channel)径向往内的倾角上。突沿572可减少溅射沉积物在沉积环502的表面503与突沿572之间的内部明渠上的沉积。突沿572经调整大小、成形及定位以与弧形间隙402合作并互补以形成在盖环170与沉积环502之间的构成回旋、狭隘的流动路径,所述流动路径抑制处理沉积物流动到支撑件126和平台外壳128。
顶表面573可从水平倾斜在约10度至约20度之间的角度。盖环170的顶表面573的角度被设计为使最接近基板105的悬伸边缘105A的溅射沉积物堆积减至最少,这样将对遍及基板105所得的微粒性能造成其他负面影响。盖环可包括与工艺化学品兼容的任何材料,所述材料诸如钛或不锈钢。在一个实施例中,盖环170具有外径,所述外径在约15.5英寸(39.4cm)至约16英寸(40.6cm)之间。在一个实施例中,盖环170具有在约1英寸(2.5cm)至约1.5英寸(3.8cm)的高度。
在屏蔽160的环支撑部561与盖环170之间的间隔或间隙554形成回旋的S形途径或曲折路径供等离子体行进。此途径形状是有益的,例如因所述途径可阻碍及阻挡等离子体物种进入此区域、减少溅射材料的不期望的沉积。
如图5A所示,在一个实施例中,在处理期间,盖环170经设计及相对接地屏蔽160设置,使得所述盖环170不接触接地屏蔽160、因此会电“浮置”。另外,在一个实施例中,期望将盖环170和沉积环502放置远离基板105一段距离且位于支撑件126的基板接收表面127下方,使得在处理期间通过RF及/或DC功率输送到靶材132所产生的电场“E”更均匀地遍及基板表面。据信在输送RF功率的半周期的各个阶段,电浮置表面、诸如如盖环170的表面将遭电子轰击,以致影响在基板105的边缘105A附近区域的RF电场均匀性。据信当功率源181A在顶表面573的RF电势比顶表面573的平均DC电势高(positive)的情况时将发生轰击。因此在一个实施例中,期望确保形成于盖环170的上表面的沉积膜层没有电子接地路径,并且远离基板105的边缘105A一段距离设置。在一个例子中,盖环170的内围571相距基板105的边缘105A至少0.5英寸(12.7mm)设置。在另一个例子中,盖环170的内围571相距基板105的边缘105A在约0.5英寸(12.7mm)至约3英寸之间(76.2mm)、诸如约1英寸(25.4mm)设置。
还已经发现将电浮置表面、诸如盖环170的表面放在基板105的暴露表面上方或基板接收表面127上方会对遍及基板105的沉积膜均匀性造成不期望的影响。图5B示出传统工艺套件构造,其中传统的盖环170A的内围571A和顶表面573A置于基板接收表面127和基板105的表面105B上方。已经发现在这些情况下,基板105的边缘附近的沉积层会变薄。据信基板边缘105A附近沉积减少是因等离子体与基板表面105B上方设置的工艺套件表面更多的互相作用,导致离子化沉积薄膜原子更多沉积至盖环170的顶表面573而产生的。因此,在一个实施例中,盖环170和沉积环502设置在基板接收表面127下方,此如图5A延长线“T”方下所示。在一个实施例中,盖环170和沉积环502位于基板接收表面127下方(例如延长线“T”)约0.2英寸(5mm)。应该注意的是虽然本文描述的和图1A-图6示出的都描述基板接收表面127位于靶材132下方,盖环170和沉积环502位于基板接收表面127下方,但本文描述的垂直定向构造并不打算作为本发明的范围的限制,而仅做为参考框架以定义部件的每一个的相对顺序及/或距离。在某些实施例中,基板接收表面127可相对靶材132设置沿其它方位(例如向上、水平对准),盖环170和沉积环502相距靶材132的距离仍比基板接收表面127相距靶材132的距离远。
在另一个实施例中,期望确保形成于沉积环502的上表面504的沉积薄膜层没有电子接地路径,所述沉积薄膜层由介电材料组成,以防止基板边缘105A附近区域的电场随时间变化,例如工艺套件寿命。为防止在上表面504沉积膜层电接触屏蔽160和盖环170,盖环170的突沿572经调整大小、成形及定位以防止沉积环502上的沉积物桥接盖环170上沉积的层、及防止形成连接屏蔽160的路径。
下工艺套件165的部件单独及结合工作,以有效减少微粒产生和杂散等离子体。相较于现有的多件(part)屏蔽,所述多件屏蔽提供延伸的RF返回路径促进RF谐波而在工艺空腔外侧产生杂散等离子体,上述单件屏蔽则缩短RF返回路径,以将等离子体围阻(containment)在内部处理区。单件屏蔽的平底板提供额外的缩短返回路径供RF穿过基座,以进一步减少谐波和杂散等离子体,并做为现有接地硬件的平台(landing)。
在一个实施例中,参照图5A,基座组件120进一步包括基座接地组件530,所述基座接地组件530适于确保波纹管124在处理期间为接地。如果波纹管124达到不同于屏蔽160的RF电势,则会影响等离子体均匀性,并在处理腔室中引起电弧作用,进而影响沉积膜层的性质、产生微粒及/或影响工艺均匀性。在一个实施例中,基座接地组件530包括平板531,所述平板531包括导电弹簧532。当通过提升机构122将基座组件120沿方向“V”移向处理位置时(如图5A所示),导电弹簧532和平板531被配置为电接触屏蔽160的表面。当通过提升机构122将基座组件120沿方向“V”移向传送位置时(如图1A所示),导电弹簧532可脱离屏蔽160。
处理细节
本发明的实施例提出形成集成电路器件、诸如CMOS型集成电路的设备和方法。然而,本发明的实施例还可用于形成各种半导体器件、薄膜晶体管等。在一个实施例中,设备适于当形成高k/金属栅极型结构)时,尤其是采用“后栅极”方式时,进行金属沉积。已显示本发明的一般原则是应用于各种不同的金属和化合物的沉积,所述金属和化合物诸如钨(W)、氮化钨(WN)、钛(Ti)、氮化钛(TiN)、钛铝(TiAl)合金、HfC、HfN、FUSI的硅化物和Al。在一个例子中,使用本文描述的实施例有益于沉积包含至少两种不同元素的层、诸如具有50-50合金成分的钛铝(TiAl)层。
随着器件结构变得越来越小,特别是形成在亚-45nm(sub-45nm)节点的器件,集成电路结构内必须有良好的薄膜阶梯覆盖率,才能在功能半导体器件中形成各种装置部件、诸如金属栅极、触点和互连特征结构。各种方法已用来改善PVD阶梯覆盖率,诸如长靶材-基板间隔、离子化金属等离子体(IMP)、利用磁控管施加强磁场、再溅射等。本发明的实施例使用高压工艺、结合RF与DC溅射和电容耦合等。在此构造中,所述构造不同于IMP,RF功率直接施加至靶材、而非线圈。高压与RF功率可在靶材附近产生高密度等离子体。
当使用高压和RF等离子体进行溅射时,更易离子化通过等离子体的原子或物种,因而有效提高离子/中性粒子比。此外,当原子或物种在高压大气下接近基板时会产生许多碰撞,此有助于降低沿垂直方向、垂直于基板表面的物种能量并增强所述物种沿平行于基板的方向上的移动。也不同于IMP,由于物种在靶材附近离子化且未被如IMP工艺的外部电磁场加速及/或引导,相较于IMP型工艺(例如感应线圈),RF沉积工艺会提供更好的侧壁覆盖率。此外,等离子体倾向远离基板一段距离形成,此有助于减少等离子体破坏,使得此方法适合触点、金属栅极和其它前段应用。
本发明的实施例包括改善沉积工艺的膜均匀性和阶梯覆盖率的方法。此工艺的其它优点还包括无底部覆盖不对称性和较小的底部覆盖与结构尺寸相依性。虽然以下主要描述金属栅极形成的工艺,但此构造不打算作为本文描述的发明的范围的限制。本发明的实施例能沉积具有期望的功函数的金属而用于高k金属栅极,诸如形成如前所述MOSFET器件,特别是用于“替代栅极”或“后栅极”方法。具有期望功函数的金属,所述金属用于高k金属栅极层叠,可做为替代物来调整阈值电压半导体器件。包括金属等不同材料的功函数相当多样且可依特殊半导体器件、诸如CMOS半导体器件的需求选择。
此外,相较于传统PVD工艺,多个实施例能使用RF能量进行溅射,以减少对基板的破坏。多个实施例还能使用高电子围阻优势,以利用磁控管的磁铁和DC功率控制靶材侵蚀及使用RF能量产生更多的扩散等离子体(全面(full-face)侵蚀)。此外,多个实施例能降低沉积速率,以控制薄膜(10埃或以下)及溅射介电材料(例如LaOx、AlOx等)。其它像TixAlyN等具有潜力的新颖功函数材料可被控制达到期望的化学计量和功函数。
除了用于降低成本的制造方法的简单形式外,本发明的实施例还提出用于良好RF围阻的连续路径屏蔽和一致的返回路径。本文描述的下轮廓(profile)盖环和沉积环设计使得RF-DC PVD源用于高压应用,所述高压应用需要在薄膜不均匀性很小下的良好阶梯覆盖率。基板支撑件包括电容调整,以改善沉积膜性质和膜均匀性。可变电容器使得调整RF接地路径的阻抗,进而调整多种配方类型/条件的工艺均匀性。
功函数金属沉积用于小于45nm节点的MOSFET器件、诸如CMOS金属栅极的替代栅极应用时,沉积膜在具有35纳米(nm)小至12nm、深宽比2.5-5的顶部开口的特征结构需有良好阶梯覆盖率(底部厚度/场区厚度)。形成“先栅极”应用的RF-DC PVD腔室通常是在低压(约2毫托)进行,以于基板的场区沉积高度均匀的薄膜、但不在特征结构中。低压沉积膜可具有不好的阶梯覆盖率,所述阶梯覆盖率为15-20%的等级。为实现高阶梯覆盖率,例如“替代栅极”方式所期望的75%或以上,可采用高压工艺。
图7A-图7H示出在处理期间的MOSFET晶体管的截面,所述MOSFET晶体管诸如CMOS晶体管700。CMOS晶体管700包括栅极介电层、栅极金属层和沿着栅极壁的不同功函数金属、诸如p金属和n金属。附图示出基板,在所述基板上设置有栅极介电层和栅极金属层的基板。示出侧壁间隔物邻近栅极介电层和栅极金属层的垂直侧壁。本发明的实施例可用来形成图7A-图7H示出的MOSFET晶体管的栅极层叠。
图7A-图7H描绘利用本发明实施例形成的MOSFET的截面图,所述MOSFET诸如CMOS晶体管700。图7A-图7H描绘形成CMOS晶体管的后栅极方式。图7A示出具有基板702的CMOS晶体管700,内有根据已知方法形成的浅沟槽隔离(STI)704。在基板表面上并在STI 704上方形成高迁移率界面层706,接着在层706上形成高k介电层708。如图7B所示,在基板和层706、708上沉积多晶硅层710。如图7C所示,多晶硅710经光刻工艺及蚀刻,以形成待形成栅极结构711的区域。
在各种后续步骤中,根据本领域的已知方法,在基板上形成间隔物717、硅化物716、应力氮化层714和源极/汲极区712。在其余层上方形成前金属介电层718且研磨成图7D示出的几何形状。如图7E所示,然后蚀刻多晶硅栅极结构711形成沟槽720。然后,如图7F所示,在沟槽720中沉积掺杂的金属栅极、诸如p金属栅极723和n金属栅极722。如图7G所示,然后将栅极结构填充金属724。最后,研磨基板,以在基板702上形成金属栅极725。本发明的实施例尤其有益于形成高k金属栅极,特别是具有金属合金的金属栅极。
图1A-图6为根据本发明实施例的RF-DC PVD腔室100的各种视图。RF-DC PVD腔室100使得高压溅射金属薄膜而形成栅极层叠,所述栅极层叠诸如利用图7A-图7H所描述的后栅极方式。腔室包括具有局部匹配网络的RF源,以利用RF能量溅射靶材材料。磁控管有助于控制膜均匀性,附加DC连接至靶材则可加强侵蚀和均匀性控制。
靶材形状也可影响等离子体分布,以致影响膜均匀性。根据本发明的实施例可采用各种靶材几何形状、诸如平坦、截锥(frustum)或凹面形状。截锥靶材倾向具有较厚边缘且中半径处有较高凸块。凹面靶材倾向把等离子体聚焦于靶材中心,导致较厚的中心且中半径处有较小凸块。在一个实施例中,靶材可减少微量金属污染物,且使用6061铝合金背板。在一个实施例中,多组分靶材可用于处理腔室100,其中多组分靶材包含具有至少二不同元素的材料。在一个实施例中,多组分靶材为TiAl合金靶材,在本发明的不同实施例中,所述TiAl合金靶材具有1∶1、3∶1或1∶3的组成比。具有组成比1∶1的多组分TiAl靶材可有效阻障Al填充,这样可避免在高温下形成TiAl3。如果Ti和Al为分别沉积且可取得过量Al,则将形成TiAl3
多组分靶材对具有期望厚度均匀性、组分均匀性、Rs均匀性、组分比、阶梯覆盖率、底部覆盖率、悬伸等的溅射薄膜带来独特的挑战。不同组分、例如在多组分靶材中的元素根据等离子体性质、元素质量、靶材中的元素键结与晶体结构和其它变量有不同溅射结果。由于靶材的各种成分溅射率不同,所以出自相邻等离子体的离子及/或中性粒子来轰击多组分固体表面,可改变靶材表面的化学组分。图8及图9进一步说明这些问题。
图8示出具不同质量m1、m2的组分的弹性碰撞和散射情形。示意图800示出静止的粒子m2遭另一个具有质量m1的粒子、诸如出自等离子体的Ar+离子碰撞作用。示意图802示出两个移动粒子m1、m2的碰撞,并因他们的碰撞而两个粒子都散射。从更大规模看来,溅射组分在腔室内的通常散射分布(distribution)或溅射分布特征(profile)可以余弦分布、低余弦(under cosine)分布或过余弦(over cosine)溅射分布分配描绘。图9示出多组分靶材906的元素溅射分布900或通量分布。例如,在本发明的一个实施例中,多组分靶材906为钛铝(TiAl)靶材,各组成材料的溅射分布将大不相同。相较于钛(质量=48)和氩(质量=40),铝是较轻的原子(质量=27),因此铝从靶材表面的通量分布将不同于钛。
已经发现从等离子体加速往靶材的氩离子(Ar+)将碰撞铝原子而形成低余弦902的通量分布或溅射分布。相反,当Ar+离子碰撞靶材906的钛原子时,它的溅射分布特征更近似过余弦分布904。因此,相较于钛原子,铝原子比起垂直行进、更倾向水平行进。铝原子散布更分散,屏蔽丢失更多的铝原子、而非基板。然而,因低余弦压强分布所致,基板中心处的Al略多。因此,随着压强增加,沉积速率也须提高,因有更多将散射至屏蔽。
靶材元素的不均匀溅射分布将造成溅射在腔室内的基板上的薄膜有不均匀的组分性质。例如,未补偿靶材906的两个组成成分的不相等分布比时,铝的低余弦溅射分布可造成基板的周围区域有大量铝,钛的过余弦溅射分布可导致基板的中心区有大量钛。
增加腔室压强还会影响溅射组分的散射分布。因铝质量比钛轻、加上铝与等离子体中的能量离子和中性粒子相互作用,提高压强将造成更多铝散射。在处理期间,再溅射还可影响薄膜性质和靶材组分。来自沉积膜的原子从薄膜再溅射到基板的另一位置、或甚至回到处理区和周围部件上、诸如屏蔽或靶材。多组分靶材的至少一个挑战是沉积具有均匀组分比的薄膜遍及基板表面、及达到期望的的整体阶梯覆盖率。
使用多组分靶材的另一个挑战是随时间改变靶材的组分材料比。靶材表面的化学组分改变,形成已知为改变层的区域。一旦开始轰击表面,具有最高溅射率的组成成分优先自表面去除,因而浓化(enriching)低溅射率材料的表层,直到达到稳态。然而,非稳态条件可在靶材延长使用期间而在部分侵蚀后仍会发生,此会造成不均匀的组分分布。以TiAl靶材为例,靶材可变成富铝,因铝虽然开始更易从靶材溅射出,但可更倾向水平行进及从周围部件返回而再沉积至靶材。鉴于钛更倾向垂直行进且更重,因此较不易被等离子体中的组分散射。因此,多组分靶材的溅射还可需要特殊的处理步骤来维持期望的及/或均匀的靶材表面组分,以实现期望的溅射膜组分。
附加DC功率至等离子体也会影响多组分靶材的沉积膜层性质。耦接靶材的DC功率产生靶材电压和围绕靶材表面133的对应鞘。增加DC功率会加宽鞘,进而加速Ar+离子并提供更多能量给Ar+离子,这样也影响靶材表面的溅射材料的方向性或通量分布(例如余弦分布)。提高施加给靶材的DC电压可改善形成在基板表面的薄膜组分比,这是因为来自多组分靶材的更多的类似过余弦溅射分布,因此更多导向基板。电压提高将引起中性沉积及增加离子通量,这样有助于溅射物种的方向性。电压越高,离子越垂直靶材面(例如靶材的第一表面)进入靶材,而溅射物种垂直靶材面离开靶材。
提高DC靶材电压将锐化或使元素的通量分布往过余弦分布移动,导致溅射物种的较少散射。低靶材电压(例如300伏特或以下)将引起更大散布,当提高DC和靶材电压时(例如达约500伏特),散布减少,并可改善组分比,这样在某种程度上是因为散射量减少。就固定RF功率而言,DC功率增加,将使比率变小而近似1。靶材电势变高将造成溅射角度更垂直表面,在所有两种情况下,溅射分布都更倾向过度余弦分布。此外,增加DC功率,RF等离子体中的离子与中性粒子比将会变小,由于施加偏压至基板,所以增加DC功率也将减少基板表面的再溅射。增加中性粒子通量通常不会增加等离子体中的溅射材料的散射。
基板的特征结构上的薄膜阶梯覆盖率将随施给多组分靶材的DC功率增加而下降。增加的DC功率会引起更大的中性粒子通量,这表示有效离子分率(fraction)下降。因此,较少溅射材料被离子化,导致相较于场区的沉积量,到达特征结构底部的溅射材料量会减少。中性粒子通量分布在能量和方向上可视为具实质等向性,往基板的离子通量(例如带电粒子)加速通过基板偏压电势,因而有更多引导动能来改善阶梯覆盖率。
然而,即使大幅增加DC功率也可能只降低阶梯覆盖率的20%。因此仍需适量的金属离子化让这些离子被基板吸引并进入特征结构。此外,因来自靶材的溅射材料的垂直方向性增强,所以基板上的沉积膜的铝与钛组成比也随着DC功率增加而减少。
在某些情况下,因为施加偏压至基板表面可再溅射膜,所以通过降低DC功率可改善底部覆盖。然而,基板表面的再溅射也可不利于组分比,导致难以只透过DC功率控制来调整。在本发明的某些实施例中,使用耦接多组分靶材132的DC源182来点火等离子体。
输送至DC驱动靶材的RF功率可降低总体靶材电压及提供围绕及支配DC功率诱导鞘的对应鞘。虽然RF-DC驱动靶材具有较厚的形成在靶材下方的等离子体鞘且在靶材与等离子体之间有较大的总体压降,但等离子体导电率将因等离子体的离子浓度增加而提高,这样使得靶材电压以低至低于中等RF功率。厚鞘更能加速氩离子(Ar+),因而提供更高溅射离子能量。在某些情况下,附加RD功率造成的峰峰电压将进一步提高若干等离子体的离子能量。厚鞘会提高散射率。RF功率增强等离子体的离子化,这样有助于改善基板偏压对沉积离子的影响,进而改善薄膜的阶梯覆盖率。等离子体离子化也随着RF频率提高而增强,以增加电子移动。RF功率增加也会提高氩离子的能量水平,进而提高溅射率。
RF功率需维持最小功率,以提供改善溅射和薄膜性质的离子水平,尤其是改善薄膜的阶梯覆盖率。RF功率在薄膜沉积期间可设定为约1kW至约3.5kW、例如约2kW。在另一个实施例中,RF功率设定可为约3.2kW。外加RF功率至DC功率顶部将改变靶材电压、散射和溅射率,这样会影响组分比。在一个实施例中,靶材电压可为约300伏特至约550伏特、诸如约520伏特或约400伏特。随着靶材电压提高,Al∶Ti比随之下降。高功率将产生高功率密度,因此减少散射角度差,进而降低Al∶Ti比。此外,高功率将提高边缘效应,因此Rs均匀性变得更糟。
鉴于上述,本发明的实施例可包括当RF等离子体形成在处理区110时,施加来自耦接多组分靶材132的DC功率源182的DC功率。在本发明的另一个实施例中,DC功率源可设定为约450W至约2.5kW,RF功率源可设定为约1kW至约3.5kW。例如,在本发明的一个实施例中,DC功率源和RF功率源都设定为约2kW。在本发明的又一个实施例中,DC功率源设定为约2kW,RF功率源设定为约3.2kW。更明确地说,在一个实施例中,如果靶材电压为320伏特,RF功率为2kW且DC功率为540W,这可提供高深宽比特征结构良好的阶梯覆盖率。在另一个实施例中,靶材电压为500伏特且RF和DC功率都为2kW,此可维持良好的薄膜组分比。
当由于施加基板偏压时,氩气被离子化使得溅射金属变得更离子化,如此RF驱动等离子体可达某一点,这样会改善基板特征结构的底部覆盖。处理区的压强下降时,底部覆盖率也随之降低,特别是压强低于10毫托的情况。低压将导致组分变得较像仅用DC驱动等离子体产生Al∶Ti比近似1∶1的情况,但降低阶梯覆盖率。除了高压外,RF功率也有助于改善在基板中的特征结构的底部覆盖率,尤其是具有非常难实现适当底部覆盖率的高深宽比的特征结构。
处理区的压强通常可根据所用多组分靶材类型、基板上形成的特征结构尺寸和期望的薄膜性质而定。在薄膜沉积期间的腔室压强可为约20毫托至约60毫托或甚至达75毫托、例如约22毫托、30毫托或40毫托,此根据腔室压强引起的期望的处理作用而定。在本发明的一个实施例中,Ar流量可为从约50sccm至100sccm、例如75sccm。在腔室处理期间,闸阀147可完全或部分打开。
然而,处理区的压强太高会增加散射,尤其是在诸如TiAl的二元薄膜方面。如前所述,铝和钛以不同方式散射离开多组分靶材。通过调整可影响在物种溅射出靶材后的平均碰撞频率的参数,可因此调整到达基板的角度分布差异。提高处理压强还可造成在溅射物种与等离子体的离子和电子之间有更多的碰撞频率或碰撞次数,导致不同元素的角度分布差异更大。然而,从DC或RF源施加更高功率而对溅射原子提供更多前进动量,可造成较小的角度分布差异。
提高处理区的压强还可改善底部覆盖率。然而,处理区的压强太高也会增加溅射物种散射离开靶材,因而降低方向性和底部覆盖率。为对抗提高压强引起的作用,可提高靶材电压,以减少具有不同溅射率和分布的任何二元组分、诸如铝与钛的散射。增加DC功率也会加快沉积速率,这样也有助于对抗在系统中的高压引起的散射作用,然而,因为场区厚度生成比基板特征结构内的任何区域快,所以阶梯覆盖率可降低一些。
压强可协助将溅射离开靶材的分布改变成优选分布,以助于改善沉积膜特性。压强也影响溅射物种在靶材、基板和屏蔽上的重新分布。高压可特别促使较轻的组分、诸如如铝重新分布于屏蔽和靶材,进而改变靶材的表面组分比及减少到达基板表面的铝的量。增加压强造成更大的散射角度差异,这样将提高Al∶Ti组分比。高压还提供较小的边缘效应,因此改善Rs均匀性。比起DC、RF、功率或电容调整器位置,压强对改善Rs和厚度均匀性有更大的影响,此将在下面详细描述。
压强还影响氩气的离子化和通过等离子体朝向基板的溅射物种。提高压强和施加给等离子体的RF功率也可产生所知的彭宁(penning)电离。彭宁电离为涉及中性原子及/或分子之间反应的过程。在彭宁电离中,气相激发态原子或分子与靶材分子之间互相作用而形成自由基分子阳离子与电子和中性气体分子。例如,氩原子因彭宁电离可离子化等离子体中的其它氩原子,从而促使RF功率更直接地激发氩气等离子体。此工艺的期望的氩离子能量可为在约45(电子伏特)eV至约70eV、诸如约50eV。靶材电压也随着处理腔室压强提高而降低,这是因为接地路径变得更导电。鞘厚度随着压强增加而减小,这样影响靶材电压和靶材上的原子重新分布。
磁控管还可影响薄膜沉积和性质。磁控管的类型和位置将产生不同的磁场(B场),此也影响多组分薄膜的组分比。除了覆盖靶材及侵蚀靶材外,把磁控管放在多组分靶材上方的特定位置也有助于改善Ti∶Al比。将磁控管放在特定位置有助于避免屏蔽损失太多铝,如同前述,所述屏蔽损失太多铝通常因铝的扩散所致。例如,把磁控管放在靶材的中心将产生同样的溅射分布,但如果物种从中心位置局部散开,则完全改变溅射物种在腔室中的散布。在一种情况下,铝也会扩散,但不脱离屏蔽,而是遍及基板的整个区域。
在单一元素均匀溅射分布型的情况下,根据腔室几何形状、诸如基板与靶材的间隔和靶材尺寸,单一元素在任何瞬间的溅射分布特征可被描绘成单一点源,以在磁控管旋转时,均匀覆盖基板。然而,如果使用具有两个不同分布的多组分靶材,可难以均匀覆盖。但是当磁控管置于中心且溅射主要从中心发生时,尽管因为溅射源位于中心上方且溅射物种相当均匀地散布基板,使得基板上的分布相当均匀而改善组分比,仍将遭受Rs均匀性的问题。
闭合回路磁控管将等离子体限定在由磁控管构成的B场边界之间,这取决于磁控管的磁铁精确构造和磁铁种类。根据磁控管类型和磁控管使用方式,靶材上将形成具有特定形状和位置的侵蚀轨迹。在DC等离子体中,磁控管将电子限制围绕等离子体轨迹运行并协助离子化等离子体。实质上,磁控管有助于局部限制电子,如此总可供应区域让氩气在靶材表面附近离子化,并因此在同一区域形成靶材侵蚀轨迹。因此,磁控管有助于控制靶材面形成侵蚀轨迹处。
开回路磁控管在开放端位置产生较弱的B场,所以相较于不含磁控管的RF溅射处理腔室,整体看来,会产生更多RF功率输送到等离子体。然而,对于通常的RF溅射工艺,不需设置磁控管来溅射。RF功率本身使得功率从靶材输送到电子,用来离子化氩原子,而不需磁控管的磁性限制。把闭合回路磁控管放置靠近靶材中心似乎不能利用RF功率源来调整工艺。因此,限制靶材的中心位置附近的电子和RF功率似乎对溅射工艺无益。
使用开回路磁铁不会形成完全连续的闭合等离子体轨迹;换句话说,电子仅被捕获一段时间,然后扩散离开磁场俘获区。这是因为当沿着平行靶材表面的二维平面观察时,开回路磁控管磁极之间产生的磁场不会形成连续的闭合回路路径。换句话说,沿着平行靶材表面的二维平面循着部分产生磁场的路径不会形成连续的闭合回路路径,其中磁场向量平行靶材面(即Bz=0;这里z方向垂直靶材面)。薄膜组分强烈取决于在等离子体侵蚀轨迹与基板位之置间的相对位置。磁控管位置将调整等离子体侵蚀轨迹及调整薄膜组分。例如,如图4D所示,磁控管位置可在第一位置时在靶材外部区域形成等离子体。当磁控管处于第一位置时,基板上的沉积膜组分可近似1,因此靶材的组成元素有不同的分布轮廓。磁控管可相距靶材上方在约2.2mm至2.8mm之间、诸如2.5mm。磁控管的转速可为在约60rpm至约70rpm之间、诸如65rpm。
仅用DC等离子体和磁控管通常能捕获更明确的区域的电子。增设RF功率可实质调整电子和氩气,使得即使限制在较小区域,等离子体仍被赋予更多能量。通过只让电子部分限制在磁控管下的等离子体区域,开回路磁控管允许电子逸出。开回路磁控管可允许溅射大部分的靶材表面。因此,在内磁极与外磁极之间的磁场在一端是开放的,电子将漏出连结磁极的任何端的磁场。已经发现由于多组分靶材元素的溅射分布不同的影响,因此把磁控管放在“朝外”位置可改善基板表面的Al与Ti的组分比。此外,将磁控管移向中心区或“朝内”位置可用来清洁腔室、诸如靶材上的再沉积溅射材料,这将参照图10A-图10C在下文中详细描述。
沉积膜性质还可受基板偏压影响。如上所述,自动调整可变电容调整器可用来将偏压提供至基板支撑件。调整电容调整器的电容将改变基板支撑件上的偏置电压。不同位置的电容调整器可被用于沉积及/或再溅射沉积膜。在某些情况下,基板偏压用于“蚀刻模式”而不引起净沉积,以调整形成于基板的表面上的薄膜中的应力。溅射金属原子具有不同质量,因此通过调整基板上的偏置电压、或调整离子轰击及沉积膜的再溅射,可改变沉积膜组分。例如,因为铝和钛具有不同的溅射率,所以改变偏置电压可改变轰击能量,进而改变沉积膜的组分比。
在一个例子中,基板上的正电压越高,沉积物含越多钛,这是因为较大又重的钛原子不像铝那样容易重新引导。因此,在正基板偏置电压下,等离子体中的较中性含钛原子趋向基板表面。铝较轻且较易被离子化,所以正偏置电压程度与钛一样时,铝不到达基板表面,如此将形成富钛薄膜。在频谱(spectrum)的另一侧,在高负基板偏置电压下,铝比钛更易被施加的基板偏压而通过从等离子体引出的到达离子再溅射,因此更易四处移动铝。负电压影响离子冲击基板表面的能量,并更容易四处移动铝,因而形成富钛表面。由于一种材料相对另一种材料能优先以不同速率再溅射,所以设定基板偏置电压可有效控制再溅射量,并因此控制组分比。因此,不会太正或太负的中等基板偏置电压对使基板上的沉积膜有实质均匀的组分比来说是必要的。
阻抗控制器141的可变电容器的电容提高时,Al∶Ti比下降成近似1、例如1.2,在某些条件下甚至小于1、诸如0.90。在一个实施例中,Al∶Ti比在约0.9至约1.2之间、诸如1.0和1.1。从中心到边缘的平均组分比在约1.15至约1.16之间。当偏置电压变负时,更容易由Ar+离子将铝溅射出。当偏置电压为正时,Al和Ti离子将被推离基板。然而,Al∶Ti比反而增加,因为等离子体中的Ti离子分率比Al离子分率少。阻抗控制器141的共振(resonance)设定也影响偏置电压。偏置电压接近共振时,因基板达近似最大负基板偏压电压,所以Al∶Ti比下降。在一个实施例中,基板上的电压偏压可从约+250Vdc至-250Vdc。在另一实施例中,基板上的电压偏压为约-150伏特至+50伏特。
如图6所示,本发明的一个实施例包括调整设置在基板支撑件126中的电极126A上的偏置电压,所述基板支撑件126具有设置于处理区110中的基板接收表面127,其中调整偏置电压是通过改变可变电容器610的电容,以控制电极126A相对电接地所达到的偏置电压。可变电容器610的电容在5微微法拉至1000微微法拉之间改变。例如,可变电容器可被设为总体电容的12.5%或高达总体电容的85%。系统的共振可为约总体电容的55%。
因此,利用上述各个参数,当利用上述设备时,可实行各种方法来改善阶梯覆盖率和膜均匀性。在本发明的一个实施例中,高压、RF功率和DC功率用于RF-DC PVD腔室,以在栅极结构中沉积金属薄膜。
图11描绘根据本发明的各个实施例的沉积薄膜的方法1100的流程图。在步骤1102中,所述方法包括在腔室100的处理区110中形成等离子体(如图1A所示)。所述等离子体是通过利用耦接至腔室100中的多组分靶材132的RF电源供应器181形成,多组分靶材132具有接触腔室100的处理区110的第一表面、诸如溅射表面133和与第一表面133相对的第二表面135。在步骤1104中,所述方法包括相对多组分靶材132移动磁控管系统189,其中当磁控管系统移动且形成等离子体P时,如图4D所示,磁控管系统189相对多组分靶材132的中心点位于第一位置。在步骤1106中,在腔室中的放置在基板支撑件126上的基板105上沉积多组分薄膜。如图7A-图7H所示,多组分薄膜可为沉积在金属栅极725中的金属合金、诸如TiAl合金。以120/分钟来沉积多组分薄膜且多组分薄膜的厚度约100。在一个实施例中,薄膜厚度可为在约40至约150之间,沉积速率为约30/分钟至约240/分钟。然而,期望的厚度取决于功函数要求,普通技术人员可依此调整。本发明的实施例每小时能处理多于20个的基板。
在本发明的另一个实施例中,如图4B-图4D所示,邻近多组分靶材132的第二表面135设置磁控管系统189,同时通过围绕多组分靶材的中心点转动磁控管系统189,以移动磁控管系统189。如前所述,磁控管系统可包括含多个磁铁423的外磁极421和含多个磁铁423的内磁极422,其中外磁极和内磁极形成开回路磁控管组件。在另一个实施例中,方法包括通过调整可变电容器610的电容,以改变基板上的偏置电压,其中可变电容器610耦接在设置在基板支撑件126中的电极126A与电接地之间。
方法还包括将盖环170设置远离基板支撑件126的基板接收表面127的周围边缘129一段距离,其中盖环暴露于形成等离子体的表面相距多组分靶材132的距离也比基板接收表面127远,且当在处理区中形成等离子体时,盖环170不与电接地电连接。在另一个实施例中,在多组分靶材132与基板105之间的间隔可为约174mm-182mm。移离靶材越远,越多低余弦溅射材料以更快速率撞击屏蔽。所以间隔也会影响散射。此外,增加间隔将使基板远离等离子体。
在又一个实施例中,磁控管系统可包括外磁极424和内磁极425,如图4E所示,所述外磁极424和内磁极425同心围绕延伸穿过中心点的第一轴491并形成闭合回路磁控管组件。多个磁铁423设置在内磁极425和外磁极424中,并且不对称围绕延伸穿过中心点且垂直第一轴491的第二轴492。在本发明的实施例中,基板上的高深宽比特征结构的阶梯覆盖率可高达80%。在某些实施例中,阶梯覆盖率甚至可达100%。
在另一个实施例中,沉积薄膜的方法包括将能量输送给在腔室的处理区中形成的等离子体,其中输送能量包括将来自RF电源供应器的RF功率输送给多组分靶材、以及将来自DC电源供应器的DC功率输送给多组分靶材。输送DC功率的意思是将来自DC电源供应器的DC能量、诸如DC电压或电流施加给多组分靶材。输送RF功率的意思是将来RT电源供应器的RF能量施加给多组分靶材。
所述方法还包括相对多组分靶材平移磁控管,其中当磁控管平移且等离子体形成时,磁控管相对多组分靶材的中心点位于第一位置;调整电极上的偏置电压,所述电极设置在基板支撑件的基板接收表面附近,其中通过改变可变电容器的电容来调整偏置电压,以控制电极相对电接地所达到的偏置电压;加压处理区以达至少20毫托;以及在设置在基板接收表面上的基板上沉积金属合金薄膜。
在本发明的另一个实施例中,在开始沉积膜之前,进行靶材的预沉积预烧(burn-in),以获得靶材上的优选的改变层。靶材预烧去除靶材制造工艺残余的污染物、靶材上的吸附气体,并调整好工艺套件以用于TiAl薄膜沉积。靶材预烧也可开始在靶材中形成“轨道”或侵蚀沟槽。
在处理一批基板之后,需清洁腔室,尤其需重新调整靶材。如前所述,多组分靶材的组成元素可再沉积于靶材。因为铝质量轻和工艺的散射作用,所述铝特别容易再沉积在靶材中心区。图10A-图10C描绘在不同使用阶段的靶材。图10A示出新的靶材组件910,所述靶材组件910具有背板912和多组分靶材914,例如包含具有1∶1的TiAl合金。在预烧之后及薄膜沉积工艺期间,靶材中开始形成轨道或侵蚀沟槽916。在溅射期间,磁控管在“朝外”位置旋转,等离子体则在磁控管底下沿着靶材的外部区域形成。
中心区918也遭受部分侵蚀,但并不太多,因为等离子体在靶材下方设置磁控管的外部区域较密集。然而,处理期间,如图10C所示,组成材料可再沉积至靶材而形成再沉积区919,所述再沉积区919具有不同于靶材其余部分的组分。每一批可形成25-50个基板,再沉积区919形成的程度和进一步在沉积薄膜前清洁与否取决于各种处理设定。
在处理一批基板之后,进行后沉积(post-deposition)清洁工艺。清洁工艺可包括第一工艺和第二工艺。第一工艺可包括将基板移出腔室、以及将源磁控管组件420移到第二位置。在一个例子中,源磁控管组件420的位置是通过改变磁控管移动装置(如电机193)的旋转方向而调整。如图4C所示,第二位置为“朝内”位置。然后利用耦接至多组分靶材132的RF和DC功率,点火等离子体P,等离子体形成在多组分靶材的第一表面的内部下方。加压腔室至达2毫托。随后去除堆积于靶材的中心区918的再沉积材料919。在第一工艺期间,DC功率和RF功率都设为2kW。可变电容器可设为12.5%。等离子体可保持开启,以清洁腔室长达45秒。可反复进行部分第一工艺7次,所述部分第一工艺例如等离子体点火/形成及去除,以去除靶材的中心的再沉积物。
如图4D所示,第二工艺包括将磁控管组件移到第一位置或“朝外”位置。利用耦接多组分靶材的RF和DC功率点火等离子体,等离子体形成在多组分靶材的第一表面的外部下方。加压腔室至40毫托,为类似图10B,侵蚀沟槽916重新形成在多组分靶材之中。
在本发明实施例的高压范围下,RF功率激发等离子体离子、诸如Ar,且高压和Ar离子碰撞将提高离子分率。诸如氪(Kr)或氙(Xe)的较重气体可产生更有效的散射,使得可降低离子的水平速度。此特比有利于较重的金属沉积、诸如例如钽(Ta)、钨(W)等。本发明的实施例能实现高的膜均匀性和阶梯覆盖率。
根据本发明的实施例,施加给靶材的RF功率和高压可在靶材附近产生高密度等离子体。当溅射物种通过等离子体时,所述溅射物种被离子化,大幅提高等离子体的离子/中性粒子比。此外,当溅射物种在高压大气下行进至基板时会发生许多碰撞,此有助于降低平行于基板方向的物种的能量及增加物种的垂直方向性。由于原子在靶材附近、而非基板表面附近被离子化(因为等离子体受磁控管的不对称B场限制),离子的速度不像其它方法垂直,所述方法诸如离子化金属等离子体(IMP),以提供更好的侧壁/阶梯覆盖率。
利用耦接多组分靶材的RF-DC功率源提供不对称和不平衡,所述不对称和不平衡使得电子朝靶材中心和等离子体中心径向移动,以助于提高离子化和靶材利用率。
本工艺的阶梯覆盖率可改善的理由如下。高密度等离子体在靶材下方形成,使得金属物种通过等离子体时被离子化。高压和高RF功率提高RF等离子体密度,意味着提高电子和Ar+的密度。高压还缩短平均自由径,使得金属物种更易被电子或Ar+撞击及离子化。此外,溅射金属在基板表面附近有较低的水平速度,使得金属离子更易下拉至基板。金属物种的低速是通过因为被Ar+多重随机散射而失去沿着水平方向的原有速度,高压更进一步加强此现象。因此,根据本发明的实施例,可由多组分靶材形成均匀薄膜组分,且具良好阶梯覆盖率、均匀厚度、期望的组成比和Rs值。
尽管以上描述涉及本发明的各个实施例,但在不背离本发明的基本范围的情况下,可设想本发明的其它实施例,并且本发明的范围由所附的权利要求书来确定。

Claims (15)

1.一种等离子体处理腔室,包括:
靶材,具有接触处理区的第一表面和与所述第一表面相对的第二表面;
RF电源供应器,耦接所述靶材;
DC电源供应器,耦接所述靶材;
基板支撑件,具有基板接收表面;
磁控管,邻近所述靶材的所述第二表面设置,其中所述磁控管包括:
外磁极,包括多个磁铁;以及
内磁极,包括多个磁铁,其中所述外磁极和所述内磁极形成开回路磁控管组件。
2.如权利要求1所述的等离子体处理腔室,进一步包括:
中央进料器,所述中央进料器电耦接所述靶材且具有第一表面和第二表面,其中所述RF电源供应器耦接所述中央进料器的第一表面,所述中央进料器的第二表面耦接所述靶材,所述中央进料器设置在所述靶材的中心轴的上方。
3.如权利要求1所述的等离子体处理腔室,进一步包括中央进料器,所述中央进料器电耦接所述靶材且具有在所述中央进料器的第一表面与第二表面之间延伸的截面,并对称围绕第一轴,其中所述RF电源供应器耦接所述中央进料器的第一表面,且所述中央进料器的直径深宽比在从约0.001/mm至约0.025/mm之间,其中所述截面表面在所述中央进料器的第一表面与第二表面之间延伸。
4.如权利要求1所述的等离子体处理腔室,进一步包括:
接地屏蔽,至少部分围住所述处理区的一部分且电耦接至接地;
所述基板支撑件进一步包括电极,所述电极设置在所述基板接收表面的下方;
盖环;以及
沉积环,设置在所述基板支撑件的一部分的上方,其中在处理期间,所述盖环设置在所述沉积环的一部分上,所述盖环与所述接地电隔离,所述沉积环和所述盖环设置在所述基板接收表面的下方,所述基板接收表面设置在所述靶材的下方。
5.如权利要求4所述的等离子体处理腔室,进一步包括:
可变电容器,设置在所述电极与所述接地之间;以及
控制器,适于在处理期间调整所述可变电容器的电容量。
6.一种等离子体处理腔室,包括:
靶材,具有接触处理区的第一表面、与所述第一表面相对的第二表面,和边缘;
RF电源供应器,耦接所述靶材;
基板支撑件,具有基板接收表面;
电机,具有轴杆,所述轴杆具有转轴;以及
磁控管,邻近所述靶材的所述第二表面设置,其中所述磁控管包括:
横臂,耦接所述轴杆;
平板,从枢点耦接所述横臂,其中所述枢点相距所述转轴一段距离;以及
外磁极和内磁极,所述外磁极和内磁极耦接所述平板且形成开回路磁控管组件。
7.如权利要求6所述的等离子体处理腔室,其中当沿第一方向旋转时,所述平板的质心配置为从所述转轴移动第一距离,且当沿第二方向旋转时,所述平板的所述质心配置为从所述转轴移动第二距离。
8.如权利要求6所述的等离子体处理腔室,其中当所述轴杆沿第一方向旋转时,所述平板的质心配置为沿第三方向围绕所述枢点旋转,当所述轴杆沿与所述第一方向相反的第二方向旋转时,所述平板的所述质心配置为沿第四方向围绕所述枢点旋转。
9.如权利要求6所述的等离子体处理腔室,其中所述外磁极和所述内磁极形成弧形的一部分。
10.如权利要求6项述的等离子体处理腔室,进一步包括:
接地屏蔽,至少部分围住所述处理区的一部分且电耦接至接地;
所述基板支撑件进一步包括电极,所述电极设置在所述基板接收表面的下方;
盖环;以及
沉积环,设置在所述基板支撑件的一部分的上方,其中在处理期间,所述盖环设置在所述沉积环的一部分上,所述盖环与所述接地电隔离,所述沉积环和所述盖环设置在所述基板接收表面的下方,所述基板接收表面设置在靶材的下方。
11.一种等离子体处理腔室,包括:
靶材,具有接触处理区的第一表面和与所述第一表面相对的第二表面;
RF电源供应器,耦接所述靶材;
接地屏蔽,至少部分围住所述处理区的一部分且电耦接至接地;
基板支撑组件,包括:
支撑件,具有在所述靶材的下方的基板接收表面;
盖环;以及
沉积环,设置在所述支撑件的一部分的上方,其中当基板在处理期间设置在所述基板接收表面上时,所述盖环设置在所述沉积环的一部分上,所述盖环与所述接地电隔离,所述沉积环和所述盖环设置在所述基板接收表面的下方;以及
磁控管,邻近所述靶材的所述第二表面设置,其中所述磁控管包括:
外磁极,包括多个磁铁;以及
内磁极,包括多个磁铁,其中所述外磁极和所述内磁极形成开回路磁控管组件。
12.如权利要求11所述的等离子体处理腔室,进一步包括:
电机,具有轴杆,所述轴杆具有转轴,其中所述轴杆支撑所述磁控管,并且所述轴杆配置成径向朝向或径向远离所述转轴移动所述磁控管。
13.如权利要求11所述的等离子体处理腔室,进一步包括:
电极,设置在所述支撑件中;
可变电容器,设置在所述电极与所述接地之间;以及
控制器,适于在处理期间调整所述可变电容器的电容量。
14.如权利要求11所述的等离子体处理腔室,进一步包括:
中央进料器,所述中央进料器电耦接所述靶材且具有第一表面和第二表面,其中所述RF电源供应器耦接所述中央进料器的第一表面,所述中央进料器的第二表面耦接所述靶材,所述中央进料器设置在所述靶材的中心轴的上方。
15.如权利要求11所述的等离子体处理腔室,进一步包括中央进料器,所述中央进料器电耦接所述靶材且具有在所述中央进料器的第一表面与第二表面之间延伸的截面,并对称围绕第一轴,其中所述RF电源供应器耦接所述中央进料器的第一表面,且所述中央进料器的直径深宽比在从约0.001/mm至约0.025/mm之间,其中所述截面表面在所述中央进料器的的第一表面与第二表面之间延伸。
CN201080022533.XA 2009-04-03 2010-04-02 高压rf-dc溅射及改善此工艺的膜均匀性和阶梯覆盖率的方法 Expired - Fee Related CN102439697B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US16668209P 2009-04-03 2009-04-03
US61/166,682 2009-04-03
US31937710P 2010-03-31 2010-03-31
US61/319,377 2010-03-31
PCT/US2010/029815 WO2010115128A2 (en) 2009-04-03 2010-04-02 High pressure rf-dc sputtering and methods to improve film uniformity and step-coverage of this process

Publications (2)

Publication Number Publication Date
CN102439697A CN102439697A (zh) 2012-05-02
CN102439697B true CN102439697B (zh) 2015-08-19

Family

ID=42825288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080022533.XA Expired - Fee Related CN102439697B (zh) 2009-04-03 2010-04-02 高压rf-dc溅射及改善此工艺的膜均匀性和阶梯覆盖率的方法

Country Status (5)

Country Link
US (3) US20100252417A1 (zh)
KR (2) KR20120004502A (zh)
CN (1) CN102439697B (zh)
TW (1) TWI499682B (zh)
WO (1) WO2010115128A2 (zh)

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9771648B2 (en) 2004-08-13 2017-09-26 Zond, Inc. Method of ionized physical vapor deposition sputter coating high aspect-ratio structures
US9767988B2 (en) 2010-08-29 2017-09-19 Advanced Energy Industries, Inc. Method of controlling the switched mode ion energy distribution system
US11615941B2 (en) 2009-05-01 2023-03-28 Advanced Energy Industries, Inc. System, method, and apparatus for controlling ion energy distribution in plasma processing systems
EP2298954B1 (en) * 2009-09-18 2013-03-13 Sandvik Intellectual Property Ab A PVD method for depositing a coating onto a body and coated bodies made thereof
KR101387178B1 (ko) 2010-03-26 2014-04-21 캐논 아네르바 가부시키가이샤 스퍼터링 장치 및 전자 디바이스의 제조 방법
CN102543645B (zh) * 2010-12-14 2015-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 法拉第屏蔽及等离子体加工设备
CN102534523B (zh) * 2010-12-15 2013-12-11 北京北方微电子基地设备工艺研究中心有限责任公司 磁控源和磁控溅射设备、以及磁控溅射方法
JP5611803B2 (ja) * 2010-12-21 2014-10-22 キヤノンアネルバ株式会社 反応性スパッタリング装置
KR101409433B1 (ko) 2010-12-28 2014-06-24 캐논 아네르바 가부시키가이샤 반도체 디바이스 제조방법 및 장치
JP6351262B2 (ja) 2011-02-09 2018-07-04 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Rf pvdチャンバ用の均一性調整可能esc接地キット
US8968537B2 (en) 2011-02-09 2015-03-03 Applied Materials, Inc. PVD sputtering target with a protected backing plate
WO2013094200A1 (ja) * 2011-12-22 2013-06-27 キヤノンアネルバ株式会社 基板処理装置
JP5843602B2 (ja) * 2011-12-22 2016-01-13 キヤノンアネルバ株式会社 プラズマ処理装置
US9499901B2 (en) * 2012-01-27 2016-11-22 Applied Materials, Inc. High density TiN RF/DC PVD deposition with stress tuning
US9530620B2 (en) * 2013-03-15 2016-12-27 Lam Research Corporation Dual control modes
US10325759B2 (en) 2012-02-22 2019-06-18 Lam Research Corporation Multiple control modes
US9303311B2 (en) * 2012-03-30 2016-04-05 Applied Materials, Inc. Substrate processing system with mechanically floating target assembly
US20130284589A1 (en) * 2012-04-30 2013-10-31 Youming Li Radio frequency tuned substrate biased physical vapor deposition apparatus and method of operation
US9685297B2 (en) 2012-08-28 2017-06-20 Advanced Energy Industries, Inc. Systems and methods for monitoring faults, anomalies, and other characteristics of a switched mode ion energy distribution system
US9249500B2 (en) * 2013-02-07 2016-02-02 Applied Materials, Inc. PVD RF DC open/closed loop selectable magnetron
US9281167B2 (en) 2013-02-26 2016-03-08 Applied Materials, Inc. Variable radius dual magnetron
KR20200098737A (ko) 2013-03-15 2020-08-20 어플라이드 머티어리얼스, 인코포레이티드 프로세싱 챔버에서 튜닝 전극을 사용하여 플라즈마 프로파일을 튜닝하기 위한 장치 및 방법
CN105190843A (zh) * 2013-03-15 2015-12-23 应用材料公司 在处理室中使用调节环来调节等离子体分布的装置和方法
US10032608B2 (en) * 2013-03-27 2018-07-24 Applied Materials, Inc. Apparatus and method for tuning electrode impedance for high frequency radio frequency and terminating low frequency radio frequency to ground
US10125422B2 (en) * 2013-03-27 2018-11-13 Applied Materials, Inc. High impedance RF filter for heater with impedance tuning device
US10096455B2 (en) 2013-09-17 2018-10-09 Applied Materials, Inc. Extended dark space shield
KR102298032B1 (ko) * 2013-09-30 2021-09-02 어플라이드 머티어리얼스, 인코포레이티드 고 주파수 무선 주파수에 대한 전극 임피던스를 튜닝하고 저 주파수 무선 주파수를 접지로 종단하기 위한 장치 및 방법
WO2015067298A1 (en) * 2013-11-05 2015-05-14 Applied Materials, Inc. Radio frequency (rf) - sputter deposition source, deposition apparatus and method of assembling thereof
CN104752302B (zh) * 2013-12-30 2018-05-08 北京北方华创微电子装备有限公司 一种基座支撑结构以及腔室
US10242873B2 (en) * 2014-03-06 2019-03-26 Applied Materials, Inc. RF power compensation to control film stress, density, resistivity, and/or uniformity through target life
KR102152706B1 (ko) 2014-03-06 2020-09-07 삼성전자주식회사 막 증착 시스템 및 이를 이용한 도전 패턴 형성 방법
US9396953B2 (en) * 2014-03-14 2016-07-19 Taiwan Semiconductor Manufacturing Company, Ltd. Conformity control for metal gate stack
US9953813B2 (en) * 2014-06-06 2018-04-24 Applied Materials, Inc. Methods and apparatus for improved metal ion filtering
WO2016017047A1 (ja) * 2014-07-28 2016-02-04 キヤノンアネルバ株式会社 成膜方法、真空処理装置、半導体発光素子の製造方法、半導体発光素子、半導体電子素子の製造方法、半導体電子素子、照明装置
US9991101B2 (en) * 2014-07-29 2018-06-05 Applied Materials, Inc. Magnetron assembly for physical vapor deposition chamber
JP2016051876A (ja) * 2014-09-02 2016-04-11 パナソニックIpマネジメント株式会社 プラズマ処理装置およびプラズマ処理方法
JP6296299B2 (ja) * 2014-09-02 2018-03-20 パナソニックIpマネジメント株式会社 プラズマ処理装置およびプラズマ処理方法
CN108291293A (zh) * 2015-12-09 2018-07-17 应用材料公司 被配置为用于在基板上进行溅射沉积的系统、用于溅射沉积腔室的屏蔽装置及用于在溅射沉积腔室中提供电屏蔽的方法
US10529554B2 (en) * 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
CN112599401B (zh) * 2016-03-05 2024-03-22 应用材料公司 用于在物理气相沉积工艺中控制离子分数的方法和设备
KR20170132952A (ko) * 2016-05-24 2017-12-05 삼성디스플레이 주식회사 전자 장치 및 이의 제조 장치, 및 전자 장치의 제조 방법
US10858727B2 (en) 2016-08-19 2020-12-08 Applied Materials, Inc. High density, low stress amorphous carbon film, and process and equipment for its deposition
KR102195798B1 (ko) 2016-09-23 2020-12-28 어플라이드 머티어리얼스, 인코포레이티드 스퍼터링 샤워헤드
DE102016122221A1 (de) * 2016-11-18 2018-05-24 VON ARDENNE Asset GmbH & Co. KG Verfahren und Sputteranordnung
US10886113B2 (en) 2016-11-25 2021-01-05 Applied Materials, Inc. Process kit and method for processing a substrate
US10153203B2 (en) 2016-11-29 2018-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming metal layers in openings and apparatus for forming same
CN108231526B (zh) * 2016-12-14 2020-06-19 北京北方华创微电子装备有限公司 一种腔室和半导体设备
US10927449B2 (en) * 2017-01-25 2021-02-23 Applied Materials, Inc. Extension of PVD chamber with multiple reaction gases, high bias power, and high power impulse source for deposition, implantation, and treatment
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10655226B2 (en) * 2017-05-26 2020-05-19 Applied Materials, Inc. Apparatus and methods to improve ALD uniformity
CN107227446A (zh) * 2017-07-04 2017-10-03 北京北方华创微电子装备有限公司 半导体设备及其阻抗调节方法
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
KR102405723B1 (ko) 2017-08-18 2022-06-07 어플라이드 머티어리얼스, 인코포레이티드 고압 및 고온 어닐링 챔버
US10571069B2 (en) * 2017-09-14 2020-02-25 Applied Materials, Inc. Gimbal assembly for heater pedestal
JP6836976B2 (ja) * 2017-09-26 2021-03-03 東京エレクトロン株式会社 プラズマ処理装置
US10636629B2 (en) * 2017-10-05 2020-04-28 Applied Materials, Inc. Split slit liner door
KR102396319B1 (ko) 2017-11-11 2022-05-09 마이크로머티어리얼즈 엘엘씨 고압 프로세싱 챔버를 위한 가스 전달 시스템
PL3711080T3 (pl) 2017-11-17 2023-12-11 Aes Global Holdings, Pte. Ltd. Zsynchronizowane pulsowanie źródła przetwarzania plazmy oraz polaryzacji podłoża
KR20200100642A (ko) 2017-11-17 2020-08-26 에이이에스 글로벌 홀딩스 피티이 리미티드 플라즈마 프로세싱을 위한 이온 바이어스 전압의 공간 및 시간 제어
TWI767088B (zh) 2017-11-17 2022-06-11 新加坡商Aes全球公司 電漿處理系統,用於調變其中的電源的控制方法及相關的電漿處理控制系統
JP2021503714A (ja) 2017-11-17 2021-02-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高圧処理システムのためのコンデンサシステム
KR20230079236A (ko) 2018-03-09 2023-06-05 어플라이드 머티어리얼스, 인코포레이티드 금속 함유 재료들을 위한 고압 어닐링 프로세스
CN110344006B (zh) * 2018-04-02 2020-08-21 北京北方华创微电子装备有限公司 反应腔室内的工艺套件及反应腔室
US10975464B2 (en) 2018-04-09 2021-04-13 International Business Machines Corporation Hard mask films with graded vertical concentration formed using reactive sputtering in a radio frequency deposition chamber
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US10867776B2 (en) * 2018-05-09 2020-12-15 Applied Materials, Inc. Physical vapor deposition in-chamber electro-magnet
TWI821300B (zh) * 2018-06-19 2023-11-11 美商應用材料股份有限公司 具有護罩座的沉積系統
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
JP7209247B2 (ja) * 2018-09-25 2023-01-20 パナソニックIpマネジメント株式会社 素子チップの製造方法
WO2020092198A1 (en) * 2018-10-28 2020-05-07 Applied Materials, Inc. Processing chamber with annealing mini-environment
WO2020117462A1 (en) 2018-12-07 2020-06-11 Applied Materials, Inc. Semiconductor processing system
WO2020126175A1 (en) * 2018-12-19 2020-06-25 Evatec Ag Vacuum system and method to deposit a compound layer
WO2020211084A1 (en) * 2019-04-19 2020-10-22 Applied Materials, Inc. Methods of forming a metal containing material
CN110333127B (zh) 2019-06-24 2020-06-12 北京大学 一种气相半挥发性有机物在线测量系统、方法和应用
CN114222958B (zh) 2019-07-12 2024-03-19 先进工程解决方案全球控股私人有限公司 具有单个受控开关的偏置电源
KR102144094B1 (ko) * 2019-07-26 2020-08-12 주식회사 엠디케이 블레이드를 갖는 마이크로 웨이브 챔버
CN112553583B (zh) * 2019-09-25 2023-03-28 亚威科股份有限公司 溅射装置及溅射装置控制方法
US11521832B2 (en) * 2020-01-10 2022-12-06 COMET Technologies USA, Inc. Uniformity control for radio frequency plasma processing systems
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film
US20210319989A1 (en) * 2020-04-13 2021-10-14 Applied Materials, Inc. Methods and apparatus for processing a substrate
CN111733391A (zh) * 2020-05-30 2020-10-02 长江存储科技有限责任公司 物理气相沉积装置
CN113823582A (zh) * 2020-06-21 2021-12-21 拓荆科技股份有限公司 用于处理站阻抗调节的装置、系统和方法
US11315771B2 (en) 2020-07-14 2022-04-26 Applied Materials, Inc. Methods and apparatus for processing a substrate
US11581166B2 (en) 2020-07-31 2023-02-14 Applied Materials, Inc. Low profile deposition ring for enhanced life
JP2024504272A (ja) * 2021-01-05 2024-01-31 アプライド マテリアルズ インコーポレイテッド 改善されたシールド構成を使用した基板の処理方法及び装置
US11569071B2 (en) * 2021-03-26 2023-01-31 Taiwan Semiconductor Manufacturing Co., Ltd. Cover ring and ground shield for physical vapor deposition chamber
US11863089B2 (en) * 2021-03-26 2024-01-02 Applied Materials, Inc. Live measurement of high voltage power supply output
WO2022266784A1 (en) * 2021-06-21 2022-12-29 Applied Materials, Inc. Methods and apparatus for controlling radio frequency electrode impedances in process chambers
WO2023043795A1 (en) * 2021-09-17 2023-03-23 Lam Research Corporation Symmetric coupling of coil to direct-drive radiofrequency power supplies
US11942309B2 (en) 2022-01-26 2024-03-26 Advanced Energy Industries, Inc. Bias supply with resonant switching
US11670487B1 (en) 2022-01-26 2023-06-06 Advanced Energy Industries, Inc. Bias supply control and data processing
TWI790138B (zh) * 2022-03-08 2023-01-11 天虹科技股份有限公司 沉積機台的承載盤控制方法
CN115323334B (zh) * 2022-07-15 2024-02-20 江苏迪盛智能科技有限公司 一种溅射方法及溅射装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179351B1 (en) * 2003-12-15 2007-02-20 Novellus Systems, Inc. Methods and apparatus for magnetron sputtering

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US634782A (en) * 1899-02-25 1899-10-10 Johannes Zeltner Dietz Staircase-rule.
US4731172A (en) * 1985-04-18 1988-03-15 Matsushita Electric Industrial Co., Ltd. Method for sputtering multi-component thin-film
JP2936276B2 (ja) * 1990-02-27 1999-08-23 日本真空技術株式会社 透明導電膜の製造方法およびその製造装置
US5293126A (en) * 1992-11-09 1994-03-08 General Electric Company Local transverse gradient coil
US5511799A (en) * 1993-06-07 1996-04-30 Applied Materials, Inc. Sealing device useful in semiconductor processing apparatus for bridging materials having a thermal expansion differential
US5540821A (en) 1993-07-16 1996-07-30 Applied Materials, Inc. Method and apparatus for adjustment of spacing between wafer and PVD target during semiconductor processing
US6039580A (en) * 1998-07-16 2000-03-21 Raytheon Company RF connector having a compliant contact
US6117279A (en) * 1998-11-12 2000-09-12 Tokyo Electron Limited Method and apparatus for increasing the metal ion fraction in ionized physical vapor deposition
US6440282B1 (en) * 1999-07-06 2002-08-27 Applied Materials, Inc. Sputtering reactor and method of using an unbalanced magnetron
US6296747B1 (en) * 2000-06-22 2001-10-02 Applied Materials, Inc. Baffled perforated shield in a plasma sputtering reactor
KR100439474B1 (ko) * 2001-09-12 2004-07-09 삼성전자주식회사 스퍼터링 장치
US7041201B2 (en) * 2001-11-14 2006-05-09 Applied Materials, Inc. Sidewall magnet improving uniformity of inductively coupled plasma and shields used therewith
KR100846484B1 (ko) * 2002-03-14 2008-07-17 삼성전자주식회사 Rmim 전극 및 그 제조방법 및 이를 채용하는 스퍼터링장치
US7041200B2 (en) * 2002-04-19 2006-05-09 Applied Materials, Inc. Reducing particle generation during sputter deposition
KR100972812B1 (ko) 2004-03-24 2010-07-28 어플라이드 머티어리얼스, 인코포레이티드 선택가능한 듀얼 포지션 마그네트론
US7018515B2 (en) * 2004-03-24 2006-03-28 Applied Materials, Inc. Selectable dual position magnetron
JP4040607B2 (ja) * 2004-06-14 2008-01-30 芝浦メカトロニクス株式会社 スパッタリング装置及び方法並びにスパッタリング制御用プログラム
US20060172536A1 (en) * 2005-02-03 2006-08-03 Brown Karl M Apparatus for plasma-enhanced physical vapor deposition of copper with RF source power applied through the workpiece
WO2006083929A2 (en) 2005-02-03 2006-08-10 Applied Materials, Inc. A physical vapor deposition plasma reactor with rf source power applied to the target
JP4997380B2 (ja) * 2005-04-11 2012-08-08 学校法人慶應義塾 試料中のプロトン性溶媒の易動性を局所的に測定する方法、試料中のプロトン性溶媒の易動性を局所的に測定する装置
US20070283884A1 (en) * 2006-05-30 2007-12-13 Applied Materials, Inc. Ring assembly for substrate processing chamber
US7767064B2 (en) * 2006-10-27 2010-08-03 Applied Materials, Inc. Position controlled dual magnetron
US8920611B2 (en) * 2008-07-15 2014-12-30 Applied Materials, Inc. Method for controlling radial distribution of plasma ion density and ion energy at a workpiece surface by multi-frequency RF impedance tuning
US8070925B2 (en) * 2008-10-17 2011-12-06 Applied Materials, Inc. Physical vapor deposition reactor with circularly symmetric RF feed and DC feed to the sputter target
US20100104771A1 (en) * 2008-10-24 2010-04-29 Applied Materials, Inc. Electrode and power coupling scheme for uniform process in a large-area pecvd chamber
US8795488B2 (en) * 2010-03-31 2014-08-05 Applied Materials, Inc. Apparatus for physical vapor deposition having centrally fed RF energy
US8486242B2 (en) * 2010-10-18 2013-07-16 Applied Materials, Inc. Deposition apparatus and methods to reduce deposition asymmetry

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179351B1 (en) * 2003-12-15 2007-02-20 Novellus Systems, Inc. Methods and apparatus for magnetron sputtering

Also Published As

Publication number Publication date
US20200357616A1 (en) 2020-11-12
WO2010115128A3 (en) 2011-01-13
TWI499682B (zh) 2015-09-11
WO2010115128A9 (en) 2011-03-24
KR20170037678A (ko) 2017-04-04
KR101841236B1 (ko) 2018-03-22
WO2010115128A2 (en) 2010-10-07
KR20120004502A (ko) 2012-01-12
WO2010115128A4 (en) 2011-03-03
US10763090B2 (en) 2020-09-01
CN102439697A (zh) 2012-05-02
TW201104004A (en) 2011-02-01
US20170029941A1 (en) 2017-02-02
US20100252417A1 (en) 2010-10-07

Similar Documents

Publication Publication Date Title
CN102439697B (zh) 高压rf-dc溅射及改善此工艺的膜均匀性和阶梯覆盖率的方法
US8895450B2 (en) Low resistivity tungsten PVD with enhanced ionization and RF power coupling
KR101760846B1 (ko) 고 종횡비 피처들에서 금속을 증착하는 방법
US10734235B2 (en) Systems and methods for low resistivity physical vapor deposition of a tungsten film
US8563428B2 (en) Methods for depositing metal in high aspect ratio features
JPH0365013B2 (zh)
JP2018537849A5 (zh)
JP2007042818A (ja) 成膜装置及び成膜方法
TW201840875A (zh) 減少介電質濺射中的缺陷的糊貼方法
JP2020506300A5 (zh)
JP2009275281A (ja) スパッタリング方法及び装置
TWI834028B (zh) 物理氣相沉積裝置、沉積薄膜的方法和形成半導體結構的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150819

Termination date: 20210402