WO2012081254A1 - ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物 - Google Patents

ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物 Download PDF

Info

Publication number
WO2012081254A1
WO2012081254A1 PCT/JP2011/007019 JP2011007019W WO2012081254A1 WO 2012081254 A1 WO2012081254 A1 WO 2012081254A1 JP 2011007019 W JP2011007019 W JP 2011007019W WO 2012081254 A1 WO2012081254 A1 WO 2012081254A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
carbon atoms
diethylzinc
diethyl zinc
additive
Prior art date
Application number
PCT/JP2011/007019
Other languages
English (en)
French (fr)
Inventor
健一 羽賀
静夫 富安
功一 徳留
豊田 浩司
孝一郎 稲葉
Original Assignee
東ソー・ファインケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011044236A external-priority patent/JP5828646B2/ja
Priority claimed from JP2011044386A external-priority patent/JP5828647B2/ja
Application filed by 東ソー・ファインケム株式会社 filed Critical 東ソー・ファインケム株式会社
Priority to US13/989,660 priority Critical patent/US9156857B2/en
Priority to EP11848322.1A priority patent/EP2653474B1/en
Priority to KR1020137015319A priority patent/KR101910210B1/ko
Priority to CN201180059954.4A priority patent/CN103261206B/zh
Publication of WO2012081254A1 publication Critical patent/WO2012081254A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/02Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/16Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a six-membered ring
    • C07C13/23Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a six-membered ring with a cyclohexadiene ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • C08G65/12Saturated oxiranes characterised by the catalysts used containing organo-metallic compounds or metal hydrides

Definitions

  • the present invention relates to a diethylzinc composition excellent in thermal stability, a thermal stabilization method, and a thermal stabilization compound.
  • Diethyl zinc is conventionally used as a reaction reagent for organic synthesis in polymerization catalyst applications such as polyethylene oxide and polypropylene oxide, and in the production of intermediates such as pharmaceuticals and functional materials, and is known as an extremely useful industrial material. ing.
  • MOCVD Metal Organic Chemical Vapor® Deposition
  • the zinc oxide thin film obtained by this MOCVD method has various functions in solar cells such as CIGS solar cell buffer layer, transparent conductive film, dye-sensitized solar cell electrode film, thin-film Si solar cell intermediate layer, and transparent conductive film. It is used in various functional films such as films, photocatalytic films, ultraviolet cut films, infrared reflective films, and antistatic films, compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc., and has a wide range of uses.
  • Diethyl zinc is known to be gradually decomposed when heat is applied to deposit metal zinc particles (see Non-Patent Document 1, for example). Therefore, handling of diethyl zinc has problems such as a decrease in product purity due to precipitation of metal zinc particles generated by pyrolysis, contamination of storage containers, and blockage of manufacturing equipment piping.
  • diethyl zinc is important as a raw material for the production of zinc oxide thin films by MOCVD, and in use, generally, carrier gas such as nitrogen, argon or helium is circulated through diethyl zinc filled in a supply container.
  • carrier gas such as nitrogen, argon or helium
  • diethyl zinc is present in a carrier gas as a saturated vapor gas to supply it to an external device such as a film forming apparatus.
  • Compounds such as anthracene, acenaphthene, and acenaphthylene, which have been known as additives for diethyl zinc have boiling points of 342 ° C. (anthracene), 279 ° C.
  • the diethyl zinc composition stabilized by adding anthracene, acenaphthene, and acenaphthylene to diethyl zinc is used in the above manner. Is supplied to an external device or the like for a long period of time, there is a problem that the added anthracene, acenaphthene, acenaphthylene and other compounds accumulate in the diethylzinc remaining in the supply container.
  • the present invention improves the thermal stability of diethyl zinc used as a raw material for producing a zinc oxide thin film by a polymerization catalyst, an organic synthesis reagent, MOCVD method, etc.
  • An object is to provide an excellent diethyl zinc composition. Furthermore, in the above-mentioned supply over a long period of time in use in a method in which a carrier gas such as nitrogen, argon, helium, etc. is circulated through the diethylzinc composition and diethylzinc is supplied to the external device as a saturated vapor gas, The object is to reduce the accumulation of the added compound in diethylzinc remaining in the middle of the supply in the supply container.
  • a carrier gas such as nitrogen, argon, helium, etc.
  • the present inventor has found that a compound having a specific carbon-carbon double bond coexisted in diethyl zinc (CAS No. 557-20-0) and In addition, the thermal stability is remarkably improved, and the compound having a specific carbon-carbon double bond having a boiling point close to that of diethyl zinc is selected as a coexisting compound.
  • a carrier gas such as nitrogen, argon, helium, etc.
  • the diethylzinc composition according to the present invention is a diethylzinc composition in which a compound having a carbon-carbon double bond represented by the following general formula (1) is added as an additive to diethylzinc.
  • each R is independently hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 8 carbon atoms, or an allyl group having 6 to 14 carbon atoms.
  • the compound of the formula (1) includes at least one skeleton composed of carbon of the following general formula (2).
  • the diethyl zinc composition according to the present invention is a diethyl zinc composition in which a compound having a carbon-carbon double bond represented by the following general formula (3) is added as an additive to diethyl zinc.
  • each R independently represents hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 8 carbon atoms, or an allyl group having 6 to 14 carbon atoms.
  • the compound of the formula (3) includes at least one skeleton composed of carbon of the following general formula (4).
  • the diethylzinc composition according to the present invention is a diethylzinc composition obtained by adding a compound having a carbon-carbon double bond represented by the following general formula (5) as an additive to diethylzinc.
  • n is an integer of 1 to 4
  • each R is independently hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, or a linear or branched group having 1 to 8 carbon atoms.
  • the diethylzinc composition according to the present invention is a diethylzinc composition obtained by adding a compound having a carbon-carbon double bond of the following general formula (6) as an additive to diethylzinc.
  • n is an integer of 1 to 4, and each R is independently hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, or a linear or branched group having 1 to 8 carbon atoms.
  • R which is a substituent bonded to the side chain of the compound having a carbon-carbon double bond represented by the general formula (1), (3), (5) or (6), is independently A straight or branched alkyl group having 1 to 8 carbon atoms such as hydrogen, methyl group, ethyl group, propyl group, isopropyl group or butyl group, or a C 1 to 8 carbon group such as vinyl group, propenyl group or isopropenyl group.
  • substituents such as linear or branched alkenyl group, phenyl group, toluyl group and other allyl groups having 6 to 14 carbon atoms, such as methoxy group, ethoxy group, isopropoxy group, phenoxy group and alkoxy group. May be.
  • the number of substituents present in the side chain may be different from each other, and may be one or two or more.
  • Examples of the compound having a carbon-carbon double bond represented by the above general formula (1) or (3) include 2,4-dimethyl-1,3-pentadiene (CAS No. 1000-86-8), 2,4-dimethyl-1,3-hexadiene (CAS No. 10074-39-2), 2,4-dimethyl-1,3-heptadiene (CAS No.
  • a carrier gas such as nitrogen, argon, helium or the like is used for the diethyl zinc composition.
  • the compound added to the diethyl zinc remaining in the supply container in the supply container for a long period of time is supplied. It is possible to reduce the accumulation of substances extremely, and it is possible to coexist in diethyl zinc at an appropriate concentration.
  • the compound of the present invention is a compound in which 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene, 1,3-cyclononadiene, and their side chains are substituted with a substituent R It is.
  • the prefix number indicating the position of the above-described double bond may be from 1,3- to 2,4-, 3,5-, or 4,6-, but the general formula (5 ) Structure may be included.
  • the compound of the present invention is a compound in which 1,4-cyclohexadiene, 1,4-cycloheptadiene, 1,4-cyclooctadiene, 1,4-cyclononadiene and their side chains are substituted with a substituent R It is.
  • the prefix number indicating the position of the above-mentioned double bond may be 1,4-to 2,5- or 3,6-, but includes the structure of the general formula (6). It only has to be done.
  • Examples of the compound having a carbon-carbon double bond represented by the above general formula (5) or (6) include 1,3-cyclohexadiene, 1,4-cyclohexadiene, 1-methyl-1,4- Cyclohexadiene, 2-methyl-1,4-cyclohexadiene, 3-methyl-1,4-cyclohexadiene, 4-methyl-1,4-cyclohexadiene, 5-methyl-1,4-cyclohexadiene, 1-methyl 1,3-cyclohexadiene, 3-methyl-1,3-cyclohexadiene, 4-methyl-1,3-cyclohexadiene, 5-methyl-1,3-cyclohexadiene, 2-methyl-1,3-cyclo Hexadiene, 2,4-dimethyl-1,4-hexadiene, 1,1-dimethyl-2,5-hexadiene, 1,3-dimethyl-1,3-cyclohexadiene 2-methyl-1,3-cycloheptadiene, 5,5-dimethyl
  • a carrier gas such as nitrogen, argon or helium is added to the diethyl zinc composition by MOCVD or the like.
  • a carrier gas such as nitrogen, argon or helium
  • the compound added to the diethyl zinc remaining in the supply container in the supply container in the above-mentioned supply for a long period of time. It is possible to reduce the accumulation of substances extremely, and it is possible to coexist in diethyl zinc at an appropriate concentration.
  • the additive used in the present invention can provide a sufficient effect when added alone, but a plurality of additives may be used in combination.
  • the amount of the compound having a carbon-carbon double bond represented by the general formula (1), (3), (5) or (6) of the present invention is such that the performance of diethyl zinc is maintained,
  • the stabilizing effect can be obtained, but usually 50 ppm to 20 wt%, preferably 100 ppm to 10 wt%, more preferably 200 ppm to 5 wt% with respect to diethylzinc.
  • a diethyl zinc composition having excellent properties can be obtained.
  • the amount of the compound having a carbon-carbon double bond represented by the general formula (1), (3), (5) or (6) of the present invention is too small, a sufficient effect of improving the thermal stability can be obtained. In some cases, it may not be obtained, or if it is too much, the effect of increasing the addition amount may not be obtained. Therefore, it is desirable to add an appropriate amount for obtaining the desired effect of thermal stability.
  • Diethyl zinc used in the present invention is generally known as an industrial material used as a reaction reagent for organic synthesis in polymerization catalyst applications such as polyethylene oxide and polypropylene oxide, and in the production of intermediates such as pharmaceuticals and functional materials. What is being used can be used.
  • a zinc oxide thin film by MOCVD or the like includes a buffer layer for CIGS solar cells, a transparent conductive film, an electrode film for dye-sensitized solar cells, an intermediate layer for thin-film Si solar cells, Various functional films in solar cells such as transparent conductive films, photocatalytic films, ultraviolet cut films, infrared reflective films, various functional films such as antistatic films, compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc. Diethyl zinc having a purity higher than that of industrial materials can also be used.
  • diethylzinc is a compound having a carbon-carbon double bond represented by the general formula (1), (3), (5) or (6) of the present invention.
  • the method of addition such as adding the aforementioned additive to diethyl zinc.
  • a method of adding an additive to diethyl zinc in advance can be used.
  • an additive when used in a reaction or the like, an additive can be added to diethyl zinc immediately before use.
  • the temperature for preparing the diethylzinc composition of the present invention is preferably 70 ° C. or less, which is less affected by the thermal decomposition of diethylzinc.
  • the composition of the present invention can be prepared at -20 ° C to 35 ° C.
  • the pressure is not particularly limited. Except for special cases such as reaction, diethylzinc and the composition of the present invention can be usually prepared near atmospheric pressure, such as 0.1013 MPa.
  • the equipment used and the atmosphere used in equipment such as storage / transport containers, storage tanks, piping, etc. for the diethyl zinc composition of the present invention can be used as they are.
  • the material of the above-mentioned equipment can be a metal such as SUS, carbon steel, titanium, or Hastelloy, or a resin such as Teflon (registered trademark) or fluorine rubber.
  • an inert gas such as nitrogen, helium, or argon can be used in the same manner as diethyl zinc.
  • the diethylzinc composition of the present invention can be used by dissolving in a known solvent that can be used when diethylzinc is used.
  • the solvent include, for example, saturated hydrocarbons such as pentane, hexane, heptane and octane, hydrocarbon compounds such as aromatic hydrocarbons such as benzene, toluene and xylene, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane and diglyme.
  • ether compounds such as
  • Examples of the use of the diethylzinc composition of the present invention include use as a polymerization catalyst such as polyethylene oxide and polypropylene oxide, use as a reaction reagent for organic synthesis in the production of intermediates such as pharmaceuticals and functional materials, , Used in a method of forming a zinc oxide thin film by MOCVD method, etc., and CIGS solar cell buffer layer, transparent conductive film, dye-sensitized solar cell electrode film, thin film Si solar cell intermediate layer, transparent conductive film, etc.
  • Various functional films such as various functional films, photocatalytic films, ultraviolet cut films, infrared reflective films, antistatic films, etc.
  • oxide forming applications such as compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc., ZnS Examples of applications where diethyl zinc has been used so far, such as thin film formation for II-VI electronic devices, etc. It can be.
  • the diethylzinc composition to which the compound having a carbon-carbon double bond represented by the general formula (1), (3), (5) or (6) of the present invention is added has excellent thermal stability, and diethylzinc There is very little precipitation of the metal zinc particle which generate
  • a carrier gas such as nitrogen, argon, helium or the like
  • NMR chart (solvent: CDCl 3) of a mixture containing dimethyl hexadiene is.
  • NMR chart (solvent: CDCl 3) of a mixture containing trimethyl-hexadiene is.
  • DSC measurement was performed using DSC6200 (manufactured by Seiko Instruments Inc.).
  • DSC6200 manufactured by Seiko Instruments Inc.
  • 1 H-NMR measurement was synthesized using Gemini-300 (manufactured by Varian)
  • GC-MS measurement was synthesized using HP6890 (manufactured by Hured Packard). was analyzed.
  • diethyl zinc composition-1 Glass of diethylzinc (Tosoh Finechem Co., Ltd.) and 2,4-dimethyl-1,3-pentadiene (CAS No.1000-86-8) (commercially available reagent) at a predetermined concentration at room temperature in a nitrogen atmosphere Weighed into a container. The additive was dissolved in diethyl zinc to prepare a diethyl zinc composition.
  • diethyl zinc composition-2 Diethyl zinc (manufactured by Tosoh Finechem Co., Ltd.) and 1-methyl-1,4-cyclohexadiene (CAS No.4313-57-9) (commercially available reagent) in a glass container at a predetermined concentration at room temperature in a nitrogen atmosphere Weighed out. The additive was dissolved in diethyl zinc to prepare a diethyl zinc composition.
  • DSC measurement (Differential Scanning Calorimetry) was performed on the diethylzinc composition prepared by the above-described method, and the thermal stability effect of the additive was evaluated.
  • Example 1 [Thermal stability test of diethyl zinc composition by DSC measurement]
  • a diethylzinc composition to which 2,4-dimethyl-1,3-pentadiene (CAS No. 1000-86-8), which is a compound of the present invention, was added in a nitrogen atmosphere was mixed with SUS. Weighed and sealed in a DSC cell. The obtained sample was subjected to DSC measurement, and the same thermal analysis measurement as in Reference Example 1 was carried out at a temperature increase rate of 10 ° C./min with a temperature range of 30 to 450 ° C. Table 1 shows the initial heat generation temperature of each sample.
  • the initial exothermic temperature of the sample of the diethylzinc composition to which the compound of the present invention was added was higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the reference example, and the composition of the present invention was a sample of only diethylzinc
  • the decomposition start temperature is higher than that. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed. Further, the boiling point of 2,4-dimethyl-1,3-pentadiene, which is the compound of the present invention, is lower than 93 ° C. and 118 ° C. which is the boiling point of diethylzinc, and carriers such as MOCVD method, nitrogen, argon, helium, etc.
  • the boiling point of the aforementioned compound is 342 ° C. (anthracene), 279 ° C. (acenaphthene), 265 to 275 ° C. (acenaphthylene) and higher than 118 ° C.
  • Example 2 to 6 [Thermal stability test of diethyl zinc composition by DSC measurement] Thermal analysis measurement was performed in the same manner as in Example 1 except that the addition concentration of 2,4-dimethyl-1,3-pentadiene (CAS No. 1000-86-8), which is a compound of the present invention, was changed. . Table 1 shows the initial heat generation temperature of each sample. The initial exothermic temperature of the sample of the diethylzinc composition to which the compound of the present invention was added was higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the Reference Example even if the concentration of the compound added was lowered. The composition has a higher decomposition onset temperature than the diethylzinc only sample. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed.
  • 2,4-dimethyl-1,3-pentadiene CAS No. 1000-86-8
  • Example 7 to 14 [Thermal stability test of diethyl zinc composition by DSC measurement]
  • the compound of the present invention a mixture containing dimethylhexadiene, a mixture containing trimethylhexadiene, and 2,6-dimethyl-2,4,6-octatriene (CAS No. 673-84-3) are added in various addition amounts.
  • the diethyl zinc composition thus obtained was subjected to the same thermal analysis measurement as in Example 1.
  • Table 2 shows the initial heat generation temperature of each sample.
  • the initial exothermic temperature of the sample of the diethylzinc composition to which the compound of the present invention was added was higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the Reference Example even if the concentration of the compound added was lowered.
  • the composition has a higher decomposition onset temperature than the diethylzinc only sample. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed.
  • a mixture comprising dimethylhexadiene and a mixture comprising trimethylhexadiene having a structure effective as an additive of the present invention is a known synthesis for 2,4-dimethyl-1,3-pentadiene (CAS No. 1000-86-8). The synthesis was performed with reference to the method.
  • the mixture containing dimethylhexadiene and the mixture containing trimethylhexadiene were each purified by distillation purification. In distillation purification (atmospheric pressure) of the crude product containing the aforementioned mixture, the bottom heating temperature when the distillation fraction containing each mixture is distilled is a mixture containing dimethylhexadiene: 140 ° C., a mixture containing trimethylhexadiene.
  • Example 15 [Thermal stability test of diethyl zinc composition by DSC measurement] In the same manner as in Reference Example 1, in a nitrogen atmosphere, diethyl zinc composition to which 1-methyl-1,4-cyclohexadiene (CAS No. 4313-57-9) (commercial reagent) as an additive of the present invention was added The material was weighed and sealed in a SUS DSC cell. The obtained sample was subjected to DSC measurement, and the same thermal analysis measurement as in Reference Example 1 was carried out at a temperature increase rate of 10 ° C./min with a temperature range of 30 to 450 ° C. Table 3 shows the initial heat generation temperature of each sample.
  • 1-methyl-1,4-cyclohexadiene CAS No. 4313-57-9
  • Table 3 shows the initial heat generation temperature of each sample.
  • the initial exothermic temperature of the sample of the diethylzinc composition to which the additive of the present invention was added was higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the reference example, and the composition of the present invention was composed of only diethylzinc.
  • the decomposition start temperature is higher than that of the sample. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed. Further, the boiling point of 1-methyl-1,4-cyclohexadiene, which is the additive of the present invention, is close to 115 ° C. and 118 ° C. which is the boiling point of diethyl zinc, and carrier gases such as MOCVD, nitrogen, argon, helium, etc.
  • Examples 16 to 18 The same thermal analysis measurement as in Example 1 was performed by changing the addition concentration of 1-methyl-1,4-cyclohexadiene (CAS No.4313-57-9) (commercially available reagent) which is an additive of the present invention. It was.
  • Table 3 shows the initial heat generation temperature of each sample.
  • the initial exothermic temperature of the sample of the diethylzinc composition to which the compound of the present invention was added was higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the Reference Example even if the concentration of the compound added was lowered.
  • the composition has a higher decomposition onset temperature than the diethylzinc only sample. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed.
  • Examples 19 to 22 Specific examples of the additive of the present invention include 1,4-cyclohexadiene (CAS No. 628-41-1), ⁇ -terpinene (CAS No. 99-86-5), ⁇ -terpinene CAS No. 99-85. -4) and 1,3,5,5-tetramethyl-1,3-cyclohexadiene (CAS No. 4724-89-4) (all commercially available reagents) were used to prepare diethylzinc compositions. Thermal analysis measurement similar to 1 was performed. Table 3 shows the initial heat generation temperature of each sample.
  • the initial exothermic temperature of the sample of the diethylzinc composition to which the additive of the present invention was added was higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the reference example, and the composition of the present invention was composed of only diethylzinc.
  • the decomposition start temperature is higher than that of the sample. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed.
  • a carrier gas such as MOCVD method, nitrogen, argon, helium, etc. is circulated through diethyl zinc and supplied to an external device as a saturated vapor gas of diethyl zinc. In the use in the method, the problem that the compound used as an additive accumulates in the diethyl zinc composition remaining in the supply container in the supply container by the above-mentioned supply for a long time is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】重合触媒や有機合成試薬およびMOCVD法等による酸化亜鉛薄膜製造原料や等に使用されるジエチル亜鉛の熱安定性を向上させ,長期間取り扱っても金属亜鉛粒子が析出しない熱安定性に優れたジエチル亜鉛組成物を提供する。 【解決の手段】ジエチル亜鉛に添加物として特定の炭素-炭素2重結合を有する化合物が添加されたジエチル亜鉛組成物を用いる。

Description

ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物
 本発明は、熱安定性に優れたジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物に関する。
 ジエチル亜鉛は、従来、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬として用いられており、極めて有用な工業材料として知られている。
 また近年、原料にジエチル亜鉛と酸化剤として水蒸気を使用してMOCVD(Metal Organic Chemical Vapor  Deposition)法と呼ばれる手法等により酸化亜鉛薄膜を形成する方法が検討されている。このMOCVD法により得られた酸化亜鉛薄膜は、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用され、幅広い用途を持つ。
 ジエチル亜鉛は、熱を加えると徐々に分解して金属亜鉛粒子が析出することが知られている(例えば非特許文献1参照)。そのため、ジエチル亜鉛の取り扱い等においては、熱分解で生成した金属亜鉛粒子の析出による製品純度の低下、貯蔵容器の汚染、製造設備配管の閉塞等の問題があった。
 上記の熱分解で生成した金属亜鉛粒子の析出に関する問題を解決する方法として、例えば、アントラセン、アセナフテン、アセナフチレン等の化合物を添加してジエチル亜鉛を安定化した組成物とするような方法が知られている(例えば特許文献1~3参照)。
米国特許第4385003号明細書 米国特許第4402880号明細書 米国特許第4407758号明細書
Yasuo  Kuniya  et  Al.,Applied  Organometallic Chemistry、5巻,337~347頁,1991年発行
 特許文献1~3に開示されるように、アントラセン、アセナフテン、アセナフチレンを添加してもジエチル亜鉛を十分に安定化することができず、より熱安定性に優れたジエチル亜鉛が求められる。
 一方、ジエチル亜鉛は、MOCVD法による酸化亜鉛薄膜等の製造の原料として重要であり、その使用時においては、一般に、窒素、アルゴン、ヘリウム等のキャリアガスを供給容器に充填したジエチル亜鉛に流通させて、キャリアガス中にジエチル亜鉛を飽和蒸気ガスとして存在させることで製膜装置等の外部装置に供給する方法が一般に用いられている。
 これまでジエチル亜鉛の添加剤として知られている、アントラセン、アセナフテン、アセナフチレンといった化合物は、それらの沸点が、342℃(アントラセン)、279℃(アセナフテン)、265~275℃(アセナフチレン)と、いずれの化合物も118℃の沸点を有するジエチル亜鉛に比べて沸点が高いことから、ジエチル亜鉛中にアントラセン、アセナフテン、アセナフチレンを添加することで安定化したジエチル亜鉛組成物を用いて、上記の方法でジエチル亜鉛を長期間外部装置等に供給すると、添加したアントラセン、アセナフテン、アセナフチレンといった化合物が供給容器内に供給途中で残っているジエチル亜鉛中に蓄積していくという課題がある。
 即ち本発明は、重合触媒や有機合成試薬およびMOCVD法等による酸化亜鉛薄膜製造原料に使用されるジエチル亜鉛の熱安定性を向上させ、長期間取り扱っても金属亜鉛粒子が析出しない熱安定性に優れたジエチル亜鉛組成物を提供することを目的とする。さらに、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛組成物に流通させてジエチル亜鉛を飽和蒸気ガスとして外部装置に供給する方法での使用において、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛中に、添加した化合物が蓄積することを低減することを目的とする。
 本発明者は上記課題を解決すべく鋭意研究開発を行った結果、ある特定の炭素-炭素2重結合を有する化合物をジエチル亜鉛(CAS No.557-20-0)に共存させた組成物とすることで熱安定性が著しく向上することを見出し、さらに、前記の特定の炭素-炭素2重結合を有する化合物の沸点がジエチル亜鉛に近いものを、共存させる化合物として選択することで、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛組成物に流通させてジエチル亜鉛を飽和蒸気ガスとして外部装置に供給する方法での使用において、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛中に、添加した化合物が蓄積することを低減することが可能となり、本発明を完成させた。
 本発明に係るジエチル亜鉛組成物は、ジエチル亜鉛に添加物として下記一般式(1)の炭素-炭素2重結合を有する化合物が添加されたジエチル亜鉛組成物である。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基、炭素数1~8の直鎖もしくは分岐したアルコキシ基である(ただし、Rがすべて水素である場合は除く)。また、式(1)の化合物は、以下の一般式(2)の炭素からなる骨格を少なくとも一つ含む。
Figure JPOXMLDOC01-appb-C000002
 また本発明に係るジエチル亜鉛組成物は、ジエチル亜鉛に添加物として下記一般式(3)の炭素-炭素2重結合を有する化合物が添加されたジエチル亜鉛組成物である。
Figure JPOXMLDOC01-appb-C000003
 式(3)中、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基、炭素数1~8の直鎖もしくは分岐したアルコキシ基である(ただし、Rがすべて水素である場合は除く)。また、式(3)の化合物は、以下の一般式(4)の炭素からなる骨格を少なくとも一つ含む。
Figure JPOXMLDOC01-appb-C000004
 また、本発明に係るジエチル亜鉛組成物は、ジエチル亜鉛に添加物として下記一般式(5)の炭素-炭素2重結合を有する化合物が添加されたジエチル亜鉛組成物である。
Figure JPOXMLDOC01-appb-C000005
 式(5)中、nは1から4の整数であり、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基、炭素数1~8の直鎖もしくは分岐したアルコキシ基である。
 また本発明に係るジエチル亜鉛組成物は、ジエチル亜鉛に添加物として下記一般式(6)の炭素-炭素2重結合を有する化合物が添加されたジエチル亜鉛組成物である。
Figure JPOXMLDOC01-appb-C000006
 式(6)中、nは1から4の整数であり、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基、炭素数1~8の直鎖もしくは分岐したアルコキシ基である。
 前述の一般式(1)、(3)、(5)または(6)で表される炭素-炭素2重結合を有する化合物の側鎖に結合している置換基であるRは、それぞれ独立に、水素やメチル基、エチル基、プロピル基、イソプロピル基、ブチル基等の炭素数1~8の直鎖もしくは分岐したアルキル基やビニル基やプロペニル基、イソプロペニル基等の炭素数1~8の直鎖もしくは分岐したアルケニル基、フェニル基、トルイル基等の炭素数6~14のアリル基、メトキシ基、エトキシ基、イソプロポキシ基、フェノキシ基、アルコキシ基等、の種々の置換基を有していてもよい。側鎖に存在する置換基の数はそれぞれ異なっていてもよく、1つでも2つ以上の複数であってもよい。
 前述の一般式(1)または(3)で表される炭素-炭素2重結合を有する化合物として、例えば、2,4-ジメチル-1,3-ペンタジエン(CAS No.1000-86-8)、2,4-ジメチル-1,3-ヘキサジエン(CAS No.10074-39-2)、2,4-ジメチル-1,3-ヘプタジエン(CAS No.20826-38-4)、2,4,5,5-テトラメチル-1,3-ヘキサジエン(CAS No.177176-57-7)2,3,4-トリメチル-1,3-ペンタジエン(CAS No.72014-90-5)、2,4-ジメチル-1,3,5-ヘキサトリエン(CAS No.112369-48-9)、2,3,5-トリメチル-1,3,5-ヘキサトリエン(CAS No.64891-79-8)等の化合物を挙げることが出来る。
 これらの一般式(1)または(3)で表される炭素-炭素2重結合を有する化合物のなかでも、例えば、2,4-ジメチル-1,3-ペンタジエン(CAS No.1000-86-8)等の置換基Rが水素や炭素数が3以下であるメチル基、エチル基、イソプロピル基、イソプロペニル基等から構成される化合物で総炭素数が6~10、好ましくは、総炭素数7~9である本発明の化合物は、室温で液体であり、ジエチル亜鉛の沸点である118℃に近い沸点を有することから、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛組成物に流通させてジエチル亜鉛を飽和蒸気ガスとして外部装置に供給する方法での使用においては、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛中に、添加した化合物が極端に蓄積することを低減することが可能であり、適度な濃度でジエチル亜鉛中に共存させることが可能となる。
 前述の一般式(5)の化合物の炭素―炭素2重結合を有する化合物は環状の炭化水素を中心骨格として有しており、環状の炭化水素の中心骨格は、例えば、n=1のとき、1,3-シクロヘキサジエン、n=2のとき、1、3-シクロへプタジエン、n=3のとき、1,3-シクロオクタジエン、n=4のとき、1,3-シクロノナジエンである。従って、本発明の化合物はそれら環状の炭化水素の中心骨格を有し、その骨格に水素または置換基Rを有する化合物である。すなわち、本発明の化合物は、1,3-シクロヘキサジエン、1,3-シクロへプタジエン、1,3-シクロオクタジエン、1,3-シクロノナジエンおよびそれらの側鎖が置換基Rに置換された化合物である。なお、置換基の位置によっては前述の2重結合の位置を表す接頭数字は1,3-から2,4-や3,5-または4,6-となる場合があるが、一般式(5)の構造が含まれていればよい。
 同様に、前述の一般式(6)の化合物の炭素―炭素2重結合を有する化合物は環状の炭化水素を中心骨格として有しており、環状の炭化水素の中心骨格は、例えば、n=1のとき、1,4-シクロヘキサジエン、n=2のとき、1,4-シクロへプタジエン、n=3のとき、1,4-シクロオクタジエン、n=4のとき、1,4-シクロノナジエンである。従って、本発明の化合物はそれら環状の炭化水素の中心骨格を有し、その骨格に水素または置換基Rを有する化合物である。すなわち、本発明の化合物は、1,4-シクロヘキサジエン、1,4-シクロへプタジエン、1,4-シクロオクタジエン、1,4-シクロノナジエンおよびそれらの側鎖が置換基Rに置換された化合物である。なお、置換基の位置によっては前述の2重結合の位置を表す接頭数字は1,4-から2,5-や3,6-となる場合があるが、一般式(6)の構造が含まれていればよい。
 前述の一般式(5)または(6)で表される炭素-炭素2重結合を有する化合物として、例えば、1,3-シクロヘキサジエン、1,4-シクロヘキサジエン、1-メチル-1,4-シクロヘキサジエン、2-メチル-1,4-シクロヘキサジエン、3-メチル-1,4-シクロヘキサジエン、4-メチル-1,4-シクロヘキサジエン、5-メチル-1,4-シクロヘキサジエン、1-メチル-1,3-シクロヘキサジエン、3-メチル-1,3-シクロヘキサジエン、4-メチル-1,3-シクロヘキサジエン、5-メチル-1,3-シクロヘキサジエン、2-メチル-1,3-シクロヘキサジエン、2,4―ジメチル-1,4-ヘキサジエン、1,1-ジメチル-2,5-ヘキサジエン、1,3-ジメチル-1,3-シクロヘキサジエン、2-メチル-1,3-シクロヘプタジエン、5,5-ジメチル-1,4-シクロヘキサジエン、1,2-ジメチル-1,3-シクロヘキサジエン、1-エチル-1,4-シクロヘキサジエン、α-テルピネン、γ-テルピネン、1,3,5,5-テトラメチル-1,3-シクロヘキサジエン、1,3,5,-トリメチル-1,4-シクロヘキサジエン、1,3-シクロヘプタジエン、1,4-シクロヘプタジエン、2-メチル-1,3-シクロヘプタジエン、1,3-シクロオクタジエン、1,4-シクロオクタジエン、1,3-シクロノナジエン等の化合物を挙げることが出来る。
 これらの一般式(5)または(6)で表される炭素-炭素2重結合を有する化合物のなかでも、例えば、1-メチル-1,4-シクロヘキサジエン(CAS No.4313-57-9)等の置換基Rが水素や炭素数が3以下であるメチル基、エチル基、イソプロピル基、イソプロペニル基等から構成される化合物で総炭素数が6~10、好ましくは、総炭素数7~9である本発明の化合物は、室温で液体であり、ジエチル亜鉛の沸点である118℃に近い沸点を有することから、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛組成物に流通させてジエチル亜鉛を飽和蒸気ガスとして外部装置に供給する方法での使用においては、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛中に、添加した化合物が極端に蓄積することを低減することが可能であり、適度な濃度でジエチル亜鉛中に共存させることが可能となる。
 本発明に用いられる添加物は、単独の添加で充分な効果が得られるが、複数を混合して用いても差し支えない。
 ここで、本発明の一般式(1)、(3)、(5)または(6)で表される炭素-炭素2重結合を有する化合物の添加量は、ジエチル亜鉛の性能が維持され、熱安定化効果が得られる範囲であれば、特に制限は無いが、通常、ジエチル亜鉛に対して、50ppm~20wt%、好ましくは100ppm~10wt%,より好ましくは200ppm~5wt%であれば,熱安定性に優れたジエチル亜鉛組成物を得ることができる。
 本発明の一般式(1)、(3)、(5)または(6)で表される炭素-炭素2重結合を有する化合物の添加量が、少なすぎると熱安定性向上の充分な効果が得られない場合があったり、多すぎると添加量を増加した効果が得られない場合もあるので、熱安定性の所望の効果を得るための適量を添加することが望ましい。
 本発明に使用されるジエチル亜鉛は、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬として用いられている一般に工業材料として知られているものを用いることが出来る。
 また、本発明においては、MOCVD法等により酸化亜鉛薄膜を形成する方法で使用され、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用されるような、工業材料よりも高純度のジエチル亜鉛も用いることが出来る。
 本発明のジエチル亜鉛組成物の調製においては、ジエチル亜鉛と本発明の一般式(1)、(3)、(5)または(6)で表される炭素-炭素2重結合を有する化合物である添加物とを混合すればよく、例えば、ジエチル亜鉛に前述の添加物を添加する等、添加の方法においては特に制限は無い。
 例えば、保存安定性の向上を目的する場合においては、あらかじめ、ジエチル亜鉛に添加物を添加する方法を用いることが出来る。
 また、例えば、反応等に使用する場合、使用の直前にジエチル亜鉛に添加物を添加することも可能である。
 また、本発明のジエチル亜鉛組成物の調製の温度においては、ジエチル亜鉛の熱分解の影響が少ない70℃以下が望ましい。通常、-20℃~35℃で本発明の組成物の調製を行なうことが出来る。また、圧力についても、特に制限は無いが、反応等、特殊な場合を除いては、通常、0.1013MPaなど、大気圧付近でジエチル亜鉛と本発明の組成物の調製を行なうことが出来る。
 本発明のジエチル亜鉛組成物の保管・運搬容器、貯蔵タンク、配管等の設備における使用機材、使用雰囲気はジエチル亜鉛に用いているものをそのまま転用可能である。例えば、前述の使用機材の材質はSUS、炭素鋼、チタン、ハステロイ等の金属や、テフロン(登録商標)、フッ素系ゴム等の樹脂等を用いることができる。また、使用雰囲気は、窒素、ヘリウム、アルゴン等の不活性ガス等がジエチル亜鉛と同様に用いることができる。
 また、本発明のジエチル亜鉛組成物は、ジエチル亜鉛の使用に際して用いることが出来る公知の溶媒に溶解して使用することが出来る。前記溶媒の例として、例えば、ペンタン、ヘキサン、ヘプタン、オクタン等の飽和炭化水素や、ベンゼン、トルエン、キシレン等の芳香族炭化水素等の炭化水素化合物、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジグライム等のエーテル系化合物等を挙げることが出来る。
 本発明のジエチル亜鉛組成物の用途としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬としての用途や、また、MOCVD法等により酸化亜鉛薄膜を形成する方法で使用され、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用されるような酸化物形成用途や、ZnS等、II-VI族の電子デバイス用薄膜形成用途等、これまでジエチル亜鉛が使用されている用途と同様のものを挙げることが出来る。
 本発明の一般式(1)、(3)、(5)または(6)で表される炭素-炭素2重結合を有する化合物を添加したジエチル亜鉛組成物は、熱安定性に優れ、ジエチル亜鉛が熱分解することにより発生する金属亜鉛粒子の析出が極めて少ない。その結果、製品純度の低下、貯蔵容器の汚染、製造設備配管の閉塞等の問題を防ぐことが可能となる。また、特に、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛に流通させてジエチル亜鉛の飽和蒸気ガスとして外部装置に供給する方法での使用において、ジエチル亜鉛組成物中に添加した本発明の化合物の沸点とジエチル亜鉛の沸点とが近いことから、長期間の上記の供給において、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛組成物中に、添加した本発明の化合物が蓄積することを低減することが出来る。
ジメチルヘキサジエンを含む混合物のNMRチャート(溶媒:CDCl3)である。 トリメチルヘキサジエンを含む混合物のNMRチャート(溶媒:CDCl3)である。
 以下に本発明を実施例によってさらに詳細に説明するが、これらの実施例は本発明を限定するものではない。
[測定機器]
 DSC測定は、DSC6200(セイコーインスツルメンツ株式会社製)を用いて行なった。本発明の添加物を合成により得た場合には、1H-NMR測定はGemini-300(バリアン社製)、GC-MS測定をHP6890(ヒューレッド・パッカード社製)それぞれ用いて合成した添加物を解析した。
[ジエチル亜鉛組成物の調製-1]
 ジエチル亜鉛(東ソー・ファインケム株式会社製)と、2,4-ジメチル-1,3-ペンタジエン(CAS No.1000-86-8)(市販試薬)とを窒素雰囲気下、室温において所定の濃度でガラス容器に秤量した。添加物をジエチル亜鉛に溶解して、ジエチル亜鉛組成物を調製した。
[ジエチル亜鉛組成物の調製-2]
 ジエチル亜鉛(東ソー・ファインケム株式会社製)と、1-メチル-1,4-シクロヘキサジエン(CAS No.4313-57-9)(市販試薬)とを窒素雰囲気下、室温において所定の濃度でガラス容器に秤量した。添加物をジエチル亜鉛に溶解して、ジエチル亜鉛組成物を調製した。
 ジエチル亜鉛への添加物の添加率(重量%)は、以下の式で定義したものを用いた。
 添加物の添加率(重量%)=(添加物重量/(添加物重量+ジエチル亜鉛重量))×100
 前述の方法で調製したジエチル亜鉛組成物について、DSC測定(示差走査熱量測定:Differential Scanning Calorimetry)を行ない、添加物の熱安定性効果を評価した。
[参考例1]
 [ジエチル亜鉛のDSC測定による熱安定性試験]
 窒素雰囲気下、ジエチル亜鉛を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30~450℃を測定温度範囲として10℃/分の昇温速度で熱分析測定を行なった。それぞれのサンプルの分解温度は、DSC測定の初期発熱温度で観測される。添加物を添加していないジエチル亜鉛のみのサンプルの初期発熱温度を表1に示す。
[実施例1]
[ジエチル亜鉛組成物のDSC測定による熱安定性試験]
 参考例1と同様にして、窒素雰囲気下、本発明の化合物である、2,4-ジメチル-1,3-ペンタジエン(CAS No.1000-86-8)を添加したジエチル亜鉛組成物を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30~450℃を測定温度範囲として10℃/分の昇温速度で参考例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表1に示す。
 本発明の化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。また、本発明の化合物である、2,4-ジメチル-1,3-ペンタジエンの沸点は93℃とジエチル亜鉛の沸点である118℃よりも低く、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛に流通させてジエチル亜鉛の飽和蒸気ガスとして外部装置に供給する方法での使用において、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛組成物中に、添加物として使用する化合物が蓄積する問題点が軽減される。
[比較例1~3]
 実施例1と同様にして、特許文献1~3に記載の化合物であるアントラセン、アセナフテン、アセナフチレンを添加したジエチル亜鉛組成物について同様の検討を行った。それぞれのサンプルの初期発熱温度を表1に示す。
 これらのサンプルは、本発明の化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、既存の添加物の添加した組成物は本発明の組成物よりも熱安定性が劣っていた。
 また、前述の化合物の沸点は、342℃(アントラセン)、279℃(アセナフテン)、265~275℃(アセナフチレン)とジエチル亜鉛の沸点である118℃よりも高く、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛に流通させてジエチル亜鉛の飽和蒸気ガスとして外部装置に供給する方法での使用において、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛組成物中に、これらの化合物が蓄積する問題点が発生する。
[実施例2~6]
[ジエチル亜鉛組成物のDSC測定による熱安定性試験]
 本発明の化合物である、2,4-ジメチル-1,3-ペンタジエン(CAS No.1000-86-8)の添加濃度を変えたこと以外は、実施例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表1に示す。
 本発明の化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、化合物の添加濃度を低くしても参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
[比較例4~6]
 実施例3と同様にして、特許文献1~3に記載の化合物であるアントラセン、アセナフテン、アセナフチレンを添加したジエチル亜鉛組成物について同様の検討を行った。それぞれのサンプルの初期発熱温度を表1に示す。
 これらのサンプルは、本発明の化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、既存の添加物の添加した組成物は本発明の組成物よりも熱安定性が劣っていた。
Figure JPOXMLDOC01-appb-T000001
[実施例7~14]
[ジエチル亜鉛組成物のDSC測定による熱安定性試験]
 本発明の化合物である、ジメチルヘキサジエンを含む混合物、トリメチルヘキサジエンを含む混合物、2,6-ジメチル-2,4,6-オクタトリエン(CAS No.673-84-3)を種々の添加量で添加したジエチル亜鉛組成物について、実施例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表2に示す。
 本発明の化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、化合物の添加濃度を低くしても参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
[参考例2]
 本発明の添加物として有効な構造を有する、ジメチルヘキサジエンを含む混合物およびトリメチルヘキサジエンを含む混合物は、2,4-ジメチル-1,3-ペンタジエン(CAS No.1000-86-8)に関する公知の合成手法を参考にして合成を行なった。ジメチルヘキサジエンを含む混合物およびトリメチルヘキサジエンを含む混合物は、それぞれ蒸留精製によって精製した。前述の混合物を含む粗生成物の蒸留精製(大気圧)おいて、各混合物を含む蒸留留分が留出する際の底部加熱温度は、ジメチルヘキサジエンを含む混合物:140℃、トリメチルヘキサジエンを含む混合物:165℃であった。従って、それぞれの混合物の沸点は、底部加熱温度よりも低い。
ジメチルヘキサペンタジエンを含む混合物およびトリメチルヘキサジエンを含む混合物は、それぞれ、1H-NMR測定およびGC-MS測定によって解析した。各混合物のNMRチャート(溶媒:CDCl3)を図1,2に示す。なお、2,6-ジメチル-2,4,6-オクタトリエン(CAS No.673-84-3)は市販試薬を使用した。
Figure JPOXMLDOC01-appb-T000002
[実施例15]
[ジエチル亜鉛組成物のDSC測定による熱安定性試験]
 参考例1と同様にして、窒素雰囲気下、本発明の添加物である、1-メチル-1,4-シクロヘキサジエン(CAS No.4313-57-9)(市販試薬)を添加したジエチル亜鉛組成物を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30~450℃を測定温度範囲として10℃/分の昇温速度で参考例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表3に示す。
 本発明の添加物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。また、本発明の添加物である、1-メチル-1,4-シクロヘキサジエンの沸点は115℃とジエチル亜鉛の沸点である118℃に近く、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛に流通させてジエチル亜鉛の飽和蒸気ガスとして外部装置に供給する方法での使用において、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛組成物中に、添加物として使用する化合物が蓄積する問題点が軽減される。
[実施例16~18]
 本発明の添加物である、1-メチル-1,4-シクロヘキサジエン(CAS No.4313-57-9)(市販試薬)の添加濃度を変えて、実施例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表3に示す。
 本発明の化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、化合物の添加濃度を低くしても参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
 [実施例19~22]
 本発明の添加物の具体例として、1,4-シクロヘキサジエン(CAS No.628-41-1)、α-テルピネン(CAS No.99-86-5)、γ-テルピネンCAS No.99-85-4)、1,3,5,5-テトラメチル-1,3-シクロヘキサジエン(CAS No. 4724-89-4)(すべて市販試薬)をそれぞれ用いてジエチル亜鉛組成物を調製し、実施例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表3に示す。
 本発明の添加物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
また、これら本発明の化合物は、公知の化合物よりも沸点が低いため、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛に流通させてジエチル亜鉛の飽和蒸気ガスとして外部装置に供給する方法での使用において、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛組成物中に、添加物として使用する化合物が蓄積する問題点が軽減される。
Figure JPOXMLDOC01-appb-T000003

Claims (15)

  1. ジエチル亜鉛に添加物として下記一般式(1)の炭素-炭素2重結合を有する化合物が添加されたジエチル亜鉛組成物
    Figure JPOXMLDOC01-appb-C000007

    式(1)中、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基、炭素数1~8の直鎖もしくは分岐したアルコキシ基である(ただし、Rがすべて水素である場合は除く)。また、式(1)の化合物は、以下の一般式(2)の炭素からなる骨格を少なくとも一つ含む。
    Figure JPOXMLDOC01-appb-C000008
  2. ジエチル亜鉛に添加物として下記一般式(3)の炭素-炭素2重結合を有する化合物が添加されたジエチル亜鉛組成物
    Figure JPOXMLDOC01-appb-C000009
     式(3)中、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基、炭素数1~8の直鎖もしくは分岐したアルコキシ基である(ただし、Rがすべて水素である場合は除く)。また、式(3)の化合物は、以下の一般式(4)の炭素からなる骨格を少なくとも一つ含む。
    Figure JPOXMLDOC01-appb-C000010
  3. 一般式(1)または(3)で表される炭素-炭素2重結合を有する化合物において、置換基Rが水素や炭素数が3以下であるアルキル基またはアルケニル基から構成される化合物で総炭素数が6~10である、請求項1または請求項2に記載のジエチル亜鉛組成物。
  4. ジエチル亜鉛への添加物の添加率が50ppm~20wt%である、請求項1~請求項3のいずれかに記載のジエチル亜鉛組成物。
  5. ジエチル亜鉛の熱安定性を向上させる方法とて、添加物として請求項1~3のいずれかに記載の化合物を用い、請求項4の添加率で添加することを特徴とする、ジエチル亜鉛の熱安定化の方法。
  6.  ジエチル亜鉛の熱安定性を向上させる添加物として、請求項1~3のいずれかに記載の構造を有することを特徴とする化合物。
  7.  請求項1~4のいずれかに記載のジエチル亜鉛組成物において、ジエチル亜鉛組成物を構成する添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物が共存する、請求項1~4のいずれかに記載のジエチル亜鉛組成物。
  8.  請求項5記載のジエチル亜鉛の安定化方法において、ジエチル亜鉛に熱安定性に効果のある添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物がジエチル亜鉛に共存する、請求項5記載のジエチル亜鉛の熱安定化の方法。
  9.  請求項6記載のジエチル亜鉛において、ジエチル亜鉛の熱安定性を向上させる添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物が共存する場合におけるジエチル亜鉛の熱安定性を向上させる添加物として、請求項6記載の構造を有することを特徴とする化合物。
  10. ジエチル亜鉛に添加物として下記一般式(5)の炭素-炭素2重結合を有する化合物が添加されたジエチル亜鉛組成物
    Figure JPOXMLDOC01-appb-C000011

                                               
     式(5)中、nは1から4の整数であり、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基、炭素数1~8の直鎖もしくは分岐したアルコキシ基である。
  11.  ジエチル亜鉛に添加物として下記一般式(6)の炭素-炭素2重結合を有する化合物が添加されたジエチル亜鉛組成物
    Figure JPOXMLDOC01-appb-C000012

                                 
     式(6)中、nは1から4の整数であり、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基、炭素数1~8の直鎖もしくは分岐したアルコキシ基である。
  12.  一般式(5)または(6)で表される炭素-炭素2重結合を有する化合物において、置換基Rが水素や炭素数が3以下であるアルキル基またはアルケニル基から構成される化合物で総炭素数が6~10である、請求項10または請求項11に記載のジエチル亜鉛組成物。
  13.  ジエチル亜鉛への添加物の添加率が50ppm~20wt%である、請求項10~請求項12のいずれかに記載のジエチル亜鉛組成物。
  14.  ジエチル亜鉛の熱安定性を向上させる方法とて、添加物として請求項10~12記載の化合物を用い、請求項13の添加率で添加することを特徴とする、ジエチル亜鉛の熱安定化の方法。
  15.  ジエチル亜鉛の熱安定性を向上させる添加物として、請求項10~12記載の構造を有することを特徴とする化合物。
PCT/JP2011/007019 2010-12-17 2011-12-15 ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物 WO2012081254A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/989,660 US9156857B2 (en) 2010-12-17 2011-12-15 Diethylzinc composition, method for heat stabilization, and compound for heat stabilization
EP11848322.1A EP2653474B1 (en) 2010-12-17 2011-12-15 Diethyl zinc composition, method for thermal stabilization and compound for thermal stabilization
KR1020137015319A KR101910210B1 (ko) 2010-12-17 2011-12-15 디에틸 아연 조성물, 열안정화 방법 및 열안정화용 화합물
CN201180059954.4A CN103261206B (zh) 2010-12-17 2011-12-15 二乙基锌组合物、热稳定化方法及热稳定化用化合物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-281787 2010-12-17
JP2010281787 2010-12-17
JP2011-044236 2011-03-01
JP2011-044386 2011-03-01
JP2011044236A JP5828646B2 (ja) 2010-12-17 2011-03-01 ジエチル亜鉛の熱安定化の方法及びジエチル亜鉛組成物
JP2011044386A JP5828647B2 (ja) 2011-03-01 2011-03-01 ジエチル亜鉛の熱安定化の方法及びジエチル亜鉛組成物

Publications (1)

Publication Number Publication Date
WO2012081254A1 true WO2012081254A1 (ja) 2012-06-21

Family

ID=47069298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007019 WO2012081254A1 (ja) 2010-12-17 2011-12-15 ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物

Country Status (6)

Country Link
US (1) US9156857B2 (ja)
EP (1) EP2653474B1 (ja)
KR (1) KR101910210B1 (ja)
CN (1) CN103261206B (ja)
TW (1) TWI532746B (ja)
WO (1) WO2012081254A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063148A (ja) * 1973-10-01 1975-05-29
US4385003A (en) 1981-10-30 1983-05-24 Stauffer Chemical Company Dialkylzinc composition having improved thermal stability
US4402880A (en) 1981-10-30 1983-09-06 Stauffer Chemical Company Dialkylzinc compositions having improved thermal stability
US4407758A (en) 1981-10-30 1983-10-04 Stauffer Chemical Company Dialkylzinc compositions having improved thermal stability
JPH0770056A (ja) * 1993-03-20 1995-03-14 Glaxo Spa シクロヘキセン誘導体
JPH0987206A (ja) * 1995-07-20 1997-03-31 Nippon Oil Co Ltd オレフィンのオリゴマー化触媒およびこれを用いたオレフィンオリゴマーの製造方法
JP2003300993A (ja) * 2002-04-05 2003-10-21 Tosoh Corp 新規零価ルテニウム錯体およびその製造方法
WO2009093175A1 (en) * 2008-01-22 2009-07-30 Firmenich Sa Perfuming ingredients imparting sap and/or earthy type notes
JP2010510982A (ja) * 2006-11-27 2010-04-08 マゼンス インコーポレイテッド 再狭窄の治療および予防のための医薬組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744678A (en) 1995-03-06 1998-04-28 Nippon Oil Co., Ltd. Oligomerization catalysts and process using the same for the production of olefinic oligomers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063148A (ja) * 1973-10-01 1975-05-29
US4385003A (en) 1981-10-30 1983-05-24 Stauffer Chemical Company Dialkylzinc composition having improved thermal stability
US4402880A (en) 1981-10-30 1983-09-06 Stauffer Chemical Company Dialkylzinc compositions having improved thermal stability
US4407758A (en) 1981-10-30 1983-10-04 Stauffer Chemical Company Dialkylzinc compositions having improved thermal stability
JPH0770056A (ja) * 1993-03-20 1995-03-14 Glaxo Spa シクロヘキセン誘導体
JPH0987206A (ja) * 1995-07-20 1997-03-31 Nippon Oil Co Ltd オレフィンのオリゴマー化触媒およびこれを用いたオレフィンオリゴマーの製造方法
JP2003300993A (ja) * 2002-04-05 2003-10-21 Tosoh Corp 新規零価ルテニウム錯体およびその製造方法
JP2010510982A (ja) * 2006-11-27 2010-04-08 マゼンス インコーポレイテッド 再狭窄の治療および予防のための医薬組成物
WO2009093175A1 (en) * 2008-01-22 2009-07-30 Firmenich Sa Perfuming ingredients imparting sap and/or earthy type notes

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DEHMLOW, E.V. ET AL.: "On the stereoselectivity of iodocarbene and -carbenoid additions to cyclic alkenes", TETRAHEDRON LETTERS, vol. 32, no. 43, 1991, pages 6105 - 6108, XP002639552 *
LOH, T. ET AL.: "Nickel-catalyzed homoallylation reaction of aldehydes with 1,3- dienes: stereochemical and mechanistic studies", ORGANIC LETTERS, vol. 4, no. 16, 2002, pages 2715 - 2717, XP055109150 *
See also references of EP2653474A4 *
YASUO KUNIYA, APPLIED ORGANOMETALLIC CHEMISTRY, vol. 5, 1991, pages 337 - 347

Also Published As

Publication number Publication date
KR101910210B1 (ko) 2018-10-19
US9156857B2 (en) 2015-10-13
EP2653474A1 (en) 2013-10-23
EP2653474A4 (en) 2014-07-02
KR20130132857A (ko) 2013-12-05
TWI532746B (zh) 2016-05-11
EP2653474B1 (en) 2017-06-14
US20130281724A1 (en) 2013-10-24
CN103261206B (zh) 2016-05-11
TW201231471A (en) 2012-08-01
CN103261206A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
EP1990345B1 (en) Organometallic germanium compounds suitable for use in vapor deposition processes
CN102482113B (zh) 掺杂或非掺杂的氧化锌薄膜制造用组合物以及使用其的氧化锌薄膜的制造方法
JP7240903B2 (ja) インジウム化合物および該インジウム化合物を用いたインジウム含有膜の成膜方法
JP5752356B2 (ja) ジエチル亜鉛の熱安定化方法およびジエチル亜鉛組成物
US9018125B2 (en) Diethylzinc composition, method for heat stabilization, and compound for heat stabilization
WO2012081254A1 (ja) ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物
JP5828646B2 (ja) ジエチル亜鉛の熱安定化の方法及びジエチル亜鉛組成物
JP5828647B2 (ja) ジエチル亜鉛の熱安定化の方法及びジエチル亜鉛組成物
Johnson et al. Inorganic and organozinc fluorocarboxylates: Synthesis, structure and materials chemistry
TWI403606B (zh) Raw material, and a method of manufacturing a thin film of film-forming zinc compound
JP5752369B2 (ja) ジエチル亜鉛組成物、ジエチル亜鉛の熱安定化方法、ジエチル亜鉛の熱安定性を向上させる化合物
JP5603711B2 (ja) ジエチル亜鉛組成物、ジエチル亜鉛の熱安定化方法、ジエチル亜鉛の熱安定性を向上させる化合物
JP5775672B2 (ja) ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物
KR101366630B1 (ko) 산화아연계 박막 증착용 전구체, 그 제조방법 및 이를 이용한 산화아연계 박막 증착방법
KR20150108664A (ko) 전구체 화합물 및 이를 이용한 박막 증착 방법, 어모퍼스 실리콘막의 증착방법
JP2012087015A (ja) 酸化亜鉛薄膜製造用組成物およびドープ酸化亜鉛薄膜製造用組成物を用いた酸化亜鉛薄膜製造方法、およびこの方法で製造した帯電防止薄膜、紫外線カット薄膜、透明電極薄膜
JP5756272B2 (ja) 酸化亜鉛薄膜製造用組成物およびドープ酸化亜鉛薄膜製造用組成物
JP2015163560A (ja) 多孔質状酸化亜鉛薄膜製造用組成物および多孔質状ドープ酸化亜鉛薄膜製造用組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180059954.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848322

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011848322

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137015319

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13989660

Country of ref document: US