WO2012088759A1 - 一种可熔性聚酰亚胺模塑料及其制备方法 - Google Patents

一种可熔性聚酰亚胺模塑料及其制备方法 Download PDF

Info

Publication number
WO2012088759A1
WO2012088759A1 PCT/CN2011/002164 CN2011002164W WO2012088759A1 WO 2012088759 A1 WO2012088759 A1 WO 2012088759A1 CN 2011002164 W CN2011002164 W CN 2011002164W WO 2012088759 A1 WO2012088759 A1 WO 2012088759A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
molding powder
preparing
polyamic acid
weight
Prior art date
Application number
PCT/CN2011/002164
Other languages
English (en)
French (fr)
Inventor
邱孜学
贺飞峰
包来燕
吕凯
Original Assignee
上海市合成树脂研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海市合成树脂研究所 filed Critical 上海市合成树脂研究所
Priority to JP2013546562A priority Critical patent/JP5495464B2/ja
Publication of WO2012088759A1 publication Critical patent/WO2012088759A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain

Definitions

  • the present invention relates to a soluble fusible polyimide molding compound and a method of producing the same, and more particularly to 2,3,3',4'-diphenyl ether tetracarboxylic dianhydride and diaminodiphenyl Method for preparing polyimide molding powder prepared by ether reaction and a-ODPA (2,3,3',4'-diphenyl ether tetracarboxylic dianhydride) /3,4'-ODA prepared by the method ( 3,4'-Aminodiphenyl ether) Molding powder.
  • Polyimide has been highly valued by its excellent high temperature resistance, low temperature resistance, solvent resistance, radiation resistance, outstanding mechanical strength and dielectric properties, and has been widely used in aerospace, automotive industry, micro Many high-tech fields such as electronics and flat panel display. Since the development of Kapton® film by DuPont in the early 1960s, it has been nearly 50 years old. This polyimide obtained by linear polymerization of pyromellitic dianhydride (PMDA) and diphenyl ether diamine (ODA) has excellent properties, but molding is very difficult. Therefore, processing difficulties and high manufacturing costs have been two key bottlenecks that constrain its rapid development. Research and development of melt-processable thermoplastic polyimides is one of the main methods to improve the processing properties of polyimide materials and reduce manufacturing costs, and is one of the goals that experts in the field of polyimides are striving for.
  • PMDA pyromellitic dianhydride
  • ODA diphenyl ether diamine
  • a fusible polyimide molding powder (s-type polydiphenyl ether tetraimide) having a polymer repeating monomer structure is as follows:
  • the thermoplastic molding compound was successfully developed by the Shanghai Synthetic Resin Research Institute in the 1970s and sold under the trade name Leitai YS-20.
  • the plastic has excellent mechanical properties, electrical properties, radiation resistance, high temperature resistance and wear resistance, and can be used at -259 ⁇ 220 °C. Now used as high and low temperature gaskets,
  • the S-type polydiphenyl ether tetraimide also has a problem of molding, and it is generally required to be molded at 380 C. Recently, from the viewpoints of energy saving and emission reduction and improvement of molding efficiency, it is necessary to lower the molding temperature of 380 ° C to a large extent, and it is desired to be injection molded or extruded.
  • Prof. Yokota also produced a polyimide film of 2,3,3',4'-diphenyl ether tetracarboxylic dianhydride and 4,4'-diaminodiphenyl ether.
  • This film has excellent properties.
  • the stability of the cosmic environment, using its thermal fusion properties, is used as a membrane material for solar sails.
  • polyimide of this structure is called A type of polydiphenyl ether tetraimide (hereinafter referred to as a type of polyimide), a polyimide prepared from 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride is called S-type polydiphenyl ether tetraimide (hereinafter referred to as: s-type polyimide).
  • a type of polyimide a polyimide prepared from 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride
  • S-type polydiphenyl ether tetraimide hereinafter referred to as: s-type polyimide
  • the performance indicators of a type polyimide film are as follows:
  • the solubility in N-methylpyrrolidone is >20%, and the hot pressing at 375 °C for 20 seconds results in good thermal fusion.
  • the elongation at break of proton beam 45MGy and lOOMGy are 73% and 39%, respectively. Under the irradiation of electron beams lMGy and 20MGy, the elongation at break is 63% and 76%, respectively, and the elongation at break under ultraviolet light 150ESD is 71%. Due to its resistance to radiation, it is expected to be used in aerospace. 'Air industry. However, due to the solubility and solubility of the a-type polyimide, there is currently no suitable method for preparing such a molding powder.
  • general methods for preparing powdered polyimide molding powders include chemical imidization and thermal imidization.
  • Chemical imidization means that a dehydrating agent and a catalyst are added to a solution system of a polyamic acid at room temperature, and after reacting under high-speed stirring for a certain period of time, the resin is separated from the liquid phase system, that is, a viscous solution. The system becomes a solid-liquid mixed system. After the filtered powder is filtered, washed and dried, it is made into a powder suitable for molding, which is called a "molding powder"; the method is suitable for forming a polyimide. A system in which the amine is insoluble in the solvent. Of course, after adding the dehydrating agent and the catalyst, the powder is formed by heating.
  • the aromatic hydrocarbon solvent is added without using the catalyst, and the boiling point of the aromatic hydrocarbon solvent is used.
  • the polyimide formed of a-ODPA and diphenyl ether diamine can be dissolved in the solvent of the original polyamic acid, and cannot be produced by the above conventional method.
  • Some people also prepare a polyimide solution and then disperse it into a small amount of a poor solvent of polyimide to form a powder.
  • this method uses a large amount of flammable and explosive solvent, and the obtained powder has a large particle size.
  • the prepared powder contains a high boiling point solvent inside and is not easily volatilized, and is also liable to cause a disadvantage that the resulting molded pink color becomes dark, the thickness is different, the agglomeration is easy, and the molded article contains pores. Disclosure of invention
  • the object of the present invention is to improve the chemical imidization method, and adopt a room temperature high-speed stirring imidization process to prepare a soluble fusible a-type polyimide molding powder, which requires fine uniformity and color Deep, easy to shape.
  • An object of the present invention is to provide a process for preparing a fusible polyimide molding compound, which comprises the following specific steps:
  • Step 1 preparation of polyamic acid solution: using an equimolar ratio of 2,3,3',4'-diphenyl ether tetracarboxylic dianhydride and diaminodiphenyl ether in an aprotic polar solvent, room temperature reaction 3 ⁇ 5 Preparation of a polyamic acid solution in an hour;
  • Step 2 Chemical imidization: 40 parts by weight of a dehydrating agent, 5 to 50 parts by weight of a tertiary amine organic base catalyst, and a polyacyl group are added to the polyamic acid solution in an amount of 100 parts by weight.
  • the imine precipitant is a non-polar aromatic hydrocarbon, and is stirred vigorously for 0.5 to 2 hours to complete chemical imidization; then, it is filtered to obtain a polyimide molding powder.
  • the above method for preparing a fusible polyimide molding powder wherein the diaminodiphenyl ether in the step 1 is selected from 4,4'-diaminodiphenyl ether and 3,4'-diaminodiphenyl Ether or a mixture of the two.
  • the aprotic polar solvent in the step 1 is selected from the group consisting of dimethylacetamide, dimethylformamide, and N-methylpyrrolidone. Any one or more of dimethyl sulfoxide and ⁇ -butyrolactone; the amount of the aprotic polar solvent and 2,3,3',4'-diphenyl ether tetracarboxylic dianhydride and diamino
  • the total amount of phenyl ether used is 4 to 10:1 by weight, that is, 4 to 10 grams of aprotic polar solvent is required per gram of the theoretically produced polyamic acid.
  • the above method for preparing a fusible polyimide molding powder wherein the non-polar aromatic hydrocarbon in the step 2 is in a weight percentage, and the amount of the aprotic polar solvent in the step 1 is 10 -50%; the non-polar arene is selected from toluene or xylene or a mixture of the two.
  • the above process for producing a fusible polyimide molding powder wherein the dehydrating agent in the step 2 is selected from acetic anhydride or propionic anhydride or a mixture of the two.
  • the above method for preparing a fusible polyimide molding powder wherein the catalyst in the step 2 is selected from the group consisting of pyridine, 3,5-lutidine, 3-methylpyridine, 4-methylpyridine, Any one or more of trimethylamine, hydrazine-methylmorpholine, triethylamine, and isoquinoline.
  • the above method for preparing a fusible polyimide molding powder wherein the step 2 further comprises: after the filtering operation, further performing washing, filtering, and drying to obtain the polyamid Amine
  • the above method for preparing a fusible polyimide molding powder wherein the polyimide powder can pass through a 100 mesh standard sieve, the molecular weight of which is controlled to a number average molecular weight of 30,000 to 36,000, and a weight average molecular weight of 50,000. ⁇ 70000, the molecular weight dispersion is 1.91 to 2.00; preferably, the weight average molecular weight thereof is 60000-70000
  • step 2 further comprises: further improving the obtained polyimide powder after heat treatment at 220 ° C to 280 ° C
  • the degree of imidization of the molding powder was obtained as a polyimide molding powder for molding.
  • the polyimide molding powder provided by the invention can process the plastic sample by compression molding, the molding condition is mold temperature 280 ⁇ 350 ° C, the molding pressure is 15 ⁇ 70 MPa, and the molding holding time varies with the thickness of the workpiece, generally 3 ⁇ 30min.
  • Polyimide composed of 2,3,3',4'-diphenyl ether tetracarboxylic acid dianhydride (a-ODPA) / diaminodiphenyl ether (ODA) has higher solubility in an aprotic polar solvent. It is not possible to obtain the powder directly or the gelatinous form. To this end, in the chemical imidization process, we added toluene or xylene, or a mixture of toluene and xylene to an aprotic polar solvent, this mixed solvent can dissolve the polyamic acid, but can greatly reduce the polyimide Solubility.
  • the degree of imidization increases with the progress of chemical imidization, its solubility decreases, reaching a certain degree, and naturally precipitates from the mixed solvent.
  • the non-polar aromatic solvent is both a polyamic acid and a poor solvent for polyimide, the addition of such a solvent during imidization reduces the apparent viscosity of the polyamic acid resin solution system without increasing it.
  • the solvent system has the ability to dissolve the polyimide resin, so that the polyimide molding powder can be smoothly precipitated under high-speed stirring, and after washing and filtering, a uniform fineness can be obtained through the 100-mesh standard sieve. powder.
  • the present invention also provides a meltable polyimide molding powder prepared according to the above method, wherein the diaminodiphenyl ether is selected from 3,4'-diaminodiphenyl ether.
  • the fusible polyimide molding powder refers to a-ODPA/3,4'-ODA, and its molding pressure is 290 ° C / 15 MPa, glass transition temperature Tg: 250 ( ° C ), tensile strength (MPa) ): 120 MPa, tensile modulus (GPa): 2.5 MPa.
  • the a-ODPA/3,4'-ODA polyimide molding powder is more convenient to form than the a-ODPA/4,4'-ODA polyimide molding powder.
  • the soluble meltable (a-ODPA/4,4'-ODA) polyimide molding powder prepared according to the present invention is soluble in dimethylformamide, dimethylacetamide, N-methylpyrrolidone , dimethyl sulfoxide and ⁇ -butyl In lactones.
  • the molecular weight of the a-ODPA/4,4'-ODA polyimide: number average molecular weight (Mn) is
  • Mw weight average molecular weight
  • Polyimide molding powder Tg 277 ⁇ 282 °C, pyrolysis analysis in air showed 5% by weight loss temperature was 551 °C, 10% by weight loss temperature was 567 °C, tensile strength 129 MPa, tensile modulus 2.96 GPa, compressive strength 160 MPa, compressive modulus 1.39 GPa, flexural strength 168 MPa, flexural modulus 3.22 GPa, impact strength 250 KJ/m 2 or 94 J/m, elongation 21%.
  • the mechanical properties of the a-type polyimide of the present invention and the s-type polyimide at 220 ° C are as shown in Table 1 below. The results show that: the high-temperature properties of the a-type polyimide have higher than that of the s-type polyimide. A substantial increase:
  • the invention is directed to the soluble and meltable characteristics of polyimide formed by a-ODPA and diphenyl ether diamine, and combines the advantages of chemical imidization and polyimide solution to prepare molding powder, and proposes to use in the early stage.
  • a highly polar aprotic solvent is prepared to prepare a polyamic acid, and then a non-polar solvent is added to change the polarity of the system, and a chemical imidization catalyst is added to prepare a soluble fusible polyimide.
  • the preparation method has the advantages of simple process, mild reaction condition, simple and safe operation, high reaction yield, and is suitable for industrial large-scale production, and the obtained molding powder is fine and uniform, the color is not deep, and the molding is easy.
  • the a-type polyimide molding powder processed by the method has lower processing temperature, better mechanical properties, and mechanical properties at a high temperature of 220 ° C than the existing s-type polyimide molding powder. Higher retention rate, with very large applications
  • the imidization reaction was completed when the reaction was continued at 1.0, and the precipitated polyimide powder was filtered, followed by washing three times with 1000 ml of acetone, filtering, baking at 65 ° C for 2 hours and 220 ° C. After heat treatment at 280 ° C for 2 to 5 hours, 445.56 g of s-type polyimide was obtained, and the yield was 93%.
  • the polyimide is molded at 380 ° C / 60 MPa, and the performance of the plastic sample is shown in Table 3 below:
  • Example 2 As can be seen from Table 2 and Table 3 above, the mechanical properties of the a-polyimide obtained in Example 1 at 220 ° C and the performance retention at 220 ° C were significantly higher than those of the s-polyacyl in Comparative Example 1. The imine, and the resulting a-polyimide molding temperature can be lowered by 70° (: Example 2
  • the polyamic acid was synthesized in the same manner as in Example 1, except that the dehydrating agent acetic anhydride was added 2570 g, triethylamine was added in 700 g, xylene was added in 230 g, the imidization time was 1.5 hours, and the acetone was washed three times.
  • the reaction time for preparing the polyamic acid was 5 hours, 3600 g of acetic anhydride, 260 g of triethylamine, 1400 g of toluene, imidization time 2 hours, washing three times with 800 g of acetone and 200 g of water, and other operations and formulations were the same as in Example 1. .
  • n is an integer of 60 to 80.
  • the polyamic acid was synthesized in the same manner as in Example 1, except that the dehydrating agent acetic anhydride was added 2570 g, triethylamine 350 g, pyridine 350 g, toluene 250 g, imidization time 1.5 hours, washing with acetone three times, other operations and formulations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

一种可熔性聚酰亚胺模塑料及其制备方法
技术领域 本发明涉及一种可溶可熔性聚酰亚胺模塑料及其制备方法, 更确切地说 涉及 2,3,3',4'-二苯醚四甲酸二酐和二氨基二苯醚反应制备的聚酰亚胺模塑粉 的制备方法以及采用该方法制备的 a-ODPA (2,3,3',4'-二苯醚四甲酸二酐) /3,4'-ODA (3,4'-氨基二苯醚) 模塑粉。 背景技术 聚酰亚胺以其优异的耐高温、 耐低温、 耐溶剂、 耐辐射性能, 突出的力 学强度和介电性能等受到人们的高度重视, 已被广泛应用于航天航空、 汽车 工业、 微电子、 平板显示等许多高新技术领域。 自 60年代初杜邦公司开发 Kapton®薄膜以来, 己将近有 50年的历史。 这种以均苯四甲酸二酐 (PMDA) 和二苯醚二胺(ODA)线性聚合所得的聚酰亚胺有着优异的性能, 但成型非 常困难。 因此, 加工成型困难和制造成本高一直是制约其快速发展的两个关 键瓶颈。 研究和开发可熔融加工的热塑性聚酰亚胺是改善聚酰亚胺材料加工 性能、 降低制造成本的主要方法之一, 也是聚酰亚胺领域专家孜孜以求的目 标之一。
由 3,3',4,4'-二苯醚四甲酸二酐 (ODPA) 与 4,4'-氨基二苯醚 (ODA) 在 二甲基乙酰胺溶剂中聚合, 经亚胺化成粉制得可熔性聚酰亚胺模塑粉 (s型 聚二苯醚四甲酰亚胺), 其高分子重复单体结构如下:
Figure imgf000003_0001
上世纪七十年代由上海市合成树脂研究所研发成功了该热可塑性模塑 料, 以商品名雷泰 YS-20出售至今。 该塑料具有优良的力学、 电性能、 耐辐 射、 耐高低温和耐磨性能, 可在 -259~220°C使用。 现用作高、 低温密封垫圈、
1
确认本 阀门、 活塞环、 自润滑轴承和电器配件等。 但该 S型聚二苯醚四甲酰亚胺也 存在成型困难的问题, 一般需要在 380 C模压成型。 近来, 从节能减排和提 高成型效率的角度看, 有必要把它的成型温度 380°C较大幅度地降低, 且期 望可以注塑或挤出成型。
进入 21世纪以来, 日本宇部公司 (Ube)和美国 NASA同时对异构联苯 四甲酸二酐的聚酰亚胺 PI投入了大量研究.发现该聚合物具有比 4,4'-位更高 的玻璃化转变温度 (Tg)和更好的加工性能。 中国长春应用化学研究所丁孟 贤研究小组率先对二苯醚四甲酸二酐 (s-ODPA) 的异构体 (2,3,3',4'-ODPA) 与二苯醚二胺 (4,4'-ODA)的聚酰亚胺等进行初步研究 (Q. Li, X. Fang, Z. Wang, L. Gao, M. Ding, J. Polymer Science, Part A: Polymer Chemistry,Vol.41, 3249, (2003)), 该 2, ',4'-ODPA/4,4'-ODA聚合的聚酰亚胺结构如下:
Figure imgf000004_0001
日本宇宙科学研究所横田力男研究小组 (Yokota, Proceeding of Aircraft Symposium, Vol.41, No.3, 602-606 (2003))和 NASA Glenn Research Center的 Kathy C, Chuang研究小组 (54th International SAMPE Symposium, May 18-21, Baltimore, MD (2009))等人用 2,3,3',4'-二苯醚四甲酸二酐代替 3,3',4,4'-二苯醚 四甲酸二酐合成聚二苯醚四甲酰亚胺或其苯乙炔苯酐封端的低分子预聚体, 用于 RTM成型的聚酰亚胺树脂。 该低聚物的主要结构为:
Figure imgf000004_0002
此外, 横田力男教授也制作了 2,3,3',4'-二苯醚四甲酸二酐和 4,4'-二氨基 二苯醚的聚酰亚胺薄膜, 这种薄膜具有优良的宇宙环境稳定性, 利用其热熔 接性能, 试用作太阳帆的膜材料。 为了比较起见, 把这种结构的聚酰亚胺称 为 a型聚二苯醚四甲酰亚胺 (以下简称: a型聚酰亚胺), 把 3,3',4,4'-二苯醚 四甲酸二酐制备的聚酰亚胺称为 s型聚二苯醚四甲酰亚胺 (以下简称: s型 聚酰亚胺)。
a型聚酰亚胺薄膜的性能指标如下:
在 N-甲基吡咯垸酮中的溶解度 >20%, 于 375°C热压 20秒, 结果热熔接 效果好, 质子射线 45MGy, lOOMGy分别照射下的断裂伸长率分别为 73%和 39%, 在电子射线 lMGy和 20MGy分别照射下, 断裂伸长率分别为 63%和 76%, 紫外光 150ESD照射下断裂伸长率为 71%, 由于它耐辐照易加工, 可 望用于航天航 '空工业。 但是由于 a型聚酰亚胺的可溶可熔性, 目前尚没有制 备这类模塑粉的合适方法。
目前一般的聚酰亚胺模塑粉的成粉制备方法有化学亚胺化和热亚胺化两 种。
然而, 在采用热亚胺化法进行模塑粉制备时, 却发生了树脂降解, 即树 脂粘度出现大幅降低的现象, 降幅大者, 聚酰亚胺树脂的粘度降至原聚酰胺 酸粘度的 50%以下。
化学亚胺化是指在室温状态下, 向聚酰胺酸的溶液体系中加入脱水剂和 催化剂, 再在高速搅拌下反应一定的时间后, 树脂从液相体系中分离出来, 即粘稠的溶液体系在变成了固液混合的体系, 这一析出的粉末经过过滤、 洗 涤和干燥后, 制成适合模塑的粉末, 称之为 "模塑粉"; 该方法适合于形成的 聚酰亚胺不溶于溶剂的体系。 当然也有在加入脱水剂和催化剂后, 采用升温 的方式成粉的; 还有一种是在聚酰胺酸的溶液体系中, 在不使用催化剂的情 况下, 加入芳烃类溶剂, 利用芳烃类溶剂沸点较高, 易于水形成共沸的特性, 在一定的搅拌速度下, 将体系中因亚胺化而生成的水带离体系, 同样, 由于 形成的聚酰亚胺不溶于原来聚酰胺酸体系的溶剂而析出成模塑粉的。 但是, a-ODPA和二苯醚二胺形成的聚酰亚胺能溶于原来聚酰胺酸的溶剂, 无法用 上述常规的方法进行制备。 也有人通过先制备聚酰亚胺溶液, 然后分散到大 量的聚酰亚胺的不良溶剂内成粉的办法, 但是该法存在着使用大量的易燃易 爆溶剂,获得的粉末颗粒度大,制成的粉末内部包含高沸点溶剂且不易挥发, 还容易导致所得模塑粉色泽变深、 粗细不一、 易结团, 以及成型件含有气孔 等缺点。 发明的公开
本发明的目的是对化学亚胺化方法加以改进, 采用室温高速搅拌亚胺化 工艺, 制备可溶可熔的 a型聚酰亚胺模塑粉, 该模塑粉要求细致均匀, 色泽 不变深, 易于成型。
本发明的目的是提供一种可熔性聚酰亚胺模塑料的制备方法, 该制备方 法包含以下具体步骤:
步骤 1,聚酰胺酸溶液制备:采用等摩尔比的 2,3,3',4'-二苯醚四甲酸二酐 和二氨基二苯醚在非质子极性溶剂中, 室温反应 3〜5小时制备得到聚酰胺酸 溶液;
步骤 2, 化学亚胺化: 上述所得聚酰胺酸溶液按 100重量份计, 向该聚 酰胺酸溶液中加入脱水剂 40~160重量份、 叔胺类有机碱催化剂 5〜50重量份 及聚酰亚胺沉淀剂非极性芳烃, 强烈搅拌 0.5~2小时, 完成化学亚胺化; 然 后, 过滤, 得到聚酰亚胺模塑粉。
上述的可熔性聚酰亚胺模塑粉的制备方法, 其中, 所述步骤 1中的二氨 基二苯醚选择 4,4'-二氨基二苯醚、 3,4'-二氨基二苯醚或二者的混合物。
上述的可熔性聚酰亚胺模塑粉的制备方法, 其中, 所述步骤 1中的非质 子极性溶剂选择二甲基乙酰胺、 二甲基甲酰胺、 N-甲基吡咯垸酮、 二甲基亚 砜和 γ-丁内酯中的任意一种以上; 所述的非质子极性溶剂的用量与 2,3,3',4'- 二苯醚四甲酸二酐和二氨基二苯醚的总用量的重量比为 4〜10: 1 , 即每克理 论上生成的聚酰胺酸对应需要 4〜10克的非质子极性溶剂。
上述的可熔性聚酰亚胺模塑粉的制备方法, 其中, 所述的步骤 2中的非 极性芳烃按重量百分数计, 为所述的步骤 1中的非质子极性溶剂用量的 10-50%; 该非极性芳烃选择甲苯或二甲苯或二者的混合物。
上述的可熔性聚酰亚胺模塑粉的制备方法,其中,所述的步骤 2中的脱水 剂选择醋酐或丙酸酐或二者的混合物。
上述的可熔性聚酰亚胺模塑粉的制备方法,其中,所述的步骤 2中的催化 剂选择吡啶、 3,5-二甲基吡啶、 3-甲基吡啶、 4-甲基吡啶、三甲胺、 Ν-甲基吗 啉、 三乙胺和异喹啉中的任意一种以上。
上述的可熔性聚酰亚胺模塑粉的制备方法, 其中, 所述的步骤 2还包含: 在所述的过滤操作后, 还进行洗涤、 过滤、 干燥处理, 得到所述的聚酰亚胺 上述的可熔性聚酰亚胺模塑粉的制备方法,其中,所述的聚酰亚胺粉料能 通过 100目标准筛, 其分子量控制在数均分子量 30000〜36000, 且重均分子 量 50000〜70000, 分子量分散度为 1.91〜2.00; 优选地, 其重均分子量为 60000-70000
上述的可熔性聚酰亚胺模塑粉的制备方法, 其中, 所述的步骤 2还包含: 将得到的聚酰亚胺粉料在 220°C至 280°C经热处理后,以进一步提高该模塑粉 的亚胺化程度, 获得可成型用聚酰亚胺模塑粉。
本发明提供的聚酰亚胺模塑粉可通过模压成型加工塑料样件,模压条件为 模温 280〜350°C, 成型压力 15〜70MPa, 成型保温时间随制件厚度而定, 一般 为 3~30min。
由于 2,3,3',4'-二苯醚四甲酸二酐 (a-ODPA) /二氨基二苯醚 (ODA) 组 成的聚酰亚胺在非质子极性溶剂中的溶解度较高, 不能直接得到粉末, 或是 得到的凝胶状。 为此, 在化学亚胺化过程中, 我们加入了甲苯或二甲苯, 或 甲苯和二甲苯混合物到非质子极性溶剂中,这个混合溶剂可以溶解聚酰胺酸, 但是能大幅降低聚酰亚胺的溶解度。 所以随着化学亚胺化的进程, 亚胺化的 程度提高, 它的溶解度就降低, 到达一定程度, 自然地从混合溶剂中析出。 因为非极性芳烃类溶剂既是聚酰胺酸也是聚酰亚胺的不良溶剂, 所以在亚胺 化过程中, 加入该类溶剂既降低了聚酰胺酸树脂溶液体系的表观粘度, 又不 会增加该溶剂体系对己析出聚酰亚胺树脂的溶解能力,这样,在高速搅拌下, 能让聚酰亚胺模塑粉顺利析出, 经洗涤、 过滤后, 得到能通过 100目标准筛 的均匀细粉。
本发明还提供了一种根据上述的方法制备得到的可熔性聚酰亚胺模塑 粉, 其中, 所述的二氨基二苯醚选择 3,4'-二氨基二苯醚。 该可熔性聚酰亚胺 模塑粉是指 a-ODPA/3,4'-ODA, 其模压: 290°C/15MPa, 玻璃化转变温度 Tg: 250 ( °C ), 拉伸强度 (MPa): 120 MPa, 拉伸模量 (GPa): 2.5MPa。 该 a-ODPA/3,4'-ODA聚酰亚胺模塑粉与 a-ODPA/4,4'-ODA的聚酰亚胺模塑粉相 比, 成型更加方便。
按照本发明制备的可溶可熔性的 (a-ODPA/4,4'-ODA)聚酰亚胺模塑粉可 溶解于二甲基甲酰胺、 二甲基乙酰胺、 N-甲基吡咯烷酮、 二甲基亚砜和 γ-丁 内酯中。 该 a-ODPA/4,4'-ODA聚酰亚胺分子量: 数均分子量 (Mn) 为
30000-36000,且重均分子量(Mw)为 50000〜70000。聚酰亚胺模塑粉 Tg 277〜 282 °C , 空气中热解重量分析表明 5重量%损失温度为 551 °C, 10重量%损失 温度为 567°C, 拉伸强度 129MPa, 拉伸模量 2.96GPa, 压缩强度 160MPa, 压缩模量 1.39GPa,弯曲强度 168MPa,弯曲模量 3.22GPa,冲击强度 250KJ/m2 或 94 J/m,伸长率 21%。 本发明的 a型聚酰亚胺与 s型聚酰亚胺在 220°C的机 械性能比较如下表一所示, 结果表明: a型聚酰亚胺高温性能比之 s型聚酰 亚胺有着大幅度的提升:
a型聚酰亚胺与 s型聚酰亚胺在 22CTC的机械性能比较
Figure imgf000008_0001
本发明针对 a-ODPA和二苯醚二胺形成的聚酰亚胺的可溶可熔的特点, 结合化学亚胺化和聚酰亚胺溶液制备模塑粉的优点, 提出了先在前期用强极 性非质子溶剂制备聚酰胺酸制备, 然后加入非极性溶剂来改变体系的极性, 同时加入化学亚胺化催化剂, 达到制备可溶可熔聚酰亚胺的。 本制备方法工 艺简便, 反应条件温和, 操作简便安全, 反应收率高, 适合工业化大生产, 所得的模塑粉细致均匀, 色泽不变深, 易于成型。 而且, 该方法加工得到的 a型聚酰亚胺模塑粉具有比现有的 s型聚酰亚胺模塑粉更低的加工温度, 更 好的机械性能, 且 220°C高温的机械性能保持率更高, 具有非常大的应用前 旦
实现本发明的最佳方式
以下结合具体实施例来对本发明作进一步说明, 但本发明所要求保护的 范围并不局限于以下实施例中所记载的范围。
实施例 1
向装配有机械搅拌器、 温度计、 氮气入口的 5000ml四口圆底烧瓶内盛 入 310g( lmol) 2,3,3',4'-二苯醚四甲酸二酐、 200g 4,4'-二氨基二苯醚和 2200ml 二甲基乙酰胺, 于室温反应 4小时后得到聚酰胺酸溶液, 加醋酐 1050g, 三 乙胺 260g和甲苯 220g,继续反应 1.0时完成亚胺化反应,过滤析出的聚酰亚 胺粉料, 然后, 用 1000ml丙酮洗三次, 过滤、 在 65°C烘 2小时, 然后在 220° (:〜 280°C热处理 2〜5小时, 得到 a型聚酰亚胺 426.6g, 收率 90%, 数均 分子量(Mn) =33000,重均分子量(Mw) =65000;该聚酰亚胺于 310°C/30MPa 下模压塑料样件, 塑料样件的性能指标如下表二所示:
玻璃化温度 (Tg), 277 °C
空气中热解重量分析 5%损失温度, 551 °C
10%损失温度, 567°C
表二: 实施例 1所得 a型聚酰亚胺的机械性育:
Figure imgf000009_0001
: 1各 220°C时的性能检测值除以室温时的检测值, 再换算成百分数
比较例 1
向装配有机械搅拌器、 温度计、 氮气入口的 5000ml四口圆底烧瓶内盛 入 310g( lmol)3, 3',4, 4'-二苯醚四甲酸二酐、 200g 4,4'-二氨基二苯醚和 2200ml 二甲基乙酰胺, 于室温反应 4小时得到聚酰胺酸溶液, 接着加醋酐 1000g, 三乙胺 130g和甲苯 500g,继续反应 1.0时完成亚胺化反应,过滤析出的聚酰 亚胺粉料,继之,用 1000ml丙酮洗三次,过滤、 65 °C烘 2小时和 220°C〜280°C 热处理 2~5小时后, 得到 s型聚酰亚胺 445.56g, 收率为 93%。 该聚酰亚胺 的 Mn=33000, Mw=65000。
该聚酰亚胺于 380°C/60MPa下模压塑料样件, 塑料样件的性能指标如下 表三所示:
玻璃化温度 Tg, 267 °C
表三: 比较例 1所得 s型聚酰亚胺的机械性能
Figure imgf000010_0001
: ^l SZOO时的性能检测值除以室温时的检测值, 再换算成百分数
由上表二及表三可知, 实施例 1中所得的 a-聚酰亚胺在 220°C的机械性 能和至 220°C时的性能保持率明显高于比较例 1中的 s-聚酰亚胺, 而且所得 的 a-聚酰亚胺成型温度可降低 70° (:。 实施例 2
与实施例 1同样的方法合成聚酰胺酸, 但脱水剂醋酐加 2570g, 三乙胺 加 700g, 二甲苯加 230g, 亚胺化时间 1.5小时, 用丙酮洗三次外, 其他操作 和配方和实施例 1一样, 除聚酰亚胺分子量为 Mn=36000, Mw=70000夕卜, 其他性能指标和实施例 1一样。 实施例 3
除制备聚酰胺酸的反应时间为 5小时, 加醋酐 3600g, 三乙胺 260g, 甲 苯 1400g, 亚胺化时间 2小时, 以 800g丙酮和 200g水洗三次外, 其他操作 和配方和实施例 1一样。 除聚酰亚胺分子量为 Mn=30000, Mw=52000外, 其他性能指标和实施例 1一样。 实施例 4
除用 3,4'-二氨基二苯醚代替 4,4'-二氨基二苯醚外, 其他配方和操作和实 施例 1一样; 制得 a-ODPA/3,4'-ODA的聚酰亚胺, 聚酰亚胺分子量为 Mn= =50000, 其结构通式为:
Figure imgf000011_0001
其中, n为 60〜80的整数。
其性能指标如下:
a-ODPA/3,4'-ODA
模压: 290°C/15MPa
玻璃化转变温度 (Tg): 250 ( °C )
拉伸强度 (MPa): 120 MPa
拉伸模量 (GPa): 2.5MPa 实施例 5
与实施例 1同样合成聚酰胺酸, 但脱水剂醋酐加 1050克, 三乙胺 260 克, 吡啶 260克, 甲苯 210克, 亚胺化时间 1小时, 用丙酮洗三次外, 其他 操作和配方和实施例 1一样, 除聚酰亚胺分子量为 Mn=32000, Mw=60000 外, 其他性能指标与实施例 1一样。 实施例 6
与实施例 1同样合成聚酰胺酸, 但脱水剂醋酐加 2570克, 三乙胺 350 克, 吡啶 350克, 甲苯 250克, 亚胺化时间 1.5小时, 用丙酮洗三次外, 其 他操作和配方和实施例 1一样, 除聚酰亚胺分子量为 Mn=31000, Mw=55000 外, 其他性能指标与实施例 1一样。
尽管本发明的内容已经通过上述优选实施例作了详细介绍, 但应当认识 到上述的描述不应被认为是对本发明的限制。 在本领域技术人员阅读了上述 内容后, 对于本发明的多种修改和替代都将是显而易见的。 因此, 本发明的 保护范围应由所附的权利要求来限定。

Claims

权利要求
1.一种可熔性聚酰亚胺模塑粉的制备方法, 其特征在于, 该制备方法包含以 下具体步骤:
步骤 1, 聚酰胺酸溶液制备: 采用等摩尔比的 2,3,3',4'-二苯醚四甲酸 二酐和二氨基二苯醚在非质子极性溶剂中,室温反应 3~5小时制备得到聚 酰胺酸溶液;
步骤 2, 化学亚胺化: 上述所得聚酰胺酸溶液按 100重量份计, 向该 聚酰胺酸溶液中加入脱水剂 40〜160重量份、叔胺类有机碱催化剂 5~50重 量份及聚酰亚胺沉淀剂非极性芳烃, 强烈搅拌 0.5~2小时, 粉末析出, 完 成亚胺化; 然后, 过滤, 得到聚酰亚胺粉料。
2. 如权利要求 1所述的可熔性聚酰亚胺模塑粉的制备方法, 其特征在于, 所 述步骤 1中的二氨基二苯醚选择 4,4'-二氨基二苯醚、 3,4'-二氨基二苯醚或 二者的混合物。
3. 如权利要求 1或 2所述的可熔性聚酰亚胺模塑粉的制备方法,其特征在于, 所述步骤 1 中的非质子极性溶剂选择二甲基乙酰胺、 二甲基甲酰胺、 N- 甲基吡咯垸酮、二甲基亚砜和 γ-丁内酯中的任意一种以上; 所述的非质子 极性溶剂的用量与 2,3,3',4'-二苯醚四甲酸二酐和二氨基二苯醚的总用量的 重量比为 4~10: 1, 即每克聚酰胺酸对应需要 4〜10克的非质子极性溶剂。
4. 如权利要求 3所述的可熔性聚酰亚胺模塑粉的制备方法, 其特征在于, 所 述的步骤 2中的非极性芳烃按重量百分数计,为所述的步骤 1中的非质子 极性溶剂用量的 10~50%; 该非极性芳烃选择甲苯或二甲苯或二者的混合 物。
5. 如权利要求 4所述的可熔性聚酰亚胺模塑粉的制备方法, 其特征在于, 所 述的步骤 2中的脱水剂选择醋酐或丙酸酐或二者的混合物。
6. 如权利要求 1或 2或 4或 5所述的可熔性聚酰亚胺模塑粉的制备方法,其 特征在于, 所述的步骤 2中的催化剂选择吡啶、 3,5-二甲基吡啶、 N-甲基 吗啉、 3-甲基吡啶、 4-甲基吡啶、 三甲胺、 三乙胺和异喹啉中的任意一种 以上。
7. 如权利要求 1或 2或 4或 5所述的可熔性聚酰亚胺模塑粉的制备方法,其 特征在于, 所述的步骤 2还包含: 在所述的过滤操作后, 还进行洗涤、过 滤、 干燥处理, 得到所述的聚酰亚胺模塑粉。
8. 如权利要求 1 所述的可熔性聚酰亚胺模塑粉的制备方法, 其特征在于, 所述的聚酰亚胺粉料能通过 100目标准筛,其分子量控制为:数均分子量 30000-36000, 且重均分子量 50000~70000。
9. 如权利要求 1或 2或 4或 5或 8所述的可熔性聚酰亚胺模塑粉的制备方法, 其特征在于, 所述的步骤 2 还包含: 将得到的聚酰亚胺粉料在 220°C至 280°C经热处理后, 获得可成型用聚酰亚胺模塑粉。
10. 一种根据权利要求 1或 5或 8所述的方法制备得到的可熔性聚酰亚胺模 塑粉, 其特征在于, 所述的二氨基二苯醚选择 3,4'-二氨基二苯醚, 该聚 酰亚胺的结构式为:
Figure imgf000014_0001
其中, n为 60~80的整数 (
PCT/CN2011/002164 2010-12-30 2011-12-22 一种可熔性聚酰亚胺模塑料及其制备方法 WO2012088759A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013546562A JP5495464B2 (ja) 2010-12-30 2011-12-22 可融性ポリイミド成形用コンパウンド及びその調製方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2010106193480A CN102108124A (zh) 2010-12-30 2010-12-30 一种可熔性聚酰亚胺模塑料的制备方法
CN201010619348.0 2010-12-30
CN201110417304.4A CN102492141B (zh) 2010-12-30 2011-12-14 一种可熔性聚酰亚胺模塑料及其制备方法
CN201110417304.4 2011-12-14

Publications (1)

Publication Number Publication Date
WO2012088759A1 true WO2012088759A1 (zh) 2012-07-05

Family

ID=44172418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/002164 WO2012088759A1 (zh) 2010-12-30 2011-12-22 一种可熔性聚酰亚胺模塑料及其制备方法

Country Status (3)

Country Link
JP (1) JP5495464B2 (zh)
CN (2) CN102108124A (zh)
WO (1) WO2012088759A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416229B2 (en) 2014-05-28 2016-08-16 Industrial Technology Research Institute Dianhydride and polyimide
CN113429601A (zh) * 2021-06-21 2021-09-24 浙江中科玖源新材料有限公司 一种高阻隔聚酰亚胺薄膜的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108124A (zh) * 2010-12-30 2011-06-29 上海市合成树脂研究所 一种可熔性聚酰亚胺模塑料的制备方法
CN103289090B (zh) * 2013-05-15 2016-04-20 常州市尚科特种高分子材料有限公司 热塑性聚酰亚胺模塑料的制备方法
CN103724623B (zh) * 2013-12-16 2016-06-29 上海市合成树脂研究所 一种可溶可熔性共聚聚酰亚胺模塑料的制备方法
CN104530429B (zh) * 2014-12-31 2017-02-01 东华大学 一种高流动性和宽加工窗口的聚酰亚胺预聚体及其制备方法
CN108192097A (zh) * 2017-12-01 2018-06-22 中国航空工业集团公司基础技术研究院 一种可溶热塑性聚酰亚胺及其超细粉制备方法
CN112048062B (zh) * 2019-06-05 2022-05-06 河北寰烯科技有限公司 氯化胆碱尿素低共熔溶剂催化聚酰胺酸脱水制取聚酰亚胺
CN111234222A (zh) * 2020-01-15 2020-06-05 神马实业股份有限公司 一种共聚改性热固性聚酰亚胺材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147966A (en) * 1990-07-31 1992-09-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Polyimide molding powder, coating, adhesive and matrix resin
US6114494A (en) * 1998-12-03 2000-09-05 Ranbar Electrical Materials, Inc. Polyimide material and method of manufacture
CN1428360A (zh) * 2001-12-25 2003-07-09 中国科学院大连化学物理研究所 一种制备聚酰亚胺模塑粉的方法
CN1428361A (zh) * 2001-12-27 2003-07-09 中国科学院大连化学物理研究所 一种易加工的高性能聚酰亚胺材料及其制备方法
CN102108124A (zh) * 2010-12-30 2011-06-29 上海市合成树脂研究所 一种可熔性聚酰亚胺模塑料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200728908A (en) * 2006-01-25 2007-08-01 Kaneka Corp Photosensitive dry film resist, printed wiring board using same, and method for producing printed wiring board
CN101392057A (zh) * 2008-11-03 2009-03-25 吉林大学 结晶性热塑性聚酰亚胺模塑粉的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147966A (en) * 1990-07-31 1992-09-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Polyimide molding powder, coating, adhesive and matrix resin
US6114494A (en) * 1998-12-03 2000-09-05 Ranbar Electrical Materials, Inc. Polyimide material and method of manufacture
CN1428360A (zh) * 2001-12-25 2003-07-09 中国科学院大连化学物理研究所 一种制备聚酰亚胺模塑粉的方法
CN1428361A (zh) * 2001-12-27 2003-07-09 中国科学院大连化学物理研究所 一种易加工的高性能聚酰亚胺材料及其制备方法
CN102108124A (zh) * 2010-12-30 2011-06-29 上海市合成树脂研究所 一种可熔性聚酰亚胺模塑料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATHY C. CHUANG ET AL.: "Polyimide Composites Based on Asymmetric Dianhydrides (a-ODPA vs a-BPDA)", 54TH INTERNATIONAL SAMPE SYMPOSIUM, 2009 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416229B2 (en) 2014-05-28 2016-08-16 Industrial Technology Research Institute Dianhydride and polyimide
CN113429601A (zh) * 2021-06-21 2021-09-24 浙江中科玖源新材料有限公司 一种高阻隔聚酰亚胺薄膜的制备方法

Also Published As

Publication number Publication date
CN102492141A (zh) 2012-06-13
CN102492141B (zh) 2014-01-15
CN102108124A (zh) 2011-06-29
JP5495464B2 (ja) 2014-05-21
JP2014504652A (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
WO2012088759A1 (zh) 一种可熔性聚酰亚胺模塑料及其制备方法
CN107501551B (zh) 一种聚酰亚胺树脂和一种透明聚酰亚胺薄膜及其制备方法
CN101565504B (zh) 环氧树脂用耐高温活性增韧剂粉末的制备方法
US10017666B2 (en) Polyimide resin composition and varnish produced from terminal-modified imide oligomer prepared using 2-phenyl-4,4′-diaminodiphenyl ether and thermoplastic aromatic polyimide prepared using oxydiphthalic acid, polyimide resin composition molded article and prepreg having excellent heat resistance and mechanical characteristic, and fiber-reinforced composite material thereof
CN113072703A (zh) 一种综合性能优异的热塑性聚酰亚胺及其制备方法与应用
CN101487190B (zh) 一种聚酰亚胺碳纤维定型剂及其制备方法
CN111019129A (zh) 一种低热膨胀系数可溶性聚酰亚胺树脂粉及其制备方法
CN111286194A (zh) 一种耐磨自润滑聚酰亚胺树脂及其制备方法
CN111423584B (zh) 含有金刚烷结构的双马来酰亚胺制备方法
CN111533907A (zh) 一种含苯并咪唑结构的耐热聚酰亚胺模塑粉的制备方法
CN114605638A (zh) 一种聚酰亚胺或聚醚酰亚胺的制备方法
CN105968355B (zh) 一种聚酰亚胺的合成方法
WO2024060583A1 (zh) 一种聚酯酰亚胺共聚物及其制备方法和应用
CN115260491B (zh) 一种耐碱解型聚酰亚胺工程塑料及其制备方法
CN113717384A (zh) 一种改性聚酰胺酰亚胺材料及其制备方法
CN103724623B (zh) 一种可溶可熔性共聚聚酰亚胺模塑料的制备方法
Chen et al. Synthesis and properties of novel meltable fluorinated aromatic oligoimides endcapped with 4-phenylethynylphthalic anhydride
JP2980017B2 (ja) ポリアミドイミド酸樹脂初期重合体
CN113667119B (zh) 一种聚乙酰氨基酰亚胺薄膜及其制备方法
CN103086911A (zh) 一种齐聚物和含齐聚物的聚酰亚胺薄膜或纤维及制备方法
JP3507943B2 (ja) 熱硬化型アミド酸微粒子、熱硬化型イミド微粒子及び架橋イミド微粒子ならびにこれらの製造方法
CN110256670B (zh) 一种含芴基团热塑性聚酰亚胺及其制备方法和应用
Ishida et al. Development of “TriA-X” polyimide/carbon fiber composites prepared by imide solution prepregs
CN114262315A (zh) 一种可溶性降冰片烯基封端的异酰亚胺低聚物及其制备方法
CN117186402A (zh) 乙炔基苯胺封端的异酰亚胺材料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013546562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853827

Country of ref document: EP

Kind code of ref document: A1