WO2012081676A1 - ホップエキス酸化反応物、その製造法および用途 - Google Patents

ホップエキス酸化反応物、その製造法および用途 Download PDF

Info

Publication number
WO2012081676A1
WO2012081676A1 PCT/JP2011/079085 JP2011079085W WO2012081676A1 WO 2012081676 A1 WO2012081676 A1 WO 2012081676A1 JP 2011079085 W JP2011079085 W JP 2011079085W WO 2012081676 A1 WO2012081676 A1 WO 2012081676A1
Authority
WO
WIPO (PCT)
Prior art keywords
hop extract
acid
oxidation reaction
reaction product
hop
Prior art date
Application number
PCT/JP2011/079085
Other languages
English (en)
French (fr)
Inventor
慈将 谷口
夕美恵 小林
簡利 眞鍋
幹生 形山
Original Assignee
キリンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリンホールディングス株式会社 filed Critical キリンホールディングス株式会社
Priority to US13/994,632 priority Critical patent/US9512389B2/en
Priority to BR112013014941A priority patent/BR112013014941A2/pt
Priority to AU2011342118A priority patent/AU2011342118B2/en
Priority to NZ612722A priority patent/NZ612722A/en
Priority to EP11849749.4A priority patent/EP2653041A4/en
Priority to JP2012548836A priority patent/JP5925698B2/ja
Publication of WO2012081676A1 publication Critical patent/WO2012081676A1/ja
Priority to US15/332,298 priority patent/US20170037345A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C3/00Treatment of hops
    • C12C3/04Conserving; Storing; Packing
    • C12C3/06Powder or pellets from hops
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/122Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/10Preparation or pretreatment of starting material

Definitions

  • the present invention relates to a hop extract oxidation reaction product with reduced bitterness and taste, a method for producing the same, and more specifically, a food using the hop extract oxidation reaction product and a lipid absorption inhibitor containing the food as an active ingredient. About.
  • Hop which is the origin of bitter components in beer, has been used as a folk medicine since ancient times, and various health functions such as sedation and stomach effect are known.
  • various health functions such as sedation and stomach effect are known.
  • a certain amount or more of the extract obtained from this hop is blended with a food or drink, a unique intense bitterness or savory taste is produced, which may impair the palatability.
  • bitterness reducing material examples include phosphatidic acid (trade name “Benecoat BMI” Kao Corporation), L-ornithine (Food Science No.317 p54 2004), and the like.
  • phosphatidic acid trade name “Benecoat BMI” Kao Corporation
  • L-ornithine Food Science No.317 p54 2004
  • none of them alone has a strong effect, and it has been particularly difficult to suppress the bitter taste of the hop extract.
  • sweeteners such as sucralose and thaumatin (Japanese Patent Laid-Open No. 2008-99682)
  • bitterness is somewhat masked by sweetness, its use is limited due to its strong sweetness.
  • hop extracts containing hop bitter components such as ⁇ -acid, ⁇ -acid, and iso- ⁇ -acid as main components are expected to be used as health functional ingredients.
  • hop extracts containing hop bitter components such as ⁇ -acid, ⁇ -acid, and iso- ⁇ -acid as main components are expected to be used as health functional ingredients.
  • hop bitter components such as ⁇ -acid, ⁇ -acid, and iso- ⁇ -acid as main components are expected to be used as health functional ingredients.
  • iso- ⁇ acid has a strong bitter taste
  • ⁇ -acid and ⁇ -acid have a strong taste, when it is applied to foods and drinks and pharmaceuticals, suppression of the bitterness and taste is an issue. It was.
  • the present inventors have obtained a hop extract oxidation reaction product obtained by oxidizing the ⁇ acid (humulones), ⁇ acid (luprons), iso ⁇ acid (isohumulones), etc. in the hop extract to reduce the content. Despite significantly reducing the content of iso-alpha acid, etc., it has a lipid absorption inhibitory effect as a health functional effect, the bitterness / egg taste of the hop extract oxidation product is greatly reduced, Furthermore, it discovered that a hop extract oxidation reaction product can be efficiently manufactured by pulverizing a hop extract and making it contact with oxygen. The present invention is based on these findings.
  • a method for producing a hop extract oxidation reaction product comprising oxidizing a powder hop extract comprising a hop extract and a powdered base material.
  • the hop extract oxidation reaction product of the present invention a hop extract oxidation reaction product (hereinafter, simply referred to as “the hop extract oxidation reaction product of the present invention”), which is produced by the above-described method and has reduced bitterness / egg taste, and hop A food or drink (hereinafter sometimes simply referred to as “the food or drink of the present invention”) to which an extract reaction product is added is provided.
  • the inhibitor of the present invention comprising a hop extract oxidation reaction product as an active ingredient.
  • a method for suppressing lipid absorption comprising administering a hop extract oxidation reaction product to mammals including humans.
  • the hop extract oxidation reaction product of the present invention has a lipid absorption inhibitory action and does not have an intense bitter taste like an isomerized hop extract or an intense taste like an unisomerized hop extract. Therefore, the hop extract oxidation reaction product of the present invention and the inhibitor of the present invention are advantageous in that they can be ingested as they are without taking masking means for bitterness and taste, while expecting physiological activities such as lipid absorption inhibitory action.
  • FIG. 2 is an enlarged view of an HPLC chromatogram (detection wavelength: 270 nm) of a hop extract, which is a raw material for producing a hop extract oxidation reaction product described in Example 1.
  • FIG. 2 is an enlarged view of an HPLC chromatogram (detection wavelength: 355 nm) of a hop extract that is a raw material for producing a hop extract oxidation reaction product described in Example 1.
  • FIG. It is a HPLC chromatogram (detection wavelength 270 nm) of the oxidation reaction product (Example 2) after pulverizing the hop extract produced by supercritical carbon dioxide extraction and subjecting it to an oxidation reaction.
  • FIG. 2 is an HPLC chromatogram (detection wavelength: 270 nm) of hop extract, which is a raw material for producing the hop extract oxidation reaction product described in Example 2.
  • 4 is an enlarged view of an HPLC chromatogram (detection wavelength: 270 nm) of hop extract, which is a raw material for producing the hop extract oxidation reaction product described in Example 2.
  • FIG. 3 is an HPLC chromatogram (detection wavelength: 355 nm) of hop extract, which is a raw material for producing the hop extract oxidation reaction product described in Example 2.
  • FIG. 3 Another enlargement of the HPLC chromatogram (detection wavelength 270 nm) of the oxidation reaction product (Example 3) after pulverizing the hop extract produced by isomerization after supercritical carbon dioxide extraction and subjecting it to an oxidation reaction
  • FIG. 3 It is a HPLC chromatogram (detection wavelength 355 nm) of the oxidation reaction product (Example 3) after pulverizing the hop extract produced by performing isomerization after supercritical carbon dioxide extraction and subjecting it to an oxidation reaction.
  • It is a HPLC chromatogram (detection wavelength 270 nm) of the hop extract which is a manufacturing raw material of the hop extract oxidation reaction material in Example 3.
  • FIG. 1 It is an enlarged view of the HPLC chromatogram (detection wavelength 270 nm) of the hop extract which is a manufacturing raw material of the hop extract oxidation reaction material in Example 3. It is a HPLC chromatogram (detection wavelength 355 nm) of the hop extract which is a manufacturing raw material of the hop extract oxidation reaction material in Example 3.
  • FIG. It is a HPLC chromatogram (detection wavelength 270 nm) of the raw material hop extract in Example 5, and the hop extract oxidation reaction product after oxidizing at 60 degreeC for 24 hours.
  • the hop extract oxidation reaction product provided by the present invention can be obtained by subjecting the components in the hop extract to an oxidation reaction.
  • the “oxidation reaction” is not particularly limited as long as the ⁇ acid, iso ⁇ acid, and ⁇ acid, which are components in the hop extract, can be changed to oxidation products having higher hydrophilicity. The progress of the reaction can be confirmed by analysis using HPLC.
  • “hop extract” means an extract of hop camellia, and isoalpha acid is reduced using an isomerized hop extract or a reducing agent obtained by subjecting the hop extract to isomerization treatment. It is used in the meaning including the reduced isomerized hop extract. The hop extract extraction method and isomerization treatment will be described later.
  • Hop extract contains acidic resin components such as ⁇ acid (humulones) and ⁇ acid (luprons).
  • the isomerized hop extract contains an acidic resin component such as isoalpha acid (isohumulones).
  • ⁇ acid, humulones are used in the meaning including humulone, adhumulone, cohumulone, posthumulone, and prehumulone.
  • ⁇ acid, luprones are used in the meaning including lupron, adolpron, colpron, postlupron and prelupron.
  • iso ⁇ acid, isohumulones is isohumulone, isoadhumulone, isocohumulone, isoposthumulone, isoprehumulone, Rho-isohumulone, Rho-isoadhumulone, Rho-isocohumulone, Rho-isoposthumulone, Rho-isoprehumulone.
  • Isohumulones have cis and trans stereoisomers, and unless otherwise specified, they are used to include both. In the present invention, the above components are sometimes collectively referred to as bitter components.
  • hop extract As described above, there are various types of hop extract, but the conventional use of hop extract is almost limited to brewing beer-based beverages and non-alcoholic beer-taste beverages. It is mainly used to give beverages a bitter taste and aroma like beer. Hop extract is superior in storage stability compared to plant active ingredients such as hop blossoms and hop pellets, and also has excellent stability and uniformity of the bitterness component contained therein, so that the bitterness component can be stably imparted to the beverage. it can. On the other hand, the idea of using hop extract after subjecting it to an oxidation reaction and reducing bitter components such as ⁇ -acid, ⁇ -acid, and iso- ⁇ -acid has never existed.
  • the bitter component in the extract is more stable than in the active ingredient of the plant, it is difficult to efficiently obtain an oxidation reaction product even if it is directly subjected to the oxidation reaction.
  • the hop extract oxidation reaction product of the present invention can be obtained very efficiently.
  • the contents of ⁇ -acid, iso- ⁇ -acid and ⁇ -acid are reduced by subjecting the hop extract to oxidation reaction, oxidation-fraction 1 (Oxi-Fr1), oxidation-fraction 2 (Oxi-Fr2), ⁇ 1 , ⁇ 2, ⁇ 3, ⁇ 4, and the like increase in content (see Example 4 for analytical methods and definitions of these components).
  • hop extract oxidation reactant “Oxi-Fr1 / ( ⁇ acid + iso ⁇ acid)” among the hop extract oxidation reactants when the HPLC analysis of Example 4 was performed was
  • the weight ratio is 0.1 or more or “( ⁇ 1 + ⁇ 2 + ⁇ 3 + ⁇ 4) / ⁇ acid” is 0.3 or more by weight ratio or “Oxi-Fr2 / ⁇ acid” is 2.0 or more by weight ratio ( ⁇ 1 + ⁇ 2 + ⁇ 3 + ⁇ 4 is also referred to as ⁇ 1-4).
  • Oxi-Fr2 containing each component of ⁇ 1-4 is mainly composed of an oxidation reaction product of ⁇ acid in the hop extract. From this finding and further Examples 10 and 12, Oxi-Fr1 It can be seen that is mainly composed of oxidation products of ⁇ -acid and iso- ⁇ -acid in hop extract.
  • FIG. 1 shows the relationship between the bitter component in the hop extract and the oxidation product.
  • each component of ⁇ 1-4 is composed of the compounds shown below.
  • ⁇ 1 ⁇ 1 comprises any compound represented by the following formula (I).
  • ⁇ 1 may be any one of the compounds represented by the formula (I), or may be a mixture of the compounds represented by the formula (I).
  • ⁇ 1 is any one or both compounds of formula (I).
  • ⁇ 2 ⁇ 2 comprises any compound represented by the following formula (II).
  • ⁇ 2 may be any one of the compounds represented by the formula (II), or may be a mixture of the compounds represented by the formula (II).
  • ⁇ 2 is any one or both compounds of formula (II).
  • ⁇ 3 ⁇ 3 comprises any compound represented by the following formula (III) or (IV).
  • ⁇ 3 may be any one of the compounds represented by formula (III) or (IV), or a mixture of any two or more compounds represented by formula (III) or (IV) There may be. Therefore, according to one embodiment, ⁇ 2 is at least one compound selected from a compound represented by formula (III) and a compound represented by formula (IV).
  • ⁇ 4 ⁇ 4 comprises any compound represented by the following formula (V) or (VI).
  • ⁇ 4 may be any one of the compounds represented by formula (V) or (VI), or a mixture of any two or more compounds represented by formula (V) or (VI). There may be. Therefore, according to one embodiment, ⁇ 4 is at least one compound selected from a compound represented by formula (V) and a compound represented by formula (VI).
  • the hop extract oxidation reaction product prepared by the procedures described in Examples 1 to 3 and 5 to 12 includes an oxidation product of ⁇ acid, ⁇ acid, and iso ⁇ acid.
  • the hop extract oxidation reaction product contained in the main component has reduced bitterness / egg taste peculiar to hop extract as shown in Example 13, and has physiological activity as shown in Examples 14 and 15. Can be played.
  • the hop extract oxidation reaction product of the present invention can be efficiently produced by mixing a hop extract with a powdered base material, pulverizing it, and subjecting it to an oxidation reaction. In view of the fact that an enormous amount of time is required for the oxidation reaction when heating the hop extract as it is, it is advantageous for industrial use to oxidize after pulverizing the hop extract as in the present invention.
  • the weight ratio between the hop extract and the powdered base material is not particularly limited as long as the pulverized hop extract can be uniformly prepared, but is preferably about 1: 1 to 1:10. More preferably, it is about 1: 2 to 1: 5.
  • the temperature range of the hop extract oxidation reaction is preferably room temperature to 120 ° C, more preferably 60 ° C to 80 ° C.
  • the reaction time of the oxidation reaction of hop extract is preferably several hours to several weeks, more preferably 4 hours to 1 week, and further preferably 8 hours to 96 hours.
  • the powdered substrate is not particularly limited as long as the hop extract can be made into a powder form, but is acceptable as a general food or drink considering the use of the hop extract oxidation reaction product in food. It is preferable to use various additives and foods themselves. Such additives and foods are preferably polysaccharides, inorganic carriers, brewing raw materials, more preferably excipients such as dextrin and cellulose, production aids such as diatomaceous earth, perlite and activated clay, hops and hops. Foods such as are raised. As the powdered substrate, a single substrate may be used, or a mixture of a plurality of substrates may be used at an arbitrary ratio.
  • the hop extract oxidation product in a powder state after being subjected to an oxidation reaction can be used as it is, but the base material used for pulverization is removed and only the hop extract oxidation reaction component is used. Also good.
  • a solvent that dissolves the hop extract component and does not dissolve the base material may be used.
  • a solvent such as ethanol can be used.
  • cellulose is used as a base material
  • only a hop oxidation reaction component can be extracted with a solvent such as ethanol or an alkaline aqueous solution.
  • it can be formulated in a state including the base material. Moreover, you may use after removing the solvent used for formulation and drying.
  • O acid, iso alpha acid, beta acid contained in hop extract is reduced by oxidation reaction.
  • the degree of reduction of these components can be analyzed and confirmed by HPLC or the like.
  • the ratio of the peak areas of iso ⁇ acid, ⁇ acid and ⁇ acid to the total peak area of components detected at a wavelength of 270 nm by HPLC analysis of the hop extract oxidation product is preferably 50% or less, more preferably 30%. Or less, more preferably 10% or less. Therefore, according to one aspect of the present invention, there is provided a hop extract oxidation reaction product, wherein the ratio of the peak areas of iso ⁇ acid, ⁇ acid and ⁇ acid to the total peak area by HPLC analysis of the hop extract oxidation reaction product is What is 50% or less is provided.
  • the hop extract used as a raw material for producing the hop extract oxidation reaction product of the present invention for example, a hop extract or a compressed product thereof prepared as it is or after being pulverized and subjected to an extraction operation can be used.
  • the extraction method include an extraction method using an ethanol solvent and a supercritical carbon dioxide extraction method used as a method for preparing a hop extract used for beer brewing.
  • the supercritical carbon dioxide extraction has the characteristics that the polyphenol component is small and the bitter component and the essential oil component are concentrated more highly.
  • other commonly used methods can be employed, for example, a method of immersing hop spikelets, pulverized products thereof, etc.
  • the obtained extract may be used as it is, after removing solids by filtration or centrifugation as necessary, or may be used as it is, or may be partially concentrated or dried by distilling off the solvent. . Further, after concentration or drying, it may be used after being purified by washing with a non-soluble solvent, or it may be further dissolved or suspended in a suitable solvent. Furthermore, you may use the hop extract extract dried material obtained by drying the solvent extract obtained as mentioned above by normal means, such as reduced-pressure drying and freeze-drying.
  • Examples of the solvent used for the extraction include water; lower alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propanol and butanol; lower alkyl esters such as ethyl acetate; ethylene glycol, butylene glycol, propylene glycol, Examples include known organic solvents such as glycols such as glycerin; polar solvents such as acetone and acetic acid; hydrocarbons such as benzene and hexane; and nonpolar solvents such as ethers such as ethyl ether and petroleum ether. These solvents may be used alone or in combination of two or more.
  • the hop extract used as a raw material for producing the hop extract oxidation reaction product of the present invention is an isomerized hop extract obtained by further subjecting the hop extract to an isomerization treatment, or a reduced isomerized hop obtained by reducing isoalpha acid by a reducing agent treatment.
  • An extract may be used.
  • the isomerization method is known and any method may be used.
  • the hop extract is heated under a weak alkaline condition of pH 8-9 or in the presence of magnesium oxide. be able to.
  • the hop extract may be subjected to an isomerization treatment as it is.
  • the hop extract is added to warm alkaline water (pH 8 to 9 after adding the hop extract), and the dissolved ⁇ acid and insoluble ⁇ acid are added.
  • the acid may be separated and the resulting ⁇ acid fraction may be subjected to isomerization.
  • the hop extract used for the production of the hop extract oxidation reaction product is commercially available as a beer additive, and a commercially available product can be used in the present invention.
  • a hop extract eg, CO 2 Hop Extract (Hopsteiner)
  • Hop Extract obtained by supercritical carbon dioxide extraction of humrons and luprons mainly from hop blossom pulverized products, and mainly humulones and luprons from ethanol hop pulverized products
  • Extracted hop extract for example, Ethanol Hop Extract (Hopsteiner)
  • hop extract eg, Beta Aroma Extract (Hopsteiner)
  • hop extract obtained by supercritical carbon dioxide extraction mainly from pulmon pulverized pulps Extracts isomerized from carbon dioxide extract (for example, Isomerized Kettle Extract (Hopsteiner)), extracts obtained by isomerization and reduction of carbon dioxide extract of hop blossom pulverized product (for example, Light Stable Kettle Extract (Hopsteiner), Tetra Concentrate (Hopsteiner), Hexa
  • hop extracts there are those in which the bitter component is potassium-chlorinated, but in the oxidation reaction, it is preferable to use a free resinous extract after acid treatment. Moreover, you may fractionate and use only the specific bitterness component in an extract.
  • the hop extract oxidation reaction product of the present invention can form a salt with an alkali metal to form an aqueous alkali metal salt solution.
  • the aqueous solution can be pulverized by spray drying or the like.
  • the alkali metal salt that can be used for forming the metal salt of the hop extract oxidation reaction product of the present invention include salts that are allowed to be added to foods such as potassium salt and sodium salt.
  • the alkali metal salt of the hop extract oxidation reaction product of the present invention is advantageous in that it has excellent water solubility and can be easily added to foods (especially beverages).
  • the hop extract oxidation reaction product of the present invention obtained as described above may further concentrate a specific component in the hop extract oxidation reaction product by fractionation. Further, the concentrate may be added to foods, or may be used as the lipid absorption inhibitor of the present invention.
  • the hop extract oxidation reaction product has a lipid absorption inhibitory action.
  • the hop extract oxidation reaction product of the present invention is useful as a lipid absorption inhibitor.
  • the hop extract oxidation reaction product of the present invention is useful for the prevention and / or treatment of obesity.
  • the hop extract oxidation reaction product of the present invention does not have an intense bitter taste like an isomerized hop extract or an intense taste like an unisomerized hop extract (Example 13). Therefore, the hop extract oxidation reaction product of the present invention is advantageous in that it can be used as it is without taking any bitterness / egg taste masking means in foods and beverages and pharmaceuticals while expecting the above-mentioned physiological activity.
  • the hop extract oxidation reaction product of the present invention When the hop extract oxidation reaction product of the present invention is provided as a pharmaceutical product, it can be produced by mixing the hop extract oxidation reaction product of the present invention with a pharmaceutically acceptable additive. Since the hop extract oxidation reaction product of the present invention does not have an intense bitter taste like an isomerized hop extract or an intense taste like an unisomerized hop extract, it masks bitterness and taste. Therefore, it is advantageous in that the preparation can be expected to have a predetermined effect in a state in which the bitterness / egg taste is sufficiently masked without taking measures for the above or using existing masking means.
  • the hop extract oxidation reaction product itself but also a product obtained by isolating and purifying specific components contained in the hop extract oxidation reaction product can be used.
  • the hop extract oxidation reaction product of the present invention can be administered orally or parenterally as an active ingredient, preferably oral administration.
  • Oral preparations include granules, powders, tablets (including sugar-coated tablets), pills, capsules, syrups, emulsions, and suspensions.
  • parenteral preparations include injections (for example, subcutaneous injections, intravenous injections, intramuscular injections, intraperitoneal injections), drops, and external preparations (for example, nasal preparations, transdermal preparations, ointments) ), Suppositories (for example, rectal suppositories, vaginal suppositories). These preparations can be formulated using a pharmaceutically acceptable carrier by a technique usually performed in this field.
  • Pharmaceutically acceptable carriers include excipients, binders, diluents, additives, fragrances, buffers, thickeners, colorants, stabilizers, emulsifiers, dispersants, suspending agents, preservatives, etc.
  • excipients include excipients, binders, diluents, additives, fragrances, buffers, thickeners, colorants, stabilizers, emulsifiers, dispersants, suspending agents, preservatives, etc.
  • magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, low melting point wax, cocoa butter can be used as a carrier.
  • the preparation can be produced, for example, as follows.
  • Oral preparations contain active ingredients such as excipients (eg lactose, sucrose, starch, mannitol), disintegrants (eg calcium carbonate, carboxymethylcellulose calcium), binders (eg pregelatinized starch, gum arabic, carboxy Methylcellulose, polyvinylpyrrolidone, hydroxypropylcellulose) or lubricant (eg talc, magnesium stearate, polyethylene glycol 6000) and compression molded, then, if necessary, taste masking, enteric or sustained purposes Therefore, it can be produced by coating by a method known per se.
  • active ingredients eg lactose, sucrose, starch, mannitol
  • disintegrants eg calcium carbonate, carboxymethylcellulose calcium
  • binders eg pregelatinized starch, gum arabic, carboxy Methylcellulose, polyvinylpyrrolidone, hydroxypropylcellulose
  • ethyl cellulose for example, ethyl cellulose, hydroxymethyl cellulose, polyoxyethylene glycol, cellulose acetate phthalate, hydroxypropyl methylcellulose phthalate and Eudragit (Rohm, Germany, methacrylic acid / acrylic acid copolymer) can be used.
  • An injection comprises an active ingredient containing a dispersant (for example, Tween 80 (manufactured by Atlas Powder, USA), HCO 60 (manufactured by Nikko Chemicals), polyethylene glycol, carboxymethylcellulose, sodium alginate, etc.), a preservative (for example, methylparaben).
  • a dispersant for example, Tween 80 (manufactured by Atlas Powder, USA), HCO 60 (manufactured by Nikko Chemicals), polyethylene glycol, carboxymethylcellulose, sodium alginate, etc.
  • a preservative for example, methylparaben
  • aqueous solvents eg, distilled water, physiological saline, Ringer's solution, etc.
  • an oily solvent for example, vegetable oil such as olive oil, sesame oil, cottonseed oil, corn oil, propylene glycol.
  • additives such as a solubilizing agent (for example, sodium salicylate, sodium acetate), a stabilizer (for example, human serum albumin), a soothing agent (for example, benzalkonium chloride, procaine hydrochloride) are added. Also good.
  • a solubilizing agent for example, sodium salicylate, sodium acetate
  • a stabilizer for example, human serum albumin
  • a soothing agent for example, benzalkonium chloride, procaine hydrochloride
  • External preparations can be produced by making the active ingredient into a solid, semi-solid or liquid composition.
  • the solid composition is prepared by using the active ingredient as it is, or an excipient (eg, lactose, mannitol, starch, microcrystalline cellulose, sucrose), a thickener (eg, natural gums, cellulose derivatives, acrylic acid). Polymer) and the like can be added and mixed to form a powder.
  • the liquid composition can be produced in almost the same manner as in the case of an injection.
  • the semi-solid composition is preferably an aqueous or oily gel or a cartilage.
  • compositions are all pH adjusters (for example, carbonic acid, phosphoric acid, citric acid, hydrochloric acid, sodium hydroxide), preservatives (for example, p-hydroxybenzoates, chlorobutanol, benzalkonium chloride). Etc. may be included. Suppositories can be produced by making the active ingredient into an oily or aqueous solid, semi-solid or liquid composition.
  • pH adjusters for example, carbonic acid, phosphoric acid, citric acid, hydrochloric acid, sodium hydroxide
  • preservatives for example, p-hydroxybenzoates, chlorobutanol, benzalkonium chloride.
  • Etc. may be included.
  • Suppositories can be produced by making the active ingredient into an oily or aqueous solid, semi-solid or liquid composition.
  • oily base used in the composition examples include higher fatty acid glycerides [for example, cacao butter, witepsols (manufactured by Dynamite Nobel)], intermediate fatty acids [for example, miglyols (manufactured by Dynamite Nobel)], or vegetable oils (for example, , Sesame oil, soybean oil, cottonseed oil).
  • aqueous base examples include polyethylene glycols and propylene glycol.
  • aqueous gel base examples include natural gums, cellulose derivatives, vinyl polymers, and acrylic acid polymers.
  • the hop extract oxidation reaction product of the present invention can be used by being added to food and drink.
  • the hop extract oxidation reaction product of the present invention exerts physiological actions such as a lipid absorption inhibitory effect. Therefore, physiological effects such as a lipid absorption inhibitory effect are expected for foods and drinks to which the hop extract oxidation reaction product of the present invention is added.
  • the food / beverage products of the present invention are food / beverage products containing an effective amount of the hop extract oxidation reaction product of the present invention.
  • “containing an effective amount” of the hop extract oxidation product of the present invention means that the hop extract oxidation product is ingested within the range described below when an amount normally consumed in each food or drink is ingested. It is said content.
  • the hop extract oxidation reaction product of the present invention can be directly incorporated into the food or drink. More specifically, the food / beverage products of the present invention are prepared by directly preparing the hop extract oxidation reaction product of the present invention as a food / beverage product, and further blended with various proteins, sugars, fats, trace elements, vitamins, etc. It may be a semi-liquid or solid, an aqueous solution such as potassium salt or sodium salt, or a general food or drink. Since the hop extract oxidation reaction product of the present invention does not have an intense bitter taste like an isomerized hop extract or an intense taste like an unisomerized hop extract, it masks bitterness and taste. It is advantageous in that it can be a food or drink that is expected to have a predetermined physiological effect without taking any measures for the above or in a state in which the bitterness and taste are sufficiently masked using existing masking means.
  • “food or drink” is used to mean including health foods, functional foods, foods for specified health use, and foods for the sick.
  • the form of “food” is not particularly limited, and may be, for example, a drink form.
  • the hop extract oxidation reaction product of the present invention Since the hop extract oxidation reaction product of the present invention has a lipid absorption inhibitory action, it can be used for daily consumption of food and drink or health food or functional food taken as a supplement, preferably lipid-containing food or high-calorie food.
  • the hop extract oxidation reaction product of the present invention By blending the hop extract oxidation reaction product of the present invention, it can be provided as a food / beverage product that is useful for maintaining / promoting health, specifically, a food / beverage product having a function of inhibiting lipid absorption. That is, the food of the present invention is a food and drink suitable for consumers who are concerned about high fat plasma and fat accumulation (particularly accumulation of body fat and visceral fat) and consumers who are concerned about weight gain. It can be provided as a health food.
  • Such foods and drinks include foods and drinks containing carbohydrates such as rice, noodles, breads and pasta; Western confectionery such as cookies and cakes; Japanese confectionery such as buns and sheepskin; candy, gums, yogurt and pudding Various confectionery such as frozen confectionery and ice confectionery such as whiskey, bourbon, spirits, liqueur, wine, fruit liquor, sake, Chinese sake, shochu, beer, non-alcoholic beer with alcohol content of 1% or less, sparkling liquor, other miscellaneous sake, Alcoholic beverages such as strawberry high; beverages containing fruit juice, beverages containing vegetable juice, beverages containing fruit juice and vegetable juice, soft drinks, milk, soy milk, milk drinks, drink-type yogurt, drink-type jelly, coffee, cocoa, tea drinks , Non-alcoholic beverages such as energy drinks, sports drinks and mineral water; processed products using eggs, seafood ( Ca, octopus, shellfish, including processed products (delicacies eel, etc.) and meat (including offal lever or the like)) can be exemplified such as, but not
  • tea beverages include black tea, green tea, barley tea, brown rice tea, sencha, gyokuro tea, roasted tea, oolong tea, turmeric tea, puer tea, rooibos tea, rose tea, chrysanthemum tea, herbal tea (for example, mint tea, jasmine) Tea).
  • fruits used in fruit juice-containing beverages and fruit and vegetable juice-containing beverages include apples, mandarin oranges, grapes, bananas, pears, and ume.
  • a vegetable used for a drink containing vegetable juice, fruit juice, and a drink containing vegetable juice a tomato, a carrot, a celery, a cucumber, and a watermelon are mentioned, for example.
  • the pharmaceuticals and foods and drinks of the present invention use hop extract that human beings have taken for many years as foods and drinks, and therefore have low toxicity and mammals that require it (for example, humans, mice, rats, rabbits, dogs, Cats, cows, horses, pigs, monkeys, etc.).
  • the dose or intake of the hop extract oxidation reaction product of the present invention can be determined depending on the recipient, the age and weight of the recipient, symptoms, administration time, dosage form, administration method, drug combination, and the like.
  • the hop extract oxidation reaction product of the present invention is orally administered as a pharmaceutical, 10 to 600 mg, more preferably 20 to 200 mg, of hop extract oxidation reaction product in terms of isohumulone is administered parenterally per day for an adult weighing 60 kg.
  • the dose can be divided into 1 to 3 times a day so that the dose is in the range of 1 to 100 mg, preferably 3 to 30 mg.
  • Drugs having other mechanism of action used in combination with the hop extract oxidation reaction product of the present invention can also be appropriately determined based on the clinically used dose.
  • the present invention is such that the hop extract oxidation reaction product in the range of 25 to 9600 mg, preferably 25 to 780 mg in terms of isohumulone per day for an adult with a body weight of 60 kg.
  • the hop extract oxidation reaction product can be added to food.
  • Example 1 Preparation of oxidation reaction product of hop extract from supercritical carbon dioxide extracted hop extract 1 Hop extract extracted with supercritical carbon dioxide (CO 2 Hop Extract; ⁇ acid 55.6% w / w, ⁇ acid 22.6% w / w, iso ⁇ acid not detected; hopsteiner) 60d and dextrin (TK-16; Matsutani Chemical) ) 120 g was mixed uniformly at a weight ratio of 1: 3 to form a hop extract in powder form. The obtained powdered hop extract was heated at 80 ° C. for 24 hours and subjected to an oxidation reaction.
  • CO 2 Hop Extract supercritical carbon dioxide
  • TK-16 dextrin
  • Example 2 Preparation 2 of a hop extract oxidation reaction product from a supercritical carbon dioxide extracted hop extract 2
  • Supercritical carbon dioxide extracted hop extract (Beta Aroma Extract; ⁇ acid 41.3% w / w, ⁇ acid and iso ⁇ acid not detected; hopsteiner) 20g and dextrin (TK-16; Matsutani Chemical) 60g weight ratio 1 : 3 was mixed uniformly to make the hop extract in powder form.
  • the obtained powdered hop extract was heated at 80 ° C. for 24 hours and subjected to an oxidation reaction.
  • Example 3 Preparation of a hop extract oxidation reaction product from a hop extract subjected to isomerization after supercritical carbon dioxide extraction
  • a hop extract (Isomerized Kettle Extract; isoalpha acid 53.0) subjected to isomerization after supercritical carbon dioxide extraction % w / w, ⁇ acid 20.0% w / w, ⁇ acid not detected; hopsteiner) 20g and dextrin (TK-16; Matsutani Chemical) 60g are mixed uniformly in a weight ratio of 1: 3 to obtain a hop extract.
  • the obtained powdered hop extract was heated at 80 ° C. for 24 hours and subjected to an oxidation reaction.
  • Example 4 Analysis of Hop Extract Oxidation Reactant
  • the hop extract oxidation reaction prepared in Examples 1 to 3 was subjected to analytical pretreatment as follows. [Pre-analysis] The hop extract component was extracted from the powdered hop extract after the reaction with ethanol, the hop extract-derived solid content was adjusted to 2.5 mg / mL, and analyzed by HPLC. For comparison, the hop extract used as a raw material in Examples 1 to 3 was also prepared and analyzed so as to have the same solid content concentration.
  • the component group eluted at the front of iso-alpha acid, specifically trans-isocohumulone and detected at 270 nm under the above analysis conditions is defined as Oxidation-Fraction1 (Oxi-Fr1).
  • alpha acid specifically the component that is eluted from the front of the elution time of cohumulon until the end of the analysis (the time when the mobile phase in the detector switches to the washing solvent) and is detected at 270 nm excluding the alpha acid and beta acid peaks
  • the group is defined as Oxidation-Fraction2 (Oxi-Fr2).
  • the oxidized compounds that are contained in Oxi-Fr2 and in which one oxygen is added to the ⁇ acid are defined as ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 as described later.
  • ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 areas where solvent peaks and negative peaks due to injection shock occur were excluded from analysis.
  • how to obtain the area value used for the quantitative analysis of Oxi-Fr1, Oxi-Fr2, and ⁇ 1-4 will be described later.
  • the HPLC chromatograms at the time of analyzing the hop extract oxidation product prepared in Example 1 above are shown in FIGS. 2-1 to 2-3 (detection wavelength 270 nm) and FIG. 2-4 (detection wavelength 355 nm). Further, chromatograms at the time of analysis of hop extract used as a raw material are shown in FIGS. 3-1 and 3-2 (detection wavelength 270 nm) and FIG. 3-3 (detection wavelength 355 nm).
  • the component group defined as Oxi-Fr1 is detected in the region illustrated in FIG. During quantitative analysis, the total value of all peak areas detected in this fraction is used.
  • a component group defined as Oxi-Fr2 is detected in the area shown in FIGS. 2-2 and 3-2. For quantitative analysis, the area indicated by hatching is used. Each component of ⁇ 1-4 is the peak group shown in FIG. 2-3, and the area of the hatched portion is used for quantitative analysis.
  • the HPLC chromatograms at the time of analyzing the hop extract oxidation product prepared in Example 2 are shown in FIGS. 4-1 to 4-3 (detection wavelength 270 nm) and FIG. 4-4 (detection wavelength 355 nm). Further, chromatograms at the time of analysis of hop extract used as a raw material are shown in FIGS. 5-1 and 5-2 (detection wavelength 270 nm) and FIG. 5-3 (detection wavelength 355 nm).
  • the component group defined as Oxi-Fr1 is detected in the region shown in FIG. 4-1, but the raw material extract used in Example 2 contains ⁇ acid and iso ⁇ acid. As a result, the amount of Oxi-Fr1 produced was small.
  • Example 2 the component group defined as Oxi-Fr2 is detected in the region shown in FIGS. 4-2 and 5-2.
  • the area indicated by hatching is used.
  • Each component of ⁇ 1-4 is a peak group shown in FIG. 4-3, and the area shown by hatching is used for quantitative analysis. From the results of Example 2, it was suggested that Oxi-Fr2 containing each component of ⁇ 1-4 is formed by oxidation of ⁇ acid in hop extract.
  • the HPLC chromatograms at the time of analyzing the hop extract oxidation product prepared in Example 3 are shown in FIGS. 6-1 to 6-3 (detection wavelength 270 nm) and FIG. 6-4 (detection wavelength 355 nm).
  • the chromatograms at the time of analysis of the hop extract used as a raw material are shown in FIGS. 7-1 and 7-2 (detection wavelength 270 nm) and FIG. 7-3 (detection wavelength 355 nm).
  • the component group defined as Oxi-Fr1 is detected in the region illustrated in FIG. During quantitative analysis, the total value of all peak areas detected in this fraction is used.
  • the component group defined as Oxi-Fr2 is detected in the region shown in FIGS. 6-2 and 7-2.
  • the area indicated by hatching is used.
  • Each component of ⁇ 1-4 is the peak group shown in FIG. 6-3, and the area shown by hatching is used for quantitative analysis.
  • “Quantitative method" Oxi-Fr1, Oxi-Fr2, and ⁇ 1-4 are quantified in terms of iso- ⁇ acid based on the calculated area values. Specifically, it can be determined using a calibration curve created using an iso- ⁇ acid standard. The quantification of ⁇ -acid, ⁇ -acid, and iso- ⁇ -acid can be obtained using a calibration curve prepared using each sample. As preparations of ⁇ -acid, ⁇ -acid and iso- ⁇ -acid, for example, ICE-2, ICS-I2, ICS-T2, etc. of Internal Calibration Standards available from American Society of Brewing Chemists (ASBC) can be used.
  • ASBC Internal Calibration Standards
  • Oxi-Fr1, Oxi-Fr2, and ⁇ 1-4 newly appeared or greatly increased in the hop extract subjected to the oxidation reaction after pulverization.
  • Example 5 Hop extract extracted with supercritical carbon dioxide (CO 2 Hop Extract; ⁇ acid 55.6% w / w, ⁇ acid 22.6% w / w, iso ⁇ acid not detected; hopsteiner) 60d and dextrin (TK-16; Matsutani Chemical) ) 180 g was mixed uniformly at a weight ratio of 1: 3 to make the hop extract in powder form.
  • the obtained powdered hop extract was heated at 40 ° C., 60 ° C., and 80 ° C. for 8 hours to 196 hours, and subjected to an oxidation reaction. During the oxidation reaction, it was sampled over time and analyzed by the method described in Example 4.
  • Fig. 8-1 and Fig. 8-2 show the component profiles of the raw material extract and the extract oxidation reaction product heated at 60 ° C for 24 hours.
  • Example 6 Supercritical carbon dioxide extracted hop extract (CO 2 Hop Extract; ⁇ acid 55.6% w / w, ⁇ acid 22.6% w / w, iso ⁇ acid not detected; hopsteiner) 20d and dextrin (TK-16; Matsutani Chemical) ) was mixed in a weight ratio of 1: 2 to 1: 9 so that the hop extract was in powder form.
  • the obtained powdered hop extract was heated at 80 ° C. for 8 to 48 hours and subjected to an oxidation reaction. During the oxidation reaction, it was sampled over time and analyzed by the method described in Example 4.
  • Example 7 Supercritical carbon dioxide extracted hop extract (CO 2 Hop Extract; ⁇ acid 55.6% w / w, ⁇ acid 22.6% w / w, iso ⁇ acid not detected; hopsteiner) 20 g and carbohydrate excipient (dextrin) : TK-16, Max 1000; both Matsutani Chemical, cellulose: FD101, ST100; both Asahi Kasei Chemical) in a weight ratio of 1: 3 to make a hop extract in powder form.
  • the obtained powdered hop extract was heated at 80 ° C. for 8 to 93 hours and subjected to an oxidation reaction. During the oxidation reaction, it was sampled over time and analyzed by the method described in Example 4.
  • the oxidation reaction proceeded in the same way regardless of which substrate was used.
  • the component profile of the oxidation product was the same.
  • the ratio of the peak area of iso-alpha acid, alpha acid and beta acid to the total peak area by HPLC analysis of the hop extract oxidation reaction product with a reaction time of 8 hours is 15% or less, and the hop extract oxidation reaction product with a reaction time of 24 hours or more.
  • the ratio of the peak areas of iso- ⁇ acid, ⁇ -acid and ⁇ -acid to the total peak area by HPLC analysis was 10% or less.
  • Fig. 8-3 shows the component profile of the extract oxidation reaction product when the extract powdered using FD-101 is heated at 80 ° C for 8 hours and 24 hours.
  • the obtained powdered hop extract was heated at room temperature or 80 ° C. for 4 to 48 hours and subjected to an oxidation reaction. During the oxidation reaction, it was sampled over time and analyzed by the method described in Example 4.
  • Example 9 Supercritical carbon dioxide extracted hop extract (CO 2 Hop Extract; ⁇ acid 55.6% w / w, ⁇ acid 22.6% w / w, iso ⁇ acid not detected; hopsteiner) 20g and ground hop koji (BP55; hopsteiner Was mixed in a weight ratio of 1: 3 so that the hop extract was in powder form.
  • the obtained powdered hop extract was heated at 80 ° C. for 24 to 48 hours and subjected to an oxidation reaction. During the oxidation reaction, it was sampled over time and analyzed by the method described in Example 4.
  • Example 10 Hop extract ( ⁇ acid 94.4% w / w, ⁇ acid 3.36% w / w) prepared by fractionating ⁇ acid fraction from hop extract (CO 2 Hop Extract; Hopsteiner) extracted with supercritical carbon dioxide , Iso- ⁇ acid not detected) and dextrin (TK-16; Matsutani Chemical) were mixed uniformly at a weight ratio of 1: 3 to obtain a hop extract in powder form.
  • hop extract CO 2 Hop Extract; Hopsteiner
  • dextrin TK-16; Matsutani Chemical
  • Oxi-Fr1 is mainly produced by oxidation of ⁇ -acid.
  • the ratio of the peak areas of iso- ⁇ acid, ⁇ acid, and ⁇ acid to the total peak area by HPLC analysis of any hop extract oxidation reaction product with a reaction time of 24 hours or more was 10% or less.
  • Fig. 8-6 shows the component profile of the extract oxidation reaction product that was oxidized for 24 hours with the extract used as the raw material.
  • Example 11 Weight ratio of ethanol-extracted hop extract (EtOH Hop Extract; ⁇ acid 31.8% w / w, ⁇ acid 24.8% w / w, iso ⁇ acid 2.77%; hopsteiner) and cellulose (FD-101; Asahi Kasei Chemicals) The mixture was mixed uniformly at 1: 3 to make the hop extract in powder form. The obtained powdered hop extract was heated at 80 ° C. for 8 to 24 hours and subjected to an oxidation reaction. During the oxidation reaction, it was sampled over time and analyzed by the method described in Example 4.
  • Fig. 8-7 shows the component profile of the extract oxidation reaction product that was oxidized for 24 hours with the extract used as the raw material.
  • Example 12 Hoplet extract (Isomerized Kettle Extract; iso- ⁇ acid 53.0% w / w, ⁇ -acid 20.0% w / w, ⁇ -acid not detected; hopsteiner) 20% and dextrin (TK) -16; Matsutani Chemical) was mixed uniformly at a weight ratio of 1: 3 to make the hop extract in powder form.
  • the obtained powdered hop extract was heated at 80 ° C. for 8 to 72 hours and subjected to an oxidation reaction. During the oxidation reaction, it was sampled over time and analyzed by the method described in Example 4.
  • Fig. 8-8 shows the component profile of the extract oxidation product that was oxidized for 8 to 72 hours.
  • Example 13 Sensory evaluation The hop extract oxidation reaction products obtained in Examples 1, 2, 3, 5, and 7 to 12 were compared with the hop extract in sensory evaluation for the bitterness and taste.
  • hop extract oxidation reactants of Examples 1, 2, 5, and 7 to 12 were prepared so that the oxidation reaction product formation amount was 50 ppm from the total of ⁇ acid, iso ⁇ acid, and ⁇ acid in the raw material.
  • Each sample was added to 10 mM citrate buffer (pH 5.5) so that ⁇ acid, ⁇ acid, and iso ⁇ acid totaled 50 ppm.
  • Sensory evaluation included a sample number mL in the mouth and evaluated according to the evaluation criteria. The result was obtained as an average value of the eight evaluation points.
  • the hop extract oxidation products obtained in Examples 1, 2, 3, 5, and 7 to 12 had greatly reduced bitterness and taste, and were suitable for drinking.
  • “Oxi-Fr1 / ( ⁇ acid + iso ⁇ acid)” is 0.1 or more by weight, or “( ⁇ 1 + ⁇ 2 + ⁇ 3 + ⁇ 4) / ⁇ acid” is 0.3 or more by weight, or “Oxi- It was shown that the hop extract oxidation reaction product (Example) having a weight ratio of “Fr2 / ⁇ acid” of 2.0 or more has a reduced bitterness / egg taste compared to a hop extract (Comparative Example) which is not.
  • the hop extract oxidation reaction product (Example) in which the peak area ratio of ⁇ acid, iso ⁇ acid, and ⁇ acid with respect to the total peak area in HPLC analysis is 50% or less is not.
  • the bitterness / egg taste was reduced.
  • Example 14 Evaluation of lipid absorption inhibitory action of hop extract oxidation reaction product
  • the lipid absorption inhibitory action of the hop extract oxidation reaction product obtained in Example 1 was evaluated by a single administration test of lipid emulsion to rats.
  • the lipid emulsion absorption measurement test in rats was carried out as follows according to the method already reported (Int. J. Obes. Relat. Metab. Dis. 25, 1459-1464 (2001). Oil (6 ml), cholic acid (80 mg), cholesteryl oleate (2 g), distilled water (2 ml) were mixed, prepared by sonication, and 8 weeks old male Wistar rat (Charles River Japan) after 16 hours fasting.
  • the lipid emulsion was prepared so that the dose was 1000 mg / kg body weight. Sometimes mixed with hop extract oxidation reaction, before and after lipid emulsion administration. , Blood was collected from the tail vein after each 2, 3, 4, 5 hours, plasma was prepared according to a conventional method, and the neutral fat concentration in the plasma was measured by triglyceride E-Test Wako (Wako Pure Chemical).
  • Example 15 Evaluation of pancreatic lipase activity inhibitory action of hop extract oxidation reaction product
  • the pancreatic lipase activity inhibitory action of the hop extract oxidation reaction product obtained in Example 1 was evaluated. Measurement of pancreatic lipase activity was performed as follows according to a method already reported (J. Agric. Food Chem., 53, 4593-4598 (2005)). 4-methylbelliferylate (Sigma Aldrich) was used as a measurement reagent, and 10 U of porcine pancreatic lipase (Sigma Aldrich) was used as an enzyme source.
  • hop extract oxidation reaction products obtained in Examples 1, 2, 3, 5, 7 to 12 were dissolved in a predetermined solid content concentration (hop extract-derived oxidation component concentration) using 4% dimethyl sulfoxide, and used for the test. did.
  • the activity was expressed as 100% of the enzyme activity obtained when only 4% dimethyl sulfoxide was added.
  • the hop extract oxidation reaction product obtained in Example 1 inhibited pancreatic lipase activity, and when added at a final concentration of 80.5 ⁇ g / ml, the lipase activity decreased to about 50% (FIG. 10: Hop extract oxidation).
  • Pancreatic lipase inhibitory activity of reaction product mean ⁇ standard deviation). From the above results, it was confirmed that the hop extract oxidation reaction product has an inhibitory action on pancreatic lipase activity.
  • pancreatic lipase activity inhibitory action was similarly evaluated for the hop extract oxidation reaction products obtained in Examples 2, 3, 5, and 7-12.
  • pancreatic lipase activity inhibitory action of iso ⁇ acid was also evaluated.
  • isoalpha acid isomerized hop extract (IsoExtract 30%; manufactured by hopsteiner) was used.
  • IsoExtract 30% isomerized hop extract
  • Example 16 Preparation of Alkali Metal Salt Water-soluble Formulation of Hop Extract Oxidation Reaction Product 5 g of powdered hop extract oxidation reaction product (base material FD-101, heated at 80 ° C. for 24 hours) obtained in Example 7 was heated to 50 ° C. The obtained mixture was added to 25 mL of 0.2 M aqueous sodium hydroxide and stirred well. The obtained solution was filtered to remove cellulose as a base material to obtain an aqueous sodium salt solution of a brownish brown transparent hop extract oxidation reaction product (5% w / v with hop extract-derived oxidation component as a solid content). The obtained aqueous solution was diluted and analyzed by the method described in Example 4 and the results are shown in FIG. It was confirmed that a preparation in which the hop extract oxidation reaction product was water-solubilized was obtained.
  • Example 17 Structural analysis of ⁇ 1-4 components in hop extract oxidation reaction product 17-1: perform HPLC analysis of hop extract oxidation reaction product prepared analogously as described in analytical Example 4 of ⁇ 1 and .beta.2, purified preparative ⁇ 1 and .beta.2 min, analysis by mass spectrometry apparatus capable accurate mass measurement, 1 H-NMR measurement and 13 C-NMR measurement were performed.
  • ⁇ 1 is any compound of Hydroxytricyclocolupone epimer B represented by the formula (I) or a mixture thereof
  • ⁇ 2 is any compound of Hydroxytricyclocolupone epimer A represented by the formula (II), or a mixture thereof.
  • ⁇ 1 and ⁇ 2 are in the relationship of stereoisomers having different configurations at the C4 position.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Child & Adolescent Psychology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、苦味が低減されつつ脂肪吸収抑制効果を有するホップエキスに関する。より詳細には、本発明は、ホップエキスの酸化反応により得られるホップエキス酸化反応物に関する。

Description

ホップエキス酸化反応物、その製造法および用途 関連出願の参照
 本特許出願は、先に出願された日本国特許出願である特願2010-279933号(出願日:2010年12月15日)に基づく優先権の主張を伴うものであり、かかる先の特許出願における全開示内容は、引用することにより本明細書の一部とされる。
 本発明は、苦味・エグ味が低減されたホップエキス酸化反応物、その製造法および用途に関し、より詳細には、ホップエキス酸化反応物を用いた食品およびそれを有効成分とする脂質吸収抑制剤に関する。
 近年、健康を意識した飲食品が多く開発され、市販もされている。健康機能の実感がある本物の製品を得るためには、当然有効量を上回る配合が必要となる。古くから「良薬口に苦し」といわれているように、人体に有用な効果を与える、いわゆる機能性成分は苦味を伴うことがたびたびある。その際、飲食品に有効量以上を配合した場合、嗜好性が低下して、製品としての魅力が低下してしまう。
 ビール中の苦味成分の起源であるホップは、古くから民間薬としても用いられており、鎮静効果、健胃効果などの様々な健康機能が知られている。このホップから得られる抽出物を飲食品に対して一定量以上配合すると独特の強烈な苦味やエグ味が生じてしまい、嗜好性を損なう恐れがある。
 このような苦味を除去あるいは抑制するために、多くの試みが報告されている。苦味低減素材として用いられる物質として、フォスファチジン酸(商品名「ベネコートBMI」花王株式会社)、L-オルニチン(食の科学 No.317 p54 2004)などが挙げられる。しかし、いずれも単独では効果が必ずしも強くなく、特に上記ホップ抽出物の苦味を抑制することは難しかった。また、スクラロースやソーマチンなどの甘味料添加によるマスキング技術(特開2008-99682号公報)では、甘味によって苦味が多少マスクされるものの、その強い甘味のため用途が限られたものになる。
 医薬品の場合は、錠剤の場合では通常糖衣が主に行われ、その他フィルムコーティング技術やマイクロカプセル化等が用いられているが、完全に苦味のマスキングをすることは難しかった。さらに、液剤の場合は飲料と同様にこれらの技術を使用することができず、飲食品や医薬品の分野では苦味の抑制は依然として大きな課題である。
特開2008-99682号公報 特許第4503302号
食の科学 No.317 p54 2004 IntJObes(Lond). 2005 Aug;29(8):991-7
 これまでにホップエキスに含まれるイソα酸等にPPARアゴニスト作用があり、この作用を介して脂質代謝改善機能があることが報告されている(特許第4503302号)。また、イソα酸には膵リパーゼ阻害活性があり、脂質の吸収を抑制する作用があることが報告されている(IntJObes(Lond). 2005 Aug;29(8):991-7)。このような理由からα酸、β酸、イソα酸などのホップ苦味成分を主成分に含むホップエキスは健康機能性素材としての活用が期待される。しかしながら、イソα酸には強烈な苦味があり、α酸、β酸には強烈なエグ味があるため、飲食品や医薬品へ応用する際にはその苦味やエグ味の抑制が課題となっていた。
 本発明者らは、ホップエキス中のα酸(フムロン類)・β酸(ルプロン類)・イソα酸(イソフムロン類)などを酸化反応させて含量を低下させて得られたホップエキス酸化反応物がイソα酸等の含量を大幅に低下させているにも関わらず、健康機能性効果として脂質吸収抑制作用を有すること、ホップエキス酸化反応物の苦味・エグ味が大幅に低減されること、さらに、ホップエキスを粉末化して酸素と接触させることでホップエキス酸化反応物を効率よく製造することができることを見出した。本発明はこれらの知見に基づくものである。
 すなわち、本発明によれば、ホップエキスおよび粉末化基材を含んでなる粉末ホップエキスを酸化することを含んでなる、ホップエキス酸化反応物の製造方法が提供される。
 本発明によれば、また、上記方法により製造された、苦味・エグ味が低減されたホップエキス酸化反応物(以下、単に「本発明のホップエキス酸化反応物」ということがある)、およびホップエキス酸化反応物が添加されてなる、飲食品(以下、単に「本発明の飲食品」ということがある)が提供される。
 本発明によれば、また、ホップエキス酸化反応物を有効成分として含んでなる、脂質吸収抑制剤(以下、単に「本発明の抑制剤」ということがある)が提供される。
 本発明によれば、更に、ホップエキス酸化反応物をヒトを含む哺乳動物に投与することを含んでなる、脂質吸収抑制方法が提供される。
 本発明によれば、脂質吸収抑制効果を有する飲食品の製造のためのホップエキス酸化反応物の使用が提供される。
 本発明のホップエキス酸化反応物は脂質吸収抑制作用を有するとともに、異性化されたホップエキスのような強烈な苦味や異性化処理されていないホップエキスのような強烈なエグ味がない。従って、本発明のホップエキス酸化反応物や本発明の抑制剤は脂質吸収抑制作用などの生理活性を期待しつつ、苦味・エグ味のマスキング手段を講じずにそのまま摂取できる点で有利である。
ホップエキスに含まれる苦味成分とホップエキス酸化反応物に含まれる成分を示した図である。 超臨界二酸化炭素抽出して製造されたホップエキスを粉末化して酸化反応に付した後の酸化反応物(実施例1)のHPLCクロマトグラム(検出波長270nm)である。 超臨界二酸化炭素抽出して製造されたホップエキスを粉末化して酸化反応に付した後の酸化反応物(実施例1)のHPLCクロマトグラム(検出波長270nm)の拡大図である。 超臨界二酸化炭素抽出して製造されたホップエキスを粉末化して酸化反応に付した後の酸化反応物(実施例1)のHPLCクロマトグラム(検出波長270nm)の別の拡大図である。 超臨界二酸化炭素抽出して製造されたホップエキスを粉末化して酸化反応に付した後の酸化反応物(実施例1)のHPLCクロマトグラム(検出波長355nm)である。 実施例1記載のホップエキス酸化反応物の製造原料であるホップエキスのHPLCクロマトグラム(検出波長270nm)である。 実施例1記載のホップエキス酸化反応物の製造原料であるホップエキスのHPLCクロマトグラム(検出波長270nm)の拡大図である。 実施例1記載のホップエキス酸化反応物の製造原料であるホップエキスのHPLCクロマトグラム(検出波長355nm)の拡大図である。 超臨界二酸化炭素抽出して製造されたホップエキスを粉末化して酸化反応に付した後の酸化反応物(実施例2)のHPLCクロマトグラムム(検出波長270nm)である。 超臨界二酸化炭素抽出して製造されたホップエキスを粉末化して酸化反応に付した後の酸化反応物(実施例2)のHPLCクロマトグラムム(検出波長270nm)の拡大図である。 超臨界二酸化炭素抽出して製造されたホップエキスを粉末化して酸化反応に付した後の酸化反応物(実施例2)のHPLCクロマトグラムム(検出波長270nm)の別の拡大図である。 超臨界二酸化炭素抽出して製造されたホップエキスを粉末化して酸化反応に付した後の酸化反応物(実施例2)のHPLCクロマトグラムム(検出波長355nm)である。 実施例2記載のホップエキス酸化反応物の製造原料であるホップエキスのHPLCクロマトグラム(検出波長270nm)である。 実施例2記載のホップエキス酸化反応物の製造原料であるホップエキスのHPLCクロマトグラム(検出波長270nm)の拡大図である。 実施例2記載のホップエキス酸化反応物の製造原料であるホップエキスのHPLCクロマトグラム(検出波長355nm)である。 超臨界二酸化炭素抽出した後に異性化処理を施して製造されたホップエキスを粉末化して酸化反応に付した後の酸化反応物(実施例3)のHPLCクロマトグラム(検出波長270nm)である。 超臨界二酸化炭素抽出した後に異性化処理を施して製造されたホップエキスを粉末化して酸化反応に付した後の酸化反応物(実施例3)のHPLCクロマトグラム(検出波長270nm)の拡大図である。 超臨界二酸化炭素抽出した後に異性化処理を施して製造されたホップエキスを粉末化して酸化反応に付した後の酸化反応物(実施例3)のHPLCクロマトグラム(検出波長270nm)の別の拡大図である。 超臨界二酸化炭素抽出した後に異性化処理を施して製造されたホップエキスを粉末化して酸化反応に付した後の酸化反応物(実施例3)のHPLCクロマトグラム(検出波長355nm)である。 実施例3におけるホップエキス酸化反応物の製造原料であるホップエキスのHPLCクロマトグラム(検出波長270nm)である。 実施例3におけるホップエキス酸化反応物の製造原料であるホップエキスのHPLCクロマトグラム(検出波長270nm)の拡大図である。 実施例3におけるホップエキス酸化反応物の製造原料であるホップエキスのHPLCクロマトグラム(検出波長355nm)である。 実施例5における原料ホップエキスおよび60℃24時間酸化反応を行った後のホップエキス酸化反応物のHPLCクロマトグラム(検出波長270nm)である。 実施例5における原料ホップエキスおよび60℃24時間酸化反応を行った後のホップエキス酸化反応物のHPLCクロマトグラム(検出波長270nm)の拡大図である。 実施例7におけるホップエキス酸化反応物のHPLCクロマトグラム(検出波長270nm)である。 実施例8におけるホップエキス酸化反応物のHPLCクロマトグラム(検出波長270nm)である。 実施例9におけるホップエキス酸化反応物のHPLCクロマトグラム(検出波長270nm)である。 実施例10におけるホップエキス酸化反応物のHPLCクロマトグラム(検出波長270nm)である。 実施例11におけるホップエキス酸化反応物のHPLCクロマトグラム(検出波長270nm)である。 実施例12におけるホップエキス酸化反応物のHPLCクロマトグラム(検出波長270nm)である。 ホップエキス酸化反応物の脂質吸収抑制作用を示した図である。 ホップエキス酸化反応物の膵リパーゼ阻害活性を示した図である。 ホップエキス酸化反応物の50%膵リパーゼ活性阻害濃度(IC50)を示した図である。 ホップエキス酸化反応物の水溶性ナトリウム塩製剤のHPLCクロマトグラム(検出波長270nm)である。 β1(Hydroxytricyclocolupone epimer B)と、β2(Hydroxytricyclocolupone epimer A)は、C4位の立体配置が異なる立体異性体であることを示す。
発明の具体的説明
[ホップエキス酸化反応物]
 本発明により提供されるホップエキス酸化反応物は、ホップエキス中の成分を酸化反応に付すことにより得ることができる。本発明において「酸化反応」とは、ホップエキス中の成分であるα酸、イソα酸、β酸が、より親水性の高い酸化生成物に変化しうる限り、特に限定されるものではない。また、反応の進行はHPLCを用いた分析により確認することができる。また、本発明において「ホップエキス」とは、ホップ毬花の抽出物を意味し、ホップエキスを異性化処理に付すことにより得られた異性化ホップエキスや還元剤を用いてイソα酸を還元させた還元型異性化ホップエキスを含む意味で用いられる。ホップエキスの抽出手法や異性化処理については後述する。
 ホップエキスにはα酸(フムロン類)、β酸(ルプロン類)などの酸性樹脂成分が含まれている。また、異性化されたホップエキスにはイソα酸(イソフムロン類)などの酸性樹脂成分が含まれている。本発明において「α酸、フムロン類」は、フムロン、アドフムロン、コフムロン、ポストフムロン、およびプレフムロンを含む意味で用いられる。また、本発明において「β酸、ルプロン類」はルプロン、アドルプロン、コルプロン、ポストルプロン及びプレルプロンを含む意味で用いられる。さらに、本発明において「イソα酸、イソフムロン類」は、イソフムロン、イソアドフムロン、イソコフムロン、イソポストフムロン、イソプレフムロン、Rho-イソフムロン、Rho-イソアドフムロン、Rho-イソコフムロン、Rho-イソポストフムロン、Rho-イソプレフムロン、テトラハイドロイソフムロン、テトラハイドロイソアドフムロン、テトラハイドロイソコフムロン、テトラハイドロイソプレフムロン、テトラハイドロイソポストフムロン、ヘキサハイドロイソフムロン、ヘキサハイドロイソアドフムロン、ヘキサハイドロイソコフムロン、ヘキサハイドロイソポストフムロン、ヘキサハイドロイソプレフムロン、を含む意味で用いられる。なお、イソフムロン類にはシスおよびトランス立体異性体が存在するが、特に断りがない限りその両者を含む意味で用いられる。また本発明において上記の成分を総称して苦味成分と呼ぶことがある。
 上述のようにホップエキスには様々なタイプのものが存在するが、ホップエキスの従来の利用としては、ビール系飲料の醸造、ノンアルコールビールテイスト飲料への利用にほぼ限定されており、これらの飲料にビールらしい苦味や香りを付与することを主目的として利用されている。ホップエキスはホップ毬花やホップペレットなどの植物原体と比べて保存性に優れ、含有苦味成分の安定性、均一性も優れているため、苦味成分を上記飲料へ安定的に付与することができる。これに対し、ホップエキスを敢えて酸化反応に付し、α酸、β酸、イソα酸などの苦味成分を低減させた後に利用するという発想はこれまでになかったものである。また、エキス中の苦味成分は植物原体中よりも安定であるため、そのまま酸化反応に付しても効率的に酸化反応物を得るのは難しいが、ホップエキスを粉末化した後に酸化反応に付すことで、非常に効率よく本発明のホップエキス酸化反応物を得ることができる。
 後記実施例によると、ホップエキスを酸化反応に付すことによりα酸、イソα酸およびβ酸の含有量が低減され、oxidation-fraction1(Oxi-Fr1)、oxidation-fraction2(Oxi-Fr2)、β1、β2、β3、β4などの成分の含有量が増加する(これら成分の分析法および定義については実施例4参照)。従って、「ホップエキス酸化反応物」の例としては、実施例4のHPLC分析を実施した場合に、ホップエキス酸化反応物のうち、「Oxi-Fr1/(α酸+イソα酸)」、が重量比で0.1以上または「(β1+β2+β3+β4)/β酸」、が重量比で0.3以上または「Oxi-Fr2/β酸」、が重量比で2.0以上であるものが挙げられる(β1+β2+β3+β4はβ1-4とも記載する)。尚、原料ホップエキスとして(α酸+イソα酸)またはβ酸のどちらか一方が他方に比べて無視できるほど含有量が少ない(目安として1/10以下)ものも使用可能であり、その場合、上記パラメータのうち含有量が無視できる成分を含むパラメータは考えなくてもよい(例えば実施例2、10)。
 また、実施例2から明らかなようにβ1-4各成分を含むOxi-Fr2はホップエキス中のβ酸の酸化反応物で主に構成され、この知見とさらに実施例10および12からOxi-Fr1はホップエキス中のα酸およびイソα酸の酸化反応物で主に構成されていることが分かる。ホップエキス中の苦味成分と酸化生成物の関係を図1に示す。
 また、実施例17から明らかなように、β1-4各成分は以下に示される化合物で構成されている。
 β1
 β1は、以下の式(I)で表されるいずれかの化合物を含んでなる。β1は、式(I)で表される化合物のいずれか一つであってもよいし、式(I)で表される化合物の混合物であってもよい。したがって、一つの態様によれば、β1は、式(I)で表されるいずれかの一方または両方の化合物である。
Figure JPOXMLDOC01-appb-C000013
 β2
 β2は、以下の式(II)で表されるいずれかの化合物を含んでなる。β2は、式(II)で表される化合物のいずれか一つであってもよいし、式(II)で表される化合物の混合物であってもよい。したがって、一つの態様によれば、β2は、式(II)で表されるいずれかの一方または両方の化合物である。
Figure JPOXMLDOC01-appb-C000014
 β3
 β3は、以下の式(III)または(IV)で表されるいずれかの化合物を含んでなる。β3は、式(III)または(IV)で表される化合物のいずれか一つであってもよいし、式(III)または(IV)で表されるいずれか2つ以上の化合物の混合物であってもよい。したがって、一つの態様によれば、β2は、式(III)で表される化合物および式(IV)で表される化合物から選択される少なくとも一つの化合物である。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 β4
 β4は、以下の式(V)または(VI)で表されるいずれかの化合物を含んでなる。β4は、式(V)または(VI)で表される化合物のいずれか一つであってもよいし、式(V)または(VI)で表されるいずれか2つ以上の化合物の混合物であってもよい。したがって、一つの態様によれば、β4は、式(V)で表される化合物および式(VI)で表される化合物から選択される少なくとも一つの化合物である。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 実施例1~3、5~12に記載の手順で調製されたホップエキス酸化反応物には、α酸、β酸、およびイソα酸の酸化生成物が含まれており、この酸化生成物を主成分に含むホップエキス酸化反応物は実施例13に示されているようにホップエキス特有の苦味・エグ味が低減されており、尚且つ実施例14および15に示されているような生理活性を奏することができる。
[ホップエキス酸化反応物の調製]
粉末化処理後の酸化反応
 本発明のホップエキス酸化反応物は、ホップエキスを粉末化基材と混合し、粉末化させた後に酸化反応に付すことにより効率的に製造することができる。ホップエキスをそのままの形態で加熱する場合に酸化反応に膨大な時間を要することを勘案すれば、本発明のようにホップエキスを粉末化した後に酸化することは、産業利用上有利である。
 ホップエキスの粉末化において、ホップエキスと粉末化基材との重量比は、粉末化したホップエキスが均一に調製できれば特に限定されるものではないが、好ましくは1:1~1:10程度であり、より好ましくは、1:2~1:5程度である。
 また、ホップエキスの酸化反応の温度範囲は、好ましくは室温~120℃であり、より好ましくは60℃~80℃である。
 また、ホップエキスの酸化反応の反応時間は、好ましくは数時間~数週間であり、より好ましくは4時間~1週間であり、さらに好ましくは8時間~96時間である。
 粉末化基材としては、ホップエキスを粉末形態にできるものであれば特に限定されるものではないが、ホップエキス酸化反応物の食品用途での使用を考えると、一般的な飲食品として許容可能な添加剤や食品そのものを用いるのが好ましい。かかる添加剤や食品としては、好ましくは多糖類、無機質担体、醸造原料であり、より好ましくは、デキストリン、セルロースなどの賦形剤、珪藻土、パーライト、活性白土などの製造助剤、ホップやホップ粕などの食品が上げられる。粉末化基材としては単一の基材を用いてもよいし、複数の基材を任意の割合で混合したものを用いてもよい。また、酸化反応に付した後の粉末状態のホップエキス酸化反応物は、そのままの形態でも使用可能であるが、粉末化に用いた基材を除去し、ホップエキス酸化反応成分のみを使用してもよい。ホップエキス酸化反応成分のみを抽出するにはホップエキス成分を溶解し、基材を溶解しない溶媒を使用すればよい。例えばデキストリンを基材に用いた場合はエタノール等の溶剤が使用でき、セルロースを基材に用いた場合、エタノール等の溶剤やアルカリ水溶液などによりホップ酸化反応成分のみ抽出することができる。粉末化に用いた基材を分離する必要がない場合は、基材を含めた状態で製剤化することもできる。また、製剤化に用いた溶媒を除去し、乾燥させたものを使用してもよい。
 酸化反応により、ホップエキスに含まれているα酸、イソα酸、β酸は低減される。これらの成分の低減の程度はHPLC等により分析し確認することができる。ホップエキス酸化反応物のHPLC分析による波長270nmで検出される成分の総ピーク面積に対するイソα酸、α酸およびβ酸のピーク面積の割合は、好ましくは50%以下であり、より好ましくは30%以下であり、さらに好ましくは10%以下である。従って、本発明の一つの態様によれば、ホップエキス酸化反応物であって、該ホップエキス酸化反応物のHPLC分析による総ピーク面積に対するイソα酸、α酸およびβ酸のピーク面積の割合が50%以下であるものが提供される。
 本発明のホップエキス酸化反応物の製造原料に用いられるホップエキスは、例えば、ホップ毬花やその圧縮物をそのままもしくは粉砕後、抽出操作に供することによって調製したものを用いることができる。抽出方法としては、例えば、ビール醸造に用いられるホップエキスの調製法として用いられるエタノール溶媒による抽出法や超臨界二酸化炭素抽出法などがある。このうち超臨界二酸化炭素抽出はポリフェノール成分が少なく、苦味成分と精油成分がより高く濃縮されるなどの特徴を有する。また、ホップ抽出法として、その他一般に用いられる方法を採用することができ、例えば、溶媒中にホップの毬花、その粉砕物などを冷浸、温浸等によって浸漬する方法;加温し攪拌しながら抽出を行い、濾過して抽出液を得る方法;またはパーコレーション法等を挙げられる。得られた抽出液は、必要に応じてろ過または遠心分離によって固形物を除去した後、使用の態様により、そのまま用いるか、または溶媒を留去して一部濃縮若しくは乾燥して用いてもよい。また濃縮乃至は乾燥後、さらに非溶解性溶媒で洗浄して精製して用いても、またこれを更に適当な溶剤に溶解もしくは懸濁して用いることもできる。更に、上記のようにして得られた溶媒抽出液を、減圧乾燥、凍結乾燥等の通常の手段により乾燥させて得られたホップ抽出エキス乾燥物を使用してもよい。
 上記の抽出に用いられる溶媒としては、例えば、水;メタノール,エタノール,プロパノールおよびブタノール等の炭素数1~4の低級アルコール;酢酸エチルエステル等の低級アルキルエステル;エチレングリコール、ブチレングリコール、プロピレングリコール、グリセリンなどのグリコール類;その他アセトン、酢酸等の極性溶媒;ベンゼンやヘキサン等の炭化水素;エチルエーテルや石油エーテルなどのエーテル類等の非極性溶媒の公知の有機溶媒を挙げることができる。これら溶媒は、単独で用いてもよく、二種以上を組み合わせて使用することもできる。
 本発明のホップエキス酸化反応物の製造原料に用いられるホップエキスは上記ホップエキスをさらに異性化処理に付した異性化ホップエキスや、還元剤処理によりイソα酸を還元させた還元型異性化ホップエキスを使用してもよい。異性化処理の方法は公知であり、いずれの方法を用いてもよいが、典型的には、ホップエキスをpH8~9の弱アルカリ条件下で、あるいは酸化マグネシウム存在下で加熱することで実施することができる。ホップエキスをそのまま異性化処理に付してもよいが、異性化処理に先立って、ホップエキスを加温アルカリ水に添加し(ホップエキス添加後にpH8~9)、溶解したα酸と不溶のβ酸を分離し、得られたα酸画分を異性化処理に付してもよい。
 ホップエキス酸化反応物の製造に使用されるホップエキスはビール添加物として市販されており、本発明では市販品を使用することができる。例えば、ホップ毬花粉砕物から主にフムロン類とルプロン類を超臨界二酸化炭素抽出したホップエキス(例えば、CO2 Hop Extract(Hopsteiner社))、ホップ毬花粉砕物から主にフムロン類とルプロン類をエタノール抽出したホップエキス(例えば、Ethanol Hop Extract(Hopsteiner社))、ホップ毬花粉砕物から主にルプロン類を超臨界二酸化炭素抽出したホップエキス(例えば、Beta Aroma Extract(Hopsteiner社))ホップ毬花粉砕物の炭酸ガス抽出物を異性化したエキス(例えば、Isomerized Kettle Extract (Hopsteiner社))、ホップ毬花粉砕物の炭酸ガス抽出物を異性化及び還元処理したエキス(例えば、Light Stable Kettle Extract(Hopsteiner社)、Tetra Concentrate(Hopsteiner社)、Hexa IsoExtract(Hopsteiner社))、ホップ毬花粉砕物の炭酸ガス抽出物を異性化した後、さらにカリウム塩化して粘性の低い液体とした水溶性エキス(例えば、IsoExtract30%(Hopsteiner社)、)などを用いることができる。上記市販ホップエキスの中には苦味成分がカリウム塩化した状態のものも存在するが、酸化反応にあたっては酸性処理後、フリー体の樹脂状エキスとしたものを用いるのが好ましい。また、エキス中の特定の苦味成分のみを分画して使用してもよい。
アルカリ金属塩の調製
 本発明のホップエキス酸化反応物はアルカリ金属と塩を形成させ、アルカリ金属塩水溶液とすることができる。また、その水溶液をスプレードライ等により粉末化することができる。本発明のホップエキス酸化反応物の金属塩形成に使用可能なアルカリ金属塩としては、カリウム塩、ナトリウム塩のような食品への添加が許容された塩が挙げられる。本発明のホップエキス酸化反応物のアルカリ金属塩は水溶性が優れており、食品(特に飲料)への添加を容易に行うことができる点で有利である。
 上記のようにして得られた本発明のホップエキス酸化反応物はさらに分画処理などによってホップエキス酸化反応物中の特定の成分を濃縮してもよい。またその濃縮物を食品に添加してもよく、また、本発明の脂質吸収抑制剤として用いてもよい。
[ホップエキス酸化反応物の用途]
 後記実施例14~15に示される通り、ホップエキス酸化反応物は脂質吸収抑制作用を有する。
 従って、本発明のホップエキス酸化反応物は、脂質吸収抑制剤として有用である。また、本発明のホップエキス酸化反応物は肥満の予防および/または治療に有用である。
 本発明のホップエキス酸化反応物は異性化されたホップエキスのような強烈な苦味や異性化未処理のホップエキスのような強烈なエグ味がない(実施例13)。従って、本発明のホップエキス酸化反応物は上記のような生理活性作用を期待しつつ、飲食品や医薬品において苦味・エグ味のマスキング手段を講じずにそのまま利用できる点で有利である。
[医薬品および食品]
 本発明のホップエキス酸化反応物を医薬品として提供する場合には、本発明のホップエキス酸化反応物を薬学上許容される添加物と混合することにより製造できる。本発明のホップエキス酸化反応物は異性化されたホップエキスのような強烈な苦味や異性化未処理のホップエキスのような強烈なエグ味を有さないことから、苦味・エグ味をマスキングするための手段を講じずに、あるいは既存のマスキング手段を用いて苦味・エグ味を十分にマスキングした状態で所定の効能を期待する製剤とすることができる点で有利である。
 本発明ではホップエキス酸化反応物そのもののみならず、ホップエキス酸化反応物に含まれる特定の成分を単離・精製したものを使用することができる。
 本発明のホップエキス酸化反応物は有効成分として経口投与または非経口投与することができ、好ましくは経口投与である。経口剤としては、顆粒剤、散剤、錠剤(糖衣錠を含む)、丸剤、カプセル剤、シロップ剤、乳剤、懸濁剤が挙げられる。非経口剤としては、注射剤(例えば、皮下注射剤、静脈内注射剤、筋肉内注射剤、腹腔内注射剤)、点滴剤、外用剤(例えば、経鼻投与製剤、経皮製剤、軟膏剤)、坐剤(例えば、直腸坐剤、膣坐剤)が挙げられる。これらの製剤は、当分野で通常行われている手法により、薬学上許容される担体を用いて製剤化することができる。薬学上許容される担体としては、賦形剤、結合剤、希釈剤、添加剤、香料、緩衝剤、増粘剤、着色剤、安定剤、乳化剤、分散剤、懸濁化剤、防腐剤等が挙げられ、例えば、炭酸マグネシウム、ステアリン酸マグネシウム、タルク、砂糖、ラクトース、ペクチン、デキストリン、澱粉、ゼラチン、トラガント、メチルセルロース、ナトリウムカルボキシメチルセルロース、低融点ワックス、カカオバターを担体として使用できる。
 製剤は、例えば、下記のようにして製造できる。 
 経口剤は、有効成分に、例えば賦形剤(例えば、乳糖、白糖、デンプン、マンニトール)、崩壊剤(例えば、炭酸カルシウム、カルボキシメチルセルロースカルシウム)、結合剤(例えば、α化デンプン、アラビアゴム、カルボキシメチルセルロース、ポリビニールピロリドン、ヒドロキシプロピルセルロース)または滑沢剤(例えば、タルク、ステアリン酸マグネシウム、ポリエチレングリコール6000)を添加して圧縮成形し、次いで必要により、味のマスキング、腸溶性あるいは持続性の目的のため自体公知の方法でコーティングすることにより製造することができる。コーティング剤としては、例えばエチルセルロース、ヒドロキシメチルセルロース、ポリオキシエチレングリコール、セルロースアセテートフタレート、ヒドロキシプロピルメチルセルロースフタレートおよびオイドラギット(ローム社製、ドイツ、メタアクリル酸・アクリル酸共重合物)などを用いることができる。
 注射剤は、有効成分を分散剤(例えば、ツイーン(Tween)80(アトラスパウダー社製、米国)、HCO60(日光ケミカルズ製)、ポリエチレングリコール、カルボキシメチルセルロース、アルギン酸ナトリウムなど)、保存剤(例えば、メチルパラベン、プロピルパラベン、ベンジルアルコール、クロロブタノール、フェノール)、等張化剤(例えば、塩化ナトリウム、グリセリン、ソルビトール、ブドウ糖、転化糖)などと共に水性溶剤(例えば、蒸留水、生理的食塩水、リンゲル液等)あるいは油性溶剤(例えば、オリーブ油、ゴマ油、綿実油、コーン油などの植物油、プロピレングリコール)などに溶解、懸濁あるいは乳化することにより製造することができる。この際、所望により溶解補助剤(例えば、サリチル酸ナトリウム、酢酸ナトリウム)、安定剤(例えば、ヒト血清アルブミン)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカイン)等の添加物を添加してもよい。
 外用剤は、有効成分を固状、半固状または液状の組成物とすることにより製造することができる。例えば、上記固状の組成物は、有効成分をそのまま、あるいは賦形剤(例えば、ラクトース、マンニトール、デンプン、微結晶セルロース、白糖)、増粘剤(例えば、天然ガム類、セルロース誘導体、アクリル酸重合体)などを添加、混合して粉状とすることにより製造できる。上記液状の組成物は、注射剤の場合とほとんど同様にして製造できる。半固状の組成物は、水性または油性のゲル剤、あるいは軟骨状のものがよい。また、これらの組成物は、いずれもpH調節剤(例えば、炭酸、リン酸、クエン酸、塩酸、水酸化ナトリウム)、防腐剤(例えば、パラオキシ安息香酸エステル類、クロロブタノール、塩化ベンザルコニウム)などを含んでいてもよい。坐剤は、有効成分を油性または水性の固状、半固状あるいは液状の組成物とすることにより製造できる。該組成物に用いる油性基剤としては、高級脂肪酸のグリセリド〔例えば、カカオ脂、ウイテプゾル類(ダイナマイトノーベル社製)〕、中級脂肪酸〔例えば、ミグリオール類(ダイナマイトノーベル社製)〕、あるいは植物油(例えば、ゴマ油、大豆油、綿実油)が挙げられる。水性基剤としては、ポリエチレングリコール類、プロピレングリコールが挙げられる。また、水性ゲル基剤としては、天然ガム類、セルロース誘導体、ビニール重合体、アクリル酸重合体が挙げられる。
 本発明のホップエキス酸化反応物は、飲食品へ添加して使用することができる。本発明のホップエキス酸化反応物は前記のように脂質吸収抑制効果などの生理的作用を発揮する。従って、本発明のホップエキス酸化反応物を添加した飲食品には脂質吸収抑制効果などの生理的作用が期待される。
 本発明の飲食品は、本発明のホップエキス酸化反応物を有効量含有した飲食品である。
 ここで、本発明のホップエキス酸化反応物を「有効量含有した」とは、個々の飲食品において通常喫食される量を摂取した場合に、後述するような範囲でホップエキス酸化反応物が摂取されるような含有量をいう。
 本発明のホップエキス酸化反応物を飲食品として提供する場合には、本発明のホップエキス酸化反応物をそのまま飲食品に配合することができる。より具体的には、本発明の飲食品は、本発明のホップエキス酸化反応物をそのまま飲食品として調製したもの、各種タンパク質、糖類、脂肪、微量元素、ビタミン類等を更に配合したもの、液状、半液体状若しくは固体状にしたもの、カリウム塩、ナトリウム塩等の水溶液状にしたもの、一般の飲食品へ添加したものであってもよい。本発明のホップエキス酸化反応物は異性化されたホップエキスのような強烈な苦味や異性化未処理のホップエキスのような強烈なエグ味を有さないことから、苦味・エグ味をマスキングするための手段を講じずに、あるいは既存のマスキング手段を用いて苦味・エグ味を十分にマスキングした状態で所定の生理作用が期待される飲食品とすることができる点で有利である。
 本発明において「飲食品」とは、健康食品、機能性食品、特定保健用食品、病者用食品を含む意味で用いられる。
 また「飲食品」の形態は特に限定されるものではなく、例えば、飲料の形態であってもよい。
 本発明のホップエキス酸化反応物は、脂質吸収抑制作用を有するため、日常摂取する飲食品やサプリメントとして摂取する健康食品や機能性食品、好適には脂質を含有する食品や高カロリーの食品等に本発明のホップエキス酸化反応物を配合することにより、健康の維持・増進に役立つ飲食品、具体的には、脂質吸収抑制作用といった機能を併せ持つ飲食品として提供することができる。すなわち、本発明の食品は、高脂血漿や脂肪の蓄積(特に、体脂肪および内臓脂肪の蓄積)が気になる消費者や体重の増加が気になる消費者に適した飲食品、特に特定保健用食品、として提供することができる。
 かかる飲食品として具体的には、飯類、麺類、パン類およびパスタ類等炭水化物含有飲食品;クッキーやケーキなどの洋菓子類、饅頭や羊羹等の和菓子類、キャンディー類、ガム類、ヨーグルトやプリンなどの冷菓や氷菓などの各種菓子類;ウイスキー、バーボン、スピリッツ、リキュール、ワイン、果実酒、日本酒、中国酒、焼酎、ビール、アルコール度数1%以下のノンアルコールビール、発泡酒、その他雑酒、酎ハイなどのアルコール飲料;果汁入り飲料、野菜汁入り飲料、果汁および野菜汁入り飲料、清涼飲料水、牛乳、豆乳、乳飲料、ドリンクタイプのヨーグルト、ドリンクタイプのゼリー、コーヒー、ココア、茶飲料、栄養ドリンク、スポーツ飲料、ミネラルウォーターなどの非アルコール飲料;卵を用いた加工品、魚介類(イカ、タコ、貝、ウナギなど)や畜肉(レバー等の臓物を含む)の加工品(珍味を含む)などを例示することができるが、これらに限定されるものではない。
 茶飲料としては、例えば、紅茶、緑茶、麦茶、玄米茶、煎茶、玉露茶、ほうじ茶、ウーロン茶、ウコン茶、プーアル茶、ルイボスティー茶、ローズ茶、キク茶、ハーブ茶(例えば、ミント茶、ジャスミン茶)が挙げられる。
 果汁入り飲料や果汁および野菜汁入り飲料に用いられる果物としては、例えば、リンゴ、ミカン、ブドウ、バナナ、ナシ、およびウメが挙げられる。また、野菜汁入り飲料や果汁および野菜汁入り飲料に用いられる野菜としては、例えば、トマト、ニンジン、セロリ、キュウリ、およびスイカが挙げられる。
 本発明の医薬品および飲食品は、人類が飲食品として長年摂取してきたホップエキスを利用することから、毒性も低く、それを必要とする哺乳動物(例えば、ヒト、マウス、ラット、ウサギ、イヌ、ネコ、ウシ、ウマ、ブタ、サル等)に対し安全に用いられる。本発明のホップエキス酸化反応物の投与量または摂取量は、受容者、受容者の年齢および体重、症状、投与時間、剤形、投与方法、薬剤の組み合わせ等に依存して決定できる。例えば、本発明のホップエキス酸化反応物を医薬として経口投与する場合、体重60kgの成人1人1日当たりホップエキス酸化反応物をイソフムロン換算で10~600mg、より好ましくは20~200mg、非経口投与する場合は1~100mg、好ましくは3~30mgの範囲となるように、1日1~3回に分けて投与することができる。本発明のホップエキス酸化反応物と組み合わせて用いる他の作用機序を有する薬剤も、それぞれ臨床上用いられる用量を基準として適宜決定できる。また、飲食品として摂取する場合に、体重60kgの成人1人1日当たりイソフムロン換算でホップエキス酸化反応物が、25~9600mgの範囲、好ましくは、25~780mgの範囲の摂取量となるよう本発明のホップエキス酸化反応物を食品に配合することができる。
 以下の例に基づいて本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。
実施例1:超臨界二酸化炭素抽出ホップエキスからのホップエキス酸化反応物の調製1
 超臨界二酸化炭素抽出したホップエキス(CO2 Hop Extract;α酸55.6%w/w、β酸22.6%w/w、イソα酸未検出;hopsteiner社製)60gとデキストリン(TK-16;松谷化学)120gを重量比1:3で均一になるよう混合し、ホップエキスを粉末状形態にした。得られた粉末状ホップエキスを80℃で24時間加熱し、酸化反応に付した。
実施例2:超臨界二酸化炭素抽出ホップエキスからのホップエキス酸化反応物の調製2
 超臨界二酸化炭素抽出したホップエキス(Beta Aroma Extract;β酸41.3%w/w、α酸およびイソα酸未検出;hopsteiner社製)20gとデキストリン(TK-16;松谷化学)60gを重量比1:3で均一になるよう混合し、ホップエキスを粉末状形態にした。得られた粉末状ホップエキスを80℃で24時間加熱し、酸化反応に付した。
実施例3:超臨界二酸化炭素抽出した後に異性化処理をしたホップエキスからのホップエキス酸化反応物の調製
 超臨界二酸化炭素抽出した後に異性化処理をしたホップエキス(Isomerized Kettle Extract;イソα酸53.0%w/w、β酸20.0%w/w、α酸未検出;hopsteiner社製)20gとデキストリン(TK-16;松谷化学)60gを重量比1:3で均一になるよう混合し、ホップエキスを粉末状形態にした。得られた粉末状ホップエキスを80℃で24時間加熱し、酸化反応に付した。
実施例4:ホップエキス酸化反応物の分析
 実施例1~3で調製したホップエキス酸化反応物を以下のように分析用前処理を行った。
[分析前処理]
 反応後の粉末状ホップエキスからエタノールによりホップエキス成分を抽出し、ホップエキス由来固形分が2.5mg/mLになるように調製し、HPLCにて分析した。また、比較として実施例1~3で原料として使用したホップエキスについても同じ固形分濃度になるように調製して分析した。
[HPLC構成装置]
ホンプ:LC-20AD×3(SHIMADZU)
デガッサー:DGU-20A5(SHIMADZU)
システムコントローラー:CBM-20A(SHIMADZU)
オートサンプラー:SIL-20ACHT(SHIMADZU)
カラムオーブン:CTO-20AC(SHIMADZU)
フォトダイオードアレー検出器:SPD-M20A(SHIMADZU)
波形解析ソフトウェア:LCSolution(SHIMADZU)
[HPLC条件]
カラム:Alltima C18 2.1mm I.D. x 100mm 粒子径3μm
流速:0.6mL/min
溶出溶媒A:水/リン酸、1000/0.2, (v/v) + EDTA(free) 0.02%(w/v)
溶出溶媒B:アセトニトリル
溶出溶媒C:水
注入量:3μL
カラム温度:40℃
検出波長:270nm(Oxi-Fr1・Oxi-Fr2・イソα酸・β1-4の検出および定量波長、α酸およびβ酸の検出波長)
     355nm(α酸およびβ酸定量波長)
グラジエントプログラム: 
Figure JPOXMLDOC01-appb-T000019
 上記分析条件にて、イソα酸、具体的にはtrans-イソコフムロンの前方に溶出され、270nmで検出される成分群をOxidation-Fraction1(Oxi-Fr1)と定義する。また、α酸、具体的にはコフムロン溶出時間前方から分析終了時点(検出器内の移動相が洗浄溶媒に切り替わる時間)までに溶出され、α酸およびβ酸ピークを除く270nmで検出される成分群をOxidation-Fraction2(Oxi-Fr2)と定義する。さらに、Oxi-Fr2に含まれ、後述するようにβ酸に酸素が一つ付加した酸化化合物をβ1、β2、β3、β4と定義する。波形解析にあたって、溶媒ピークやインジェクションショックによる負ピークが生じる領域は解析除外領域とした。また、Oxi-Fr1、Oxi-Fr2、β1-4の定量解析時に使用する面積値の求め方は後述する。
 上記実施例1で調製したホップエキス酸化反応物分析時のHPLCクロマトグラムを図2-1~図2-3(検出波長270nm)、図2-4(検出波長355nm)に示す。また、原料に用いたホップエキス分析時クロマトグラムを図3-1および図3-2(検出波長270nm)、ならびに図3-3(検出波長355nm)に示す。Oxi-Fr1と定義する成分群は図2-1で図示された領域に検出される。定量解析時にはこの画分に検出された全ピーク面積の合算値を使用する。また、Oxi-Fr2と定義する成分群は図2-2、図3-2で示された領域に検出される。定量解析時には斜線で示した部分の面積を使用する。β1-4各成分は図2-3で示したピーク群で、定量解析時には斜線で示した部分の面積を使用する。
 上記実施例2で調製したホップエキス酸化反応物分析時のHPLCクロマトグラムを図4-1~図4-3(検出波長270nm)、および図4-4(検出波長355nm)に示す。また、原料に用いたホップエキス分析時クロマトグラムを図5-1および図5-2(検出波長270nm)、ならびに図5-3(検出波長355nm)に示す。実施例1の場合と同様にOxi-Fr1と定義する成分群は図4-1で図示された領域に検出されるが、実施例2で使用した原料エキスにはα酸およびイソα酸が含まれていないため、Oxi-Fr1の生成量はわずかであった。また、実施例1と同様にOxi-Fr2と定義する成分群は図4-2、図5-2で示された領域に検出される。定量解析時には斜線で示した部分の面積を使用する。β1-4各成分は図4-3で示したピーク群で、定量解析時には斜線で示した部分の面積を使用する。
 実施例2の結果から、β1-4各成分を含むOxi-Fr2はホップエキス中のβ酸の酸化により生成することが示唆された。
  β酸の酸化により生成したβ1-4の各成分について、ピークを分取して精密質量測定が可能な質量分析装置で分析を実施した。その結果得られた測定値からβ1およびβ2はコルプロンに酸素が一つ付加した化合物であり、β3およびβ4はルプロン、アドルプロンに酸素が一つ付加した化合物であることが示唆された。
 上記実施例3で調製したホップエキス酸化反応物分析時のHPLCクロマトグラムを図6-1~図6-3(検出波長270nm)、および図6-4(検出波長355nm)に示す。また、原料に用いたホップエキス分析時クロマトグラムを図7-1および図7-2(検出波長270nm)、ならびに図7-3(検出波長355nm)に示す。実施例1の場合と同様にOxi-Fr1と定義する成分群は図6-1で図示された領域に検出される。定量解析時にはこの画分に検出された全ピーク面積の合算値を使用する。また、実施例1および2の場合と同様にOxi-Fr2と定義する成分群は図6-2、図7-2で示された領域に検出される。定量解析時には斜線で示した部分の面積を使用する。β1―4各成分は図6-3で示したピーク群で、定量解析時には斜線で示した部分の面積を使用する。
 「定量方法」
 Oxi-Fr1、Oxi-Fr2、およびβ1-4の定量は、それぞれ算出した面積値を基に、イソα酸換算で定量を実施する。具体的にはイソα酸標品を用いて作成した検量線を使用して求めることができる。α酸、β酸、イソα酸の定量はそれぞれの標品を用いて作成した検量線を使用して求めることができる。α酸、β酸およびイソα酸の標品としては、例えばAmerican Society of Brewing Chemists(ASBC)から入手可能なInternal Calibration StandardsのICE-2、ICS-I2、ICS-T2などが利用できる。
[ピーク面積比率の算出]
 ホップエキスを酸化反応に付すことで、エキス中のα酸、β酸およびイソα酸は低減し、Oxi-Fr1、Oxi-Fr2といった成分群が増加することから、ホップエキス酸化反応物はHPLC分析を実施した際に波長270nmで検出される成分の総ピーク面積に対する同波長で検出されるα酸、β酸およびイソα酸ピークの面積比率からも評価可能である。総ピーク面積の算出にあたっては、Oxi-Fr1の始点からOxi-Fr2の終点までの領域に検出されるピークを解析対象とする。
 各分析サンプルにおける「Oxi-Fr1/(α酸+イソα酸)」、「β1-4/β酸」、「Oxi-Fr2/β酸」の重量比率は表1の通りであった。
Figure JPOXMLDOC01-appb-T000020
(実施例2で使用した原料エキスにはα酸とイソα酸が含まれないため、Oxi-Fr1/(α酸+イソα酸)に関しては算出できない。)
 図1、2、3および表2の結果から明らかなように、粉末化後酸化反応に付して製造したホップエキス酸化反応物ではα酸、β酸、イソα酸が大きく低下あるいは消失していた。ホップエキス酸化反応物のHPLC分析による総ピーク面積に対するイソα酸、α酸およびβ酸のピーク面積の割合は実施例1および2で10%以下であり、実施例3で15.1%であった。
 また、粉末化後酸化反応に付したホップエキスではOxi-Fr1、Oxi-Fr2、β1-4が新たに出現もしくは大きく増加していた。
実施例5
 超臨界二酸化炭素抽出したホップエキス(CO2 Hop Extract;α酸55.6%w/w、β酸22.6%w/w、イソα酸未検出;hopsteiner社製)60gとデキストリン(TK-16;松谷化学)180gを重量比1:3で均一になるよう混合し、ホップエキスを粉末状形態にした。得られた粉末状ホップエキスを40℃、60℃、80℃で8時間~196時間加熱し、酸化反応に付した。酸化反応中、経時的にサンプリングし、実施例4記載の方法で分析し、各分析サンプルにおける「Oxi-Fr1/(α酸+イソα酸)」、「β1-4/β酸」、「Oxi-Fr2/β酸」の重量比率を求めた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000021
 表3から明らかなように、デキストリンを粉末化基材に使用した場合、酸化反応時の温度が高いほど酸化反応の進行が早まることが確認された。図8-1、図8-2に原料エキスと60℃24時間加熱したエキス酸化反応物の成分プロファイルを示す。
実施例6
 超臨界二酸化炭素抽出したホップエキス(CO2 Hop Extract;α酸55.6%w/w、β酸22.6%w/w、イソα酸未検出;hopsteiner社製)20gとデキストリン(TK-16;松谷化学)を重量比1:2~1:9で均一になるよう混合し、ホップエキスを粉末状形態にした。得られた粉末状ホップエキスを80℃で8時間~48時間加熱し、酸化反応に付した。酸化反応中、経時的にサンプリングし、実施例4記載の方法で分析し、各分析サンプルにおける「Oxi-Fr1/(α酸+イソα酸)」、「β1-4/β酸」、「Oxi-Fr2/β酸」の重量比率を求めた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000022
 原料エキスとデキストリンの比が1:1の状態では均一な粉末とならずにエキスがダマになってしまい反応効率が低下した。一方、完全に均一な粉末状態にできた1:3~1:9のものに関しては効率的に反応が進行した。エキスとデキストリン比が変化してもエキス酸化反応物の成分プロファイル自体の変化はなかった。
実施例7
 超臨界二酸化炭素抽出したホップエキス(CO2 Hop Extract;α酸55.6%w/w、β酸22.6%w/w、イソα酸未検出;hopsteiner社製)20gと糖質系賦形剤(デキストリン:TK-16、マックス1000;ともに松谷化学、セルロース:FD101、ST100;ともに旭化成ケミカル)を重量比1:3で均一になるよう混合し、ホップエキスを粉末状形態にした。得られた粉末状ホップエキスを80℃で8時間~93時間加熱し、酸化反応に付した。酸化反応中、経時的にサンプリングし、実施例4記載の方法で分析し、各分析サンプルにおける「Oxi-Fr1/(α酸+イソα酸)」、「β1-4/β酸」、「Oxi-Fr2/β酸」の重量比率を求めた。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000023
 いずれの基材を用いた場合でも同様に酸化反応が進行した。また、酸化生成物の成分プロファイルも同様であった。反応時間8時間のホップエキス酸化反応物のHPLC分析による総ピーク面積に対するイソα酸、α酸およびβ酸のピーク面積の割合は15%以下であり、反応時間24時間以上のホップエキス酸化反応物のHPLC分析による総ピーク面積に対するイソα酸、α酸およびβ酸のピーク面積の割合は10%以下であった。また、図8-3にFD-101を用いて粉末化したエキスの80℃8時間、24時間加熱時のエキス酸化反応物の成分プロファイルを示す。
実施例8
 超臨界二酸化炭素抽出したホップエキス(CO2 Hop Extract;α酸55.6%w/w、β酸22.6%w/w、イソα酸未検出;hopsteiner社製)20gと珪藻土(ラヂオライト#2000、#300;昭和化学)を重量比1:2~1:3で均一になるよう混合し、ホップエキスを粉末状形態にした。得られた粉末状ホップエキスを室温または80℃で4時間~48時間加熱し、酸化反応に付した。酸化反応中、経時的にサンプリングし、実施例4記載の方法で分析し、各分析サンプルにおける「Oxi-Fr1/(α酸+イソα酸)」、「β1-4/β酸」、「Oxi-Fr2/β酸」の重量比率を求めた。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000024
 粉末化基材に珪藻土を用いた場合、酸化反応時に加熱をせずとも効率的に反応が進行した。いずれのホップエキス酸化反応物のHPLC分析による総ピーク面積に対するイソα酸、α酸およびβ酸のピーク面積の割合は10%以下であった。加熱せずとも反応が効率的に進行したのは、珪藻土に含まれる金属類が酸化反応を触媒したためと考えられる。この結果から、金属類を含む基材を用いることで反応効率をより高めることが可能であることが示唆される。図8-4に各条件で反応させたエキス酸化反応物のプロファイルを示す。
実施例9
 超臨界二酸化炭素抽出したホップエキス(CO2 Hop Extract;α酸55.6%w/w、β酸22.6%w/w、イソα酸未検出;hopsteiner社製)20gと粉砕したホップ粕(BP55;hopsteiner社製)を重量比1:3で均一になるよう混合し、ホップエキスを粉末状形態にした。得られた粉末状ホップエキスを80℃で24時間~48時間加熱し、酸化反応に付した。酸化反応中、経時的にサンプリングし、実施例4記載の方法で分析し、各分析サンプルにおける「Oxi-Fr1/(α酸+イソα酸)」、「β1-4/β酸」、「Oxi-Fr2/β酸」の重量比率を求めた。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000025
 粉末化基材としてホップ粕を使用した場合でも効率よく酸化反応が進行した。いずれのホップエキス酸化反応物のHPLC分析による総ピーク面積に対するイソα酸、α酸およびβ酸のピーク面積の割合は10%以下であった。図8-5にエキス酸化反応物のプロファイルを示す。
実施例10
 超臨界二酸化炭素抽出したホップエキス(CO2 Hop Extract;Hopsteiner)からα酸画分を分取して調製したホップエキス(α酸94.4%w/w、β酸3.36%w/w、イソα酸未検出)10gとデキストリン(TK-16;松谷化学)を重量比1:3で均一になるよう混合し、ホップエキスを粉末状形態にした。得られた粉末状ホップエキスを80℃で8時間~72時間加熱し、酸化反応に付した。酸化反応中、経時的にサンプリングし、実施例4記載の方法で分析し、各分析サンプルにおける「Oxi-Fr1/(α酸+イソα酸)」、「β1-4/β酸」、「Oxi-Fr2/β酸」の重量比率を求めた。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000026
 原料エキス中のα酸量に対するβ酸量が極めて低いため、β酸に関するパラメータについては考慮していない。α酸が酸化することで主にOxi-Fr1が生成することが明らかとなった。反応時間24時間以上のいずれのホップエキス酸化反応物のHPLC分析による総ピーク面積に対するイソα酸、α酸およびβ酸のピーク面積の割合は10%以下であった。図8-6に原料に使用したエキスと24時間酸化反応をさせたエキス酸化反応物の成分プロファイルを示す。
実施例11
 エタノール抽出したホップエキス(EtOH Hop Extract;α酸31.8%w/w、β酸24.8%w/w、イソα酸2.77%;hopsteiner社製)20gとセルロース(FD-101;旭化成ケミカルズ)を重量比1:3で均一になるよう混合し、ホップエキスを粉末状形態にした。得られた粉末状ホップエキスを80℃で8時間~24時間加熱し、酸化反応に付した。酸化反応中、経時的にサンプリングし、実施例4記載の方法で分析し、各分析サンプルにおける「Oxi-Fr1/(α酸+イソα酸)」、「β1-4/β酸」、「Oxi-Fr2/β酸」の重量比率を求めた。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000027
 原料としてエタノール抽出ホップエキスを使用した場合でも酸化反応が進行することが確認された。いずれのホップエキス酸化反応物のHPLC分析による総ピーク面積に対するイソα酸、α酸およびβ酸のピーク面積の割合は10%以下であった。図8-7に原料に使用したエキスと24時間酸化反応をさせたエキス酸化反応物の成分プロファイルを示す。
実施例12
 超臨界二酸化炭素抽出した後に異性化処理をしたホップエキス(Isomerized Kettle Extract;イソα酸53.0%w/w、β酸20.0%w/w、α酸未検出;hopsteiner社製)20gとデキストリン(TK-16;松谷化学)を重量比1:3で均一になるよう混合し、ホップエキスを粉末状形態にした。得られた粉末状ホップエキスを80℃で8時間~72時間加熱し、酸化反応に付した。酸化反応中、経時的にサンプリングし、実施例4記載の方法で分析し、各分析サンプルにおける「Oxi-Fr1/(α酸+イソα酸)」、「β1-4/β酸」、「Oxi-Fr2/β酸」の重量比率を求めた。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000028
 異性化処理を施しイソα酸をリッチにしたエキスを原料に用いた場合でも酸化反応が進行することが確認された。ホップエキス酸化反応物のHPLC分析による総ピーク面積に対するイソα酸、α酸およびβ酸のピーク面積の割合は反応時間8時間で44.9%、反応時間24時間で15.1%、反応時間48時間以上で10%以下であった。図8-8に8時間~72時間酸化反応をさせたエキス酸化反応物の成分プロファイルを示す。
実施例13:官能評価
 実施例1、2、3、5、7~12で得られたホップエキス酸化反応物について、その苦味・エグ味を官能評価にてホップエキスと比較した。
[苦味・エグ味官能評価の評価方法]
 実施例1、2、3、5~12で得られたホップエキス酸化反応物及び、比較例としてホップエキス酸化反応物の原料に用いたホップエキスおよび異性化ホップエキス(IsoExtract30%;hopsteiner社製)の苦味・エグ味について、以下の方法で8人の社内パネラーを用いて官能評価を行った。実施例1、2、5、7~12のホップエキス酸化反応物については原料中のα酸、イソα酸、β酸合計50ppmからの酸化反応物生成相当量となるように、比較例についてはα酸、β酸、イソα酸が合計50ppmとなるように、それぞれ10mMクエン酸バッファー(pH5.5)に添加し、サンプルとした。
 官能評価はサンプル数mLを口に含み、評価基準に従い評価した。結果は8名の評価点の平均値として求めた。
[評価基準]
Figure JPOXMLDOC01-appb-T000029
[評価結果]
Figure JPOXMLDOC01-appb-T000030
 その結果、実施例1、2、3、5、7~12で得られたホップエキス酸化反応物について苦味・エグ味が大きく低減しており、飲用に適した香味であることが示唆された。具体的には、「Oxi-Fr1/(α酸+イソα酸)」が重量比で0.1以上または「(β1+β2+β3+β4)/β酸」が重量比で0.3以上または「Oxi-Fr2/β酸」が重量比で2.0以上であるホップエキス酸化反応物(実施例)はそうでないホップエキス(比較例)に比べ、苦味・エグ味が低減していることが示された。また、ピーク面積比率で評価した場合、HPLC分析での総ピーク面積に対するα酸、イソα酸、β酸のピーク面積比率が50%以下であるホップエキス酸化反応物(実施例)はそうでないホップエキス(比較例)に比べ、苦味・エグ味が低減していることが示された。
実施例14:ホップエキス酸化反応物の脂質吸収抑制作用の評価
 実施例1で得られたホップエキス酸化反応物の脂質吸収抑制作用を、ラットへの脂質エマルジョン単回投与試験によって評価した。ラットにおける脂質エマルジョン吸収の測定試験は、すでに報告された方法(Int.J.Obes.Relat.Metab.Disord.25,1459-1464(2001)に従って以下の通りに実施した。つまり、脂質エマルジョンはコーン油(6ml)、コール酸(80mg)、オレイン酸コレステリル(2g)、蒸留水(2ml)を混合し、超音波処理により調製し、16時間絶食後の8週齢の雄性Wistarラット(日本チャールズリバー)に10ml/kg体重になるように胃ゾンデを用いて経口投与した。実施例1で得られたホップエキス酸化反応物投与群では、投与量が1000mg/kg体重になるように、脂質エマルジョン調製時にホップエキス酸化反応物を混合した。脂質エマルジョン投与前、及び投与後1、2、3、4、5時間後のそれぞれに尾静脈より採血し、定法に従い血漿を調製し、血漿中の中性脂肪濃度をトリグリセライドEテストワコー(和光純薬)により測定した。
 その結果、対照群では投与後1~3時間で血漿中中性脂肪濃度の増加が見られたのに対し、ホップエキス酸化反応物投与群では血漿中中性脂肪濃度の増加が投与後1~2時間で有意に抑制された(図9:ホップエキス酸化反応物の脂質吸収阻害作用;ホップエキス酸化反応物は1000mg/kg体重で脂質エマルジョンと同時投与。*:P<0.05、**:P<0.01(Control群と比較);投与前後の血中中性脂肪濃度を平均値±標準偏差で表示した。)。以上の結果から、ホップエキス酸化反応物は脂質の吸収を抑制する作用を持つことが確認された。中性脂肪は小腸で膵リパーゼにより分解され吸収される。そこで膵リパーゼ活性が中性脂肪の吸収に大きく寄与するためホップエキス酸化反応物の膵リパーゼ活性阻害作用を評価した。
実施例15:ホップエキス酸化反応物の膵リパーゼ活性阻害作用の評価
 実施例1で得られたホップエキス酸化反応物の膵リパーゼ活性阻害作用を評価した。膵リパーゼ活性の測定はすでに報告された方法(J.Agric.Food Chem.,53,4593-4598(2005))に従って以下の通りに実施した。測定試薬には4-methylumbelliferyloleate(シグマアルドリッチ)を使用し、酵素源にはブタ膵リパーゼ(シグマアルドリッチ)を、1検体当たり10U使用した。実施例1、2、3、5、7~12で得られたホップエキス酸化反応物は4%ジメチルスルホキシドを用いて所定の固形分濃度(ホップエキス由来酸化成分濃度)に溶解し、試験に供した。活性は4%ジメチルスルホキシドのみを添加した場合に得られる酵素活性を100%として表示した。
 その結果、実施例1で得られたホップエキス酸化反応物は膵リパーゼ活性を阻害し、終濃度80.5μg/mlで添加した時に約50%までリパーゼ活性が低下した(図10:ホップエキス酸化反応物の膵リパーゼ阻害活性;平均値±標準偏差)。以上の結果から、ホップエキス酸化反応物が膵リパーゼ活性の阻害作用を持つことが確認された。
 次に、実施例2、3、5、7~12で得られたホップエキス酸化反応物について同様に膵リパーゼ活性阻害作用を評価した。また、比較としてイソα酸の膵リパーゼ活性阻害作用についても評価した。イソα酸の測定には異性化ホップエキス(IsoExtract30%;hopsteiner社製)を使用した。測定の結果、実施例2、3、5、7~12で得られたホップエキス酸化反応物はすべて膵リパーゼ活性を阻害し、終濃度29.2~105.8μg/mlで添加したときに約50%までリパーゼ活性が低下した。一方、イソα酸は終濃度296μg/mlで添加したときに約50%までリパーゼ活性が低下した(図11:ホップエキス酸化反応物の50%膵リパーゼ活性阻害濃度(IC50))。以上の結果から、ホップエキス酸化反応物は原料ホップエキスや粉末化基材の種類を問わず、全て膵リパーゼ活性の阻害作用を持つことが確認され、活性の力価についてもイソα酸よりも強いことが示された。
実施例16:ホップエキス酸化反応物のアルカリ金属塩水溶性製剤化
 実施例7で得られた粉末状ホップエキス酸化反応物(基材FD-101、80℃24時間加熱)5gを50℃に加温した0.2M水酸化ナトリウム水溶液25mLに加え、よく攪拌した。
得られた溶液をろ過して基材のセルロースを除き、茶褐色透明のホップエキス酸化反応物のナトリウム塩水溶液(ホップエキス由来酸化成分を固形分として5%w/v)を得た。得られた水溶液を希釈し、実施例4記載の方法で分析した結果を図12に示す。ホップエキス酸化反応物を水溶化した製剤が得られていることが確認された。
実施例17:ホップエキス酸化反応物中のβ1~4成分の構造解析
17-1:β1およびβ2の分析
 実施例4の記載に準じてホップエキス酸化反応物のHPLC分析を行い、β1およびβ2を分取精製し、精密質量測定が可能な質量分析装置による分析、H-NMR測定および13C-NMR測定を実施した。
 その結果、β1は式(I)で表されるHydroxytricyclocolupone epimer Bのいずれかの化合物、またはその混合物であり、β2は式(II)で表されるHydroxytricyclocolupone epimer Aのいずれかの化合物、またはその混合物であることが同定された。なお、図13に示される通り、β1およびβ2は、C4位の立体配置が異なる立体異性体の関係にある。
 β1
Figure JPOXMLDOC01-appb-C000031
 β2
Figure JPOXMLDOC01-appb-C000032
 β1に関する質量分析、H-NMR測定および13C-NMR測定の結果は、以下の通りであった。
 β1
 質量分析:HR-ESIMS m/z 415.2494 [M -H]- (calcd for [C25H36O5-H]-, 415.2490)
  H-NMRおよび 13 C-NMR
Figure JPOXMLDOC01-appb-T000033
 β2に関する質量分析、H-NMR測定および13C-NMR測定の結果は、以下の通りであった。
 β2
 質量分析:HR-ESIMS m/z 415.2496 [M -H]- (calcd for [C25H36O5-H]-, 415.2490)
  H-NMRおよび 13 C-NMR
Figure JPOXMLDOC01-appb-T000034
17-2:β3およびβ4の分析
 実施例4の記載に準じてホップエキス酸化反応物のHPLC分析を行い、β3およびβ4を分取精製し、精密質量測定が可能な質量分析装置による分析を実施した。
 J. Agric. Food Chem. 2009, 57, 7480-7489に記載の手法に準じて、β1とのHPLCでの溶出位置の比較を実施した結果、β3はβ1のn及びad同族体であることが示唆された。さらに質量分析を行った結果、β3は、式(III)で表されるHydroxytricyclolupone epimer Bおよび式(IV)で表されるHydroxytricycloadlupone epimer Bのいずれか一つまたはそれらの混合物であることが同定された。
 質量分析結果および式(III)および式(IV)の化学式は、以下の通りである。
 β3
 質量分析:HR-ESIMS m/z 429.2650 [M -H]- (calcd for [C26H38O5-H]-, 429.2647)
 化学式
 Hydroxytricyclolupone epimer B
Figure JPOXMLDOC01-appb-C000035
 Hydroxytricycloadlupone epimer B
Figure JPOXMLDOC01-appb-C000036
 また、同様に、J. Agric. Food Chem. 2009, 57, 7480-7489に記載の手法に準じて、β2とのHPLCでの溶出位置の比較を実施した結果、β4はβ2のn及びad同族体であることが示唆された。さらに質量分析を行った結果、β4は式(V)で表されるHydroxytricyclolupone epimer Aおよび式(VI)で表されるHydroxytricycloadlupone epimer Aのいずれか一つまたはそれらの混合物であることが同定された。
 質量分析結果および式(V)および式(VI)の化学式は、以下の通りである。
 β4
 質量分析:HR-ESIMS m/z 429.2651 [M -H]- (calcd for [C26H38O5-H]-, 429.2647)
 化学式
 Hydroxytricyclolupone epimer A
Figure JPOXMLDOC01-appb-C000037
Hydroxytricycloadlupone epimer A
Figure JPOXMLDOC01-appb-C000038

Claims (17)

  1.  ホップエキスおよび粉末化基材を含んでなる粉末ホップエキスを酸化することを含んでなる、ホップエキス酸化反応物の製造方法。
  2.  前記ホップエキスが、超臨界二酸化炭素または有機溶媒によって抽出処理されたものである、請求項1に記載の製造方法。
  3.  前記粉末化基材が、食品または食品添加物から選択される基材である、請求項1または2に記載の方法。
  4.  前記粉末化基材が、糖類、多糖類、無機質担体、醸造原料からなる群から選択される少なくとも一つのものである、請求項3に記載の方法。
  5.  前記粉末化基材が、澱粉、デキストリン、シクロデキストリン、セルロース、珪藻土、パーライト、活性白土、活性炭、シリカゲル、合成吸着樹脂、ホップ、ホップ粕からなる群から選択される少なくとも一つのものである、請求項1~4のいずれか一項に記載の方法。
  6.  前記ホップエキスと粉末化基材との重量比が1:1~1:10である、請求項1~5のいずれか一項に記載の方法。
  7.  前記酸化された粉末ホップエキスからホップエキス酸化反応物を単離することをさらに含んでなる、請求項1~6のいずれか一項に記載の方法。
  8.  前記ホップエキス酸化反応物が、次の成分あるいは成分群(A)、(B)、(C)、(D)、(E)、(F):
    (A)α酸
    (B)イソα酸
    (C)β酸
    (D)Oxi-Fr.1
    (E)Oxi-Fr.2
    (F)β1、β2、β3、β4
    の少なくとも一つを含有し、(A)~(F)の各重量比が、(D)/((A)+(B))>0.1以上または(F)/(C)>0.3以上または(E)/(C)>2以上である、請求項1~7のいずれか一項に記載の方法。
  9.  前記(F)におけるβ1が、式(I)で表されるいずれかの化合物:
    Figure JPOXMLDOC01-appb-C000001
     を含んでなり
     β2が、式(II)で表されるいずれかの化合物:
    Figure JPOXMLDOC01-appb-C000002
    を含んでなり、
     β3が、以下の式(III)または(IV)で表されるいずれかの化合物:
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
     を含んでなり、
     β4が、式(V)または(VI)で表されるいずれかの化合物:
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
     を含んでなる、請求項8に記載の方法。
  10.  前記ホップエキス酸化反応物のHPLC分析による総ピーク面積に対するイソα酸、α酸およびβ酸のピーク面積の割合が50%以下である、請求項1~9のいずれか一項に記載の方法。
  11.  請求項1~10に記載のいずれか一項に記載の方法により得られる、ホップエキス酸化反応物。
  12.  次の成分あるいは成分群(A)、(B)、(C)、(D)、(E)、(F):
    (A)α酸
    (B)イソα酸
    (C)β酸
    (D)Oxi-Fr.1
    (E)Oxi-Fr.2
    (F)β1、β2、β3、β4
    の少なくとも一つを含有し、(A)~(F)の各重量比が、(D)/((A)+(B))>0.1以上または(F)/(C)>0.3以上または(E)/(C)>2以上であることを特徴とする、ホップエキス酸化反応物。
  13.  前記(F)におけるβ1が、式(I)で表されるいずれかの化合物:
    Figure JPOXMLDOC01-appb-C000007
     を含んでなり
     β2が、式(II)で表されるいずれかの化合物:
    Figure JPOXMLDOC01-appb-C000008
    を含んでなり、
     β3が、以下の式(III)または(IV)で表されるいずれかの化合物:
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
     を含んでなり、
     β4が、式(V)または(VI)で表されるいずれかの化合物:
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
     を含んでなる、請求項12に記載のホップエキス酸化反応物。
  14.  HPLC分析による総ピーク面積に対するイソα酸、α酸およびβ酸のピーク面積の割合が50%以下である、ホップエキス酸化反応物。
  15.  請求項10~14のいずれか一項に記載のホップエキス酸化反応物を有効成分として含んでなる、脂質吸収抑制剤。
  16.  請求項10~14のいずれか一項に記載のホップエキス酸化反応物が添加されてなる、飲食品。
  17.  脂質吸収抑制剤の製造における、請求項10~14のいずれか一項に記載のホップエキス酸化反応物の使用。
PCT/JP2011/079085 2010-12-15 2011-12-15 ホップエキス酸化反応物、その製造法および用途 WO2012081676A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/994,632 US9512389B2 (en) 2010-12-15 2011-12-15 Hop oxidation-reaction product, preparing method thereof and use thereof
BR112013014941A BR112013014941A2 (pt) 2010-12-15 2011-12-15 produto da reação de oxidação do extrato de lúpulo, método para sua preparação e seu uso
AU2011342118A AU2011342118B2 (en) 2010-12-15 2011-12-15 Oxidation reaction product of hop extract, process for production thereof, and use thereof
NZ612722A NZ612722A (en) 2010-12-15 2011-12-15 Hop extract oxidation-reaction product, preparing method thereof and use thereof
EP11849749.4A EP2653041A4 (en) 2010-12-15 2011-12-15 HOP EXTRACT OXIDATION REACTION PRODUCT, METHOD FOR OBTAINING THE SAME, AND USE THEREOF
JP2012548836A JP5925698B2 (ja) 2010-12-15 2011-12-15 ホップエキス酸化反応物、その製造法および用途
US15/332,298 US20170037345A1 (en) 2010-12-15 2016-10-24 Hop extract oxidation-reaction product, preparing method thereof and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010279933 2010-12-15
JP2010-279933 2010-12-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/994,632 A-371-Of-International US9512389B2 (en) 2010-12-15 2011-12-15 Hop oxidation-reaction product, preparing method thereof and use thereof
US15/332,298 Division US20170037345A1 (en) 2010-12-15 2016-10-24 Hop extract oxidation-reaction product, preparing method thereof and use thereof

Publications (1)

Publication Number Publication Date
WO2012081676A1 true WO2012081676A1 (ja) 2012-06-21

Family

ID=46244770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079085 WO2012081676A1 (ja) 2010-12-15 2011-12-15 ホップエキス酸化反応物、その製造法および用途

Country Status (7)

Country Link
US (2) US9512389B2 (ja)
EP (1) EP2653041A4 (ja)
JP (1) JP5925698B2 (ja)
AU (1) AU2011342118B2 (ja)
BR (1) BR112013014941A2 (ja)
NZ (2) NZ612722A (ja)
WO (1) WO2012081676A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191264A1 (ja) * 2012-06-20 2013-12-27 キリン株式会社 ホップ酸化反応産物抽出物含有発泡性飲料
WO2013191258A1 (ja) * 2012-06-20 2013-12-27 キリンホールディングス株式会社 酸化処理に付したホップの水性媒体抽出物を含有する飲料
EP2778218A3 (en) * 2013-03-11 2015-06-17 S.S. Steiner, Inc. Novel hop powders
US10653967B2 (en) 2016-11-15 2020-05-19 Genvid Technologies, Inc. Systems and methods of video game streaming with interactive overlay and additional data
JP2020080771A (ja) * 2018-11-28 2020-06-04 キリンホールディングス株式会社 疲労対象の注意機能および判断機能の低下抑制用組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201706286RA (en) * 2015-02-13 2017-09-28 Suntory Holdings Ltd Method for manufacturing sugar-containing liquid
AU2018408879A1 (en) * 2018-02-16 2020-10-08 The New Zealand Institute For Plant And Food Research Limited Oral dosage forms comprising a hops extract
JP7311492B2 (ja) 2018-03-23 2023-07-19 キリンホールディングス株式会社 精神機能の低下抑制用組成物
CN111718814B (zh) * 2020-06-29 2022-11-01 汉源县昊业科技有限公司 一种花椒精酿啤酒及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068205A1 (fr) * 2002-02-14 2003-08-21 Kirin Beer Kabushiki Kaisha Compositions et aliments ameliorant le metabolisme des lipides
JP2008099682A (ja) 2006-09-22 2008-05-01 Sanei Gen Ffi Inc 機能性素材及び/又はエキス含有組成物
JP2008231008A (ja) * 2007-03-19 2008-10-02 Kobayashi Pharmaceut Co Ltd 抗酸化作用を有する組成物
JP2009542262A (ja) * 2006-03-29 2009-12-03 ハース,ジョン,アイ. ホップ酸アルカリ塩を含む抗菌性組成物及びその用途
JP4503302B2 (ja) 2002-02-14 2010-07-14 キリンホールディングス株式会社 脂質代謝改善用組成物および食品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1201165B (de) 1958-08-01 1965-09-16 Rhenus Rheinische Getraenke In Verfahren zur Herstellung von Getraenken und Getraenke-Essenzen durch Extraktion vonDrogen und pflanzlichem Frischmaterial
US4717580A (en) * 1984-04-12 1988-01-05 Scottish & Newcastle Breweries Plc Method of enhancing the bitterness of beer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068205A1 (fr) * 2002-02-14 2003-08-21 Kirin Beer Kabushiki Kaisha Compositions et aliments ameliorant le metabolisme des lipides
JP4503302B2 (ja) 2002-02-14 2010-07-14 キリンホールディングス株式会社 脂質代謝改善用組成物および食品
JP2009542262A (ja) * 2006-03-29 2009-12-03 ハース,ジョン,アイ. ホップ酸アルカリ塩を含む抗菌性組成物及びその用途
JP2008099682A (ja) 2006-09-22 2008-05-01 Sanei Gen Ffi Inc 機能性素材及び/又はエキス含有組成物
JP2008231008A (ja) * 2007-03-19 2008-10-02 Kobayashi Pharmaceut Co Ltd 抗酸化作用を有する組成物

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
FOOD SCIENCE JOURNAL, vol. 317, 2004, pages 54
GARCIA-VILLALBA, R. ET AL.: "Analysis of Hop Acids and Their Oxidized Derivatives and Iso-a- acids in Beer by Capillary Electrophoresis- Electrospray Ionization Mass Spectrometry.", J. AGRIC. FOOD CHEM., vol. 54, no. 15, 2006, pages 5400 - 5409, XP055128817 *
GIUSEPPINA, N. ET AL.: "Bitter acids from hydroethanolic extracts of Humulus lupulus L., Cannabaceae, used as anxiolytic.", BRAZILIAN JOURNAL OF PHARMACOGNOSY, vol. 20, no. 6, 10 December 2010 (2010-12-10), pages 850 - 859, XP055128940 *
HASELEU, G. ET AL.: "Quantitative Sensomics Profiling of Hop-Derived Bitter Compounds Throughout a Full-Scale Beer Manufacturing Process.", J. AGRIC. FOOD CHEM., vol. 58, no. 13, 7 June 2010 (2010-06-07), pages 7930 - 7939, XP055113976 *
INT. J. OBES. RELAT. METAB. DISORD., vol. 25, 2001, pages 1459 - 1464
INTJOBES (LOND)., vol. 29, no. 8, August 2005 (2005-08-01), pages 991 - 7
INTJOBES(LOND)., vol. 29, no. 8, August 2005 (2005-08-01), pages 991 - 7
J. AGRIC. FOOD CHEM., vol. 53, 2005, pages 4593 - 4598
J. AGRIC. FOOD CHEM., vol. 57, 2009, pages 7480 - 7489
See also references of EP2653041A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191264A1 (ja) * 2012-06-20 2013-12-27 キリン株式会社 ホップ酸化反応産物抽出物含有発泡性飲料
WO2013191258A1 (ja) * 2012-06-20 2013-12-27 キリンホールディングス株式会社 酸化処理に付したホップの水性媒体抽出物を含有する飲料
JPWO2013191258A1 (ja) * 2012-06-20 2016-05-26 キリン株式会社 酸化処理に付したホップの水性媒体抽出物を含有する飲料
JPWO2013191264A1 (ja) * 2012-06-20 2016-05-26 キリン株式会社 ホップ酸化反応産物抽出物含有発泡性飲料
EP2865745A4 (en) * 2012-06-20 2016-06-22 Kirin Kabushiki Kaisha CARBONATED BEVERAGE CONTAINING A HOP OXIDATION REACTION PRODUCT EXTRACT
AU2013278296B2 (en) * 2012-06-20 2017-06-15 Kirin Kabushiki Kaisha Beverage containing aqueous medium extract of hops used in oxidation
AU2013278296B9 (en) * 2012-06-20 2017-07-13 Kirin Kabushiki Kaisha Beverage containing aqueous medium extract of hops used in oxidation
US10660351B2 (en) 2012-06-20 2020-05-26 Kirin Holdings Kabushiki Kaisha Beverage containing aqueous medium extract of hop subjected to oxidation treatment
EP2778218A3 (en) * 2013-03-11 2015-06-17 S.S. Steiner, Inc. Novel hop powders
US10653967B2 (en) 2016-11-15 2020-05-19 Genvid Technologies, Inc. Systems and methods of video game streaming with interactive overlay and additional data
JP2020080771A (ja) * 2018-11-28 2020-06-04 キリンホールディングス株式会社 疲労対象の注意機能および判断機能の低下抑制用組成物
JP7287741B2 (ja) 2018-11-28 2023-06-06 キリンホールディングス株式会社 疲労対象の注意機能および判断機能の低下抑制用組成物

Also Published As

Publication number Publication date
JPWO2012081676A1 (ja) 2014-05-22
AU2011342118B2 (en) 2016-03-10
US20130316068A1 (en) 2013-11-28
EP2653041A4 (en) 2014-09-10
JP5925698B2 (ja) 2016-05-25
NZ706877A (en) 2016-10-28
BR112013014941A2 (pt) 2016-07-19
EP2653041A1 (en) 2013-10-23
NZ612722A (en) 2015-11-27
AU2011342118A1 (en) 2013-08-01
US9512389B2 (en) 2016-12-06
US20170037345A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP5925698B2 (ja) ホップエキス酸化反応物、その製造法および用途
JP6113890B2 (ja) ホップ酸化反応産物、その製造法および用途
JP5781434B2 (ja) ホップエキスのアルカリ分解産物およびその用途
WO2007066773A1 (ja) イソフムロン類包接体およびそれを含有する組成物
JPWO2011108059A1 (ja) キサンチンオキシダーゼ阻害剤
AU2007330743B2 (en) Spent hop products, their content in stilbenes and their use as antioxidant for comestible production
JP6042800B2 (ja) トマトシドaの抽出方法
KR101820096B1 (ko) 콩 발아배아 추출물을 포함하는 대사성 질환의 예방 또는 치료용 약학 조성물
JP2006169227A (ja) キサンチンオキシダーゼ阻害剤
JP2007077117A (ja) α−アミラーゼ阻害剤
KR20190024786A (ko) 오메가-3 지방산 함유 들기름, 토마토 추출물 및 파프리카 추출물을 혼합한 혼합물을 유효성분으로 함유하는 대사성 질환의 예방, 개선 또는 치료용 조성물
JP2005104951A (ja) 血圧降下用組成物および血管柔軟性改善用組成物並びにこれらの機能が付与された食品
WO2006046402A1 (ja) 中性脂肪代謝制御剤、それを含有する飲食品、食品添加物及び医薬
JP2006151945A (ja) 中性脂肪低減剤、それを含有する飲食品、食品添加物及び医薬
JP2007246429A (ja) リパーゼ阻害剤及び飲食品
JP2006089457A (ja) コレステロール代謝制御剤、それを含有する飲食品、食品添加物及び医薬
JP2016108242A (ja) 血中パラメータ改善剤
WO2006068117A1 (ja) 腎障害予防剤およびその機能が付与された食品
JP2018199639A (ja) コレシストキニンまたはglp−1分泌促進用組成物
JP2006111609A (ja) コレステロール代謝制御剤、それを含有する飲食品、食品添加物及び医薬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548836

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011849749

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011849749

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011342118

Country of ref document: AU

Date of ref document: 20111215

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13994632

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013014941

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013014941

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130614