WO2012086514A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2012086514A1
WO2012086514A1 PCT/JP2011/079041 JP2011079041W WO2012086514A1 WO 2012086514 A1 WO2012086514 A1 WO 2012086514A1 JP 2011079041 W JP2011079041 W JP 2011079041W WO 2012086514 A1 WO2012086514 A1 WO 2012086514A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
separator
negative electrode
battery
mixture layer
Prior art date
Application number
PCT/JP2011/079041
Other languages
English (en)
French (fr)
Inventor
貴士 江口
鈴木 克典
八木 陽心
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Priority to CN201180062506.XA priority Critical patent/CN103283079B/zh
Priority to US13/995,671 priority patent/US20130280571A1/en
Publication of WO2012086514A1 publication Critical patent/WO2012086514A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery, and more particularly to a lithium ion secondary battery capable of improving output characteristics.
  • the lithium ion secondary battery includes an electrode group including a positive electrode having a positive electrode mixture layer and a separator disposed on the inner and outer periphery of a negative electrode having a negative electrode mixture layer.
  • the positive electrode mixture layer is made of an oxide containing lithium
  • the negative electrode mixture layer is made of a material capable of occluding and releasing lithium ions such as graphite.
  • the separator has pores that transmit lithium ions. When charged, lithium is stored in an ion state between the positive electrode mixture layer and the negative electrode mixture layer.
  • the sum of the thicknesses of the positive electrode active material (constituent member of the positive electrode mixture) layer and the negative electrode active material (constituent member of the negative electrode mixture) layer facing each other across the separator and the separator A method is known in which the battery life is improved by setting the thickness ratio within a predetermined range and the air permeability of the separator within a predetermined range (see, for example, Patent Document 1).
  • a lithium ion secondary battery includes a positive electrode having a positive electrode mixture layer containing a lithium transition metal composite oxide in a battery container, and a negative electrode mixture that occludes and releases lithium ions.
  • a lithium ion secondary battery in which an electrode group having a negative electrode having a layer, a positive electrode and a separator disposed on the inner and outer circumferences of the negative electrode is accommodated and a non-aqueous electrolyte containing a lithium salt is injected,
  • the area of the agent layer is a
  • the area of the separator is b
  • the porosity of the separator is c
  • the electrode group has a cylindrical shape, and the area of the separator includes the area of the first winding region and the area of the second winding region. Is preferred.
  • the separator preferably has a porosity of 43 to 50.
  • the separator in the lithium ion secondary battery according to the first or second aspect, the separator preferably has a porosity of 45-50.
  • the separator in the lithium ion secondary battery according to the first to fourth aspects, the separator preferably has a thickness of 18 to 25 ⁇ m.
  • the ratio of the area of the positive electrode mixture layer of the positive electrode to the pore area in the separator is optimized, an appropriate amount of the non-aqueous electrolyte is between the positive electrode mixture layer and the negative electrode mixture layer.
  • the resistance between the positive electrode and the negative electrode is reduced.
  • FIG. 2 is an exploded perspective view of the lithium ion secondary battery illustrated in FIG. 1.
  • FIG. 4 is a plan view of a state in which a part of the positive and negative electrodes and separators of the electrode group illustrated in FIG. 3 are developed. It is a figure for demonstrating the porosity of the separator illustrated in FIG. 3, (a) is an expanded sectional view, (b) is an enlarged plan view. The expanded sectional view for demonstrating the effect
  • FIG. 1 is a cross-sectional view of a lithium ion secondary battery of the present invention
  • FIG. 2 is an exploded perspective view of the cylindrical secondary battery shown in FIG.
  • the cylindrical lithium ion secondary battery 1 has dimensions of, for example, an outer diameter of 40 mm ⁇ and a height of 100 mm.
  • a bottomed cylindrical battery can 2 and a hat-type battery lid 3 are usually crimped through a sealing member 43 called a gasket and sealed from the outside. It has the battery container 4 of a structure.
  • the bottomed cylindrical battery can 2 is formed by pressing a metal plate such as iron or stainless steel, and a plating layer such as nickel is formed on the entire inner and outer surfaces.
  • the battery can 2 has an opening 2b on the upper end side that is the open side.
  • a groove 2 a protruding to the inside of the battery can 2 is formed inside the battery can 2.
  • each component for power generation described below is accommodated inside the battery can 2.
  • Reference numeral 10 denotes an electrode group having a shaft core 15 at the center, and a positive electrode, a negative electrode, and a separator are wound around the shaft core 15.
  • FIG. 3 is a perspective view showing the details of the structure of the electrode group 10, with a part thereof cut.
  • FIG. 4 is a plan view showing a state in which the positive / negative electrodes and separators of the electrode group shown in FIG. 3 are partially expanded.
  • the electrode group 10 has a configuration in which a positive electrode 11, a negative electrode 12, and first and second separators 13 and 14 are wound around an axis 15.
  • the shaft core 15 has a hollow cylindrical shape, and the negative electrode 12, the first separator 13, the positive electrode 11, and the second separator 14 are laminated and wound on the shaft core 15 in this order. Inside the innermost negative electrode 12, the first separator 13 and the second separator 14 are wound several times (one turn in FIG. 3). The outermost periphery of the electrode group 10 is in the order of the negative electrode 12 and the first separator 13 wound around the outer periphery (see FIGS. 3 and 4). The first separator 13 on the outermost periphery is fastened with an adhesive tape 19 (see FIG. 2). In FIG. 4, the intermediate portion of the negative electrode 12 and the first separator 13 is cut off, and the positive electrode 11 and the second separator 14 are exposed in the cut portion.
  • the positive electrode 11 is formed of an aluminum foil and has a long shape.
  • the positive electrode 11 includes a positive electrode sheet 11a and a positive electrode processing portion in which a positive electrode mixture layer 11b is formed on both surfaces of the positive electrode sheet 11a.
  • One side edge on the upper side along the longitudinal direction of the positive electrode sheet 11a is a positive electrode mixture untreated portion 11c in which the positive electrode mixture layer 11b is not formed and an aluminum foil is exposed.
  • a large number of positive electrode leads 16 protruding upward in parallel with the shaft core 15 are integrally formed at equal intervals.
  • the positive electrode mixture is composed of a positive electrode active material, a positive electrode conductive material, and a positive electrode binder.
  • the positive electrode active material is preferably a lithium metal oxide or a lithium transition metal oxide. Examples include lithium cobaltate, lithium manganate, lithium nickelate, lithium composite metal oxide (including lithium metal oxides containing two or more selected from cobalt, nickel, and manganese).
  • the positive electrode conductive material is not limited as long as it can assist transmission of electrons generated by the occlusion / release reaction of lithium in the positive electrode mixture to the positive electrode.
  • said lithium composite metal oxide containing a transition metal has electroconductivity, you may use this itself as a positive electrode electrically conductive material. However, good characteristics can be obtained by using a lithium transition metal composite oxide composed of lithium cobaltate, lithium manganate and lithium nickelate, which is the above-mentioned material.
  • the positive electrode binder can bind the positive electrode active material and the positive electrode conductive material, and can bind the positive electrode mixture layer 11b and the positive electrode sheet 11a, and must be greatly deteriorated by contact with the non-aqueous electrolyte.
  • the positive electrode binder include polyvinylidene fluoride (PVDF) and fluororubber.
  • PVDF polyvinylidene fluoride
  • the formation method of the positive electrode mixture layer 11b is not limited as long as the positive electrode mixture layer 11b is formed on the positive electrode sheet 11a.
  • a method of applying a dispersion solution of constituent materials of the positive electrode mixture onto the positive electrode sheet 11a can be given.
  • Examples of a method for forming the positive electrode mixture layer 11b on the positive electrode sheet 11a include a roll coating method and a slit die coating method.
  • N-methylpyrrolidone (NMP), water, or the like is added to the positive electrode mixture as an example of a solvent for the dispersion, and the kneaded slurry is uniformly applied to both sides of an aluminum foil having a thickness of 20 ⁇ m, dried, and then die-cut. Cut by.
  • An example of the coating thickness of the positive electrode mixture is about 40 ⁇ m on one side.
  • the positive electrode lead 16 is integrally formed. All the positive leads 16 have substantially the same length.
  • the positive electrode lead 16 After forming the positive electrode lead 16 by cutting, it is desirable to heat-press the positive electrode mixture with a press roll, increase the contact surface between the particles of the positive electrode mixture and the positive electrode sheet 11a, and reduce the DC resistance. Moreover, since the thickness of the positive electrode mixture layer 11b is reduced by hot pressing, when the electrode group 10 having the same diameter is formed, the length of the positive electrode mixture layer 11b can be increased and the battery capacity is increased.
  • the negative electrode 12 is formed of a copper foil and has a long shape.
  • the negative electrode 12 has a negative electrode sheet 12a and a negative electrode treatment part in which a negative electrode mixture layer 12b is formed on both surfaces of the negative electrode sheet 12a.
  • the lower side edge along the longitudinal direction of the negative electrode sheet 12a is a negative electrode mixture untreated portion 12c where the negative electrode mixture layer 12b is not formed and the copper foil is exposed.
  • a large number of negative electrode leads 17 extending in the direction opposite to the positive electrode lead 16 are integrally formed at equal intervals.
  • the negative electrode mixture is composed of a negative electrode active material, a negative electrode binder, and a thickener.
  • the negative electrode mixture may have a negative electrode conductive material such as acetylene black.
  • As the negative electrode active material it is preferable to use graphitic carbon, particularly artificial graphite.
  • the negative electrode mixture layer 12b having excellent characteristics can be obtained by the method described below. By using graphite carbon, a lithium ion secondary battery for a plug-in hybrid vehicle or an electric vehicle requiring a large capacity can be manufactured.
  • the method for forming the negative electrode mixture layer 12b is not limited as long as the negative electrode mixture layer 12b is formed on the negative electrode sheet 12a.
  • a method of applying the negative electrode mixture to the negative electrode sheet 12a a method of applying a dispersion solution of constituent materials of the negative electrode mixture onto the negative electrode sheet 12a can be given.
  • the coating method include a roll coating method and a slit die coating method.
  • N-methyl-2-pyrrolidone or water as a dispersion solvent is added to the negative electrode mixture, and the kneaded slurry is formed into a rolled copper foil having a thickness of 10 ⁇ m. Apply uniformly on both sides, dry, and then cut.
  • An example of the coating thickness of the negative electrode mixture is about 40 ⁇ m on one side.
  • the negative electrode lead 17 After forming the negative electrode lead 17 by cutting, it is desirable to heat-press the negative electrode mixture layer 12b with a press roll, increase the contact surface between the particles of the negative electrode mixture and the negative electrode sheet 12a, and reduce the DC resistance. Further, since the thickness of the negative electrode mixture layer 12b is reduced by hot pressing, when the electrode group 10 having the same diameter is formed, the length of the negative electrode mixture layer 12b can be increased, and the battery capacity is increased.
  • the width W S of the first separator 13 and the second separator 14 is formed larger than the width W C of the negative electrode mixture layer 12b formed on the negative electrode sheet 12a. Further, the width W C of the negative electrode mixture layer 12b formed on the negative electrode sheet 12a is formed larger than the width W A of the positive electrode mixture layer 11b formed on the positive electrode sheet 11a. The width W C of the negative electrode mixture layer 12b is larger than the width W A of the positive electrode mixture layer 11b, thereby preventing an internal short circuit due to the precipitation of foreign matters.
  • lithium as a positive electrode active material is ionized and permeates the separator, but the negative electrode mixture layer 12b is not formed on the negative electrode sheet 12a side, and the positive electrode mixture layer 11b On the other hand, if the negative electrode sheet 12a is exposed, lithium is deposited on the negative electrode sheet 12a, causing an internal short circuit.
  • the first and second separators 13 and 14 are, for example, polyethylene porous films having a thickness of 40 ⁇ m. 1 and 3, a hollow cylindrical shaft core 15 is formed with a step portion 15a having a diameter larger than the inner diameter of the shaft core 15 on the inner surface of the upper end portion in the axial direction (vertical direction in the drawing). A positive electrode current collecting member 27 is press-fitted into the upper portion.
  • the positive electrode current collecting member 27 is made of, for example, aluminum, and protrudes toward the shaft core 15 at the disk-shaped base portion 27a and the inner peripheral portion of the base portion 27a facing the electrode group 10, and the step portion of the shaft core 15.
  • the lower cylinder part 27b press-fitted in the inner surface of 15a, and the upper cylinder part 27c which protrudes in the battery cover 3 side in an outer periphery.
  • the base 27a of the positive electrode current collecting member 27 is formed with an opening 27d (see FIG. 2) for discharging a gas generated inside the battery by overcharging or the like.
  • the opening part 27e is formed in the positive electrode current collection member 27, the function of the opening part 27e is mentioned later.
  • the shaft core 15 is formed of a material that is electrically insulated from the positive electrode current collecting member 31 and the negative electrode current collecting member 21 and increases the axial rigidity of the battery.
  • a material of the shaft core 15 in the present embodiment for example, glass fiber reinforced polypropylene is used.
  • All the positive leads 16 of the positive electrode sheet 11 a are welded to the upper cylindrical portion 27 c of the positive current collecting member 27.
  • the positive electrode lead 16 is overlapped and bonded onto the upper cylindrical portion 27 c of the positive electrode current collecting member 27. Since each positive electrode lead 16 is very thin, a large current cannot be taken out by one. For this reason, a large number of positive electrode leads 16 are formed at predetermined intervals over the entire length from the start to the end of winding of the positive electrode sheet 11a around the shaft core 15.
  • the positive electrode lead 16 and the pressing member 28 of the positive electrode sheet 11a are welded to the outer periphery of the upper cylindrical portion 27c of the positive electrode current collecting member 27.
  • a number of positive leads 16 are brought into close contact with the outer periphery of the upper cylindrical portion 27c of the positive current collecting member 27, and a pressing member 28 is wound around the outer periphery of the positive lead 16 in a ring shape and temporarily fixed, and is welded in this state. .
  • a step portion 15b having an outer diameter smaller than the outer shape of the shaft core 15 is formed on the outer periphery of the lower end portion of the shaft core 15, and the negative electrode current collecting member 21 is press-fitted and fixed to the step portion 15b.
  • the negative electrode current collecting member 21 is made of, for example, copper having a small resistance value, and an opening 21b that is press-fitted into the step portion 15b of the shaft core 15 is formed in the disk-shaped base portion 21a.
  • An outer peripheral cylindrical portion 21c protruding toward the bottom side is formed. All of the negative electrode leads 17 of the negative electrode sheet 12a are welded to the outer peripheral cylindrical portion 21c of the negative electrode current collecting member 21 by ultrasonic welding or the like. Since each of the negative electrode leads 17 is very thin, a large number of negative electrode leads 17 are formed at predetermined intervals from the start to the end of winding of the negative electrode sheet 12a around the shaft core 15 in order to take out a large current.
  • the negative electrode lead 17 and the pressing member 22 of the negative electrode sheet 12a are welded to the outer periphery of the outer peripheral cylindrical portion 21c of the negative electrode current collecting member 21.
  • a number of negative electrode leads 17 are brought into close contact with the outer periphery of the outer peripheral cylindrical portion 21c of the negative electrode current collecting member 21, and the holding member 22 is wound around the outer periphery of the negative electrode lead 17 in a ring shape and temporarily fixed, and is welded in this state.
  • a negative electrode conducting lead 23 made of nickel is welded to the lower surface of the negative electrode current collecting member 21.
  • the negative electrode energizing lead 23 is welded to the battery can 2 at the bottom of the iron battery can 2.
  • the opening 27 e formed in the positive current collecting member 27 is for inserting an electrode rod (not shown) for welding the negative electrode conducting lead 23 to the battery can 2.
  • the electrode rod is inserted into the hollow portion of the shaft core 15 through the opening 27e formed in the positive electrode current collecting member 27, and the negative electrode energizing lead 23 is pressed against the inner surface of the bottom portion of the battery can 2 at the tip thereof to perform resistance welding.
  • the battery can 2 connected to the negative electrode current collecting member 21 functions as one output end of the cylindrical secondary battery 1, and the electric power stored in the electrode group 10 can be taken out from the battery can 2.
  • a large number of positive electrode leads 16 are welded to the positive electrode current collector member 27, and a large number of negative electrode leads 17 are welded to the negative electrode current collector member 21, whereby the positive electrode current collector member 27, the negative electrode current collector member 21 and the electrode group 10 are integrated.
  • a unitized power generation unit 20 is configured (see FIG. 2). However, in FIG. 2, for the convenience of illustration, the negative electrode current collecting member 21, the pressing member 22, and the negative electrode energizing lead 23 are illustrated separately from the power generation unit 20.
  • connection member 33 configured by laminating a plurality of aluminum foils is joined to the upper surface of the base portion 27a of the positive electrode current collecting member 27 by welding one end thereof.
  • the connection member 33 can flow a large current by laminating and integrating a plurality of aluminum foils, and is provided with flexibility.
  • a ring-shaped insulating plate 34 made of an insulating resin material having a circular opening 34 a is disposed on the upper cylindrical portion 27 c of the positive electrode current collecting member 27.
  • the insulating plate 34 has an opening 34a (see FIG. 2) and a side portion 34b protruding downward.
  • a connecting plate 35 is fitted in the opening 34 a of the insulating plate 34.
  • the other end of the flexible connection member 33 is welded and fixed to the lower surface of the connection plate 35.
  • connection plate 35 is formed of an aluminum alloy, and has a substantially dish shape that is substantially uniform except for the central portion and bent to a slightly lower position on the central side. At the center of the connection plate 35, a thin dome-shaped projection 35a is formed, and a plurality of openings 35b (see FIG. 2) are formed around the projection 35a.
  • the opening 35b has a function of releasing gas generated inside the battery due to overcharge or the like.
  • the protrusion 35a of the connection plate 35 is joined to the bottom surface of the center portion of the diaphragm 37 by resistance welding or friction diffusion bonding.
  • the diaphragm 37 is formed of an aluminum alloy, and has a circular cut 37 a centering on the center of the diaphragm 37.
  • the cut 37a is formed by crushing the upper surface side into a V-shape or U-shape by pressing and thinning the remaining portion.
  • the diaphragm 37 is provided for ensuring the safety of the battery.
  • the diaphragm 37 warps upward and peels off the connection with the protrusion 35a of the connection plate 35. Then, it is separated from the connection plate 35 and the connection with the connection plate 35 is cut off.
  • the internal pressure of the battery still rises, it has a function of cleaving at the notch 37a, releasing the internal gas, and reducing the internal pressure.
  • the diaphragm 37 fixes the peripheral portion 3a of the battery lid 3 at the peripheral portion.
  • the diaphragm 37 initially has a side portion 37 b erected vertically toward the battery lid 3 side at the peripheral portion.
  • the battery lid 3 is accommodated in the side portion 37b, and the side portion 37b is bent and fixed to the upper surface side of the battery lid 3 by caulking.
  • the battery lid 3 is made of iron such as carbon steel, and a plating layer such as nickel is applied to the entire outer and inner surfaces.
  • the battery lid 3 has a hat shape having a disc-shaped peripheral edge portion 3a that contacts the diaphragm 37 and a head portion 3b that protrudes upward from the peripheral edge portion 3a.
  • An opening 3c is formed in the head 3b. The opening 3c is for releasing gas to the outside of the battery when the diaphragm 37 is cleaved by the gas pressure generated inside the battery.
  • the battery lid 3, the diaphragm 37, the insulating plate 34 and the connection plate 35 are integrated to form a battery lid unit 30.
  • the connection plate 35 of the battery lid unit 30 is connected to the positive electrode current collector 27 by the connection member 33. Therefore, the battery lid 3 is connected to the positive electrode current collecting member 27.
  • the battery lid 3 connected to the positive electrode current collecting member 27 functions as the other output end, and the battery lid 3 acting as the other output end and the battery can 2 acting as the one output end serve as electrodes. It becomes possible to output the electric power stored in the group 10.
  • a seal member 43 is provided so as to cover the peripheral edge of the side portion 37 b of the diaphragm 37.
  • the seal member 43 is formed of rubber and is not intended to be limited, but a fluorine-based resin can be cited as an example of one preferable material.
  • the seal member 43 initially has a shape having an outer peripheral wall portion 43 b that is formed on the peripheral side edge of the ring-shaped base portion 43 a so as to stand substantially vertically toward the upper direction. is doing.
  • the outer peripheral wall 43b of the sealing member 43 is bent together with the battery can 2 by pressing or the like, and the diaphragm 37 and the battery lid 3 are crimped by the base 43a and the outer peripheral wall 43b so as to be pressed in the axial direction. Accordingly, the battery lid unit 30 in which the battery lid 3, the diaphragm 37, the insulating plate 34, and the connection plate 35 are integrally formed is fixed to the battery can 2 via the seal member 43.
  • a predetermined amount of non-aqueous electrolyte solution 6 is injected into the battery can 2.
  • the non-aqueous electrolyte solution 6 it is preferable to use a solution in which a lithium salt is dissolved in a carbonate solvent.
  • the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and the like.
  • carbonate solvents include ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), methyl ethyl carbonate (MEC), or a mixture of two or more of the above solvents. Is mentioned.
  • FIGS. 5A and 5B are diagrams for explaining the porosity of the separator constituting the electrode group 10 illustrated in FIG. 3.
  • FIG. 5A is an enlarged cross-sectional view
  • FIG. 5B is an enlarged plan view.
  • both the first separator 13 and the second separator 14 have the same structure, and here, the separator S is representative.
  • the separator S has a large number of holes h penetrating in the thickness direction of the base material B.
  • the porosity c of the separator is calculated by the following formula (1).
  • Porosity c ⁇ 1- (W / ⁇ ) / (L1 ⁇ L2 ⁇ t) ⁇ ----- Equation (1)
  • W Specimen weight
  • Specimen density
  • L1 Specimen width (length on the side surface)
  • L2 Full length of test piece (length of side different from L1 on plane)
  • t Specimen thickness (side length different from L1 on the side surface)
  • L2 Supplementary explanation on the total length of the test piece.
  • the leading end of the separator S is positioned on the axial center side with respect to the leading end of the negative electrode 12 on the winding start side, and a region between the leading end of the separator S and the leading end of the negative electrode 12 is referred to as a leading winding region.
  • the rear end of the separator S is positioned outside the rear end of the negative electrode 12 on the winding end side, and the region between the rear end of the separator S and the rear end of the negative electrode 12 is rear wound. It is called an area.
  • the total length of the separator S is the length including the region corresponding to the negative electrode 12, the first winding region, and the second winding region.
  • FIG. 6 is an enlarged sectional view for explaining the operation of the present invention.
  • the electrode group 10 is configured such that the negative electrode 12, the first separator 13, the positive electrode 11, and the second separator 14 are laminated in this order on the shaft core 15 and wound. That is, the positive electrode 11 and the negative electrode 12 are opposed to each other via either the first separator 13 or the second separator 14 (typically, the separator S).
  • a positive electrode mixture layer 11 b is formed on both surfaces of the positive electrode sheet 11 a of the positive electrode 11, and a negative electrode mixture layer 12 b is formed on both surfaces of the negative electrode sheet 12 a of the negative electrode 12.
  • the positive electrode mixture layer 11b and the negative electrode mixture layer 12b face each other with the separator S interposed therebetween.
  • Width W C of the negative electrode mixture layer 12b is larger than the width W A of the positive electrode mixture layer 11b
  • the width W S of the separator S is greater than the width W C of the negative electrode mixture layer 12b.
  • the separator S has a large number of holes h.
  • the positive electrode active material contained in the positive electrode mixture layer 11b reacts with the non-aqueous electrolyte 6 to generate lithium ions, and the negative electrode 12 passes through the pores h of the separator S. This causes an action called so-called insertion or intercalation that moves to the side and sinks into the negative electrode 12.
  • insertion or intercalation causes an action called so-called insertion or intercalation that moves to the side and sinks into the negative electrode 12.
  • lithium ions come out of the negative electrode 12 and enter the positive electrode 11 through the holes h of the separator S, so-called extraction or deintercalation is produced.
  • lithium ions are not deposited on the surface of the negative electrode 12 or the positive electrode 11.
  • the separator S In general, in the lithium ion secondary battery 1, if the separator S is a thin film, a large pore diameter, a large porosity, and a high air permeability, the movement of lithium ions is easy and the ion permeability is high. However, since the film density becomes coarse, the mechanical strength decreases. With the current technical level, it is difficult to manufacture a separator S having a porosity exceeding 50% in terms of mechanical strength. On the other hand, when the separator S has a thick film, a small pore diameter, a small porosity, and a low air permeability, the mechanical strength increases with an increase in the film density. On the other hand, the movement of lithium ions becomes difficult.
  • the amount of the non-aqueous electrolyte retained between the positive electrode mixture layer 11 b and the negative electrode mixture layer 12 b is the area of the positive electrode mixture layer 11 b, in other words, the power generation unit area, and the separator S. Varies with pore area. Since the amount of the electrolyte solution held between the positive electrode mixture layer 11b and the negative electrode mixture layer 12b affects the reaction with the positive electrode active material in the positive electrode mixture layer 11b, it is considered to be related to the battery output. It is done. Therefore, the present invention aims to improve the battery output based on the relation of the battery output with respect to the ratio of the area of the positive electrode mixture layer 11b, in other words, the area of the power generation unit and the pore area of the separator S.
  • the separators were produced (the porosity c of the separator in Example 4 was 45).
  • the separator has a porosity c of 45 in the comparative example).
  • the results are shown in Table 1.
  • the value of output (relative value) shown in Table 1 is a relative value of output density in each example when the output density of the comparative example is 100, and is shown as an average value of measured values in each example. .
  • separator S having a thickness t of 18 to 25 ⁇ m was used, but it was confirmed that the difference in thickness t has little effect on the increase or decrease in battery output.
  • Examples 1 to 3 showed excellent output characteristics of 111% in terms of output density (relative value) compared to the comparative example. Further, in Example 4 and the comparative example, the porosity c was the same as 45, but the output density of Example 4 was 106% larger than that of the comparative example, and a larger result was obtained.
  • the contents of Table 1 are shown in the output ratio-b ⁇ c / a characteristic diagram of FIG. In FIG. 7, the relative value of the output density based on the comparative example is plotted on the vertical axis with respect to the horizontal axis b ⁇ c / a.
  • the increase in the battery output density is related to the porosity c, but as in Example 4, even when the porosity c is the same as that of the comparative example. It can be seen that there is a difference in the battery output density, which cannot be determined only by the porosity c.
  • the battery power density is more approximate to the value of b ⁇ c / a. From the output ratio-b ⁇ c / a characteristic curve shown by the solid line in FIG. 7, the output ratio when the value of b ⁇ c / a is 0.57 is almost equal to or higher than that in the fourth embodiment, It can be seen that the battery output density is increased as compared with the prior art.
  • the separator thickness t of the separator S has little relationship with the size of the battery output density. Therefore, it may be made sufficiently thin from the viewpoint of increasing the battery capacity. In Examples 1 to 4, the separator thickness t was set to 18 to 25 ⁇ m.
  • the lithium ion secondary battery according to the present invention since the ratio of the area of the positive electrode mixture layer to the pore area in the separator is optimized, an appropriate amount of the non-aqueous electrolyte is used in the positive electrode mixture layer. Between the positive electrode and the negative electrode layer, and the resistance between the positive electrode and the negative electrode is reduced. As a result, the battery output density can be improved.
  • a cylindrical secondary battery has been described as an embodiment as a lithium ion secondary battery.
  • the present invention can also be applied to a prismatic lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention can be applied with various modifications within the scope of the gist of the invention.
  • the positive electrode includes a lithium transition metal composite oxide in a pond container.
  • An electrode group having a positive electrode having a mixture layer, a negative electrode having a negative electrode mixture layer that occludes / releases lithium ions, and a separator disposed on the inner and outer circumferences of the negative electrode and a lithium salt is contained.
  • the area of the positive electrode mixture layer is a
  • the area of the separator is b
  • the porosity of the separator is c ⁇ b / c. Any value within the required range may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明によるリチウムイオン二次電池は、電池容器内に、リチウム遷移金属複合酸化物を含む正極合剤層を有する正極電極と、リチウムイオンを吸蔵・放出する負極合剤層を有する負極電極と、正極電極と負極電極の内外周に配されたセパレータとを有する電極群が収容され、リチウム塩を含む非水電解液が注入されたリチウムイオン二次電池において、正極合剤層の面積をa、セパレータの面積をb、セパレータの空孔率をcとしたとき、下記の式(I)に示す関係を満足する。 0.57<b×c/a<0.60----(I)

Description

リチウムイオン二次電池
 この発明は、リチウムイオン二次電池に関し、より詳細には、出力特性の向上を図ることが可能なリチウムイオン二次電池に関する。
 リチウムイオン二次電池において、出力特性の向上を図るための開発がなされている。リチウムイオン二次電池は、正極合剤層を有する正極電極と負極合剤層を有する負極電極との内外周に配されたセパレータとにより構成された電極群を備えている。
 正極合剤層はリチウムを含む酸化物からなり、負極合剤層は黒鉛等のリチウムイオンを吸蔵・放出可能な材料からなる。セパレータは、リチウムイオンを透過する空孔を有する。充電すると正極合剤層と負極合剤層との間にリチウムがイオンの状態で蓄えられる。
 このような、リチウムイオン二次電池において、セパレータを挟んで対向する正極活物質(正極合剤の構成部材)層と負極活物質(負極合剤の構成部材)層の厚さの和とセパレータの厚さの比を所定の範囲内にし、かつ、セパレータの透気度を所要の範囲内にすることで電池寿命を向上する方法が知られている(例えば、特許文献1参照)。
特開2003-303625号公報
 上記先行文献1においては、電池寿命の向上に関する検討がなされているのみであり、電池出力密度の増大に関する検討はなされていない。本発明の結果に基づけば、上記先行文献1において検討された要素とは異なる要素の最適化により、電池出力密度の増大を図ることができた。すなわち、電池出力密度の向上を図ることが本発明の課題である。
 本発明の第1の態様によると、リチウムイオン二次電池は、電池容器内に、リチウム遷移金属複合酸化物を含む正極合剤層を有する正極電極と、リチウムイオンを吸蔵・放出する負極合剤層を有する負極電極と、正極電極と負極電極の内外周に配されたセパレータとを有する電極群が収容され、リチウム塩を含む非水電解液が注入されたリチウムイオン二次電池において、正極合剤層の面積をa、セパレータの面積をb、セパレータの空孔率をcとしたとき、下記の式(I)に示す関係を満足する。
 0.57<b×c/a<0.60----(I)
 本発明の第2の態様によると、第1の態様のリチウムイオン二次電池において、電極群は円筒形を有し、セパレータの面積は、先巻き領域の面積及び後巻き領域の面積を含むことが好ましい。
 本発明の第3の態様によると、第1または2の態様のリチウムイオン二次電池において、セパレータは空孔率が43~50であることが好ましい。
 本発明の第4の態様によると、第1または2の態様のリチウムイオン二次電池において、セパレータは空孔率が45~50であることが好ましい。
 本発明の第5の態様によると、第1乃至4の態様のリチウムイオン二次電池において、セパレータは、厚さが18~25μmであることが好ましい。
 本発明によれば、正極電極の正極合剤層の面積とセパレータにおける空孔面積の比を最適にしたので、非水電解液の適切な量が正極合剤層と負極合剤層との間に保持され、正極電極と負極電極との間の抵抗が低減される。これにより、電池出力密度を向上することができるという効果を奏する。
この発明のリチウムイオン二次電池の一実施の形態の断面図。 図1に図示されたリチウムイオン二次電池の分解斜視図。 図1に図示された電極群の詳細を示すための一部を切断した状態の斜視図。 図3に図示された電極群の正・負極電極、セパレータを一部展開した状態の平面図。 図3に図示されたセパレータの空孔率を説明するための図であり、(a)は拡大断面図、(b)は拡大平面図。 本発明の作用を説明するための拡大断面図。 本発明の効果を示す図。
(二次電池の全体構成)
 以下、この発明のリチウムイオン二次電池を、円筒形電池を一実施の形態として図面と共に説明する。
 図1は、この発明のリチウムイオン二次電池の断面図であり、図2は、図1に示された円筒形二次電池の分解斜視図である。
 円筒形のリチウムイオン二次電池1は、例えば、外形40mmφ、高さ100mmの寸法を有する。
 このリチウムイオン二次電池1は、有底円筒形の電池缶2とハット型の電池蓋3とを、通常、ガスケットと言われるシール部材43を介在してかしめ加工を行い、外部から密封された構造の電池容器4を有する。有底円筒形の電池缶2は、鉄、ステンレス等の金属板をプレス加工して形成され、内面および外面の表面全体にニッケル等のめっき層が形成されている。電池缶2は、その開放側である上端部側に開口部2bを有する。電池缶2の開口部2b側には、電池缶2の内側に突き出した溝2aが形成されている。電池缶2の内部には、以下に説明する発電用の各構成部材が収容されている。
 10は、電極群であり、中央部に軸芯15を有し、軸芯15の周囲に正極電極、負極電極およびセパレータが捲回されている。図3は電極群10の構造の詳細を示し、一部を切断した状態の斜視図である。また、図4は、図3に図示された電極群の正・負極電極、セパレータを一部展開した状態の平面図である。
 図3に図示されるように、電極群10は、軸芯15の周囲に、正極電極11、負極電極12、および第1、第2のセパレータ13、14が捲回された構成を有する。
 軸芯15は、中空円筒状を有し、軸芯15には、負極電極12、第1のセパレータ13、正極電極11および第2のセパレータ14が、この順に積層され、捲回されている。最内周の負極電極12の内側には第1のセパレータ13および第2のセパレータ14が数周(図3では、1周)捲回されている。電極群10の最外周は負極電極12およびその外周に捲回された第1のセパレータ13の順となっている(図3、4参照)。最外周の第1のセパレータ13が接着テープ19で留められる(図2参照)。
 なお、図4において、負極電極12と第1のセパレータ13は中間部が切り取られ、この切り取られた部分では、正極電極11および第2のセパレータ14が露出した状態を示している。
 正極電極11は、アルミニウム箔により形成され長尺な形状を有し、正極シート11aと、この正極シート11aの両面に正極合剤層11bが形成された正極処理部を有する。正極シート11aの長手方向に沿う上方側の一側縁は、正極合剤層11bが形成されずアルミニウム箔が表出した正極合剤未処理部11cとなっている。この正極合剤未処理部11cには、軸芯15と平行に上方に突き出す多数の正極リード16が等間隔に一体的に形成されている。
 正極合剤は正極活物質と、正極導電材と、正極バインダとから構成される。正極活物質はリチウム金属酸化物またはリチウム遷移金属酸化物が好ましい。例として、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、リチウム複合金属酸化物(コバルト、ニッケル、マンガンから選ばれる2種類以上を含むリチウムの金属酸化物を含む)などが挙げられる。正極導電材は、正極合剤中におけるリチウムの吸蔵放出反応で生じた電子の正極電極への伝達を補助できるものであれば制限は無い。なお、遷移金属を含む上記のリチウム複合金属酸化物は導電性を有するので、これ自体を正極導電材として用いてもよい。しかし中でも上述の材料である、コバルト酸リチウムとマンガン酸リチウムとニッケル酸リチウムとからなるリチウム遷移金属複合酸化物を使用することにより良好な特性が得られる。
 正極バインダは、正極活物質と正極導電材を結着させ、また正極合剤層11bと正極シート11aを結着させることが可能であり、非水電解液との接触により、大幅に劣化しなければ特に制限はない。正極バインダの例としてポリフッ化ビニリデン(PVDF)やフッ素ゴムなどが挙げられる。正極合剤層11bの形成方法は、正極シート11a上に正極合剤層11bが形成される方法であれば制限はない。正極合剤層11bの形成方法の例として、正極合剤の構成物質の分散溶液を正極シート11a上に塗布する方法が挙げられる。
 正極合剤層11bを正極シート11aに形成する方法の例として、ロール塗工法、スリットダイ塗工法、などが挙げられる。正極合剤に分散溶液の溶媒例としてN-メチルピロリドン(NMP)や水等を添加し、混練したスラリを、厚さ20μmのアルミニウム箔の両面に均一に塗布し、乾燥させた後、ダイカット等により裁断する。正極合剤の塗布厚さの一例としては片側約40μmである。正極シート11aを裁断する際、正極リード16を一体的に形成する。すべての正極リード16の長さは、ほぼ同じである。裁断により正極リード16を形成した後、正極合剤をプレスロールにより熱プレスし、正極合剤の粒子間および正極シート11aとの接触面を増大し、直流抵抗を低減することが望ましい。また、熱プレスにより、正極合剤層11bの厚みが低減するので、同じ直径の電極群10を形成する場合、正極合剤層11bの長さを大きくでき電池容量が増大する。
 負極電極12は、銅箔により形成され長尺な形状を有し、負極シート12aと、この負極シート12aの両面に負極合剤層12bが形成された負極処理部を有する。負極シート12aの長手方向に沿う下方側の側縁は、負極合剤層12bが形成されず銅箔が表出した負極合剤未処理部12cとなっている。この負極合剤未処理部12cには、正極リード16とは反対方向に延出された、多数の負極リード17が等間隔に一体的に形成されている。
 負極合剤は、負極活物質と、負極バインダと、増粘剤とから構成される。負極合剤は、アセチレンブラックなどの負極導電材を有しても良い。負極活物質としては、黒鉛炭素を用いること、特に人造黒鉛を使用することが好ましい。しかしその中でも次に記載する方法により優れた特性の負極合剤層12bが得られる。黒鉛炭素を用いることにより、大容量が要求されるプラグインハイブリッド自動車や電気自動車向けのリチウムイオン二次電池が作製できる。負極合剤層12bの形成方法は、負極シート12a上に負極合剤層12bが形成される方法であれば制限はない。負極合剤を負極シート12aに塗布する方法の例として、負極合剤の構成物質の分散溶液を負極シート12a上に塗布する方法が挙げられる。塗布方法の例として、ロール塗工法、スリットダイ塗工法などが挙げられる。
 負極合剤層12bを負極シート12aに形成する方法の例として、負極合剤に分散溶媒としてN-メチル-2-ピロリドンや水を添加し、混練したスラリを、厚さ10μmの圧延銅箔の両面に均一に塗布し、乾燥させた後、裁断する。負極合剤の塗布厚さの一例としては片側約40μmである。負極シート12aを裁断する際、負極リード17を一体的に形成する。すべての負極リード17の長さは、ほぼ同じである。裁断により負極リード17を形成した後、負極合剤層12bをプレスロールにより熱プレスし、負極合剤の粒子間および負極シート12aとの接触面を増大し、直流抵抗を低減することが望ましい。また、熱プレスにより、負極合剤層12bの厚みが低減するので、同じ直径の電極群10を形成する場合、負極合剤層12bの長さを大きくでき電池容量が増大する。
 第1のセパレータ13および第2のセパレータ14の幅WSは、負極シート12aに形成される負極合剤層12bの幅WCより大きく形成される。また、負極シート12aに形成される負極合剤層12bの幅WCは、正極シート11aに形成される正極合剤層11bの幅WAより大きく形成される。
 負極合剤層12bの幅WCが正極合剤層11bの幅WAよりも大きいことにより、異物の析出による内部短絡を防止する。これは、リチウムイオン二次電池の場合、正極活物質であるリチウムがイオン化してセパレータを浸透するが、負極シート12a側に負極合剤層12bが形成されておらず、正極合剤層11bに対し負極シート12aが露出していると負極シート12aにリチウムが析出し、内部短絡を発生する原因となるからである。
 第1、第2のセパレータ13、14は、例えば、厚さ40μmのポリエチレン製多孔膜である。
 図1および図3において、中空な円筒形状の軸芯15は軸方向(図面の上下方向)の上端部の内面に軸芯15の内径より大きな径の段部15aが形成され、この段部15aに正極集電部材27が圧入されている。
 正極集電部材27は、例えば、アルミニウムにより形成され、円盤状の基部27a、この基部27aの電極群10に向いた面内周部において軸芯15側に向かって突出し、軸芯15の段部15aの内面に圧入される下部筒部27b、および外周縁において電池蓋3側に突き出す上部筒部27cを有する。正極集電部材27の基部27aには、過充電等によって、電池内部で発生するガスを放出するための開口部27d(図2参照)が形成されている。また、正極集電部材27には開口部27eが形成されているが、開口部27eの機能については後述する。なお、軸芯15は正極集電部材31と負極集電部材21と電気的に絶縁し、電池の軸方向の剛性を高めるような材質で形成されている。本実施例での軸芯15の材質としては、例えばガラス繊維強化ポリプロピレンを用いている。
 正極シート11aの正極リード16は、すべて、正極集電部材27の上部筒部27cに溶接される。この場合、図2に図示されるように、正極リード16は、正極集電部材27の上部筒部27c上に重なり合って接合される。各正極リード16は大変薄いため、1つでは大電流を取りだすことができない。このため、正極シート11aの軸芯15への巻き始めから巻き終わりまでの全長に亘り、多数の正極リード16が所定間隔に形成されている。
 正極集電部材27の上部筒部27cの外周には、正極シート11aの正極リード16および押え部材28が溶接されている。多数の正極リード16を、正極集電部材27の上部筒部27cの外周に密着させておき、正極リード16の外周に押え部材28をリング状に巻き付けて仮固定し、この状態で溶接される。
 軸芯15の下端部の外周には、その外径が軸芯15の外形より小さな段部15bが形成され、この段部15bに負極集電部材21が圧入されて固定されている。負極集電部材21は、例えば、抵抗値の小さい銅により形成され、円盤状の基部21aに軸芯15の段部15bに圧入される開口部21bが形成され、外周縁に、電池缶2の底部側に向かって突き出す外周筒部21cが形成されている。
 負極シート12aの負極リード17は、すべて、負極集電部材21の外周筒部21cに超音波溶接等により溶接される。各負極リード17は大変薄いため、大電流を取りだすために、負極シート12aの軸芯15への巻き始めから巻き終わりまで全長にわたり、所定間隔で多数形成されている。
 負極集電部材21の外周筒部21cの外周には、負極シート12aの負極リード17および押え部材22が溶接されている。多数の負極リード17を、負極集電部材21の外周筒部21cの外周に密着させておき、負極リード17の外周に押え部材22をリング状に巻き付けて仮固定し、この状態で溶接される。
 負極集電部材21の下面には、ニッケルからなる負極通電リード23が溶接されている。
 負極通電リード23は、鉄製の電池缶2の底部において、電池缶2に溶接されている。
 ここで、正極集電部材27に形成された開口部27eは、負極通電リード23を電池缶2に溶接するための電極棒(図示せず)を挿通するためのものである。電極棒を正極集電部材27に形成された開口部27eから軸芯15の中空部に差し込み、その先端部で負極通電リード23を電池缶2の底部内面に押し付けて抵抗溶接を行う。負極集電部材21に接続されている電池缶2は、この円筒型二次電池1の一方の出力端として機能し、電極群10に蓄電された電力を電池缶2から取り出すことができる。
 多数の正極リード16が正極集電部材27に溶接され、多数の負極リード17が負極集電部材21に溶接されることにより、正極集電部材27、負極集電部材21および電極群10が一体的にユニット化された発電ユニット20が構成される(図2参照)。但し、図2においては、図示の都合上、負極集電部材21、押え部材22および負極通電リード23は発電ユニット20から分離して図示されている。
 また、正極集電部材27の基部27aの上面には、複数のアルミニウム箔が積層されて構成されたフレキシブルな接続部材33が、その一端を溶接されて接合されている。接続部材33は、複数枚のアルミニウム箔を積層して一体化することにより、大電流を流すことが可能とされ、且つ、フレキシブル性を付与されている。
 正極集電部材27の上部筒部27c上には、円形の開口部34aを有する絶縁性樹脂材料からなるリング状の絶縁板34が配置されている。
 絶縁板34は、開口部34a(図2参照)と下方に突出す側部34bを有している。絶縁板34の開口部34a内には接続板35が嵌合されている。接続板35の下面には、フレキシブルな接続部材33の他端が溶接されて固定されている。
 接続板35は、アルミニウム合金で形成され、中央部を除くほぼ全体が均一で、かつ、中央側が少々低い位置に撓んだ、ほぼ皿形状を有している。接続板35の中心には、薄肉でドーム形状に形成された突起部35aが形成されており、突起部35aの周囲には、複数の開口部35b(図2参照)が形成されている。開口部35bは、過充電等により電池内部に発生するガスを放出する機能を有している。
 接続板35の突起部35aはダイアフラム37の中央部の底面に抵抗溶接または摩擦拡散接合により接合されている。ダイアフラム37はアルミニウム合金で形成され、ダイアフラム37の中心部を中心とする円形の切込み37aを有する。切込み37aはプレスにより上面側をV字またはU字形状に押し潰して、残部を薄肉にしたものである。
 ダイアフラム37は、電池の安全性確保のために設けられており、電池内部に発生したガスの圧力が上昇すると、第1段階として、上方に反り、接続板35の突起部35aとの接合を剥離して接続板35から離間し、接続板35との導通を絶つ。第2段階として、それでも電池内圧が上昇する場合は切込み37aにおいて開裂し、内部のガスを放出し、内部圧力を低下する機能を有する。
 ダイアフラム37は周縁部において電池蓋3の周縁部3aを固定している。ダイアフラム37は図2に図示されるように、当初、周縁部に電池蓋3側に向かって垂直に起立する側部37bを有している。この側部37b内に電池蓋3を収容し、かしめ加工により、側部37bを電池蓋3の上面側に屈曲して固定する。
 電池蓋3は、炭素鋼等の鉄で形成され、外側および内側の表面全体にニッケル等のめっき層が施されている。電池蓋3は、ダイアフラム37に接触する円盤状の周縁部3aとこの周縁部3aから上方に突出す頭部3bを有するハット型を有する。頭部3bには開口部3cが形成されている。この開口部3cは、電池内部に発生するガス圧によりダイアフラム37が開裂した際、ガスを電池外部に放出するためのものである。
 電池蓋3、ダイアフラム37、絶縁板34および接続板35は、一体化され電池蓋ユニット30を構成する。
 上述したように、電池蓋ユニット30の接続板35は接続部材33により正極集電部材27と接続されている。従って、電池蓋3は正極集電部材27と接続されている。このように、正極集電部材27と接続されている電池蓋3は他方の出力端として機能し、この他方の出力端として作用する電池蓋3と一方の出力端として作用する電池缶2より電極群10に蓄えられた電力を出力することが可能となる。
 ダイアフラム37の側部37bの周縁部を覆って、通常、ガスケットと言われるシール部材43が設けられている。シール部材43は、ゴムで形成されており、限定する意図ではないが、1つの好ましい材料の例として、フッ素系樹脂をあげることができる。
 シール部材43は、当初、図2に図示されるように、リング状の基部43aの周側縁に、上部方向に向けてほぼ垂直に起立して形成された外周壁部43bを有する形状を有している。
 そして、プレス等により、電池缶2と共にシール部材43の外周壁部43bを屈曲して基部43aと外周壁部43bにより、ダイアフラム37と電池蓋3を軸方向に圧接するようにかしめ加工される。これにより、電池蓋3、ダイアフラム37、絶縁板34および接続板35が一体に形成された電池蓋ユニット30がシール部材43を介して電池缶2に固定される。
 電池缶2の内部には、非水系電解液6が所定量注入されている。非水系電解液6の一例としては、リチウム塩がカーボネート系溶媒に溶解した溶液を用いることが好ましい。リチウム塩の例として、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、などが挙げられる。また、カーボネート系溶媒の例として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、メチルエチルカーボネート(MEC)、或いは上記溶媒の2種類以上から選ばれる溶媒を混合したもの、が挙げられる。
(電極群の構造)
 次に、電極群の構造について詳述する。
 図5は、図3に図示された電極群10を構成するセパレータの空孔率を説明するための図であり、(a)は拡大断面図、(b)は拡大平面図である。
 セパレータは、第1のセパレータ13および第2のセパレータ14のいずれも同一の構造を有しており、ここでは、代表してセパレータSとする。
 セパレータSは、基材Bの厚さ方向に貫通する多数の空孔hを有する。
 セパレータの空孔率cは、下記の式(1)により算出される。
 空孔率c={1-(W/ρ)/(L1×L2×t)}-----式(1)
 W :試験片重量
 ρ :試験片密度
 L1:試験片幅(側面における長さ)
 L2:試験片全長(平面における上記L1とは異なる辺の長さ)
 t :試験片厚み(側面における上記L1とは異なる辺の長さ)
 なお、L2:試験片全長に関して説明を補足する。セパレータSの先端は、巻始め側において、負極電極12の先端よりも軸心側に位置しており、このセパレータSの先端から負極電極12の先端までの間の領域を先巻き領域という。また、セパレータSの後端は、巻終り側において、負極電極12の後端よりも外側に位置しており、このセパレータSの後端から負極電極12の後端までの間の領域を後巻き領域という。セパレータSの全長とは、負極電極12に対応する領域、先巻き領域および後巻き領域を含めた長さのことである。
 図6は、本発明の作用を説明するための拡大断面図である。
 上述した如く、電極群10は、軸芯15に、負極電極12、第1のセパレータ13、正極電極11および第2のセパレータ14が、この順に積層され、捲回されて構成されている。
 すなわち、正極電極11と負極電極12とは、第1のセパレータ13または第2のセパレータ14のいずれか(代表してセパレータSとする)を介して対向している。
 正極電極11の正極シート11aの両面に正極合剤層11bが形成され、負極電極12の負極シート12aの両面には、負極合剤層12bが形成されている。これにより、正極合剤層11bと負極合剤層12bとが、セパレータSを介して対向している。負極合剤層12bの幅WCは正極合剤層11bの幅WAより大きく、セパレータSの幅WSは負極合剤層12bの幅WCよりも大きい。
 上述した如く、セパレータSには多数の空孔hが形成されている。
 リチウムイオン二次電池1は、充電時に、正極合剤層11bに含まれる正極活物質が非水電解液6と反応してリチウムイオンを生成し、セパレータSの空孔hを介して負極電極12側に移動し負極電極12内部に潜り込む、所謂、インサーションあるいはインターカレーションといわれる作用を生じる。また、放電時には、逆に、リチウムイオンが負極電極12から出てセパレータSの空孔hを介して正極電極11に入り込む、所謂、エクストラクションまたはデインターカレーションといわれる作用を生じる。インサーション(インターカレーション)の場合も、エクストラクション(デインターカレーション)の場合も、リチウムイオンが負極電極12または正極電極11の表面に析出することはない。
 一般的に、リチウムイオン二次電池1では、セパレータSが、薄膜、大孔径、大空孔率、高透気度であればリチウムイオンの移動が容易であり、イオン透過性が高い。しかし、膜密度が粗となるため、機械的強度は低下する。現在の技術水準では、機械的強度の面から空孔率が50%を超えたセパレータSを製作することは困難である。
 一方、セパレータSが、厚膜、小孔径、小空孔率、低透気度であると膜密度の増加と共に機械的強度が向上する。反面、リチウムイオンの移動が困難となる。
 図6を参照すると、正極合剤層11bと負極合剤層12b間に保持される非水電解液の液量は、正極合剤層11bの面積、換言すれば発電部面積、およびセパレータSにおける空孔面積により変化する。正極合剤層11bと負極合剤層12b間に保持される電解液の液量は、正極合剤層11b中の正極活物質との反応に影響することから、電池出力に関連するものと考えられる。
 そこで、本発明は、正極合剤層11bの面積、換言すれば発電部面積と、セパレータSにおける空孔面積との比に対する電池出力の関連に基づいて電池出力の向上を図るものである。
[実施例1]
 実施例1では、正極合剤層の面積をa、セパレータの面積をb、セパレータの空孔率をcとしたとき、b×c/a=0.598であるリチウムイオン二次電池1を複数個作製した(実施例1におけるセパレータの空孔率cは47であった)。
[実施例2]
 実施例2では、正極合剤層の面積をa、セパレータの面積をb、セパレータの空孔率をcとしたとき、b×c/a=0.582であるリチウムイオン二次電池1を複数個作製した(実施例2におけるセパレータの空孔率cは47であった)。
[実施例3]
 実施例3では、正極合剤層の面積をa、セパレータの面積をb、セパレータの空孔率をcとしたとき、b×c/a=0.587であるリチウムイオン二次電池1を複数個作製した(実施例3におけるセパレータの空孔率cは47であった)。
[実施例4]
 実施例4では、正極合剤層の面積をa、セパレータの面積をb、セパレータの空孔率をcとしたとき、b×c/a=0.581であるリチウムイオン二次電池1を複数個作製した(実施例4におけるセパレータの空孔率cは45であった)。
[比較例]
 比較のため、b×c/a=0.549である従来構造のリチウムイオン二次電池を複数個作製した(比較例におけるセパレータの空孔率cは45であった)。
 (効果の確認)
 以上のように作製した実施例1~4及び比較例の各リチウム電池の複数個ずつについて、初期出力を測定し、出力特性を評価した。
 初期出力の測定では、25±2℃の雰囲気において4.1Vの満充電の状態から10A、30A、90Aの電流値で各10秒間放電し、各10秒目の電池電圧を測定した。横軸電流値に対して電池電圧を縦軸にプロットし、3点を直線近似した直線が終止電圧である2.7Vと交差する点の電流値を読み取り、この電流値と2.7Vとの積を電池重量で割った値をそのリチウムイオン二次電池1の出力密度とした。
 その結果を表1に示す。表1に示された出力(相対値)の値は、比較例の出力密度を100としたときの各実施例における出力密度の相対値であり、各実施例における測定値の平均値で示した。なお、試験を通じて、セパレータSは、厚さtが18~25μmのものを用いたが、厚さtの相違は、電池出力の増減に殆ど影響がないことが確認された。
Figure JPOXMLDOC01-appb-T000001
 実施例1~実施例3は、比較例に対し出力密度(相対値)で111%と良好な出力特性を示した。また、実施例4と比較例では、空孔率cが共に45と同一であるが、出力密度は、実施例4が比較例に対し106%と、より大きい結果が得られた。
 また、表1の内容を、図7の出力比―b×c/a特性図で示した。
 図7においては、横軸b×c/aに対して比較例基準の出力密度の相対値を縦軸にプロットした。
 表1および図7を参照すると、電池出力密度(出力比)の増大は、空孔率cとの関連性はあるが、実施例4の如く、空孔率cが比較例と同一の場合でも、電池出力密度に差異が出ることがあり、空孔率cのみでは決定できないことが判る。
 電池出力密度は、それよりも、b×c/aの値に、より近似する。
 図7に実線で示した出力比-b×c/a特性曲線から、b×c/aの値が0.57における出力比は、実施例4の場合とほぼ同等もしくはそれ以上であって、従来よりも電池出力密度が増大することが判る。
 また、図7の出力比-b×c/a特性曲線において、b×c/aの値が0.6程度付近では、出力比はほぼ一定の値(111%程度)となり、b×c/aの値が0.6を超えても、出力密度はほとんど増大しない。
 従って、b×c/aの値を0.57~0.60とすることで、従来よりも出力特性の向上を得ることができる。
 この場合、実施例1~3および実施例4を対比すると、セパレータの空孔率c=47の場合の方が空孔率=45の場合よりも電池出力密度が大きい。従って、空孔率cを47よりも大きくすれば、b×c/aの値を0.57~0.60の範囲内にすることは容易である。この場合、前述した如く、現在の技術水準では空孔率cが50を超えるセパレータSを作製することは困難であるので、空孔率c=50が実質的な上限となる。
 また、セパレータSの空孔率cが43未満の場合には、電池寿命、電池容量等の電池性能の面で、かなり低下することが確認されている。このため、空孔率c=43が実質的な下限となる。
 これらのことから、下記の結果が得られた。
(1)正極合剤層11bの面積をa、セパレータSの面積をb、セパレータSの空孔率をcとしたとき、下記の式(I)に示す関係を満足することにより、従来よりも、電池出力密度が大きいリチウムイオン二次電池を得ることができる。
 0.57<b×c/a<0.60----(I)
 この場合、b×c/aの値が上記の式(I)の範囲内であることが、従来の出力密度に対して100%以上であることの閾値を示すものではない。b×c/aの値が上記の式(I)の範囲内であることは、従来の出力密度よりも大きい出力密度とすることに十分であり、かつ、リチウムイオン二次電池の作製が容易であることを示すものである。
(2)セパレータSの空孔率cが43~50であれば、上記の式(I)を満足するリチウムイオン二次電池の作製が容易である。
(3)セパレータSの厚さtは、電池出力密度の大きさに対してあまり関係がない。
 従って、電池容量増大の観点からは十分に薄くしてもよい。実施例1~4では、セパレータの厚さt=18~25μmとした。
 以上のように、本発明に係るリチウムイオン二次電池においては、正極合剤層の面積とセパレータにおける空孔面積の比を最適にしたので、非水電解液の適切な量が正極合剤層と負極合剤層との間に保持され、正極電極と負極電極との間の抵抗が低減される。これにより、電池出力密度を向上することが可能となった。
 なお、上記実施形態では、リチウムイオン二次電池として、円筒形の二次電池を一実施の形態として説明した。しかし、本発明は、角形のリチウムイオン二次電池に対しても適用することが可能である。
 その他、本発明のリチウムイオン二次電池は、発明の趣旨の範囲内において、種々、変形して適用することが可能であり、要は、池容器内に、リチウム遷移金属複合酸化物を含む正極合剤層を有する正極電極と、リチウムイオンを吸蔵・放出する負極合剤層を有する負極電極と、正極電極と負極電極の内外周に配されたセパレータとを有する電極群が収容され、リチウム塩を含む非水電解液が注入されたリチウムイオン二次電池において、正極合剤層の面積をa、セパレータの面積をb、前記セパレータの空孔率をcとしたとき、b×c/aの値を所要の範囲内としたものであればよい。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2010年第288257号(2010年12月24日出願)
 

Claims (5)

  1.  電池容器内に、リチウム遷移金属複合酸化物を含む正極合剤層を有する正極電極と、リチウムイオンを吸蔵・放出する負極合剤層を有する負極電極と、前記正極電極と前記負極電極の内外周に配されたセパレータとを有する電極群が収容され、リチウム塩を含む非水電解液が注入されたリチウムイオン二次電池において、前記正極合剤層の面積をa、前記セパレータの面積をb、前記セパレータの空孔率をcとしたとき、下記の式(I)に示す関係を満足するリチウムイオン二次電池。
     0.57<b×c/a<0.60----(I)
  2.  請求項1に記載のリチウムイオン二次電池において、前記電極群は円筒形を有し、前記セパレータの面積は、先巻き領域の面積及び後巻き領域の面積を含むリチウムイオン二次電池。
  3.  請求項1または2に記載のリチウムイオン二次電池において、前記セパレータは空孔率が43~50であるリチウムイオン二次電池。
  4.  請求項1または2に記載のリチウムイオン二次電池において、前記セパレータは空孔率が45~50であるリチウムイオン二次電池。
  5.  請求項1乃至4に記載のリチウムイオン二次電池において、前記セパレータは、厚さが18~25μmであるリチウムイオン二次電池。
     
     
PCT/JP2011/079041 2010-12-24 2011-12-15 リチウムイオン二次電池 WO2012086514A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180062506.XA CN103283079B (zh) 2010-12-24 2011-12-15 锂离子二次电池
US13/995,671 US20130280571A1 (en) 2010-12-24 2011-12-15 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010288257A JP5377472B2 (ja) 2010-12-24 2010-12-24 リチウムイオン二次電池
JP2010-288257 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012086514A1 true WO2012086514A1 (ja) 2012-06-28

Family

ID=46313790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079041 WO2012086514A1 (ja) 2010-12-24 2011-12-15 リチウムイオン二次電池

Country Status (4)

Country Link
US (1) US20130280571A1 (ja)
JP (1) JP5377472B2 (ja)
CN (1) CN103283079B (ja)
WO (1) WO2012086514A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6479924B1 (ja) * 2017-10-03 2019-03-06 カルソニックカンセイ株式会社 組電池の製造方法及び組電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144700A (ja) * 1997-11-06 1999-05-28 Kureha Chem Ind Co Ltd 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法
JP2002015774A (ja) * 2000-06-29 2002-01-18 Shin Kobe Electric Mach Co Ltd 非水電解液リチウム二次電池
JP2002230366A (ja) * 2001-02-02 2002-08-16 Matsushita Electric Ind Co Ltd 電池販売方法と電池販売システムおよび電池の生産方法
JP2008123858A (ja) * 2006-11-13 2008-05-29 Sanyo Electric Co Ltd 角形非水電解質二次電池及びその製造方法
JP2008243661A (ja) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd 円筒型リチウム二次電池
JP2009099523A (ja) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd リチウム二次電池
JP2010198904A (ja) * 2009-02-25 2010-09-09 Sanyo Electric Co Ltd リチウム二次電池の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171723B1 (en) * 1997-10-10 2001-01-09 3M Innovative Properties Company Batteries with porous components
JP3932653B2 (ja) * 1998-03-10 2007-06-20 ソニー株式会社 非水電解液二次電池
DE60140163D1 (de) * 2000-08-28 2009-11-26 Nissan Motor Wiederaufladbare Lithiumionenbatterie
US20050233214A1 (en) * 2003-11-21 2005-10-20 Marple Jack W High discharge capacity lithium battery
JP4734912B2 (ja) * 2004-12-17 2011-07-27 日産自動車株式会社 リチウムイオン電池およびその製造方法
US20090087731A1 (en) * 2007-09-27 2009-04-02 Atsushi Fukui Lithium secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144700A (ja) * 1997-11-06 1999-05-28 Kureha Chem Ind Co Ltd 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法
JP2002015774A (ja) * 2000-06-29 2002-01-18 Shin Kobe Electric Mach Co Ltd 非水電解液リチウム二次電池
JP2002230366A (ja) * 2001-02-02 2002-08-16 Matsushita Electric Ind Co Ltd 電池販売方法と電池販売システムおよび電池の生産方法
JP2008123858A (ja) * 2006-11-13 2008-05-29 Sanyo Electric Co Ltd 角形非水電解質二次電池及びその製造方法
JP2008243661A (ja) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd 円筒型リチウム二次電池
JP2009099523A (ja) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd リチウム二次電池
JP2010198904A (ja) * 2009-02-25 2010-09-09 Sanyo Electric Co Ltd リチウム二次電池の製造方法

Also Published As

Publication number Publication date
JP5377472B2 (ja) 2013-12-25
CN103283079B (zh) 2015-10-21
CN103283079A (zh) 2013-09-04
US20130280571A1 (en) 2013-10-24
JP2012138193A (ja) 2012-07-19

Similar Documents

Publication Publication Date Title
KR101738279B1 (ko) 전류 차단 기구를 포함하는 2차 전지
JP5194070B2 (ja) 二次電池
US20110217576A1 (en) Wound electrode assembly and battery
JP5103496B2 (ja) リチウムイオン二次電池
JP3822445B2 (ja) 電気化学デバイス
JP5541957B2 (ja) 積層型二次電池
US20090098446A1 (en) Secondary battery
WO2007142040A1 (ja) 二次電池
WO2012086690A1 (ja) リチウムイオン二次電池
JP2016219143A (ja) 二次電池
WO2019098056A1 (ja) リチウムイオン二次電池
WO2013047515A1 (ja) 非水電解質二次電池
JP2018147574A (ja) 角形リチウムイオン二次電池
JP2011222128A (ja) 二次電池
JP2011129446A (ja) ラミネート形電池
JP2012169063A (ja) 円筒形二次電池
JP2012185912A (ja) 円筒形二次電池
CN111183542B (zh) 非水电解质二次电池
JP5334109B2 (ja) ラミネート形電池
JP2008243704A (ja) 円筒型非水電解質電池
JP7446271B2 (ja) 非水電解質二次電池
US20240178522A1 (en) Cylindrical battery
WO2018105398A1 (ja) 円筒形の非水電解質二次電池
JP5377472B2 (ja) リチウムイオン二次電池
JP4811983B2 (ja) 捲回電極およびその製造方法、並びにそれを用いた電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851136

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13995671

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851136

Country of ref document: EP

Kind code of ref document: A1