WO2012090327A1 - 無線通信システム、移動局、基地局および無線通信方法 - Google Patents

無線通信システム、移動局、基地局および無線通信方法 Download PDF

Info

Publication number
WO2012090327A1
WO2012090327A1 PCT/JP2010/073806 JP2010073806W WO2012090327A1 WO 2012090327 A1 WO2012090327 A1 WO 2012090327A1 JP 2010073806 W JP2010073806 W JP 2010073806W WO 2012090327 A1 WO2012090327 A1 WO 2012090327A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
power
power control
base station
mobile station
Prior art date
Application number
PCT/JP2010/073806
Other languages
English (en)
French (fr)
Inventor
崇志 瀬山
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to EP10861518.8A priority Critical patent/EP2661132B1/en
Priority to PCT/JP2010/073806 priority patent/WO2012090327A1/ja
Priority to JP2012550646A priority patent/JP5573965B2/ja
Publication of WO2012090327A1 publication Critical patent/WO2012090327A1/ja
Priority to US13/925,329 priority patent/US9560606B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power

Definitions

  • the present invention relates to a wireless communication system, a mobile station, a base station, and a wireless communication method that can communicate using a plurality of frequency carriers simultaneously.
  • LTE-A Long Term Evolution-Advanced introduces carrier aggregation (Carrier Aggregation (CA)) as a technology capable of transmitting larger volumes of data.
  • CA Carrier Aggregation
  • UE mobile station
  • eNB base station
  • CC component carriers
  • the mobile station when data is transmitted and received by CA, the mobile station is assigned frequency resources with good radio quality for each CC by frequency scheduling. Therefore, in CA, the allocated frequency resource amount may differ for each CC.
  • CA can perform independent transmission power control (TPC: Transmission Power Control) for each CC. Therefore, the transmission power value and power spectral density (PSD: Power Spectral Density) of each CC may differ between CCs.
  • TPC Transmission Power Control
  • PSD Power Spectral Density
  • a mobile station calculates a transmission power value for each CC based on a TPC command sent from a base station. Then, the mobile station converts the difference in transmission power value between CCs into an amplitude ratio, and adjusts the amplitude of each CC based on the amplitude ratio. Therefore, for example, when the difference between the transmission power values of the CCs is large, if the amplitude adjustment is performed with reference to the CC having the largest transmission power value in the mobile station, the amplitude level of the CC signal having a small transmission power value becomes small. As a result, the quantization error increases. As a result, there has been a problem that the signal quality of a CC having a small transmission power value is deteriorated.
  • the amplitude adjustment is performed with reference to the CC having the smallest transmission power value in the mobile station in order to avoid deterioration of the signal quality of the CC having a small transmission power value
  • the amplitude of the CC signal having a large transmission power value is used.
  • the level increases and overflow occurs in the DA converter. That is, there is a problem that this overflow may cause deterioration of signal quality and unnecessary signal out-of-band interference.
  • the disclosed technology has been made in view of the above, and provides a wireless communication system, a mobile station, a base station, and a wireless communication method capable of suppressing degradation of signal quality without increasing the circuit scale. Objective.
  • the wireless communication system disclosed in the present application is a wireless communication system capable of performing wireless communication using a plurality of frequency bands at the same time, and the mobile station uses the power difference between the allowable power differences between the frequency bands and the transmission power control of the local station.
  • An uplink transmission unit that transmits mode information indicating a restriction target to a base station, and a transmission power control unit that controls transmission power based on a transmission power control command received from the base station.
  • the station includes a generation unit that generates a transmission power control command based on an allowable power difference between the frequency bands and the mode information, and a downlink transmission unit that transmits the transmission power control command to the mobile station.
  • FIG. 1 is a diagram illustrating an example of carrier aggregation.
  • FIG. 2 is a diagram illustrating an example of carrier aggregation using discontinuous component carriers.
  • FIG. 3 is a diagram illustrating a configuration example of a mobile station.
  • FIG. 4 is a diagram illustrating a configuration example of a base station.
  • FIG. 5 is a diagram illustrating a configuration example of the transmission power control unit.
  • FIG. 6 is a diagram illustrating an example of the configuration of the baseband unit and the RF unit.
  • FIG. 7 is a diagram illustrating an example of the configuration of the baseband unit and the RF unit.
  • FIG. 8 is a diagram illustrating an example of frequency scheduling in carrier aggregation.
  • FIG. 9 is a diagram illustrating an example when transmission power control is performed for each component carrier.
  • FIG. 10A is a diagram illustrating an example of a signal when amplitude adjustment is performed on the basis of a component carrier having the maximum transmission power value.
  • FIG. 10B is a diagram illustrating an example of a signal when amplitude adjustment is performed on the basis of a component carrier having the maximum transmission power value.
  • FIG. 11A is a diagram illustrating an example of a signal when amplitude adjustment is performed with reference to a component carrier having a minimum transmission power value.
  • FIG. 11B is a diagram illustrating an example of a signal when amplitude adjustment is performed on the basis of a component carrier having a minimum transmission power value.
  • FIG. 12A is a diagram illustrating an example of a signal when the number of quantization bits is large.
  • FIG. 12B is a diagram illustrating an example of a signal when the number of quantization bits is large.
  • FIG. 13 is a flowchart illustrating an example of a wireless communication method in the wireless communication system according to the first embodiment.
  • FIG. 14 is a diagram illustrating a configuration example of a mobile station.
  • FIG. 15 is a diagram illustrating a configuration example of a base station.
  • FIG. 16 is a diagram illustrating a configuration example of a transmission power control unit.
  • FIG. 17 is a flowchart illustrating an example of a wireless communication method in the wireless communication system according to the second embodiment.
  • FIG. 18 is a diagram illustrating a configuration example of a mobile station.
  • FIG. 19 is a diagram illustrating a configuration example of a base station.
  • FIG. 20 is a diagram illustrating a configuration example of the transmission power control unit.
  • FIG. 21 is a flowchart illustrating an example of a wireless communication method in the wireless communication system according to the third embodiment.
  • LTE-A 3rd Generation Partnership Project
  • CA Carrier Aggregation
  • FIG. 1 is a diagram showing an example of CA.
  • each bundled LTE radio carrier is referred to as a component carrier (Component Carrier (CC)).
  • CC component carrier
  • UE mobile station
  • eNB base station
  • LTE-A for example, a mobile station (UE) and a base station (eNB) transmit and receive data using a plurality of CCs.
  • a case where communication is performed using three CCs with a bandwidth of 20 MHz (CC # 0, CC # 1, CC # 2) is shown.
  • 1 shows a case where communication is performed using CCs in a continuous frequency band.
  • CA for example, communication is performed using CCs in a non-continuous frequency band as shown in FIG. It is also possible to do this.
  • FIG. 2 is a diagram illustrating an example of CA by discontinuous CC.
  • FIG. 3 is a diagram illustrating a configuration example of a mobile station in a wireless communication system
  • FIG. 4 is a diagram illustrating a configuration example of a base station in the wireless communication system. Note that the configuration example of the mobile station and the base station lists the configuration related to the processing of the present embodiment for convenience of description, and does not represent all the functions of the mobile station and the base station.
  • the mobile station includes a downlink reception unit 1, an uplink transmission unit 2, and a transmission power control unit 3.
  • the reception unit 11 notifies the TPC command received from the base station via the antenna 4 to the transmission power control unit 3, and similarly receives the received scheduling information to the uplink transmission unit 2.
  • the uplink transmission unit 2 includes a baseband unit 21 and an RF (Radio Frequency) unit 22, and encodes user data assigned to a predetermined CC based on scheduling information, a maximum power difference P MPD between CCs, and limited mode information. And transmit to the base station via the antenna 5.
  • RF Radio Frequency
  • FIG. 5 is a diagram illustrating a configuration example of the transmission power control unit 3.
  • the transmission power control unit 3 includes a CC transmission power calculation unit 31 and an amplitude adjustment coefficient calculation unit 32.
  • the CC transmission power calculation unit 31 calculates the transmission power value of each CC based on the TPC command.
  • the amplitude adjustment coefficient calculation unit 32 calculates an amplitude adjustment coefficient (amplitude ratio) from the ratio of the transmission power value of each CC or the ratio of the PSD of the transmission power value of each CC, and notifies the baseband unit 21 of the calculation result. .
  • the amplitude adjustment coefficient calculation unit 32 calculates the total power, which is the sum of the transmission power values for all CCs, and notifies the RF unit 22 of the calculation result. That is, the transmission power control unit 3 controls the transmission power of each CC based on the amplitude adjustment coefficient obtained by calculation and the total power for all CCs.
  • the downlink receiving unit 1, the uplink transmitting unit 2, and the transmission power control unit 3 may be composed of, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), a memory, and the like. Is possible.
  • a CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • the base station includes an uplink receiving unit 6 and a downlink transmitting unit 7.
  • the receiving unit 61 receives the maximum power difference P MPD between CCs and the limited mode information transmitted from the mobile station via the antenna 8, and the maximum power difference P between CCs after decoding.
  • the downlink transmission unit 7 is notified of MPD and restriction mode information.
  • the scheduler unit 71 performs scheduling based on the communication quality measurement result by SRS (Sounding Reference Signal).
  • the TPC command generation unit 72 generates a TPC command based on the maximum power difference P MPD between CCs after decoding and the limited mode information.
  • the transmission unit 73 performs OFDM (Orthogonal Frequency Division Multiplexing) modulation on the TPC command and scheduling information, and transmits the OFDM signal via the antenna 9.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the uplink receiving unit 6 and the downlink transmitting unit 7 can be configured with, for example, a CPU, an FPGA, a memory, and the like.
  • FIG. 6 is a diagram illustrating an example of the configuration of the baseband unit 21 and the RF unit 22.
  • the modulation units 101-1, 101-2, and 101-3 individually modulate corresponding CC data (user data, maximum power difference P MPD between CCs, limited mode information, etc.), respectively.
  • DFT Discrete Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • Upsampling units 104-1, 104-2, and 104-3 increase the sampling rate of each CC signal.
  • Frequency shift sections 105-1, 105-2, and 105-3 shift each CC signal after upsampling to a desired frequency band.
  • the amplitude adjusting units 106-1, 106-2, and 106-3 each adjust the amplitude of the corresponding CC based on the amplitude adjustment coefficient (amplitude ratio) notified from the transmission power control unit 3.
  • the synthesis unit 107 synthesizes the CC signals after amplitude adjustment, and outputs the synthesized signal to the RF unit 22.
  • a DAC Digital to Analog Converter
  • the orthogonal transformer 112 up-converts the received signal to a radio frequency band.
  • a PA Power Amplifier
  • FIG. 7 is a diagram showing a configuration example of the baseband unit 21 and the RF unit 22 different from those in FIG.
  • symbol is attached
  • the amplitude adjustment units 121-1, 121-2, and 121-3 are respectively associated with the corresponding CCs based on the amplitude adjustment coefficient (amplitude ratio) notified from the transmission power control unit 3.
  • the amplitude of the frequency domain signal is adjusted.
  • an IFFT unit 122 having a sufficiently large FFT (Fast Fourier Transform) size covering all CCs synthesizes the signal of each CC after amplitude adjustment in the frequency domain, and outputs the synthesized signal to the RF unit 22.
  • FFT Fast Fourier Transform
  • the signals of the CCs are synthesized using any one of the baseband units 21 described above. 6 and 7 describe the case where the baseband unit 21 synthesizes three CC signals, the present invention is not limited to this. For example, two CC signals or four or more CC signals may be combined.
  • FIG. 8 is a diagram illustrating an example of frequency scheduling in CA. Since each CC is a DFT-S (Spread) -OFDM signal in the uplink of CA (CC # 0, CC # 1, CC # 2 with a bandwidth of 20 MHz), the mobile station can receive a plurality of DFT-S-OFDM signals. Is transmitted. At this time, frequency resources with good radio quality are allocated to the mobile station for each CC by frequency scheduling. Therefore, for example, as shown in FIG. 8, the frequency resource amount allocated to each CC may differ between CCs (see CC # 0, CC # 1, CC # 2 in FIG. 8). The communication quality is measured by the base station based on the SRS transmitted by the mobile station. The base station performs frequency scheduling based on this measurement result. Further, the amount of frequency resources allocated by frequency scheduling is controlled in units of “resource blocks”.
  • CA can apply independent transmission power control (TPC) for each CC.
  • FIG. 9 is a diagram illustrating an example when transmission power control is performed for each CC.
  • the mobile station performs transmission power increase / decrease processing for each CC in accordance with the TPC command notified from the base station. Therefore, as shown in FIG. 9, the transmission power value and power spectral density (PSD) of each CC may differ between CCs.
  • the horizontal axis represents frequency
  • the vertical axis represents PSD
  • the area of the enclosed portion represents the transmission power value of each CC.
  • the mobile station calculates the transmission power value of each CC based on the TPC command sent from the base station. Then, the mobile station converts the difference in transmission power between CCs into an amplitude ratio, and adjusts the amplitude of each CC based on the amplitude ratio.
  • FIG. 10A and 10B are diagrams illustrating an example of a signal when amplitude adjustment is performed with reference to a CC having the maximum transmission power value.
  • FIG. 10A illustrates a signal of a CC having the maximum transmission power value.
  • FIG. 10B shows an example of a CC signal with a small transmission power value.
  • the solid line waveform is a signal after quantization, and the dotted line waveform is an ideal signal.
  • FIG. 11A and 11B are diagrams illustrating an example of a signal when amplitude adjustment is performed on the basis of a CC having a minimum transmission power value.
  • FIG. 11A is an example of a signal of a CC having a large transmission power value.
  • FIG. 11B shows an example of a CC signal having the minimum transmission power value. Overflow as shown in FIG. 11A can cause signal quality degradation and unnecessary out-of-band interference.
  • FIG. 12A and 12B are diagrams illustrating an example of a signal when the number of quantization bits is large (4 bits ⁇ 5 bits), and more specifically, FIG. 12A is an example of a CC signal having a large transmission power value. FIG. 12B shows an example of a CC signal with a small transmission power value.
  • a countermeasure can avoid the overflow of the DAC, but on the other hand, the circuit scale of the DAC increases and the power consumption also increases.
  • transmission power control is performed by the base station.
  • the mobile station transmits information regarding the allowable maximum power difference P MPD between CCs to the base station. Whether the mobile station limits the transmission power value for each CC ( PMPD is a transmission power difference) or the PSD of the transmission power value for each CC (P Limit mode information indicating whether MPD is a PSD difference is transmitted to the base station.
  • PMPD is a transmission power difference
  • PSD the transmission power value for each CC
  • P Limit mode information indicating whether MPD is a PSD difference
  • the restriction mode when restricting the transmission power value for each CC is called “inter-CC transmission power difference restriction mode”
  • the restriction mode when restricting the PSD of the transmission power value for each CC is “inter-CC PSD difference restriction”. This is called “mode”.
  • the mobile station when the mobile station is configured to perform digital synthesis in the time domain as shown in FIG. 6, the mobile station transmits restriction mode information indicating a transmission power difference restriction mode between CCs to the base station.
  • restriction mode information indicating the inter-CC PSD difference restriction mode to the base station.
  • the restriction mode is uniquely determined according to the configuration of the baseband unit 21 of the mobile station as described above. Therefore, when the mobile station controls the transmission power based on the TPC command sent from the base station, the mobile station sets the maximum power difference between the limited mode and the allowable CC to the base station only once. Just notify me. In the case where the mobile station is configured to include both the baseband units 21 shown in FIGS. 6 and 7, the restriction mode may be changed as appropriate according to the configuration of the baseband unit 21 used for communication. It is good.
  • the base station generates a TPC command based on the information regarding the maximum power difference P MPD between CCs received from the mobile station and the restriction mode information. For example, when the limiting mode is the inter-CC transmission power difference limiting mode, the base station generates a TPC command so that the transmission power difference between CCs is within P MPD by comparing the transmission power values of the CCs. When the restriction mode is the inter-CC PSD difference restriction mode, the base station generates a TPC command so that the PSD difference between the CCs is within P MPD by comparing the PSDs of the CCs.
  • FIG. 13 is a flowchart illustrating an example of a wireless communication method in the wireless communication system according to the first embodiment.
  • the uplink transmission unit 2 receives information on the maximum power difference P MPD between CCs, restriction mode information indicating the transmission power difference restriction mode between CCs or the PSD difference restriction mode between CCs, and the antenna 5 To the base station (S1).
  • the reception unit 61 of the uplink reception unit 6 notifies the downlink transmission unit 7 of the information about the maximum power difference P MPD between CCs and the limited mode information received from the mobile station via the antenna 8.
  • the scheduler unit 71 performs scheduling based on the communication quality of each CC, and notifies the transmission unit 73 of scheduling information (S3).
  • the TPC command generation unit 72 confirms whether the information indicated by the restriction mode information transmitted from the mobile station is the inter-CC transmission power difference restriction mode or the inter-CC PSD difference restriction mode. (S4).
  • the TPC command generation unit 72 uses the power so that the transmission power difference between CCs is within P MPD by comparing the transmission power values of the CCs. Adjustment is performed, and a TPC command is generated based on the adjustment result (S5).
  • the TPC command generation unit 72 adjusts the power so that the PSD difference between CCs is within P MPD by comparing the PSD of each CC. And a TPC command is generated based on the adjustment result (S6). Then, the transmission unit 73 transmits the scheduling information and the TPC command to the mobile station via the antenna 9 (S7).
  • the receiving unit 11 receives the scheduling information and the TPC command sent from the base station via the antenna 4 (S8). Then, the scheduling information is notified to the uplink transmission unit 2. Thereby, the uplink transmission part 2 becomes possible to allocate user data to each CC based on scheduling information. In addition, the reception unit 11 notifies the transmission power control unit 3 of the TPC command received from the base station.
  • the CC transmission power calculation unit 31 calculates the transmission power value of the corresponding CC based on the TPC command, and notifies the amplitude adjustment coefficient calculation unit 32 of the calculation result (S9).
  • the amplitude adjustment coefficient calculation unit 32 calculates the amplitude adjustment coefficient from the ratio of the transmission power values of the CCs when the own station supports the inter-CC transmission power difference limiting mode, and uses the calculation result as the amplitude of the baseband unit 21. The adjustment unit is notified (S9).
  • the amplitude adjustment coefficient calculation unit 32 converts the transmission power value of each CC into a PSD, and calculates the amplitude adjustment coefficient from the PSD ratio of each CC.
  • the calculation result is notified to each amplitude adjustment unit of the baseband unit 21 (S9). Also, the amplitude adjustment coefficient calculation unit 32 calculates the total power for all CCs from the transmission power value of each CC, and notifies the calculation result to the PA of the RF unit 22 (S9).
  • the baseband unit 21 digitally synthesizes a user data signal whose amplitude is adjusted for each CC in the time domain. Then, the RF unit 22 amplifies the combined user data signal to the total power for all CCs, and transmits the amplified signal to the base station via the antenna 5 (S10).
  • the baseband unit 21 digitally synthesizes the user data signal whose amplitude is adjusted for each CC in the frequency domain. Then, the RF unit 22 amplifies the combined user data signal to the total power for all CCs, and transmits the amplified signal to the base station via the antenna 5 (S10).
  • the receiving unit 61 receives a user data signal transmitted from the mobile station via the antenna 8 (S11).
  • the mobile station notifies the allowable maximum power difference between CCs and the limit mode to the base station, and the base station transmits the transmission power difference (or PSD difference) between CCs according to the limit mode. ) Is generated so as to be within the allowable maximum power difference.
  • transmission power control TPC
  • TPC transmission power control
  • the mobile station performs transmission power control based on the TPC command generated so that the transmission power difference (or PSD difference) between CCs is within the allowable maximum power difference.
  • the mobile station autonomously controls transmission power when receiving a TPC command from the base station.
  • FIG. 14 is a diagram illustrating a configuration example of a mobile station in a wireless communication system
  • FIG. 15 is a diagram illustrating a configuration example of a base station in the wireless communication system.
  • the configuration example of the mobile station and the base station lists the configuration related to the processing of the present embodiment for convenience of description, and does not represent all the functions of the mobile station and the base station. Further, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the receiving unit 61a of the uplink receiving unit 6a performs processing for receiving data transmitted from the mobile station
  • the TPC command generating unit 72a of the downlink transmitting unit 7a is set to the restricted mode. Regardless, a known TPC command generation process is performed.
  • the mobile station has a downlink receiving unit 1, an uplink transmitting unit 2a, and a transmission power control unit 3a.
  • the uplink transmission unit 2 a includes a baseband unit 21 and an RF unit 22, encodes user data assigned to a predetermined CC based on scheduling information, and transmits the encoded user data to the base station via the antenna 5.
  • FIG. 16 is a diagram illustrating a configuration example of the transmission power control unit 3a.
  • the transmission power control unit 3 a includes a CC transmission power calculation unit 31, an inter-CC power limiting unit 33, and an amplitude adjustment coefficient calculation unit 32.
  • the inter-CC power limiting unit 33 adjusts (limits) the transmission power value of each CC or the PSD of each CC based on the maximum allowable power difference P MPD between CCs.
  • the downlink reception unit 1, the uplink transmission unit 2a, and the transmission power control unit 3a can be configured by, for example, a CPU, an FPGA, a memory, and the like.
  • FIG. 17 is a flowchart illustrating an example of a wireless communication method in the wireless communication system according to the second embodiment.
  • the transmission unit 73 of the downlink transmission unit 7a transmits the TPC command generated by the TPC command generation unit 72a and the scheduling information generated by the scheduler unit 71 to the mobile station via the antenna 9. (S21).
  • the receiving unit 11 of the downlink receiving unit 1 receives the scheduling information and the TPC command transmitted from the base station via the antenna 4 (S22). Then, the reception unit 11 notifies the scheduling information to the uplink transmission unit 2a. Thereby, the uplink transmission part 2a becomes possible to allocate user data to each CC based on scheduling information. In addition, the receiving unit 11 notifies the transmission power control unit 3a of the TPC command received from the base station.
  • P i represents the transmission power value of the i-th CC
  • N cc represents the number of CCs.
  • the inter-CC power limiting unit 33 determines whether the limiting mode corresponding to the own station is the inter-CC transmission power difference limiting mode or the inter-CC PSD difference limiting mode (S24). As a result, in the case of the inter-CC transmission power difference restriction mode (S24, Yes), the inter-CC power restriction unit 33 first obtains the minimum value P min from the transmission power value P i of each CC. Then, the inter-CC power limiting unit 33 determines that Pi i (P i (P min + P MPD) when the transmission power value P i of the i-th CC exceeds the value “P min + P MPD ” obtained by adding the maximum power difference P MPD to the minimum value P min.
  • the inter-CC power restriction unit 33 first converts the transmission power value P i into a power value per resource block (i The number of the first resource block is M i ).
  • the conversion value (PSD) of each CC is “P i ⁇ 10 log 10 M i ”.
  • the inter-CC power limiting unit 33 obtains the minimum value P min ′ from the PSD of each CC.
  • the inter-CC power limiting unit 33 sets the PSD of the CC.
  • the amplitude adjustment coefficient calculation unit 32 of the transmission power control unit 3a calculates the amplitude adjustment coefficient from the ratio of the transmission power values of the CCs when the own station supports the inter-CC transmission power difference limiting mode, and the calculation. The result is notified to each amplitude adjustment unit of the baseband unit 21 (S27).
  • the amplitude adjustment coefficient calculation unit 32 calculates the amplitude adjustment coefficient from the PSD ratio of each CC, and the calculation result is used as each amplitude adjustment of the baseband unit 21. (S27). Further, the amplitude adjustment coefficient calculation unit 32 calculates the total power for all CCs from the transmission power value of each CC, and notifies the PA of the RF unit 22 of the calculation result (S27).
  • the baseband unit 21 digitally synthesizes a user data signal whose amplitude is adjusted for each CC in the time domain. Then, the RF unit 22 amplifies the combined user data signal to the total power for all CCs, and transmits the amplified signal to the base station via the antenna 5 (S28).
  • the baseband unit 21 digitally synthesizes the user data signal whose amplitude is adjusted for each CC in the frequency domain. Then, the RF unit 22 amplifies the combined user data signal to the total power for all CCs, and transmits the amplified signal to the base station via the antenna 5 (S28).
  • the receiving unit 61a of the uplink receiving unit 6a receives the user data signal transmitted from the mobile station via the antenna 8 (S29).
  • the mobile station determines information regarding the maximum power difference P MPD between CCs and limit mode information (inter-CC transmission power difference limit mode or inter-CC PSD) according to the configuration of the mobile station.
  • the difference limit mode may be notified to the base station.
  • the transmission power difference (or PSD difference) between the CCs is within the allowable maximum power difference according to the restriction mode of the local station.
  • the transmission power was controlled autonomously so that As a result, transmission power control (TPC) can be performed within the range of the number of quantization bits, so that signal quality deterioration can be suppressed without increasing the DAC circuit scale.
  • the mobile station notifies the base station of the maximum allowable power difference between CCs and the restriction mode, and the base station transmits the TPC command generated according to the restriction mode to the mobile station.
  • the process in case a mobile station notifies the allowable maximum power difference between CC to a base station, and does not notify a restriction
  • FIG. 18 is a diagram illustrating a configuration example of a mobile station in a wireless communication system
  • FIG. 19 is a diagram illustrating a configuration example of a base station in the wireless communication system.
  • the configuration example of the mobile station and the base station lists the configuration related to the processing of the present embodiment for convenience of description, and does not represent all the functions of the mobile station and the base station. Further, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the mobile station includes a downlink reception unit 1, an uplink transmission unit 2b, and a transmission power control unit 3b.
  • the uplink transmission unit 2 b includes a baseband unit 21 and an RF unit 22, encodes user data assigned to a predetermined CC based on scheduling information, and the maximum power difference P MPD between CCs, Send to the station.
  • the transmission power control unit 3b controls transmission power based on TPC commands (corresponding to first and second TPC commands described later) notified from the base station.
  • FIG. 20 is a diagram illustrating a configuration example of the transmission power control unit 3b.
  • the transmission power control unit 3 b includes a TPC command identification unit 34, a CC transmission power calculation unit 31, and an amplitude adjustment coefficient calculation unit 32.
  • the TPC command identifying unit 34 identifies a TPC command corresponding to the configuration of the baseband unit 21 of the local station from the first and second TPC commands transmitted by the base station, and notifies the CC transmission power calculating unit 31 of the TPC command.
  • the downlink reception unit 1, the uplink transmission unit 2b, and the transmission power control unit 3b can be configured by, for example, a CPU, an FPGA, a memory, and the like.
  • the base station includes an uplink receiving unit 6b and a downlink transmitting unit 7b.
  • the reception unit 61b receives the maximum power difference P MPD between CCs transmitted from the mobile station via the antenna 8, and downlinks the maximum power difference P MPD between CCs after decoding. Notify the transmitter 7b.
  • the TPC command generation unit 72b corresponds to the inter-CC transmission power difference limiting mode (mode for limiting the transmission power value) based on the maximum power difference P MPD between CCs after decoding. A first TPC command is generated.
  • the TPC command generation unit 72b generates a second TPC command corresponding to the inter-CC PSD difference limiting mode (a mode for limiting PSD) based on the maximum power difference P MPD between CCs after decoding. Then, the transmission unit 73 is notified of each generated TPC command.
  • the uplink receiving unit 6b and the downlink transmitting unit 7b can be configured by, for example, a CPU, FPGA, memory, and the like.
  • FIG. 21 is a flowchart illustrating an example of a wireless communication method in the wireless communication system according to the third embodiment.
  • the uplink transmitter 2b transmits information on the maximum power difference P MPD between CCs to the base station via the antenna 5 (S31).
  • the reception unit 61b of the uplink reception unit 6b notifies the downlink transmission unit 7b of information on the maximum power difference P MPD between CCs received from the mobile station via the antenna 8 (S32).
  • the scheduler unit 71 performs scheduling based on the communication quality of each CC, and notifies the transmission unit 73 of scheduling information (S3).
  • the TPC command generation unit 72b of the base station generates a TPC command so that the transmission power difference between CCs is within P MPD by comparing the transmission power values of the CCs (S33). That is, here, a first TPC command corresponding to the inter-CC transmission power difference limiting mode is generated. Then, the TPC command generation unit 72b associates the first TPC command with the first identification information for identifying the first TPC command and notifies the transmission unit 73 (S33).
  • the TPC command generation unit 72b generates a TPC command so that the PSD difference between CCs is within P MPD in the comparison of the PSD of each CC (S34). That is, here, the second TPC command corresponding to the inter-CC PSD difference limiting mode is generated. Then, the TPC command generation unit 72b associates the second TPC command with the second identification information for identifying the second TPC command, and notifies the transmission unit 73 (S34).
  • the transmission unit 73 transmits the scheduling information, each TPC command, and identification information associated with each TPC command to the mobile station via the antenna 9 (S35).
  • the first identification information and the second identification information are information known in advance in the mobile station and the base station.
  • the receiving unit 11 receives the scheduling information, each TPC command, and identification information associated with each TPC command sent from the base station via the antenna 4 (S36). Then, the reception unit 11 notifies the scheduling information to the uplink transmission unit 2b. Thereby, the uplink transmission part 2b can allocate user data to each CC based on scheduling information. In addition, the receiving unit 11 notifies the transmission power control unit 3b of each TPC command and identification information associated with each TPC command.
  • the TPC command identification unit 34 detects a TPC command associated with the identification information corresponding to the restriction mode of the own station based on the notified identification information, and the TPC command is transmitted to the CC transmission power.
  • the calculation unit 31 is notified (S37).
  • the CC transmission power calculation unit 31 calculates the transmission power value of the corresponding CC based on the notified TPC command, and notifies the amplitude adjustment coefficient calculation unit 32 of the calculation result (S37).
  • the amplitude adjustment coefficient calculation unit 32 calculates the amplitude adjustment coefficient from the ratio of the transmission power values of the CCs when the own station supports the inter-CC transmission power difference restriction mode, and the calculation result is used as the amplitude of the baseband unit 21.
  • the adjustment unit is notified (S37).
  • the amplitude adjustment coefficient calculation unit 32 converts the transmission power value of each CC into PSD, and calculates the amplitude adjustment coefficient from the PSD ratio of each CC. Then, the calculation result is notified to each amplitude adjustment unit of the baseband unit 21 (S37). In addition, the amplitude adjustment coefficient calculation unit 32 calculates the total power for all CCs from the transmission power value of each CC, and notifies the PA of the RF unit 22 of the calculation result (S37). Thereafter, the mobile station transmits data to the base station by the same operation as in the first embodiment.
  • the mobile station notifies the base station of the allowable maximum power difference between CCs.
  • the base station generates the first TPC command so that the transmission power difference between CCs is within the allowable maximum power difference, and at the same time, the base station generates the first TPC command so that the PSD difference between CCs is within the allowable maximum power difference. 2 TPC commands are generated.
  • the mobile station controls transmission power using a TPC command (first or second TPC command) corresponding to the restriction mode of the local station.
  • TPC transmission power control
  • the base station transmits each TPC command in association with identification information for identifying each TPC command.
  • the mobile station can reliably detect the TPC command corresponding to the restriction mode of the local station.

Abstract

 回路規模を増大させることなく信号品質の劣化を抑制可能な無線通信システムを提供する。複数の周波数帯域を同時に使用して無線通信可能な無線通信システムにおいて、移動局が、周波数帯域間の許容電力差と自局の送信電力制御における電力制限の対象を示す制限モード情報とを基地局に送信する上りリンク送信部(2)と、基地局から受信したTPCコマンドに基づいて送信電力を制御する送信電力制御部(3)と、を有し、基地局が、前記周波数帯域間の許容電力差および前記制限モード情報に基づいてTPCコマンドを生成するTPCコマンド生成部と、TPCコマンドを移動局に送信する送信部と、を有する。

Description

無線通信システム、移動局、基地局および無線通信方法
 本発明は、複数の周波数キャリアを同時に使用して通信可能な無線通信システム、移動局、基地局および無線通信方法に関する。
 LTE-A(Long Term Evolution-Advanced)では、より大容量のデータを伝送可能な技術として、キャリアアグリゲーション(周波数集約:Carrier Aggregation(CA))が導入される。CAでは、移動局(UE)と基地局(eNB)が、コンポーネントキャリア(Component Carrier(CC))と呼ばれる複数のLTE無線キャリアを使用してデータの送受信を行う。
 また、CAによりデータの送受信を行う場合、移動局には、周波数スケジューリングによりCC毎に無線品質の良好な周波数リソースが割り当てられる。そのため、CAでは、CC毎に、割り当てられた周波数リソース量が異なる場合がある。
 さらに、CAでは、CC毎に独立した送信電力制御(TPC:Transmission Power Control)が可能である。そのため、各CCの送信電力値および電力スペクトル密度(PSD:Power Spectral Density)がCC間で異なる場合がある。
 しかしながら、上記CAが導入された従来の無線通信システムにおいては、以下に示す問題があった。
 従来の無線通信システムにおいて、移動局では、基地局から送られてくるTPCコマンドに基づいてCC毎に送信電力値を計算する。そして、移動局では、CC間の送信電力値の差を振幅比に換算し、その振幅比に基づいて各CCの振幅調整を行う。そのため、たとえば、各CCの送信電力値の差が大きい場合には、移動局において送信電力値が最大のCCを基準として振幅調整を行うと、送信電力値の小さいCCの信号の振幅レベルが小さくなり、量子化誤差が大きくなる。その結果、送信電力値の小さいCCの信号品質が劣化する、という問題があった。
 一方、送信電力値の小さいCCの信号品質の劣化を回避するために、移動局において送信電力値が最小のCCを基準として振幅調整を行う場合には、送信電力値の大きいCCの信号の振幅レベルが大きくなり、DAコンバータにおいてオーバーフローが発生する。すなわち、このオーバーフローにより、信号品質の劣化および不要な信号帯域外干渉を引き起こす可能性がある、という問題があった。
 また、上記オーバーフロー対策としては、量子化ビット数を大きくする、という対策が考えられるが、この対策を実施した場合には、DAコンバータの回路規模が増大し、さらに、回路規模の増大により消費電力が増大する、という問題があった。
 開示の技術は、上記に鑑みてなされたものであって、回路規模を増大させることなく、信号品質の劣化を抑制可能な無線通信システム、移動局、基地局および無線通信方法を提供することを目的とする。
 本願の開示する無線通信システムは、複数の周波数帯域を同時に使用して無線通信可能な無線通信システムであって、移動局が、周波数帯域間の許容電力差と、自局の送信電力制御における電力制限の対象を示すモード情報と、を基地局に送信する上り送信部と、前記基地局から受信した送信電力制御コマンドに基づいて送信電力を制御する送信電力制御部と、を有し、前記基地局が、前記周波数帯域間の許容電力差および前記モード情報に基づいて送信電力制御コマンドを生成する生成部と、前記送信電力制御コマンドを前記移動局に送信する下り送信部と、を有する。
 本願の開示する無線通信システムの一つの態様によれば、回路規模を増大させることなく、信号品質の劣化を抑制することができる、という効果を奏する。
図1は、キャリアアグリゲーションの一例を示す図である。 図2は、不連続なコンポーネントキャリアによるキャリアアグリゲーションの一例を示す図である。 図3は、移動局の構成例を示す図である。 図4は、基地局の構成例を示す図である。 図5は、送信電力制御部の構成例を示す図である。 図6は、ベースバンド部およびRF部の構成の一例を示す図である。 図7は、ベースバンド部およびRF部の構成の一例を示す図である。 図8は、キャリアアグリゲーションにおける周波数スケジューリングの一例を示す図である。 図9は、コンポーネントキャリア毎に送信電力制御を実施した場合の一例を示す図である。 図10Aは、送信電力値が最大のコンポーネントキャリアを基準として振幅調整を行った場合の信号の一例を示す図である。 図10Bは、送信電力値が最大のコンポーネントキャリアを基準として振幅調整を行った場合の信号の一例を示す図である。 図11Aは、送信電力値が最小のコンポーネントキャリアを基準として振幅調整を行った場合の信号の一例を示す図である。 図11Bは、送信電力値が最小のコンポーネントキャリアを基準として振幅調整を行った場合の信号の一例を示す図である。 図12Aは、量子化ビット数を大きくとった場合の信号の一例を示す図である。 図12Bは、量子化ビット数を大きくとった場合の信号の一例を示す図である。 図13は、実施例1の無線通信システムにおける無線通信方法の一例を示すフローチャートである。 図14は、移動局の構成例を示す図である。 図15は、基地局の構成例を示す図である。 図16は、送信電力制御部の構成例を示す図である。 図17は、実施例2の無線通信システムにおける無線通信方法の一例を示すフローチャートである。 図18は、移動局の構成例を示す図である。 図19は、基地局の構成例を示す図である。 図20は、送信電力制御部の構成例を示す図である。 図21は、実施例3の無線通信システムにおける無線通信方法の一例を示すフローチャートである。
 以下に、本願の開示する無線通信システム、移動局、基地局および無線通信方法の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 3GPP(3rd Generation Partnership Project)では、LTEの発展形として、LTE-Aの議論が行われている。LTE-Aでは、高速通信を実現するため、LTEシステムの無線キャリアを複数集約しこの集約された帯域を使用してより大容量のデータを伝送する技術が導入される。これは、キャリアアグリゲーション(Carrier Aggregation(CA))と呼ばれている。
 図1は、CAの一例を示す図である。図1において、束ねられる各LTE無線キャリアをそれぞれコンポーネントキャリア(Component Carrier(CC))と呼ぶ。LTE-Aでは、たとえば、移動局(UE)と基地局(eNB)が、複数のCCを使用してデータの送受信を行う。ここでは、一例として、帯域幅20MHzのCCを3個(CC#0,CC#1,CC#2)用いて通信を行う場合が示されている。なお、図1では、連続した周波数帯域のCCを用いて通信を行う場合を示しているが、CAでは、たとえば、図2に示すように、連続していない周波数帯域のCCを用いて通信を行うことも可能である。図2は、不連続なCCによるCAの一例を示す図である。
 以下、CAによりデータ伝送を行う実施例1の無線通信システムについて説明する。図3は、無線通信システムにおける移動局の構成例を示す図であり、図4は、無線通信システムにおける基地局の構成例を示す図である。なお、移動局および基地局の構成例は、説明の便宜上、本実施例の処理にかかわる構成を列挙したものであり、移動局および基地局のすべての機能を表現したものではない。
 図3において、移動局は、下りリンク受信部1と上りリンク送信部2と送信電力制御部3を有する。下りリンク受信部1では、受信部11が、アンテナ4を介して基地局から受信したTPCコマンドを送信電力制御部3へ、同様に受信したスケジューリング情報を上りリンク送信部2へ、それぞれ通知する。上りリンク送信部2は、ベースバンド部21およびRF(Radio Frequency)部22を有し、スケジューリング情報に基づき所定のCCに割り当てたユーザーデータ,CC間の最大電力差PMPD,制限モード情報を符号化し、アンテナ5を介して基地局へ送信する。
 また、送信電力制御部3は、基地局から通知されたTPCコマンドに基づいて送信電力を制御する。図5は、送信電力制御部3の構成例を示す図である。図5において、送信電力制御部3は、CC送信電力計算部31と振幅調整係数計算部32を有する。CC送信電力計算部31は、TPCコマンドに基づいて各CCの送信電力値を計算する。振幅調整係数計算部32は、各CCの送信電力値の比または各CCの送信電力値のPSDの比から振幅調整係数(振幅比)を計算し、その計算結果をベースバンド部21へ通知する。また、振幅調整係数計算部32は、全CC分の送信電力値の合計である総電力を計算し、その計算結果をRF部22へ通知する。すなわち、送信電力制御部3は、計算により求めた振幅調整係数および全CC分の総電力により、各CCの送信電力を制御する。
 なお、上記移動局において、下りリンク受信部1,上りリンク送信部2,送信電力制御部3は、たとえば、CPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)およびメモリ等で構成することが可能である。
 また、図4において、基地局は、上りリンク受信部6と下りリンク送信部7を有する。上りリンク受信部6では、受信部61が、アンテナ8を介して移動局から送られてくるCC間の最大電力差PMPDおよび制限モード情報を受信し、復号後のCC間の最大電力差PMPDおよび制限モード情報を下りリンク送信部7に通知する。また、下りリンク送信部7では、スケジューラ部71が、SRS(Sounding Reference Signal)による通信品質の測定結果に基づきスケジューリングを行う。また、TPCコマンド生成部72は、復号後のCC間の最大電力差PMPDおよび制限モード情報に基づいてTPCコマンドを生成する。そして、送信部73が、TPCコマンドおよびスケジューリング情報に対してOFDM(Orthogonal Frequency Division Multiplexing)変調を行い、OFDM信号をアンテナ9を介して送信する。なお、上記基地局において、上りリンク受信部6,下りリンク送信部7は、たとえば、CPU、FPGAおよびメモリ等で構成することが可能である。
 ここで、移動局におけるベースバンド部21およびRF部22の動作を説明する。図6は、ベースバンド部21およびRF部22の構成の一例を示す図である。
 ベースバンド部21では、変調部101-1,101-2,101-3が、それぞれ対応するCCのデータ(ユーザーデータ,CC間の最大電力差PMPD,制限モード情報等)を個別に変調する。DFT(Discrete Fourier Transform)部102-1,102-2,102-3は、変調シンボルに対して離散フーリエ変換を実施することにより、時間領域の信号を周波数領域の信号に変換する。IFFT(Inverse Fast Fourier Transform)部103-1,103-2,103-3は、逆高速フーリエ変換を行い、周波数領域の信号を時間領域の信号に変換する。アップサンプリング部104-1,104-2,104-3は、各CCの信号のサンプリングレートを上げる。周波数シフト部105-1,105-2,105-3は、アップサンプリング後の各CCの信号を所望の周波数帯にシフトする。その後、振幅調整部106-1,106-2,106-3は、送信電力制御部3から通知される振幅調整係数(振幅比)に基づいて、それぞれ対応するCCの振幅調整を行う。そして、合成部107が、振幅調整後の各CCの信号を合成し、その合成信号をRF部22に出力する。
 つぎに、RF部22では、DAC(Digital to Analog Converter)部111が、合成部107から受け取ったデジタルの合成信号をアナログ信号に変換する。直交変換器112は、受け取った信号を無線周波数帯にアップコンバートする。そして、PA(Power Amplifier)部113は、送信電力制御部3から通知される全CC分の総電力に基づき入力信号を増幅し、増幅後の信号をアンテナ5から送信する。
 また、図7は、図6とは異なるベースバンド部21、およびRF部22の構成例を示す図である。なお、図6と同様の構成については、同一の符号を付してその説明を省略する。
 図7の示すベースバンド部21では、振幅調整部121-1,121-2,121-3が、送信電力制御部3から通知される振幅調整係数(振幅比)に基づいて、それぞれ対応するCCの周波数領域信号の振幅調整を行う。そして、全CCを網羅する十分に大きいFFT(Fast Fourier Transform)サイズを有するIFFT部122が、振幅調整後の各CCの信号を周波数領域で合成し、その合成信号をRF部22に出力する。
 以上のように、本実施例では、上記いずれかのベースバンド部21を用いて各CCの信号を合成する。なお、図6,図7では、ベースバンド部21において3つのCCの信号を合成する場合について記載しているが、これに限るものではない。たとえば、2つのCCの信号、または4つ以上のCCの信号を合成することとしてもよい。
 つづいて、本実施例の無線通信システムにおける無線通信方法を説明する前に、その前提となる無線通信方法について説明する。
 図8は、CAにおける周波数スケジューリングの一例を示す図である。CA(帯域幅20MHzのCC#0,CC#1,CC#2)の上りリンクは各CCがDFT-S(Spread)-OFDM信号であるため、移動局は、複数のDFT-S-OFDM信号を多重したマルチキャリア信号を送信する。この際、移動局には、周波数スケジューリングにより、CC毎に無線品質の良好な周波数リソースが割り当てられる。そのため、たとえば図8に示すように、各CCに割り当てられる周波数リソース量がCC間で異なる場合がある(図8のCC#0,CC#1,CC#2参照)。なお、上記通信品質は、移動局が送信するSRSに基づき基地局により測定される。基地局は、この測定結果に基づき周波数スケジューリングを行う。また、周波数スケジューリングにより割り当てられる周波数リソース量は、「リソースブロック」という単位で制御される。
 また、CAでは、CC毎に独立した送信電力制御(TPC)の適用が可能である。図9は、CC毎に送信電力制御を実施した場合の一例を示す図である。移動局は、基地局から通知されたTPCコマンドに従ってCC毎に送信電力の増減処理を行う。そのため、図9に示すように、各CCの送信電力値および電力スペクトル密度(PSD)がCC間で異なる場合がある。なお、図9において、横軸は周波数を表し、縦軸はPSDを表し、囲まれた部分の面積が各CCの送信電力値を表している。
 つづいて、上記図8および図9に示す無線通信方法における問題点を説明する。移動局は、基地局から送られてくるTPCコマンドに基づいて各CCの送信電力値を計算する。そして、移動局は、CC間の送信電力の差を振幅比に換算し、その振幅比に基づいて各CCの振幅調整を行う。
 そのため、たとえば、各CCの送信電力値の差が大きい場合には、移動局において送信電力値が最大のCCを基準として振幅調整を行うと、送信電力値の小さいCCの信号の振幅レベルが小さくなり、量子化誤差が大きくなる。図10Aおよび図10Bは、送信電力値が最大のCCを基準として振幅調整を行った場合の信号の一例を示す図であり、詳細には、図10Aは送信電力値が最大のCCの信号の一例を表し、図10Bは送信電力値の小さいCCの信号の一例を表す。ここで、実線の波形は量子化後の信号であり、点線の波形は理想信号である。このように、移動局において送信電力値が最大のCCを基準として振幅調整を行った場合には、送信電力値の小さいCCの信号品質が劣化する可能性がある。
 一方、送信電力値の小さいCCの信号品質の劣化を避けるために、移動局において送信電力値が最小のCCを基準として振幅調整を行う場合には、送信電力値の大きいCCの信号の振幅レベルが大きくなりすぎてDACがオーバーフローを引き起こしてしまう。図11Aおよび図11Bは、送信電力値が最小のCCを基準として振幅調整を行った場合の信号の一例を示す図であり、詳細には、図11Aは送信電力値の大きいCCの信号の一例を表し、図11Bは送信電力値が最小のCCの信号の一例を表す。図11Aに示すようなオーバーフローは、信号品質の劣化および不要な信号帯域外干渉を引き起こす可能性がある。
 また、上記オーバーフロー対策としては、量子化ビット数を大きくする、という対策が考えられる。図12Aおよび図12Bは、量子化ビット数を大きくとった場合(4ビット→5ビット)の信号の一例を示す図であり、詳細には、図12Aは送信電力値の大きいCCの信号の一例を表し、図12Bは送信電力値の小さいCCの信号の一例を表す。しかしながら、このような対策は、DACのオーバーフローを回避することは可能であるが、一方で、DACの回路規模が増大し、さらに消費電力も増大することになる。
 なお、上記では、移動局が時間領域でデジタル合成を行う場合の問題点について説明したが、移動局が周波数領域でデジタル合成を行う場合についてもPSDに関して同様の問題が発生する。
 そこで、本実施例では、送信電力制御に関する処理を工夫することにより、上記図10(A,B)~図12(A,B)に示すような問題を回避する。
 つづいて、本実施例の無線通信方法について説明する。本実施例では、基地局主導で送信電力制御を行う。まず、移動局は、許容可能なCC間の最大電力差PMPDに関する情報を基地局に送信する。また、移動局は、自局の構成に応じて、CC毎の送信電力値を制限するのか(PMPDが送信電力差であるか)またはCC毎の送信電力値のPSDを制限するのか(PMPDがPSD差であるか)を示す制限モード情報を基地局に送信する。なお、CC毎の送信電力値を制限する場合の制限モードを「CC間送信電力差制限モード」と呼び、CC毎の送信電力値のPSDを制限する場合の制限モードを「CC間PSD差制限モード」と呼ぶ。たとえば、移動局が図6のように時間領域でデジタル合成を行う構成の場合、移動局は、CC間送信電力差制限モードを示す制限モード情報を基地局に送信する。また、移動局が図7のように周波数領域でデジタル合成を行う構成の場合、移動局は、CC間PSD差制限モードを示す制限モード情報を基地局に送信する。
 なお、制限モードは、上記のように、移動局のベースバンド部21の構成に応じて一意に決定される。したがって、移動局が基地局から送られてくるTPCコマンドに基づいて送信電力を制御する場合には、移動局は、基地局に対して一度だけ制限モードおよび許容可能なCC間の最大電力差を通知しておけばよい。また、移動局が図6および図7に示す両方のベースバンド部21を備えるような構成の場合には、通信に使用されるベースバンド部21の構成に応じて、制限モードを適宜変更することとしてもよい。
 一方、基地局は、移動局から受信したCC間の最大電力差PMPDに関する情報および制限モード情報に基づいて、TPCコマンドを生成する。たとえば、制限モードがCC間送信電力差制限モードの場合、基地局は、各CCの送信電力値の比較でCC間の送信電力差がPMPD以内となるようにTPCコマンドを生成する。また、制限モードがCC間PSD差制限モードの場合、基地局は、各CCのPSDの比較でCC間のPSD差がPMPD以内となるようにTPCコマンドを生成する。
 図13は、実施例1の無線通信システムにおける無線通信方法の一例を示すフローチャートである。
 まず、移動局において、上りリンク送信部2は、CC間の最大電力差PMPDに関する情報と、CC間送信電力差制限モードまたはCC間PSD差制限モードを示す制限モード情報とを、アンテナ5を介して基地局に送信する(S1)。
 基地局では、上りリンク受信部6の受信部61が、アンテナ8を介して移動局から受信した、CC間の最大電力差PMPDに関する情報および制限モード情報を、下りリンク送信部7に通知する(S2)。下りリンク送信部7では、スケジューラ部71が、各CCの通信品質に基づきスケジューリングを行い、スケジューリング情報を送信部73に通知する(S3)。また、TPCコマンド生成部72は、移動局から送られてきた制限モード情報で示されている情報がCC間送信電力差制限モードであるかまたはCC間PSD差制限モードであるかの確認を行う(S4)。確認の結果、CC間送信電力差制限モードの場合(S4,Yes)、TPCコマンド生成部72は、各CCの送信電力値の比較でCC間の送信電力差がPMPD以内となるように電力調整を行い、その調整結果に基づいてTPCコマンドを生成する(S5)。一方、確認の結果、CC間PSD差制限モードの場合(S4,No)、TPCコマンド生成部72は、各CCのPSDの比較でCC間のPSD差がPMPD以内となるように電力調整を行い、その調整結果に基づいてTPCコマンドを生成する(S6)。そして、送信部73は、上記スケジューリング情報および上記TPCコマンドを、アンテナ9を介して移動局に送信する(S7)。
 移動局では、受信部11が、アンテナ4を介して基地局から送られてくるスケジューリング情報およびTPCコマンドを受信する(S8)。そして、スケジューリング情報を上りリンク送信部2に通知する。これにより、上りリンク送信部2は、スケジューリング情報に基づいてユーザーデータを各CCに割り当てることが可能となる。また、受信部11は、基地局から受信したTPCコマンドを送信電力制御部3に通知する。
 送信電力制御部3では、CC送信電力計算部31が、TPCコマンドに基づいて対応するCCの送信電力値を計算し、その計算結果を振幅調整係数計算部32に通知する(S9)。振幅調整係数計算部32は、自局がCC間送信電力差制限モードに対応する場合、各CCの送信電力値の比から振幅調整係数を計算し、その計算結果をベースバンド部21の各振幅調整部へ通知する(S9)。一方、自局がCC間PSD差制限モードに対応する場合、振幅調整係数計算部32は、各CCの送信電力値をそれぞれPSDに換算し、各CCのPSDの比から振幅調整係数を計算し、その計算結果をベースバンド部21の各振幅調整部へ通知する(S9)。また、振幅調整係数計算部32は、各CCの送信電力値から全CC分の総電力を計算し、その計算結果をRF部22のPAへ通知する(S9)。
 たとえば、CC間送信電力差制限モードに対応する移動局においては、ベースバンド部21が、CC毎に振幅調整を行ったユーザーデータ信号を時間領域でデジタル合成する。そして、RF部22が、合成後のユーザーデータ信号を全CC分の総電力に増幅し、増幅後の信号を、アンテナ5を介して基地局に送信する(S10)。一方、CC間PSD差制限モードに対応する基地局においては、ベースバンド部21が、CC毎に振幅調整を行ったユーザーデータ信号を周波数領域でデジタル合成する。そして、RF部22が、合成後のユーザーデータ信号を全CC分の総電力に増幅し、増幅後の信号を、アンテナ5を介して基地局に送信する(S10)。
 基地局では、受信部61が、アンテナ8を介して移動局から送られてくるユーザーデータ信号を受信する(S11)。
 このように、本実施例では、移動局が、CC間の許容最大電力差および制限モードを基地局に通知し、基地局が、制限モードに応じて、CC間の送信電力差(またはPSD差)が許容最大電力差以内になるようにTPCコマンドを生成することとした。これにより、量子化ビット数の範囲内で送信電力制御(TPC)が可能となるため、DACの回路規模を増大させることなく、信号品質の劣化を抑制することができる。
 実施例2の無線通信システム、移動局、基地局および無線通信方法について説明する。実施例1では、移動局が、CC間の送信電力差(またはPSD差)が許容最大電力差以内になるように生成されたTPCコマンドに基づいて、送信電力制御を行っていた。本実施例では、移動局が、基地局からTPCコマンドを受信した場合に、自律的に送信電力を制御する。
 図14は、無線通信システムにおける移動局の構成例を示す図であり、図15は、無線通信システムにおける基地局の構成例を示す図である。なお、移動局および基地局の構成例は、説明の便宜上、本実施例の処理にかかわる構成を列挙したものであり、移動局および基地局のすべての機能を表現したものではない。また、前述した実施例1と同様の構成については同一の符号を付してその説明を省略する。また、図15に示す基地局は、上りリンク受信部6aの受信部61aが移動局から送られてくるデータの受信処理を行い、下りリンク送信部7aのTPCコマンド生成部72aが、制限モードによらず、既知のTPCコマンド生成処理を行うものとする。
 図14において、移動局は、下りリンク受信部1と上りリンク送信部2aと送信電力制御部3aを有する。上りリンク送信部2aは、ベースバンド部21およびRF部22を有し、スケジューリング情報に基づき所定のCCに割り当てたユーザーデータを符号化し、アンテナ5を介して基地局へ送信する。
 また、送信電力制御部3aは、基地局からTPCコマンドが通知された場合に、自律的に送信電力を制御する。図16は、送信電力制御部3aの構成例を示す図である。図16において、送信電力制御部3aは、CC送信電力計算部31とCC間電力制限部33と振幅調整係数計算部32を有する。CC間電力制限部33は、許容可能なCC間の最大電力差PMPDに基づいて、各CCの送信電力値または各CCのPSDを調整(制限)する。なお、上記移動局において、下りリンク受信部1,上りリンク送信部2a,送信電力制御部3aは、たとえば、CPU、FPGAおよびメモリ等で構成することが可能である。
 ここで、本実施例の無線通信方法をフローチャートに従って説明する。図17は、実施例2の無線通信システムにおける無線通信方法の一例を示すフローチャートである。
 まず、基地局において、下りリンク送信部7aの送信部73が、TPCコマンド生成部72aで生成されたTPCコマンドおよびスケジューラ部71で生成されたスケジューリング情報を、アンテナ9を介して移動局に送信する(S21)。
 移動局では、下りリンク受信部1の受信部11が、アンテナ4を介して基地局から送られてくるスケジューリング情報およびTPCコマンドを受信する(S22)。そして、受信部11は、スケジューリング情報を上りリンク送信部2aに通知する。これにより、上りリンク送信部2aは、スケジューリング情報に基づいてユーザーデータを各CCに割り当てることが可能となる。また、受信部11は、基地局から受信したTPCコマンドを送信電力制御部3aに通知する。
 送信電力制御部3aでは、CC送信電力計算部31が、通知されたTPCコマンドに基づいて対応するCCの送信電力値Pi(i=0,1,…,Ncc-1)を計算する(S23)。そして、CC送信電力計算部31は、その計算結果をCC間電力制限部33に通知する。なお、Piはi番目のCCの送信電力値を表し、NccはCCの数を表す。
 つぎに、CC間電力制限部33は、自局に対応する制限モードがCC間送信電力差制限モードであるかまたはCC間PSD差制限モードであるかを判断する(S24)。その結果、CC間送信電力差制限モードの場合(S24,Yes)、CC間電力制限部33は、まず、各CCの送信電力値Piの中から最小値Pminを求める。そして、CC間電力制限部33は、i番目のCCの送信電力値Piが、最小値Pminに最大電力差PMPDを加算した値「Pmin+PMPD」を超える場合に、Pi(=Pi (act))を「Pmin+PMPD」に制限する(S25)。なお、「Pmin+PMPD」を超えない場合には制限を行わない。すなわち、CC間電力制限部33は、下記(1)式の処理を実行する。
Figure JPOXMLDOC01-appb-M000001
 なお、上記(1)式は下記(2)式のように表すこともできる。
Figure JPOXMLDOC01-appb-M000002
 一方、上記S24による判断の結果、CC間PSD差制限モードの場合(S24,No)、CC間電力制限部33は、まず、送信電力値Piをリソースブロック当たりの電力値に換算する(i番目のリソースブロック数をMiとする)。各CCの換算値(PSD)は「Pi-10log10i」である。つぎに、CC間電力制限部33は、各CCのPSDの中から最小値Pmin´を求める。そして、CC間電力制限部33は、i番目のCCのPSDが、最小値Pmin´に最大電力差PMPDを加算した値「Pmin´+PMPD」を超える場合に、そのCCのPSDを「Pmin´+PMPD」に制限する。なお、「Pmin´+PMPD」を超えない場合には制限を行わない。その後、CC間電力制限部33は、求めた各CCのPSDを送信電力値Pi(=Pi (act))に換算する(S26)。すなわち、CC間電力制限部33は、下記(3)式の処理を実行する。
Figure JPOXMLDOC01-appb-M000003
 なお、上記(3)式は下記(4)式のように表すこともできる。
Figure JPOXMLDOC01-appb-M000004
 つぎに、送信電力制御部3aの振幅調整係数計算部32は、自局がCC間送信電力差制限モードに対応する場合、各CCの送信電力値の比から振幅調整係数を計算し、その計算結果をベースバンド部21の各振幅調整部へ通知する(S27)。一方、自局がCC間PSD差制限モードに対応する場合、振幅調整係数計算部32は、各CCのPSDの比から振幅調整係数を計算し、その計算結果をベースバンド部21の各振幅調整部へ通知する(S27)。また、振幅調整係数計算部32は、各CCの送信電力値から全CC分の総電力を計算し、その計算結果をRF部22のPAへ通知する(S27)。
 たとえば、CC間送信電力差制限モードに対応する移動局においては、ベースバンド部21が、CC毎に振幅調整を行ったユーザーデータ信号を時間領域でデジタル合成する。そして、RF部22が、合成後のユーザーデータ信号を全CC分の総電力に増幅し、増幅後の信号を、アンテナ5を介して基地局に送信する(S28)。一方、CC間PSD差制限モードに対応する移動局においては、ベースバンド部21が、CC毎に振幅調整を行ったユーザーデータ信号を周波数領域でデジタル合成する。そして、RF部22が、合成後のユーザーデータ信号を全CC分の総電力に増幅し、増幅後の信号を、アンテナ5を介して基地局に送信する(S28)。
 基地局では、上りリンク受信部6aの受信部61aが、アンテナ8を介して移動局から送られてくるユーザーデータ信号を受信する(S29)。
 なお、移動局は、実施例1と同様に、自局の構成に応じて、許容可能なCC間の最大電力差PMPDに関する情報および制限モード情報(CC間送信電力差制限モードまたはCC間PSD差制限モード)を基地局に通知することとしてもよい。
 このように、本実施例では、移動局が、基地局からTPCコマンドを受信した場合に、自局の制限モードに応じて、CC間の送信電力差(またはPSD差)が許容最大電力差以内になるように、自律的に送信電力を制御することとした。これにより、量子化ビット数の範囲内で送信電力制御(TPC)が可能となるため、DACの回路規模を増大させることなく、信号品質の劣化を抑制することができる。
 実施例3の無線通信システム、移動局、基地局および無線通信方法について説明する。実施例1では、移動局がCC間の許容最大電力差および制限モードを基地局に通知し、基地局が制限モードに応じて生成したTPCコマンドを移動局に送信していた。本実施例では、移動局がCC間の許容最大電力差を基地局に通知し、制限モードを基地局に通知しない場合の処理について検討する。
 図18は、無線通信システムにおける移動局の構成例を示す図であり、図19は、無線通信システムにおける基地局の構成例を示す図である。なお、移動局および基地局の構成例は、説明の便宜上、本実施例の処理にかかわる構成を列挙したものであり、移動局および基地局のすべての機能を表現したものではない。また、前述した実施例1と同様の構成については同一の符号を付してその説明を省略する。
 図18において、移動局は、下りリンク受信部1と上りリンク送信部2bと送信電力制御部3bを有する。上りリンク送信部2bは、ベースバンド部21およびRF部22を有し、スケジューリング情報に基づき所定のCCに割り当てたユーザーデータ,CC間の最大電力差PMPDを符号化し、アンテナ5を介して基地局へ送信する。
 また、送信電力制御部3bは、基地局から通知されたTPCコマンド(後述する第1および第2のTPCコマンドに相当)に基づいて送信電力を制御する。図20は、送信電力制御部3bの構成例を示す図である。図20において、送信電力制御部3bは、TPCコマンド識別部34とCC送信電力計算部31と振幅調整係数計算部32を有する。TPCコマンド識別部34は、基地局が送信する第1および第2のTPCコマンドから自局のベースバンド部21の構成に対応したTPCコマンドを識別し、CC送信電力計算部31に通知する。なお、上記移動局において、下りリンク受信部1,上りリンク送信部2b,送信電力制御部3bは、たとえば、CPU、FPGAおよびメモリ等で構成することが可能である。
 また、図19において、基地局は、上りリンク受信部6bと下りリンク送信部7bを有する。上りリンク受信部6bでは、受信部61bが、アンテナ8を介して移動局から送られてくるCC間の最大電力差PMPDを受信し、復号後のCC間の最大電力差PMPDを下りリンク送信部7bに通知する。また、下りリンク送信部7bでは、TPCコマンド生成部72bが、復号後のCC間の最大電力差PMPDに基づいて、CC間送信電力差制限モード(送信電力値を制限するモード)に対応する第1のTPCコマンドを生成する。また同時に、TPCコマンド生成部72bは、復号後のCC間の最大電力差PMPDに基づいて、CC間PSD差制限モード(PSDを制限するモード)に対応する第2のTPCコマンドを生成する。そして、生成した各TPCコマンドを送信部73に通知する。なお、基地局において、上りリンク受信部6b,下りリンク送信部7bは、たとえば、CPU、FPGAおよびメモリ等で構成することが可能である。
 ここで、本実施例の無線通信方法をフローチャートに従って説明する。図21は、実施例3の無線通信システムにおける無線通信方法の一例を示すフローチャートである。
 まず、移動局において、上りリンク送信部2bが、CC間の最大電力差PMPDに関する情報を、アンテナ5を介して基地局に送信する(S31)。
 基地局では、上りリンク受信部6bの受信部61bが、アンテナ8を介して移動局から受信したCC間の最大電力差PMPDに関する情報を、下りリンク送信部7bに通知する(S32)。下りリンク送信部7bでは、スケジューラ部71が、各CCの通信品質に基づきスケジューリングを行い、スケジューリング情報を送信部73に通知する(S3)。
 つぎに、基地局のTPCコマンド生成部72bは、各CCの送信電力値の比較でCC間の送信電力差がPMPD以内となるように、TPCコマンドを生成する(S33)。すなわち、ここでは、CC間送信電力差制限モードに対応する第1のTPCコマンドを生成する。そして、TPCコマンド生成部72bは、第1のTPCコマンドと第1のTPCコマンドであることを識別するための第1の識別情報とを関連付けて送信部73に通知する(S33)。
 また、同時に、TPCコマンド生成部72bは、各CCのPSDの比較でCC間のPSD差がPMPD以内となるように、TPCコマンドを生成する(S34)。すなわち、ここでは、CC間PSD差制限モードに対応する第2のTPCコマンドを生成する。そして、TPCコマンド生成部72bは、第2のTPCコマンドと第2のTPCコマンドであることを識別するための第2の識別情報とを関連付けて送信部73に通知する(S34)。
 送信部73は、上記スケジューリング情報、各TPCコマンド、および各TPCコマンドに関連付けられた識別情報を、アンテナ9を介して移動局に送信する(S35)。なお、上記第1の識別情報および第2の識別情報は、移動局および基地局において予め既知の情報である。
 移動局では、受信部11が、アンテナ4を介して基地局から送られてくる、スケジューリング情報、各TPCコマンドおよび各TPCコマンドに関連付けられた識別情報を受信する(S36)。そして、受信部11は、スケジューリング情報を上りリンク送信部2bに通知する。これにより、上りリンク送信部2bは、スケジューリング情報に基づいてユーザーデータを各CCに割り当てることが可能となる。また、受信部11は、各TPCコマンドおよび各TPCコマンドに関連付けられた識別情報を送信電力制御部3bに通知する。
 送信電力制御部3bでは、TPCコマンド識別部34が、通知された識別情報に基づいて、自局の制限モードに対応する識別情報に関連付けられたTPCコマンドを検出し、そのTPCコマンドをCC送信電力計算部31に通知する(S37)。CC送信電力計算部31は、通知されたTPCコマンドに基づいて、対応するCCの送信電力値を計算し、その計算結果を振幅調整係数計算部32に通知する(S37)。振幅調整係数計算部32は、自局がCC間送信電力差制限モードに対応する場合、各CCの送信電力値の比から振幅調整係数を計算し、その計算結果をベースバンド部21の各振幅調整部へ通知する(S37)。一方、自局がCC間PSD差制限モードに対応する場合、振幅調整係数計算部32は、各CCの送信電力値をそれぞれPSDに換算し、各CCのPSDの比から振幅調整係数を計算し、その計算結果をベースバンド部21の各振幅調整部へ通知する(S37)。また、振幅調整係数計算部32は、各CCの送信電力値から全CC分の総電力を計算し、その計算結果をRF部22のPAへ通知する(S37)。以降、移動局は、実施例1と同様の動作で基地局に対してデータを送信する。
 このように、本実施例では、まず、移動局が、CC間の許容最大電力差を基地局に通知する。つぎに、基地局が、CC間の送信電力差が許容最大電力差以内になるように第1のTPCコマンドを生成し、同時に、CC間のPSD差が許容最大電力差以内になるように第2のTPCコマンドを生成する。そして、移動局が、自局の制限モードに対応するTPCコマンド(第1または第2のTPCコマンド)を用いて送信電力を制御する。これにより、量子化ビット数の範囲内で送信電力制御(TPC)が可能となるため、DACの回路規模を増大させることなく、信号品質の劣化を抑制することができる。
 また、本実施例では、基地局が、各TPCコマンドにそれぞれを識別するための識別情報を関連付けて送信することとした。これにより、移動局側では、自局の制限モードに対応するTPCコマンドを確実に検出することが可能となる。
 1 下りリンク受信部
 2,2a,2b 上りリンク送信部
 3,3a,3b 送信電力制御部
 4,5,8,9 アンテナ
 6,6a,6b 上りリンク受信部
 7,7a,7b 下りリンク送信部
 11,61,61a,61b 受信部
 21 ベースバンド部
 22 RF部
 31 CC送信電力計算部
 32 振幅調整係数計算部
 33 CC間電力制限部
 34 TPCコマンド識別部
 71 スケジューラ部
 72,72a,72b TPCコマンド生成部
 73 送信部
 101-1,101-2,101-3 変調部
 102-1,102-2,102-3 DFT部
 103-1,103-2,103-3,122 IFFT部
 104-1,104-2,104-3 アップサンプリング部
 105-1,105-2,105-3 周波数シフト部
 106-1,106-2,106-3,121-1,121-2,121-3 振幅調整部
 107 合成部
 111 DAC部
 112 直交変換器
 113 PA部

Claims (25)

  1.  複数の周波数帯域を同時に使用して無線通信可能な無線通信システムにおいて、
     移動局が、
     周波数帯域間の許容電力差と、自局の送信電力制御における電力制限の対象を示すモード情報と、を基地局に送信する上り送信部と、
     前記基地局から受信した送信電力制御コマンドに基づいて送信電力を制御する送信電力制御部と、
     を有し、
     前記基地局が、
     前記周波数帯域間の許容電力差および前記モード情報に基づいて送信電力制御コマンドを生成する生成部と、
     前記送信電力制御コマンドを前記移動局に送信する下り送信部と、
     を有する、
     ことを特徴とする無線通信システム。
  2.  前記電力制限の対象を、各周波数帯域の送信電力値または当該送信電力値の電力スペクトル密度とする、
     ことを特徴とする請求項1に記載の無線通信システム。
  3.  前記基地局の生成部は、
     前記電力制限の対象が各周波数帯域の送信電力値の場合、当該送信電力値の比較で各周波数帯域間の送信電力差が前記許容電力差以内になるように電力制限を行い、
     前記電力制限の対象が各周波数帯域の送信電力値の電力スペクトル密度の場合、当該電力スペクトル密度の比較で各周波数帯域間の電力スペクトル密度差が前記許容電力差以内になるように電力制限を行い、
     前記電力制限の結果に基づいて送信電力制御コマンドを生成する、
     ことを特徴とする請求項2に記載の無線通信システム。
  4.  複数の周波数帯域を同時に使用して無線通信可能な無線通信システムにおいて、
     基地局が、
     送信電力制御コマンドを生成する生成部と、
     前記送信電力制御コマンドを移動局に送信する下り送信部と、
     を有し、
     前記移動局が、
     前記基地局から送信電力制御コマンドを受信する受信部と、
     前記受信部で送信電力制御コマンドを受信した場合に、周波数帯域間の許容電力差に基づいて電力制限の対象となる電力値を制限し、当該制限処理の結果に基づいて送信電力を制御する送信電力制御部と、
     を有する、
     ことを特徴とする無線通信システム。
  5.  前記電力制限の対象となる電力値を、各周波数帯域の送信電力値または当該送信電力値の電力スペクトル密度とする、
     ことを特徴とする請求項4に記載の無線通信システム。
  6.  前記移動局の送信電力制御部は、
     前記電力制限の対象となる電力値が各周波数帯域の送信電力値の場合、各周波数帯域間の送信電力差が前記許容電力差以内になるように送信電力値を制限し、
     前記電力制限の対象となる電力値が各周波数帯域の送信電力値の電力スペクトル密度の場合、各周波数帯域の送信電力値をそれぞれの電力スペクトル密度に換算し、各周波数帯域間の電力スペクトル密度差が前記許容電力差以内になるように電力スペクトル密度を制限する、
     ことを特徴とする請求項5に記載の無線通信システム。
  7.  複数の周波数帯域を同時に使用して無線通信可能な無線通信システムにおいて、
     移動局が、
     周波数帯域間の許容電力差を基地局に送信する上り送信部、
     を有し、
     前記基地局が、
     前記周波数帯域間の許容電力差に基づいて、第1の電力制限の対象に対応する第1の送信電力制御コマンドを生成し、並行して、第2の電力制限の対象に対応する第2の送信電力制御コマンドを生成する生成部と、
     前記生成部にて生成された第1および第2の送信電力制御コマンドを前記移動局に送信する下り送信部と、
     を有し、
     前記移動局が、さらに、
     前記基地局から前記第1および第2の送信電力制御コマンドを受信する受信部と、
     前記第1および第2の送信電力制御コマンドから、自局の送信電力制御における電力制限の対象に対応する所望の送信電力制御コマンドを検出し、当該検出結果に基づいて送信電力を制御する送信電力制御部と、
     を有する、
     ことを特徴とする無線通信システム。
  8.  さらに、
     前記基地局の生成部は、前記各送信電力制御コマンドに、それぞれを識別するための識別情報を関連付けておき、
     前記移動局の送信電力制御部は、前記所望の送信電力制御コマンドを、自局と前記基地局との間で予め既知の前記識別情報に基づいて検出する、
     ことを特徴とする請求項7に記載の無線通信システム。
  9.  前記第1の電力制限の対象を、各周波数帯域の送信電力値とし、前記第2の電力制限の対象を、当該送信電力値の電力スペクトル密度とする、
     ことを特徴とする請求項7に記載の無線通信システム。
  10.  前記基地局の生成部は、
     前記各周波数帯域の送信電力値の比較で、送信電力差が前記許容電力差以内になるように電力制限を行い、その結果に基づいて第1の送信電力制御コマンドを生成し、
     前記各周波数帯域の送信電力値の電力スペクトル密度の比較で、電力スペクトル密度差が前記許容電力差以内になるように電力制限を行い、その結果に基づいて第2の送信電力制御コマンドを生成する、
     ことを特徴とする請求項9に記載の無線通信システム。
  11.  複数の周波数帯域を同時に使用して無線信号を送受信可能な移動局において、
     自局の送信電力制御における電力制限の対象を示すモード情報を基地局に送信する送信部と、
     前記基地局から受信した送信電力制御コマンドに基づいて送信電力を制御する送信電力制御部と、
     を有する、
     ことを特徴とする移動局。
  12.  前記送信部が、さらに、周波数帯域間の許容電力差を基地局に送信する、
     ことを特徴とする請求項11に記載の移動局。
  13.  前記基地局が前記周波数帯域間の許容電力差および前記モード情報に基づいて生成した送信電力制御コマンドを受信する受信部、
     をさらに有する、
     ことを特徴とする請求項12に記載の移動局。
  14.  前記電力制限の対象を、各周波数帯域の送信電力値または当該送信電力値の電力スペクトル密度とする、
     ことを特徴とする請求項11、12または13に記載の移動局。
  15.  複数の周波数帯域を同時に使用して無線信号を送受信可能な移動局において、
     基地局から送信電力制御コマンドを受信する受信部と、
     前記受信部で送信電力制御コマンドを受信した場合に、周波数帯域間の許容電力差に基づいて電力制限の対象となる電力値を制限し、当該制限処理の結果に基づいて送信電力を制御する送信電力制御部と、
     を有する、
     ことを特徴とする移動局。
  16.  前記電力制限の対象となる電力値を、各周波数帯域の送信電力値または当該送信電力値の電力スペクトル密度とする、
     ことを特徴とする請求項15に記載の移動局。
  17.  前記送信電力制御部は、
     前記電力制限の対象となる電力値が各周波数帯域の送信電力値の場合、各周波数帯域間の送信電力差が前記許容電力差以内になるように送信電力値を制限し、
     前記電力制限の対象となる電力値が各周波数帯域の送信電力値の電力スペクトル密度の場合、各周波数帯域の送信電力値をそれぞれの電力スペクトル密度に換算し、各周波数帯域間の電力スペクトル密度差が前記許容電力差以内になるように電力スペクトル密度を制限する、
     ことを特徴とする請求項16に記載の移動局。
  18.  複数の周波数帯域を同時に使用して無線信号を送受信可能な移動局において、
     周波数帯域間の許容電力差を基地局に送信する送信部と、
     前記基地局が、前記周波数帯域間の許容電力差に基づいて生成した第1の電力制限の対象に対応する第1の送信電力制御コマンドと、並行して前記許容電力差に基づいて生成した第2の電力制限の対象に対応する第2の送信電力制御コマンドと、を受信する受信部と、
     前記第1および第2の送信電力制御コマンドから、自局の送信電力制御における電力制限の対象に対応する所望の送信電力制御コマンドを検出し、当該検出結果に基づいて送信電力を制御する送信電力制御部と、
     を有する、
     ことを特徴とする移動局。
  19.  さらに、前記送信電力制御部は、前記所望の送信電力制御コマンドを、自局と前記基地局との間で予め既知である、各送信電力制御コマンドを識別するための識別情報に基づいて検出する、
     ことを特徴とする請求項18に記載の移動局。
  20.  前記自局の送信電力制御における電力制限の対象を、各周波数帯域の送信電力値または当該送信電力値の電力スペクトル密度とする、
     ことを特徴とする請求項18または19に記載の移動局。
  21.  複数の周波数帯域を同時に使用して無線信号を送受信可能な基地局において、
     移動局が送信する周波数帯域間の許容電力差と当該移動局の送信電力制御における電力制限の対象を示すモード情報とに基づいて、送信電力制御コマンドを生成する生成部と、
     前記送信電力制御コマンドを前記移動局に送信する送信部と、
     を有する、
     ことを特徴とする基地局。
  22.  複数の周波数帯域を同時に使用して無線信号を送受信可能な基地局において、
     移動局から受信した周波数帯域間の許容電力差に基づいて、第1の電力制限の対象に対応する第1の送信電力制御コマンドを生成し、並行して、第2の電力制限の対象に対応する第2の送信電力制御コマンドを生成する生成部と、
     前記生成部にて生成された第1および第2の送信電力制御コマンドを前記移動局に送信する送信部と、
     を有する、
     ことを特徴とする基地局。
  23.  複数の周波数帯域を同時に使用して無線通信可能な無線通信システムにおける無線通信方法であって、
     移動局が、周波数帯域間の許容電力差と、自局の送信電力制御における電力制限の対象を示すモード情報とを基地局に送信し、
     前記基地局が、前記周波数帯域間の許容電力差および前記モード情報に基づいて送信電力制御コマンドを生成し、当該送信電力制御コマンドを前記移動局に送信し、
     前記移動局が、前記基地局から受信した送信電力制御コマンドに基づいて送信電力を制御する、
     ことを特徴とする無線通信方法。
  24.  複数の周波数帯域を同時に使用して無線通信可能な無線通信システムにおける無線通信方法であって、
     基地局が、送信電力制御コマンドを生成し、当該送信電力制御コマンドを移動局に送信し、
     前記移動局が、前記基地局から送信電力制御コマンドを受信した場合に、周波数帯域間の許容電力差に基づいて電力制限の対象となる電力値を制限し、当該制限処理の結果に基づいて送信電力を制御する、
     ことを特徴とする無線通信方法。
  25.  複数の周波数帯域を同時に使用して無線通信可能な無線通信システムにおける無線通信方法であって、
     移動局が、周波数帯域間の許容電力差を基地局に送信し、
     前記基地局が、前記周波数帯域間の許容電力差に基づいて、第1の電力制限の対象に対応する第1の送信電力制御コマンドを生成し、並行して、第2の電力制限の対象に対応する第2の送信電力制御コマンドを生成し、当該第1および第2の送信電力制御コマンドを前記移動局に送信し、
     前記移動局が、前記基地局から前記第1および第2の送信電力制御コマンドを受信し、当該第1および第2の送信電力制御コマンドから、自局の送信電力制御における電力制限の対象に対応する所望の送信電力制御コマンドを検出し、当該検出結果に基づいて送信電力を制御する、
     ことを特徴とする無線通信方法。
PCT/JP2010/073806 2010-12-28 2010-12-28 無線通信システム、移動局、基地局および無線通信方法 WO2012090327A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10861518.8A EP2661132B1 (en) 2010-12-28 2010-12-28 Wireless communication system, mobile station, base station and method of wireless communication
PCT/JP2010/073806 WO2012090327A1 (ja) 2010-12-28 2010-12-28 無線通信システム、移動局、基地局および無線通信方法
JP2012550646A JP5573965B2 (ja) 2010-12-28 2010-12-28 無線通信システム、移動局、基地局および無線通信方法
US13/925,329 US9560606B2 (en) 2010-12-28 2013-06-24 Wireless communication system, mobile station, base station and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073806 WO2012090327A1 (ja) 2010-12-28 2010-12-28 無線通信システム、移動局、基地局および無線通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/925,329 Continuation US9560606B2 (en) 2010-12-28 2013-06-24 Wireless communication system, mobile station, base station and wireless communication method

Publications (1)

Publication Number Publication Date
WO2012090327A1 true WO2012090327A1 (ja) 2012-07-05

Family

ID=46382475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073806 WO2012090327A1 (ja) 2010-12-28 2010-12-28 無線通信システム、移動局、基地局および無線通信方法

Country Status (4)

Country Link
US (1) US9560606B2 (ja)
EP (1) EP2661132B1 (ja)
JP (1) JP5573965B2 (ja)
WO (1) WO2012090327A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162819A1 (ja) * 2013-04-04 2014-10-09 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
CN104244386A (zh) * 2013-06-09 2014-12-24 华为技术有限公司 功率控制方法及装置
WO2015008657A1 (ja) * 2013-07-17 2015-01-22 京セラ株式会社 ユーザ端末、基地局、及びプロセッサ
JP2016506125A (ja) * 2012-11-29 2016-02-25 インターデイジタル パテント ホールディングス インコーポレイテッド Ofdmシステムにおけるスペクトル漏れの低減
CN105409299A (zh) * 2013-07-05 2016-03-16 Lg电子株式会社 用于在无线通信系统中获取控制信息的方法和装置
WO2017119050A1 (ja) * 2016-01-08 2017-07-13 国立大学法人京都大学 送信装置、送信方法および受信装置
WO2018173482A1 (ja) * 2017-03-23 2018-09-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末及び通信方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818441B2 (en) * 2009-10-02 2014-08-26 Interdigital Patent Holdings, Inc. Method and apparatus for controlling transmit power of transmissions on more than one component carrier
KR102191800B1 (ko) * 2014-03-28 2020-12-17 삼성전자주식회사 안테나 스위칭 방법
JP2019145866A (ja) * 2016-07-05 2019-08-29 シャープ株式会社 基地局装置、端末装置および通信方法
US11412462B2 (en) * 2017-04-14 2022-08-09 Intel Corporation Enhanced power management for wireless communications
US10863456B2 (en) 2017-10-11 2020-12-08 Qualcomm Incorporated Systems and methods of communicating via sub-bands in wireless communication networks

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103862A1 (ja) * 2009-03-10 2010-09-16 シャープ株式会社 無線通信システム、無線送信装置および無線送信方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4769657B2 (ja) * 2006-07-28 2011-09-07 京セラ株式会社 無線通信方法及び無線通信端末
US7961695B2 (en) 2007-01-12 2011-06-14 Panasonic Corporation Radio communication base station device and radio communication method
EP2227061B1 (en) 2007-01-31 2012-09-19 Sharp Kabushiki Kaisha Interference information indicator table for a mobile station located at a cell edge
US8107987B2 (en) 2007-02-14 2012-01-31 Qualcomm Incorporated Apparatus and method for uplink power control of wireless communications
TWM350187U (en) 2007-03-07 2009-02-01 Interdigital Tech Corp Wireless transmit receive unit
CN102739602B (zh) * 2007-08-14 2016-03-16 株式会社Ntt都科摩 接收装置和数据取得方法
EP2394472A2 (en) * 2009-02-03 2011-12-14 Nokia Siemens Networks Oy Uplink power control for multiple component carriers
AR076392A1 (es) * 2009-04-23 2011-06-08 Interdigital Patent Holdings Metodo y aparato para una escala de potencia para terminales inalambricas multi-portadoras
CN102804868B (zh) * 2009-06-16 2016-01-20 夏普株式会社 移动台装置、基站装置、无线通信方法及集成电路
US8818441B2 (en) * 2009-10-02 2014-08-26 Interdigital Patent Holdings, Inc. Method and apparatus for controlling transmit power of transmissions on more than one component carrier
CN101778462B (zh) * 2010-01-08 2015-05-20 中兴通讯股份有限公司 上行传输功率控制信息的发送方法和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103862A1 (ja) * 2009-03-10 2010-09-16 シャープ株式会社 無線通信システム、無線送信装置および無線送信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "UL Power Control in Carrier Aggregation", 3GPP TSG RAN WG1 MEETING #59BIS R1-100244, 18 January 2010 (2010-01-18), XP050417930 *
See also references of EP2661132A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506125A (ja) * 2012-11-29 2016-02-25 インターデイジタル パテント ホールディングス インコーポレイテッド Ofdmシステムにおけるスペクトル漏れの低減
JP2017204873A (ja) * 2012-11-29 2017-11-16 アイディーエーシー ホールディングス インコーポレイテッド Ofdmシステムにおけるスペクトル漏れの低減
JP2014204277A (ja) * 2013-04-04 2014-10-27 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
US10548093B2 (en) 2013-04-04 2020-01-28 Ntt Docomo, Inc. Radio base station, user terminal and radio communication method
WO2014162819A1 (ja) * 2013-04-04 2014-10-09 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
CN104244386B (zh) * 2013-06-09 2017-12-22 华为技术有限公司 功率控制方法及装置
CN104244386A (zh) * 2013-06-09 2014-12-24 华为技术有限公司 功率控制方法及装置
CN105409299A (zh) * 2013-07-05 2016-03-16 Lg电子株式会社 用于在无线通信系统中获取控制信息的方法和装置
JP2016521945A (ja) * 2013-07-05 2016-07-25 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて制御情報取得方法及び装置
CN105409299B (zh) * 2013-07-05 2019-01-25 Lg电子株式会社 用于在无线通信系统中获取控制信息的方法和装置
US10080199B2 (en) 2013-07-05 2018-09-18 Lg Electronics Inc. Method and device for acquiring control information in wireless communication system
JP2015023365A (ja) * 2013-07-17 2015-02-02 京セラ株式会社 ユーザ端末、基地局、及びプロセッサ
WO2015008657A1 (ja) * 2013-07-17 2015-01-22 京セラ株式会社 ユーザ端末、基地局、及びプロセッサ
JP2017123604A (ja) * 2016-01-08 2017-07-13 国立大学法人京都大学 送信装置、送信方法および受信装置
WO2017119050A1 (ja) * 2016-01-08 2017-07-13 国立大学法人京都大学 送信装置、送信方法および受信装置
US10581546B2 (en) 2016-01-08 2020-03-03 Kyoto University Transmitter, transmission method, and receiver based on time-domain windows
WO2018173482A1 (ja) * 2017-03-23 2018-09-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末及び通信方法
CN110431815A (zh) * 2017-03-23 2019-11-08 松下电器(美国)知识产权公司 终端及通信方法
US11368921B2 (en) 2017-03-23 2022-06-21 Panasonic Intellectual Property Corporation Of America Terminal and communication method for uplink control channel transmission

Also Published As

Publication number Publication date
JP5573965B2 (ja) 2014-08-20
EP2661132A1 (en) 2013-11-06
EP2661132B1 (en) 2017-06-21
EP2661132A4 (en) 2016-01-06
US20130281148A1 (en) 2013-10-24
JPWO2012090327A1 (ja) 2014-06-05
US9560606B2 (en) 2017-01-31

Similar Documents

Publication Publication Date Title
JP5573965B2 (ja) 無線通信システム、移動局、基地局および無線通信方法
KR102234589B1 (ko) 무선 통신 시스템에서 빔 동작에 대한 경로 손실 도출을 위한 방법 및 장치
JP6529563B2 (ja) 無線通信システムにおいてビーム動作のための電力ヘッドルーム報告についての方法及び装置
JP7032442B2 (ja) ワイヤレス電力制御のシステムおよび方法
US11838872B2 (en) Systems and method of power control for uplink transmissions
EP3614750B1 (en) Power headroom reporting
WO2012093455A1 (ja) 無線通信端末装置及び電力制御方法
WO2018127022A1 (zh) 发送功率的确定方法、装置及系统
TW201739295A (zh) 波束成形系統中鏈路的功率控制
CN110999125A (zh) 通信装置、通信控制方法和计算机程序
BR112012001554B1 (pt) Sistema de comunicação sem fio, aparelho de estação base e aparelho de estação móvel
KR20130024898A (ko) 송신전력 제어방법 및 이동국장치
US11778554B2 (en) User Equipment (UE) antenna adaptation for PUCCH Transmission
KR20190076052A (ko) 전력 제어 방법 및 단말기
US9918284B2 (en) Methods and systems for downlink transmit power control command transmission
WO2019062387A1 (zh) 参数获取方法及装置
WO2018059248A1 (zh) 上行信号发送功率的处理方法及装置、基站、终端
WO2017022921A1 (ko) 무선 통신 시스템에서 하이브리드 범포밍을 위한 프리코더 결정 방법 및 이를 위한 장치
US11916832B2 (en) Method for transmitting and receiving sounding reference signal in wireless communication system, and apparatus therefor
JP7029245B2 (ja) 送信装置及び受信装置
JP6101082B2 (ja) 無線基地局、ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550646

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010861518

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010861518

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE