WO2012081366A1 - 固体電池 - Google Patents

固体電池 Download PDF

Info

Publication number
WO2012081366A1
WO2012081366A1 PCT/JP2011/076997 JP2011076997W WO2012081366A1 WO 2012081366 A1 WO2012081366 A1 WO 2012081366A1 JP 2011076997 W JP2011076997 W JP 2011076997W WO 2012081366 A1 WO2012081366 A1 WO 2012081366A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
layer
electrode layer
negative electrode
positive electrode
Prior art date
Application number
PCT/JP2011/076997
Other languages
English (en)
French (fr)
Inventor
悟史 重松
山田 和弘
正則 遠藤
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2012548709A priority Critical patent/JPWO2012081366A1/ja
Priority to CN2011800604523A priority patent/CN103262330A/zh
Publication of WO2012081366A1 publication Critical patent/WO2012081366A1/ja
Priority to US13/917,765 priority patent/US20130280598A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention generally relates to a solid state battery, and more particularly to a solid state battery having a stacked positive electrode layer, solid electrolyte layer, and negative electrode layer.
  • Lithium ion secondary batteries using non-aqueous electrolyte are used for power supplies for small electronic devices and auxiliary power supplies for memory backup.
  • the lithium ion secondary battery having the above configuration there is a risk that the electrolyte solution leaks.
  • the lithium ion secondary battery having the above configuration is used as an auxiliary power source for memory backup, etc., when the surrounding electronic circuit is wetted by the leaked electrolyte, problems such as malfunction or malfunction of the electronic circuit occur. .
  • the lithium ion secondary battery and the electronic circuit have been conventionally mounted in different places.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-42885 (hereinafter referred to as Patent Document 1) and Japanese Patent Application Laid-Open No. 2010-118159 (hereinafter referred to as Patent Document 2) propose a battery configuration that can be mounted on a substrate together with electronic circuit components. Has been.
  • a battery stack having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between these layers is housed in a case (exterior body) that can be mounted on a substrate.
  • the battery stack is disposed so as to be stacked in a direction perpendicular to the mounting surface of the substrate. That is, the positive electrode layer or the negative electrode layer in the battery stack is stacked so as to be positioned on the upper surface of the battery stack.
  • the positive electrode layer and the negative electrode layer of the battery stack are each connected to an external terminal or a current collector by wire bonding, a conductive adhesive, or the like in the case.
  • the battery is mounted on the substrate by connecting the case connection electrode portion formed on the lower surface of the case to the electronic circuit wiring on the substrate by reflow soldering or the like. Is done. Since the case connection electrode portion connected to the electronic circuit wiring on the substrate is positioned on the lower surface of the case, this battery can be easily mounted on the substrate without increasing the mounting area. However, even in this battery, since the electrode of the battery stack and the case connection electrode portion on the lower surface of the case are connected by wire bonding, the mounting type including the battery stack and the case for housing the battery stack It is difficult to further downsize the battery.
  • an object of the present invention is to reduce the size of a solid state battery including a battery stack and a case for housing the battery stack.
  • the solid battery according to the present invention includes a battery stack formed by sequentially stacking a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, and a case main body that houses the battery stack.
  • the case body has a base that supports the battery stack.
  • the positive electrode layer and the negative electrode layer are laminated in the direction in which the base of the case body extends.
  • the positive electrode layer and the negative electrode layer are laminated in the direction in which the base portion of the case body extends. For this reason, when the base of the case body is placed on the surface of the substrate, the positive electrode layer and the negative electrode layer can be arranged side by side in the direction in which the surface of the substrate extends. Thereby, each surface of a positive electrode layer and a negative electrode layer can be made to oppose the surface of a board
  • the mounting-type solid battery provided with the battery laminated body and the case which accommodates a battery laminated body can be reduced in size.
  • the base of the case main body is formed with an electrode connecting portion for conducting the inner side surface and the outer side surface of the case main body, and the electrode connecting portion is connected to the positive electrode connecting portion connected to the positive electrode layer. And a negative electrode connecting portion connected to the negative electrode layer.
  • a current collector layer is preferably formed on each of the surface of the positive electrode layer connected to the positive electrode connecting portion and the surface of the negative electrode layer connected to the negative electrode connecting portion.
  • the battery stack has one surface facing the surface of the base and the other surface opposite to the one surface, and the insulating layer is arranged so as to contact the other surface. It is preferable that
  • the case main body has a lid portion disposed so as to cover the battery stack, and the insulating layer is disposed between the lid portion and the battery stack.
  • case main body may have a lid portion that is disposed so as to cover the battery stack, and the insulating layer may form a part of the lid portion.
  • a bump layer is formed on each of the surface of the positive electrode connection portion connected to the positive electrode layer and the surface of the negative electrode connection portion connected to the negative electrode layer. Preferably it is formed.
  • the case main body has a lid portion arranged to cover the battery stack.
  • a solid battery including a battery stack and a case for housing the battery stack.
  • FIG. 3 is a diagram showing patterns (A) to (E) of a current collector layer formed on each of a positive electrode layer and a negative electrode layer of a battery stack in the solid battery of the present invention. It is a perspective view which shows the battery laminated body in the solid battery produced in the Example of this invention.
  • FIG. 7 shows one pattern of the current collector layers formed on each of the positive electrode layer and the negative electrode layer of the battery stack in the solid state battery manufactured in the example of the present invention, and is a view seen from the direction of arrow VII in FIG. 6. is there.
  • It is a perspective view which shows the external appearance of the solid battery produced in the Example of this invention.
  • It is a schematic perspective view which shows the base part of the case main body in the solid battery produced in the Example of this invention.
  • It is a figure which shows another pattern of the collector layer formed in each of the positive electrode layer and negative electrode layer of the battery laminated body in the solid battery produced in the Example of this invention.
  • It is sectional drawing which shows the typical cross section of a solid battery as the 4th Embodiment of this invention.
  • It is sectional drawing which shows the typical cross section of a solid battery as the 5th Embodiment of this invention.
  • a mounting type solid battery 1 includes a battery stack formed by sequentially stacking a positive electrode layer 11, a solid electrolyte layer 13, and a negative electrode layer 12. And a case main body for accommodating the battery stack.
  • the case body includes a base portion 20 and a lid portion 30.
  • the battery stack is placed on the surface of the base 20 so as to be supported by the base 20.
  • a positive electrode connection portion 21 and a negative electrode connection portion 22 are formed on the base portion 20 as electrode connection portions that connect the inner surface and the outer surface of the case body.
  • the battery stack is disposed on the surface of the base 20 so that the positive electrode connection portion 21 is connected to the positive electrode layer 11 and the negative electrode connection portion 22 is connected to the negative electrode layer 12.
  • the lid portion 30 is disposed so as to cover the battery stack.
  • the base 20 and the lid 30 are joined by seam welding or the like.
  • the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12 are laminated in a direction in which the base 20 of the case body extends.
  • Insulating layer 40 is arranged so as to be in contact with the surface opposite to the surface of the battery stack on the side facing base 20. In the first embodiment, the insulating layer 40 is disposed between the battery stack and the lid 30.
  • the insulating layer 40 forms part of the lid 30.
  • Other configurations of the solid battery 2 are the same as those of the solid battery 1.
  • an insulating layer is disposed on the surface opposite to the surface of the battery stack on the side facing the base 20. Absent. However, the positive electrode bump layer 51 is disposed between the positive electrode layer 11 and the positive electrode connection portion 21, and the negative electrode bump layer 52 is disposed between the negative electrode layer 12 and the negative electrode connection portion 22. Other configurations of the solid battery 3 are the same as those of the solid battery 1.
  • the base 20 and the lid 30 of the case body are made of metal, ceramic, or the like.
  • the base 20 may be formed of a ceramic such as alumina
  • the lid 30 may be formed of a metal such as Kovar (cobalt-nickel-iron alloy).
  • the insulating layer 40 is formed of a ceramic such as alumina, a fluororesin (tetrafluoroethylene resin or the like), a synthetic resin such as a polyimide resin, or the like.
  • the positive electrode connecting portion 21 and the negative electrode connecting portion 22 are formed of a metal such as tungsten filled in a through hole formed in the base portion 20.
  • the positive electrode bump layer 51 and the negative electrode bump layer 52 are formed of solder, gold or the like.
  • the positive electrode layer 11 and the negative electrode layer 12 are laminated in the direction in which the base 20 of the case body extends. For this reason, when the base 20 of the case body is placed on the surface of the substrate, the positive electrode layer 11 and the negative electrode layer 12 can be arranged side by side in the direction in which the surface of the substrate extends. Thereby, each surface of the positive electrode layer 11 and the negative electrode layer 12 can be made to oppose the surface of a board
  • each of the positive electrode layer 11 and the negative electrode layer 12 of the battery stack, and each of the positive electrode connection portion 21 and the negative electrode connection portion 22 as connection terminal portions for connection to an electronic circuit wiring or the like on the substrate, respectively. Need not be connected by wire bonding or the like.
  • the mounting type solid batteries 1 to 3 including the battery stack and the case main body that accommodates the battery stack can be reduced in size.
  • each of the positive electrode layer and the negative electrode layer can be connected to an electronic circuit wiring or the like on the substrate without increasing the mounting area, it is particularly effective when the solid batteries 1 to 3 of the present invention are surface-mounted. .
  • the insulating layer 40 acts to press the battery stack toward the base 20 of the case body. For this reason, the shift
  • FIG. 4 shows a battery stack formed by stacking the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12 in this order.
  • the positive electrode layer 11 has a positive electrode connection surface 11a connected to the positive electrode connection portion 21 (FIGS. 1 and 2), and the negative electrode layer 12 is connected to the negative electrode connection portion 22 (FIGS. 1 and 2). It has a negative electrode connection surface 12a.
  • the positive electrode connection surface 11a and the negative electrode connection surface 12a (FIG. 4) as electrode connection surfaces have various patterns as shown in FIG.
  • the current collector layer 60 can be formed. As shown in FIG. 5A, the current collector layer 60 may be formed on the entire surface of the electrode connection surface. As shown in FIG. 5B, the current collector layer 60 may be formed on a partial surface of a square shape located at the center of the electrode connection surface. As shown in FIG. 5C, the current collector layer 60 may be formed on a plurality of (three in the figure) rectangular partial surfaces located at one end, the center, and the other end. . As shown in FIG.
  • the current collector layer 60 may be formed on a part of a rectangular surface located at the center of the electrode connection surface.
  • a metal layer such as gold, silver, or platinum is formed on each of the positive electrode connection surface 11a and the negative electrode connection surface 12a by a printing method, a sputtering method, or the like.
  • the current collector layer 60 may be formed of a conductive material such as a carbon material.
  • the current collector layer 60 formed on each of the positive electrode connection surface 11a and the negative electrode connection surface 12a includes the positive electrode connection portion 21 and the negative electrode connection portion 22 (FIGS. 1 and 2) formed on the base portion 20, respectively.
  • the battery stack is arranged so as to overlap the surface of the battery.
  • the mounting type solid battery 4 is formed by sequentially laminating the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12, and in series.
  • Three battery stacks connected to each other and a case main body that accommodates the three battery stacks are provided.
  • the case body includes a base portion 20 and a lid portion 30.
  • a current collector layer 23 is provided between the positive electrode layer 11 of one battery stack and the negative electrode layer 12 of the other battery stack.
  • the three battery stacks are placed on the surface of the base 20 so as to be supported by the base 20.
  • a positive electrode connection portion 21 and a negative electrode connection portion 22 are formed on the base portion 20 as electrode connection portions that connect the inner surface and the outer surface of the case body.
  • a battery in which the positive electrode connection portion 21 is connected to the positive electrode layer 11 of the battery stack positioned on one end side of the three battery stacks, and the negative electrode connection portion 22 is positioned on the other end side of the three battery stacks The three battery stacks are arranged on the surface of the base 20 so as to be connected to the negative electrode layer 12 of the stack.
  • the lid 30 is disposed so as to cover the three battery stacks. The base 20 and the lid 30 are joined by seam welding or the like.
  • the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12 are stacked in the direction in which the base 20 of the case body extends.
  • Insulating layer 40 is arranged so as to contact the surface opposite to the surface of the three battery stacks on the side facing base 20.
  • the insulating layer 40 is disposed between the three battery stacks and the lid 30.
  • the base 20 is made of ceramic such as alumina
  • the lid 30 is made of metal such as Kovar (cobalt-nickel-iron alloy).
  • the insulating layer 40 is formed of a ceramic such as alumina, a fluororesin (tetrafluoroethylene resin or the like), a synthetic resin such as a polyimide resin, or the like.
  • the positive electrode connecting portion 21 and the negative electrode connecting portion 22 are formed of a metal such as tungsten filled in a through hole formed in the base portion 20.
  • the current collector layer 23 is made of a metal such as gold.
  • the number of battery stacks connected in series is not limited to three and may be two or more. Two or more battery stacks connected in series may be accommodated in the case body in the form shown in FIGS. 2 and 3.
  • the mounting type solid battery 5 is formed by sequentially laminating the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12, and in parallel.
  • Two battery stacks connected to each other and a case main body that accommodates the two battery stacks are provided.
  • the case body includes a base portion 20 and a lid portion 30.
  • the positive electrode layers 11 are connected to each other through the electrode layer 24, and the negative electrode layers 12 are connected to each other through the conductive layer 25.
  • the conductive layer 25 is formed to extend on the insulating layer 31 formed on the two battery stacks.
  • the two battery stacks are placed on the surface of the base 20 so as to be supported by the base 20.
  • a positive electrode connection portion 21 and a negative electrode connection portion 22 are formed on the base portion 20 as electrode connection portions that connect the inner surface and the outer surface of the case body.
  • the positive electrode connection portion 21 is connected to the electrode layer 24 that connects the positive electrode layers 11 positioned at the center of the two battery stacks, and the negative electrode connection portion 22 is on one end side of the two battery stacks.
  • the two battery stacks are arranged on the surface of the base 20 so as to be connected to the negative electrode layer 12 of the positioned battery stack.
  • the insulating lid 30 is disposed on the conductive layer 25 so as to cover the two battery stacks. The base 20 and the lid 30 are joined.
  • the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12 are stacked in the direction in which the base 20 of the case body extends.
  • the base 20 and the lid 30 are formed of ceramic such as alumina.
  • the insulating layer 31 is formed of a ceramic such as alumina, a fluororesin (tetrafluoroethylene resin or the like), a synthetic resin such as a polyimide resin, or the like.
  • the positive electrode connection portion 21, the negative electrode connection portion 22, the electrode layer 24, and the conductive layer 25 are formed of a metal such as tungsten, platinum, copper, or aluminum.
  • the number of battery stacks connected in parallel is not limited to two and may be two or more. In consideration of the balance of the solid state battery, it is preferable to connect two or more even number of battery stacks. Two or more battery stacks connected in parallel may be housed in the case body in the form shown in FIGS. 2 and 3.
  • the wiring between the positive electrode layers 11 and the negative electrode layers 12 is not limited to the form of the electrode layer 24 and the conductive layer 25 described above, and may be formed by a bump layer or the like.
  • Li 2 S and P 2 S 5 are weighed to a molar ratio of 7: 3, mixed, mechanically milled, and heated at a temperature of 300 ° C. for 2 hours to synthesize sulfide glass ceramics. did.
  • Li 2 SP 2 S 5 as the obtained sulfide-based compound was used as a solid electrolyte.
  • As the solid electrolyte also be used Li 2 S-P 2 S 5 other than Li 2 S-P 2 S 5 -GeS 2, Li 2 S-P 2 S 5 -SiS sulfide-based compounds such as 2 it can.
  • Li 2 FeS 2 was used as the positive electrode active material, and graphite was used as the negative electrode active material.
  • lithium cobaltate, lithium manganate, etc. can also be used as a positive electrode active material.
  • lithium titanate etc. can also be used as a negative electrode active material.
  • the positive electrode active material and the solid electrolyte were mixed at a weight ratio of 1: 1 to produce a positive electrode material. Furthermore, the negative electrode active material and the solid electrolyte were mixed at a weight ratio of 1: 1 to prepare a negative electrode material.
  • the solid electrolyte was placed in a square mold having a side of 2.6 mm and pressed to produce a solid electrolyte layer. In the mold, a positive electrode material was charged on one side of the solid electrolyte layer and a negative electrode material was charged on the other side, and then pressed at a pressure of 330 MPa to prepare a battery laminate. In this way, a battery laminate of an all-solid secondary battery was produced.
  • the manufacturing method is not limited to said method.
  • the size of the produced battery stack is w in the direction in which the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12 are connected (stacked direction), and is opposed to the mounting surface.
  • the dimension in the height direction of the battery is h
  • the dimension in the direction perpendicular to the direction in which the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12 are connected is l
  • w 0.75 mm
  • h 0. 6 mm
  • l 2 mm.
  • the width (thickness) w 1 of the positive electrode layer 11 was 300 ⁇ m
  • the width (thickness) w 3 of the solid electrolyte layer 13 was 150 ⁇ m
  • the width (thickness) w 2 of the negative electrode layer 12 was 300 ⁇ m.
  • current collector layers 111 and 121 (circuit pattern layers) made of a platinum (Pt) layer are formed on one surface of positive electrode layer 11 and negative electrode layer 12 of the battery stack by sputtering. Formed.
  • a base portion 20 made of alumina was prepared as one member constituting the case body.
  • the base 20 is formed with a positive electrode connection portion 21 and a negative electrode connection portion 22 made of tungsten.
  • Nickel (Ni) plating and gold (Au) plating are applied to the surfaces of the positive electrode connection portion 21 and the negative electrode connection portion 22 exposed on the surface of the base portion 20 facing the mounting surface.
  • each of the collector layers 111 and 121 formed on the one side surface of the positive electrode layer 11 and the negative electrode layer 12 of the battery stack, and the positive electrode connection portion 21 and the negative electrode connection portion 22 in the base 20 of the case body was placed on the base 20 so as to overlap each other. Further, an insulating layer 40 (insulating sheet) made of polyimide was disposed on the battery stack.
  • a cover 30 made of Kovar (cobalt-nickel-iron alloy) was prepared as another member constituting the case body.
  • the metal lid 30 is used, but a ceramic lid or the like conventionally used may be used.
  • the charge / discharge test of the solid battery 1 produced as described above was performed at a current density of 0.8 mA / cm 2 . As a result, the discharge capacity was 0.1 mAh.
  • a mounting type solid battery 3 as shown in FIG. 3 was produced.
  • the insulating layer 40 as shown in FIG. 1 was not disposed.
  • the current collector layer was not formed on the one surface on the side facing the base 20.
  • a positive electrode bump layer 51 is disposed between the positive electrode layer 11 and the positive electrode connection portion 21 of the base portion 20, and a negative electrode bump layer 52 is disposed between the negative electrode layer 12 and the negative electrode connection portion 22 of the base portion 20. Arranged. Specifically, as shown in FIG.
  • a pattern layer is formed in a dot shape with platinum (Pt) on the positive electrode connection portion 21 and the negative electrode connection portion 22 of the base portion 20 by a vapor deposition method, and the formed platinum pattern A positive electrode bump layer 51 and a negative electrode bump layer 52 made of solder were formed on the layers by a printing method.
  • the charge / discharge test of the solid battery 3 produced as described above was performed in the same manner as in Example 1. As a result, the discharge capacity was 0.1 mAh.
  • the width w 1 of the positive electrode layer 11 is 300 ⁇ m
  • the width w 2 of the negative electrode layer 12 is 300 ⁇ m
  • the width w 3 of the solid electrolyte layer 13 is 250 ⁇ m.
  • the charge / discharge test of the solid battery 1 produced as described above was performed in the same manner as in Example 1. As a result, the discharge capacity was 0.1 mAh.
  • the width w 1 of the positive electrode layer 11 was 300 ⁇ m
  • the width w 2 of the negative electrode layer 12 was 300 ⁇ m
  • the width w 3 of the solid electrolyte layer 13 was 500 ⁇ m.
  • the charge / discharge test of the solid battery 1 produced as described above was performed in the same manner as in Example 1. As a result, the discharge capacity was 0.05 mAh.
  • the width w 1 of the positive electrode layer 11 was 1000 ⁇ m
  • the width w 2 of the negative electrode layer 12 was 1000 ⁇ m
  • the width w 3 of the solid electrolyte layer 13 was 150 ⁇ m.
  • the charge / discharge test of the solid battery 1 produced as described above was performed in the same manner as in Example 1. As a result, the discharge capacity was 0.4 mAh.
  • the width w 1 of the positive electrode layer 11 is 1500 ⁇ m
  • the width w 2 of the negative electrode layer 12 is 1500 ⁇ m
  • the width w 3 of the solid electrolyte layer 13 is 150 ⁇ m.
  • the charge / discharge test of the solid battery 1 produced as described above was performed in the same manner as in Example 1. As a result, the discharge capacity was 0.6 mAh.
  • a mounting type solid battery 1 as shown in FIG. 1 was produced.
  • current collector layers 112 and 122 (circuit pattern layers: circuit pattern layers) made of a platinum (Pt) layer are formed on one surface of the positive electrode layer 11 and the negative electrode layer 12 of the battery stack by a sputtering method.
  • (C) of FIG. 5 was formed.
  • the charge / discharge test of the solid battery 1 produced as described above was performed in the same manner as in Example 1. As a result, the discharge capacity was 0.1 mAh.
  • the width w 1 of the positive electrode layer 11 was 2000 ⁇ m
  • the width w 2 of the negative electrode layer 12 was 2000 ⁇ m
  • the width w 3 of the solid electrolyte layer 13 was 150 ⁇ m.
  • the charge / discharge test of the solid battery 1 produced as described above was performed in the same manner as in Example 1. As a result, the discharge capacity was 0.6 mAh.
  • the electrode width that is, the width w 1 of the positive electrode layer 11 and the width w 2 of the negative electrode layer 12 are preferably larger than the width w 3 of the solid electrolyte layer 13.
  • the width w 3 of the solid electrolyte layer 13 is large, the resistance is increased, the obtained capacity is lowered, the rate characteristics are deteriorated, and the capacity per volume of the battery is further reduced.
  • the width w 3 of the solid electrolyte layer 13 is preferably 150 ⁇ m or more and 300 ⁇ m or less. If the width w 3 of the solid electrolyte layer 13 is within the above range, a battery having excellent battery characteristics can be obtained. When the width w 3 of the solid electrolyte layer 13 is out of the above range, the battery characteristics are slightly inferior.
  • the electrode width that is, the width w 1 of the positive electrode layer 11 and the width w 2 of the negative electrode layer 12 are each preferably 300 ⁇ m or more and 2000 ⁇ m or less.
  • the electrode width exceeds 1000 ⁇ m, the overvoltage increases, and the voltage is reached immediately throughout.
  • capacitance becomes small as an electrode width is less than 300 micrometers. More preferably, the electrode width is not less than 300 ⁇ m and not more than 1500 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 基板に容易に実装することができるとともに、電池積層体と電池積層体を収容するケースとを備えた実装型の固体電池を小型化する。固体電池(1)は、正極層(11)、固体電解質層(13)および負極層(12)を順に積層することにより形成された電池積層体と、電池積層体を収容するケース本体とを備える。ケース本体が、電池積層体を支持する基部(20)を有する。正極層(11)と負極層(12)とは、ケース本体の基部(20)が延在する方向に積層されている。

Description

固体電池
 本発明は、一般的には固体電池に関し、特定的には、積層された正極層と固体電解質層と負極層とを有する固体電池に関する。
 小型電子機器用電源、メモリーバックアップ用補助電源等に、非水電解液を使用したリチウムイオン二次電池等が使用されている。しかしながら、上記の構成のリチウムイオン二次電池では、電解液が漏出するという危険性がある。このため、上記の構成のリチウムイオン二次電池をメモリーバックアップ用補助電源等に使用すると、漏出した電解液で周辺の電子回路が濡れた場合に、電子回路の故障、誤作動等の問題が生じる。この問題を回避するために、従来から、リチウムイオン二次電池と電子回路とを別の場所に実装することがなされてきた。
 しかし、近年、さらなる小型化が要求される電子機器において、電池と電子回路とを別の場所に実装することは小型化の障害要因となっている。そこで、近年、電子回路と同一の基板に実装可能な電池が考案されている。
 たとえば、特開2002‐42885号公報(以下、特許文献1という)と特開2010‐118159号公報(以下、特許文献2という)には、電子回路部品とともに基板に実装可能な電池の構成が提案されている。
 これらの電池では、正極層と、負極層と、これらの層間に配置された固体電解質層とを有する電池積層体が基板に実装可能なケース(外装体)に収容されている。また、これらの電池では、基板の実装面に対して垂直方向に積層されるように電池積層体が配置されている。すなわち、電池積層体における正極層または負極層が電池積層体の上面に位置づけられるように積層されている。電池積層体の正極層と負極層は、それぞれ、ケース内で、ワイヤーボンディング、導電性接着剤等で外部端子または集電体に接続されている。
特開2002‐42885号公報 特開2010‐118159号公報
 特許文献1に記載の電池の構成では、電池の上にICチップを設け、ICチップと電池の電極とが開口部を通じて接続されている。この場合には、電池の上にICチップを設けているため、低背化が不十分である。また、この電池とICチップとを横に並べて回路基板等の上に実装する場合、開口部を通じてワイヤーボンディング等でICチップと電池の電極とを接続するため、実装面積が増えてしまう。これらにより、この電池の構成は、電子機器のさらなる小型化の要求に応えることが困難である。
 また、特許文献2に記載の電池の構成では、ケースの下面に形成されたケース接続電極部がリフローはんだ付け等によって、基板上の電子回路配線等に接続されることにより、電池が基板に実装される。この電池は、基板上の電子回路配線等と接続されるケース接続電極部がケースの下面に位置づけられているため、実装面積を増やすことがなく、基板に実装することが容易である。しかしながら、この電池においても、電池積層体の電極とケースの下面にあるケース接続電極部とがワイヤーボンディングで接続されているので、電池積層体と電池積層体を収容するケースとを備えた実装型の電池をさらに小型化することが困難である。
 そこで、本発明の目的は、電池積層体と電池積層体を収容するケースとを備えた固体電池を小型化することである。
 本発明に従った固体電池は、正極層、固体電解質層および負極層を順に積層することにより形成された電池積層体と、この電池積層体を収容するケース本体とを備える。ケース本体が、電池積層体を支持する基部を有する。正極層と負極層とは、ケース本体の基部が延在する方向に積層されている。
 本発明の固体電池では、正極層と負極層とは、ケース本体の基部が延在する方向に積層されている。このため、ケース本体の基部を基板の表面上に置いた場合、正極層と負極層とを基板の表面が延びる方向に並べて配置することができる。これにより、正極層と負極層のそれぞれの表面を基板の表面に対向させることができる。したがって、正極層と負極層のそれぞれを基板上の電子回路配線等に容易に接続することができるので、例えば、基板上に電池を表面実装した場合、電池を基板の上に容易に実装することができる。
 また、ケース本体内で、電池積層体の正極層および負極層と、基板上の電子回路配線等に接続するための接続端子部とをワイヤーボンディング等で接続する必要がない。これにより、電池積層体と電池積層体を収容するケースとを備えた実装型の固体電池を小型化することができる。
 本発明の固体電池において、ケース本体の基部には、ケース本体の内側面と外側面とを導通させる電極接続部が形成されており、電極接続部が、正極層に接続される正極接続部と、負極層に接続される負極接続部とを含むことが好ましい。これにより、基板に容易に表面実装することができるとともに、電池積層体と電池積層体を収容するケースとを備えた実装型の固体電池を小型化することができる。
 上記の場合、正極接続部に接続される側の正極層の表面と、負極接続部に接続される側の負極層の表面とのそれぞれには、集電体層が形成されていることが好ましい。
 さらに、上記の場合、電池積層体は、基部の表面に対向する一方表面と、この一方表面に対して反対側の他方表面とを有し、絶縁層が上記の他方表面に接触するように配置されていることが好ましい。
 ケース本体が、電池積層体を覆うように配置される蓋部を有し、蓋部と電池積層体との間に上記の絶縁層が配置されていることが好ましい。
 また、ケース本体が、電池積層体を覆うように配置される蓋部を有し、上記の絶縁層が蓋部の一部を形成するように構成されてもよい。
 上記の絶縁層が形成されない場合には、正極層に接続される側の正極接続部の表面と、負極層に接続される側の負極接続部の表面とのそれぞれの上には、バンプ層が形成されていることが好ましい。
 上記の場合、ケース本体が、電池積層体を覆うように配置される蓋部を有することが好ましい。
 本発明によれば、電池積層体と電池積層体を収容するケースとを備えた固体電池を小型化することができる。
本発明の第1の実施形態として固体電池の模式的な断面を示す断面図である。 本発明の第2の実施形態として固体電池の模式的な断面を示す断面図である。 本発明の第3の実施形態として固体電池の模式的な断面を示す断面図である。 本発明の実施形態の固体電池における電池積層体を示す斜視図である。 本発明の固体電池における電池積層体の正極層および負極層のそれぞれに形成される集電体層のパターン(A)~(E)を示す図である。 本発明の実施例で作製された固体電池における電池積層体を示す斜視図である。 本発明の実施例で作製された固体電池における電池積層体の正極層および負極層のそれぞれに形成された集電体層の一つのパターンを示し、図6において矢印VIIの方向から見た図である。 本発明の実施例で作製された固体電池の外観を示す斜視図である。 本発明の実施例で作製された固体電池におけるケース本体の基部を示す概略斜視図である。 本発明の実施例で作製された固体電池における電池積層体の正極層および負極層のそれぞれに形成された集電体層のもう一つのパターンを示す図である。 本発明の第4の実施形態として固体電池の模式的な断面を示す断面図である。 本発明の第5の実施形態として固体電池の模式的な断面を示す断面図である。
 以下、本発明の固体電池の実施形態について説明する。
 図1に示すように、本発明の第1の実施形態では、実装型の固体電池1は、正極層11、固体電解質層13および負極層12を順に積層することにより形成された電池積層体と、この電池積層体を収容するケース本体とを備える。ケース本体は、基部20と蓋部30とから構成される。電池積層体は、基部20で支持されるように基部20の表面上に置かれている。基部20には、ケース本体の内側面と外側面とを導通させる電極接続部として正極接続部21と負極接続部22とが形成されている。正極接続部21が正極層11に接続され、かつ、負極接続部22が負極層12に接続されるように、電池積層体は基部20の表面上に配置されている。蓋部30は、電池積層体を覆うように配置されている。基部20と蓋部30とは、シーム溶接等によって接合されている。正極層11と固体電解質層13と負極層12とは、ケース本体の基部20が延在する方向に積層されている。基部20と対向する側の電池積層体の表面と反対側の表面に接触するように絶縁層40が配置されている。第1の実施形態では、電池積層体と蓋部30との間に絶縁層40が配置されている。
 図2に示すように、本発明の第2の実施形態として、実装型の固体電池2では、絶縁層40が蓋部30の一部を形成している。固体電池2の他の構成は、固体電池1と同様である。
 図3に示すように、本発明の第3の実施形態として、実装型の固体電池3では、基部20と対向する側の電池積層体の表面と反対側の表面には絶縁層が配置されていない。しかし、正極層11と正極接続部21との間には正極バンプ層51が配置され、負極層12と負極接続部22との間には負極バンプ層52が配置されている。固体電池3の他の構成は、固体電池1と同様である。
 なお、固体電池1~3では、電池積層体の外周面とケース本体の蓋部30の内周面との間には間隙が存在するが、電池積層体の外周面とケース本体の蓋部30とが隙間なく密着していてもよい。ケース本体の基部20と蓋部30は、金属、セラミック等で形成されている。基部20がアルミナ等のセラミックで形成され、蓋部30がコバール(コバルト‐ニッケル‐鉄合金)等の金属で形成されていてもよい。絶縁層40は、アルミナ等のセラミック、フッ素樹脂(4フッ化エチレン樹脂等)、ポリイミド樹脂等の合成樹脂、等で形成されている。正極接続部21と負極接続部22は、基部20に形成されたスルーホールに充填されたタングステン等の金属で形成されている。正極バンプ層51と負極バンプ層52は、半田、金等で形成される。
 以上のように構成された本発明の固体電池1~3では、正極層11と負極層12とは、ケース本体の基部20が延在する方向に積層されている。このため、ケース本体の基部20を基板の表面上に置いた場合、正極層11と負極層12とを基板の表面が延びる方向に並べて配置することができる。これにより、正極層11と負極層12のそれぞれの表面を基板の表面に対向させることができる。その結果として、正極層11と負極層12の両方を基板の一つの面に直接接続することができるため、配線の引き回しが不要になる。このため、配線に必要な面積が小さくなる。このようにして正極層11と負極層12のそれぞれを基板上の電子回路配線等に容易に接続することができるので、固体電池1~3を基板の上に容易に実装することができる。
 また、ケース本体内で、電池積層体の正極層11および負極層12のそれぞれと、基板上の電子回路配線等に接続するための接続端子部としての正極接続部21および負極接続部22のそれぞれとをワイヤーボンディング等で接続する必要がない。これにより、電池積層体と電池積層体を収容するケース本体とを備えた実装型の固体電池1~3を小型化することができる。なお、実装面積を増やさないで正極層と負極層のそれぞれを基板上の電子回路配線等に接続することができるので、本発明の固体電池1~3を表面実装する場合、特に効果的である。
 固体電池1と2では、電池積層体の上に絶縁層40が配置されているので、絶縁層40が電池積層体をケース本体の基部20に向かって押圧するように作用する。このため、ケース本体内での電池積層体のずれを防止することができる。また、蓋部30が金属から形成されている場合、電気的短絡を防止することができる。
 図4には、正極層11、固体電解質層13および負極層12を順に積層することにより形成された電池積層体が示されている。正極層11は正極接続部21(図1と図2)に接続される側の正極接続面11aを有し、負極層12は負極接続部22(図1と図2)に接続される側の負極接続面12aを有する。
 図1と図2に示される固体電池1と2においては、電極接続面としての正極接続面11aと負極接続面12a(図4)のそれぞれには、図5に示されるような種々のパターンの集電体層60を形成することができる。図5(A)に示すように集電体層60が電極接続面の全表面に形成されていてもよい。図5(B)に示すように集電体層60が、電極接続面の中央部に位置する正方形状の一部表面に形成されていてもよい。図5(C)に示すように集電体層60が、一方端部と中央部と他方端部に位置する複数(図では3つ)の長方形状の一部表面に形成されていてもよい。図5(D)に示すように集電体層60が、一方端部に2箇所、中央部に1箇所、および、他方端部に2箇所の正方形状の一部表面に形成されていてもよい。図5(E)に示すように集電体層60が、電極接続面の中央部に位置する長方形状の一部表面に形成されていてもよい。なお、集電体層60は、正極接続面11aと負極接続面12aのそれぞれの上に、金、銀、白金等の金属層が印刷法、スパッタリング法等によって形成される。集電体層60は炭素材料等の導電性物質で形成されてもよい。また、正極接続面11aと負極接続面12aのそれぞれの上に形成された集電体層60は、基部20に形成された正極接続部21と負極接続部22(図1と図2)のそれぞれの表面上に重なるように電池積層体が配置される。
 図11に示すように、本発明の第4の実施形態では、実装型の固体電池4は、各々が正極層11、固体電解質層13および負極層12を順に積層することにより形成され、直列に接続された3つの電池積層体と、この3つの電池積層体を収容するケース本体とを備える。ケース本体は、基部20と蓋部30とから構成される。なお、隣り合う2つの電池積層体において一方の電池積層体の正極層11と他方の電池積層体の負極層12の間に集電体層23を設けている。3つの電池積層体は、基部20で支持されるように基部20の表面上に置かれている。基部20には、ケース本体の内側面と外側面とを導通させる電極接続部として正極接続部21と負極接続部22とが形成されている。正極接続部21が3つの電池積層体の一方端側に位置づけられた電池積層体の正極層11に接続され、かつ、負極接続部22が3つの電池積層体の他方端側に位置づけられた電池積層体の負極層12に接続されるように、3つの電池積層体は基部20の表面上に配置されている。蓋部30は、3つの電池積層体を覆うように配置されている。基部20と蓋部30とは、シーム溶接等によって接合されている。3つの電池積層体において正極層11と固体電解質層13と負極層12とは、ケース本体の基部20が延在する方向に積層されている。基部20と対向する側の3つの電池積層体の表面と反対側の表面に接触するように絶縁層40が配置されている。第4の実施形態では、3つの電池積層体と蓋部30との間に絶縁層40が配置されている。基部20がアルミナ等のセラミックで形成され、蓋部30がコバール(コバルト‐ニッケル‐鉄合金)等の金属で形成されている。絶縁層40は、アルミナ等のセラミック、フッ素樹脂(4フッ化エチレン樹脂等)、ポリイミド樹脂等の合成樹脂、等で形成されている。正極接続部21と負極接続部22は、基部20に形成されたスルーホールに充填されたタングステン等の金属で形成されている。集電体層23は金等の金属で形成されている。
 なお、直列に接続される電池積層体の数は、3つに限定されることはなく、2つ以上であればよい。また、直列に接続される2つ以上の電池積層体は、図2、図3に示される形態でケース本体に収容されてもよい。
 図12に示すように、本発明の第5の実施形態では、実装型の固体電池5は、各々が正極層11、固体電解質層13および負極層12を順に積層することにより形成され、並列に接続された2つの電池積層体と、この2つの電池積層体を収容するケース本体とを備える。ケース本体は、基部20と蓋部30とから構成される。2つの電池積層体において、正極層11同士が電極層24を介在して接続され、負極層12同士が導電層25で接続されている。導電層25は、2つの電池積層体の上に形成された絶縁層31の上に延びるように形成されている。2つの電池積層体は、基部20で支持されるように基部20の表面上に置かれている。基部20には、ケース本体の内側面と外側面とを導通させる電極接続部として正極接続部21と負極接続部22とが形成されている。正極接続部21が、2つの電池積層体の中央部に位置づけられた正極層11同士を接続する電極層24に接続され、かつ、負極接続部22が、2つの電池積層体の一方端側に位置づけられた電池積層体の負極層12に接続されるように、2つの電池積層体は基部20の表面上に配置されている。絶縁性の蓋部30は、2つの電池積層体を覆うように導電層25の上に配置されている。基部20と蓋部30とは接合されている。2つの電池積層体において正極層11と固体電解質層13と負極層12とは、ケース本体の基部20が延在する方向に積層されている。基部20と蓋部30がアルミナ等のセラミックで形成されている。絶縁層31は、アルミナ等のセラミック、フッ素樹脂(4フッ化エチレン樹脂等)、ポリイミド樹脂等の合成樹脂、等で形成されている。正極接続部21、負極接続部22、電極層24、導電層25は、タングステン、白金、銅、アルミニウム等の金属で形成されている。
 なお、並列に接続される電池積層体の数は、2つに限定されることはなく、2つ以上であればよい。固体電池のバランスを考慮すると、2つ以上の偶数個の電池積層体を接続することが好ましい。また、並列に接続される2つ以上の電池積層体は、図2、図3に示される形態でケース本体に収容されてもよい。正極層11同士、負極層12同士の配線は、上記の電極層24、導電層25の形態に限定されるものではなく、バンブ層等によって形成されてもよい。
 次に、上記の実施形態に従って作製された本発明の固体電池の実施例について説明する。なお、本発明の固体電池の形態は、上記の実施の形態に限定されるものではない。
 以下、本発明の固体電池として作製された実施例1~8について説明する。
 (実施例1)
 Li2SとP25とを7:3のモル比となるように秤量し、混合してメカニカルミリング処理し、300℃の温度で2時間加熱することにより、硫化物系ガラスセラミックスを合成した。得られた硫化物系化合物としてのLi2S‐P25を固体電解質として用いた。なお、固体電解質としては、Li2S‐P25以外のLi2S‐P25‐GeS2、Li2S‐P25‐SiS2等の硫化物系化合物を用いることもできる。また、正極活物質としてLi2FeS2、負極活物質としてグラファイトを用いた。なお、正極活物質としてはコバルト酸リチウム、マンガン酸リチウム等を用いることもできる。また、負極活物質としてはチタン酸リチウム等を用いることもできる。
 正極活物質と固体電解質とを1:1の重量比で混合し、正極材料を作製した。さらに、負極活物質と固体電解質とを1:1の重量比で混合し、負極材料を作製した。次いで、固体電解質を一辺が2.6mmの正方形状の金型に入れ、プレスすることにより、固体電解質層を作製した。金型内で、固体電解質層の一方側に正極材料を、他方側に負極材料を装入した後、330MPaの圧力でプレスすることにより、電池積層体を作製した。このようにして全固体二次電池の電池積層体を作製した。なお、全固体二次電池の作製方法の一例を上述したが、作製方法は上記の方法に限定されるものではない。
 なお、作製された電池積層体の大きさは、図6に示すように正極層11、固体電解質層13、負極層12が連なった方向(積層される方向)の寸法をw、実装面に対向する方向で電池の高さ方向の寸法をh、正極層11、固体電解質層13、負極層12が連なった方向と直交する方向の寸法をlとすると、w=0.75mm、h=0.6mm、l=2mmである。正極層11の幅(厚み)w1は300μm、固体電解質層13の幅(厚み)w3は150μm、負極層12の幅(厚み)w2は300μmであった。
 そして、図7に示すように、電池積層体の正極層11および負極層12の一方側表面上に、スパッタリング法によって、白金(Pt)層からなる集電体層111、121(回路パターン層)を形成した。
 一方、図1に示すようにケース本体を構成する一つの部材として、アルミナからなる基部20を準備した。基部20にはタングステンからなる正極接続部21と負極接続部22が形成されている。基部20の実装面に対向する側の面で露出する正極接続部21と負極接続部22の表面には、ニッケル(Ni)めっきと金(Au)メッキが施されている。
 そして、電池積層体の正極層11および負極層12の一方側表面上に形成された集電体層111、121のそれぞれと、ケース本体の基部20にある正極接続部21、負極接続部22のそれぞれとが重なるように、電池積層体を基部20の上に配置した。さらに、電池積層体の上にポリイミドからなる絶縁層40(絶縁シート)を配置した。
 次に、図1に示すようにケース本体を構成するもう一つの部材としてコバール(コバルト‐ニッケル‐鉄合金)製の蓋部30を準備した。基部20の上に配置された電池積層体を覆うように蓋部30を配置して、蓋部30と基部20とをシーム溶接によって溶接することにより、実装面の寸法がL=5mm、W=5mmである、図1と図8に示すような実装型の固体電池1を作製した。なお、上記の実施例では、金属製の蓋部30を用いたが、従来から用いられているセラミック製の蓋部等を用いてもよい。
 以上のようにして作製された固体電池1の充放電試験を0.8mA/cm2の電流密度で行った。その結果、放電容量は0.1mAhであった。
 (実施例2)
 実施例1と同様にして、図3に示すような実装型の固体電池3を作製した。ただし、図1に示すような絶縁層40を配置しなかった。電池積層体の正極層11および負極層12において基部20に対向する側の一方側表面上には集電体層を形成しなかった。図3に示すように、正極層11と基部20の正極接続部21との間に正極バンプ層51を配置し、負極層12と基部20の負極接続部22との間に負極バンプ層52を配置した。具体的には、図9に示すように、基部20の正極接続部21と負極接続部22の上に、蒸着法によって白金(Pt)でパターン層をドット状に形成し、形成された白金パターン層の上に印刷法によって半田からなる正極バンプ層51と負極バンプ層52を形成した。
 以上のようにして作製された固体電池3の充放電試験を実施例1と同様にして行った。その結果、放電容量は0.1mAhであった。
 (実施例3)
 実施例1と同様にして、図1に示すような実装型の固体電池1を作製した。ただし、図6において正極層11の幅w1を300μm、負極層12の幅w2を300μm、固体電解質層13の幅w3を250μmとした。
 以上のようにして作製された固体電池1の充放電試験を実施例1と同様にして行った。その結果、放電容量は0.1mAhであった。
 (実施例4)
 実施例1と同様にして、図1に示すような実装型の固体電池1を作製した。ただし、図6において正極層11の幅w1を300μm、負極層12の幅w2を300μm、固体電解質層13の幅w3を500μmとした。
 以上のようにして作製された固体電池1の充放電試験を実施例1と同様にして行った。その結果、放電容量は0.05mAhであった。
 (実施例5)
 実施例1と同様にして、図1に示すような実装型の固体電池1を作製した。ただし、図6において正極層11の幅w1を1000μm、負極層12の幅w2を1000μm、固体電解質層13の幅w3を150μmとした。
 以上のようにして作製された固体電池1の充放電試験を実施例1と同様にして行った。その結果、放電容量は0.4mAhであった。
 (実施例6)
 実施例1と同様にして、図1に示すような実装型の固体電池1を作製した。ただし、図6において正極層11の幅w1を1500μm、負極層12の幅w2を1500μm、固体電解質層13の幅w3を150μmとした。
 以上のようにして作製された固体電池1の充放電試験を実施例1と同様にして行った。その結果、放電容量は0.6mAhであった。
 (実施例7)
 実施例1と同様にして、図1に示すような実装型の固体電池1を作製した。ただし、図10に示すように、電池積層体の正極層11および負極層12の一方側表面上に、スパッタリング法によって、白金(Pt)層からなる集電体層112、122(回路パターン層:図5の(C))を形成した。
 以上のようにして作製された固体電池1の充放電試験を実施例1と同様にして行った。その結果、放電容量は0.1mAhであった。
 (実施例8)
 実施例1と同様にして、図1に示すような実装型の固体電池1を作製した。ただし、図6において正極層11の幅w1を2000μm、負極層12の幅w2を2000μm,固体電解質層13の幅w3を150μmとした。
 以上のようにして作製された固体電池1の充放電試験を実施例1と同様にして行った。その結果、放電容量は0.6mAhであった。
 実施例1、3、4の充放電試験の結果から、固体電解質層13の幅w3が小さい方が電池の放電容量が高く、固体電解質層13の幅w3は小さい方が好ましいことがわかる。
 実施例1、5、6、8の充放電試験の結果から、正極層11の幅w1と負極層12の幅w2が大きい方が電池の放電容量が高いことがわかる。通常、全固体電池では電極幅を大きくすると、電池の放電容量は小さくなることが多いが、本発明の固体電池では電極幅を大きくしても高い放電容量を得ることができる。
 なお、電池積層体において電極幅、すなわち、正極層11の幅w1と負極層12の幅w2のそれぞれが固体電解質層13の幅w3よりも大きい方が好ましい。固体電解質層13の幅w3が大きいと、抵抗が高くなり、得られる容量が低くなり、また、レート特性も悪くなり、さらに、電池の体積当たりの容量が小さくなる。
 また、固体電解質層13の幅w3が150μm以上300μm以下であることが好ましい。固体電解質層13の幅w3が上記の範囲内であれば、電池特性の優れた電池を得ることができる。固体電解質層13の幅w3が上記の範囲外であると、電池特性がやや劣る。
 さらに、電極幅、すなわち、正極層11の幅w1と負極層12の幅w2のそれぞれが300μm以上2000μm以下であることが好ましい。電極幅が1000μmを超えると、過電圧が高くなり、終始電圧にすぐに達してしまう。また、電極幅が300μm未満であると、容量が小さくなる。さらに好ましくは、電極幅は300μm以上1500μm以下である。
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
 基板の上に容易に実装することが可能な固体電池を得ることができるとともに、実装型の固体電池を小型化することができる。
 1,2,3,4,5:固体電池、11:正極層、12:負極層、13:固体電解質層、20:(ケース本体の)基部、21:正極接続部、22:負極接続部、24:電極層、25:導電層、30:(ケース本体の)蓋部、31,40:絶縁層、51:正極バンプ層、52:負極バンプ層、23、60,111、112、121、122:集電体層。

Claims (8)

  1.  正極層、固体電解質層および負極層を順に積層することにより形成された電池積層体と、前記電池積層体を収容するケース本体とを備えた固体電池であって、
     前記ケース本体が、前記電池積層体を支持する基部を有し、
     前記正極層と前記負極層とは、前記ケース本体の基部が延在する方向に積層されている、固体電池。
  2.  前記ケース本体の基部には、前記ケース本体の内側面と外側面とを導通させる電極接続部が形成されており、前記電極接続部が、前記正極層に接続される正極接続部と、前記負極層に接続される負極接続部とを含む、請求項1に記載の固体電池。
  3.  前記正極接続部に接続される側の前記正極層の表面と、前記負極接続部に接続される側の前記負極層の表面とのそれぞれには、集電体層が形成されている、請求項2に記載の固体電池。
  4.  前記電池積層体は、前記基部の表面に対向する一方表面と、前記一方表面に対して反対側の他方表面とを有し、絶縁層が前記他方表面に接触するように配置されている、請求項3に記載の固体電池。
  5.  前記ケース本体が、前記電池積層体を覆うように配置される蓋部を有し、前記蓋部と前記電池積層体との間に前記絶縁層が配置されている、請求項4に記載の固体電池。
  6.  前記ケース本体が、前記電池積層体を覆うように配置される蓋部を有し、前記絶縁層が前記蓋部の一部を形成する、請求項4に記載の固体電池。
  7.  前記正極層に接続される側の前記正極接続部の表面と、前記負極層に接続される側の前記負極接続部の表面とのそれぞれの上には、バンプ層が配置されている、請求項2に記載の固体電池。
  8.  前記ケース本体が、前記電池積層体を覆うように配置される蓋部を有する、請求項7に記載の固体電池。
PCT/JP2011/076997 2010-12-15 2011-11-24 固体電池 WO2012081366A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012548709A JPWO2012081366A1 (ja) 2010-12-15 2011-11-24 固体電池
CN2011800604523A CN103262330A (zh) 2010-12-15 2011-11-24 固体电池
US13/917,765 US20130280598A1 (en) 2010-12-15 2013-06-14 Solid State Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010279104 2010-12-15
JP2010-279104 2010-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/917,765 Continuation US20130280598A1 (en) 2010-12-15 2013-06-14 Solid State Battery

Publications (1)

Publication Number Publication Date
WO2012081366A1 true WO2012081366A1 (ja) 2012-06-21

Family

ID=46244479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076997 WO2012081366A1 (ja) 2010-12-15 2011-11-24 固体電池

Country Status (4)

Country Link
US (1) US20130280598A1 (ja)
JP (1) JPWO2012081366A1 (ja)
CN (1) CN103262330A (ja)
WO (1) WO2012081366A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013637A1 (ja) * 2012-07-18 2014-01-23 パナソニック株式会社 二次電池およびソーラー二次電池ならびにそれらの製造方法
JP2019096476A (ja) * 2017-11-22 2019-06-20 トヨタ自動車株式会社 直列積層型全固体電池
JPWO2020203877A1 (ja) * 2019-03-29 2020-10-08
WO2021230008A1 (ja) * 2020-05-13 2021-11-18 パナソニックIpマネジメント株式会社 電池
WO2021235395A1 (ja) * 2020-05-21 2021-11-25 シャープ株式会社 電気掃除機
JP2021183021A (ja) * 2020-05-21 2021-12-02 シャープ株式会社 電気掃除機の吸込口体、それを備えた電気掃除機および電気掃除装置
WO2023181921A1 (ja) * 2022-03-23 2023-09-28 株式会社村田製作所 固体電池パッケージ
US12051816B2 (en) 2019-03-12 2024-07-30 Panasonic Intellectual Property Management Co., Ltd. Laminated battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181938A1 (ja) 2015-05-12 2016-11-17 オリンパス株式会社 医療機器用バッテリアッセンブリ及び医療機器ユニット
JP7192866B2 (ja) * 2018-08-10 2022-12-20 株式会社村田製作所 固体電池
CN109728026B (zh) * 2019-01-02 2021-01-26 京东方科技集团股份有限公司 半导体装置及其制造方法、发电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213938A (ja) * 2002-12-27 2004-07-29 Toshiba Battery Co Ltd リチウム二次電池およびその製造方法
JP2008135287A (ja) * 2006-11-28 2008-06-12 Idemitsu Kosan Co Ltd 全固体電池用部材、該部材の製造方法並びに全固体電池
JP2010205536A (ja) * 2009-03-03 2010-09-16 Toyota Motor Corp 全固体リチウムイオン二次電池の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856365B2 (ja) * 1991-03-15 1999-02-10 株式会社村田製作所 偏平型電源素子
JP2003187755A (ja) * 2001-12-14 2003-07-04 Mitsubishi Heavy Ind Ltd 二次電池製造方法および二次電池
JP2004031272A (ja) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd 電極積層型電池
JP4720384B2 (ja) * 2005-09-01 2011-07-13 日産自動車株式会社 バイポーラ電池
TW201019357A (en) * 2008-11-06 2010-05-16 Chien-Chiang Chan Energy cell package
US8338036B2 (en) * 2009-02-04 2012-12-25 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and manufacturing method thereof
KR101217562B1 (ko) * 2010-11-16 2013-01-02 삼성전자주식회사 가요성 전지 및 이를 포함하는 가요성 전자기기

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213938A (ja) * 2002-12-27 2004-07-29 Toshiba Battery Co Ltd リチウム二次電池およびその製造方法
JP2008135287A (ja) * 2006-11-28 2008-06-12 Idemitsu Kosan Co Ltd 全固体電池用部材、該部材の製造方法並びに全固体電池
JP2010205536A (ja) * 2009-03-03 2010-09-16 Toyota Motor Corp 全固体リチウムイオン二次電池の製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013637A1 (ja) * 2012-07-18 2014-01-23 パナソニック株式会社 二次電池およびソーラー二次電池ならびにそれらの製造方法
JP5628456B1 (ja) * 2012-07-18 2014-11-19 パナソニック株式会社 ソーラー二次電池ならびにそれらの製造方法
US9923182B2 (en) 2012-07-18 2018-03-20 Panasonic Intellectual Property Management Co., Ltd. Secondary cell, solar secondary cell, and methods of making those cells
JP2019096476A (ja) * 2017-11-22 2019-06-20 トヨタ自動車株式会社 直列積層型全固体電池
US12051816B2 (en) 2019-03-12 2024-07-30 Panasonic Intellectual Property Management Co., Ltd. Laminated battery
JP7287457B2 (ja) 2019-03-29 2023-06-06 株式会社村田製作所 固体電池
WO2020203877A1 (ja) * 2019-03-29 2020-10-08 株式会社村田製作所 固体電池
JPWO2020203877A1 (ja) * 2019-03-29 2020-10-08
WO2021230008A1 (ja) * 2020-05-13 2021-11-18 パナソニックIpマネジメント株式会社 電池
WO2021235395A1 (ja) * 2020-05-21 2021-11-25 シャープ株式会社 電気掃除機
JP2021183021A (ja) * 2020-05-21 2021-12-02 シャープ株式会社 電気掃除機の吸込口体、それを備えた電気掃除機および電気掃除装置
JP7458241B2 (ja) 2020-05-21 2024-03-29 シャープ株式会社 電気掃除機の吸込口体、それを備えた電気掃除機および電気掃除装置
WO2023181921A1 (ja) * 2022-03-23 2023-09-28 株式会社村田製作所 固体電池パッケージ

Also Published As

Publication number Publication date
CN103262330A (zh) 2013-08-21
US20130280598A1 (en) 2013-10-24
JPWO2012081366A1 (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
WO2012081366A1 (ja) 固体電池
JP3696559B2 (ja) バッテリー
JP5240620B2 (ja) 電気化学セル
US9017836B2 (en) Battery pack
JP2005222701A (ja) 組電池
JP6670132B2 (ja) 電気化学セル
JP5804053B2 (ja) 固体電池
EP2254174A1 (en) Secondary battery
US20220013846A1 (en) Solid-state battery
WO2015021435A2 (en) Battery core hermetic casing
WO2005076298A1 (ja) 固体電解コンデンサ
JP2012104804A (ja) 電子部品、及び電子装置
KR101493569B1 (ko) 전기 공급 시스템 및 이의 전기 공급 소자
JP5561439B2 (ja) 電池収容構造体
US8039144B2 (en) Electrochemical cell with singular coupling and method for making same
JP2007095455A (ja) セラミック容器およびこれを用いた電池または電気二重層キャパシタ
WO2020202928A1 (ja) 固体電池
US6771486B2 (en) Storage cell for surface mounting
KR20170068593A (ko) 전극
US20070182379A1 (en) Container, Battery or Electric Double Layer Capacitor Using the Same, and Electronic Device
JPWO2009078169A1 (ja) コイン型電気二重層キャパシタおよびキャパシタ実装体
JP2014090039A (ja) 電気化学デバイス
KR101312428B1 (ko) Pcb연결 구조 및 이를 채용한 이차 전지
KR101297091B1 (ko) 표면 실장형 슈퍼 커패시터 및 그의 제조 방법
JP7227840B2 (ja) 扁平形電池及びプリント回路板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849069

Country of ref document: EP

Kind code of ref document: A1